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Abstract

Weakly Supervised Object Detection (WSOD) has emerged as an effective tool to
train object detectors using only the image-level category labels. However, without
object-level labels, WSOD detectors are prone to detect bounding boxes on salient
objects, clustered objects and discriminative object parts. Moreover, the image-
level category labels do not enforce consistent object detection across different
transformations of the same images. To address the above issues, we propose a
Comprehensive Attention Self-Distillation (CASD) training approach2 for WSOD.
To balance feature learning among all object instances, CASD computes the com-
prehensive attention aggregated from multiple transformations and feature layers
of the same images. To enforce consistent spatial supervision on objects, CASD
conducts self-distillation on the WSOD networks, such that the comprehensive
attention is approximated simultaneously by multiple transformations and feature
layers of the same images. CASD produces new state-of-the-art WSOD results on
standard benchmarks such as PASCAL VOC 2007/2012 and MS-COCO.

1 Introduction

Visual object detection has achieved remarkable progress in the last decade thanks to the advances of
Convolutional Neural Networks (CNNs) [1, 2]. An integral part of the achievement is the availability
of large-scale training data with precise bounding-box annotations (PASCAL VOC [3], MS-COCO
[4], etc). However, obtaining such fine-grained annotations at a large scale is labor-intensive and
time-consuming, which drove many researchers to explore the weakly-supervised setting. Weakly-
Supervised Object Detection (WSOD) [5] aims to learn object detectors with only the image-level
category labels indicating whether an image contains an object or not.

Most previous methods for WSOD are based on the Multiple Instance Learning (MIL) [6]. These
methods regard images as bags and object proposals as instances. A positive bag contains at least
one positive instance while all instances being negative in a negative bag. WSOD instance classifiers
(object detectors) are trained over these bags. Recently, leveraging the powerful representation
learning capacity of CNNs, several researchers proposed end-to-end MIL networks (OICR [7], PCL
[7], MIST [8], [9, 10]) with promising WSOD performances. These CNN methods regard the
instance classification (object detection) problem as a latent model learning within a bag classification
(image classification) problem, where the final image scores are the aggregation of the instance
scores. However, due to the under-determined and ill-posed nature of WSOD, there is still a large
performance gap between the weakly-supervised detectors and fully-supervised detectors.

The existing methods have two main sets of issues as demonstrated in Fig. 1. First, in the “Biased
WSOD” column of Fig. 1 (a) , there are three typical problems. Missing instance: Salient objects

∗The authors contributed equally.
2Code are avaliable at https://github.com/DeLightCMU/CASD

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

https://github.com/DeLightCMU/CASD


Figure 1: Typical WSOD issues and our CASD solution. Only the attention maps of high confi-
dence proposals by WSOD detection are overlaid on input images. (a) Biased WSOD detects
salient objects, clustered instances and object parts. (b) Inconsistent WSOD detects different objects
on different transformations of the same image.

are easily detected while inconspicuous instances tend to be ignored. Clustered instances: multiple
adjacent instances of the same category may be detected in a single bounding box. Part domination:
The bounding boxes are prone to focus on the most discriminative object parts instead of the entire
objects. Second, in the “Inconsistent WSOD” column of Fig. 1 (b), the same image and its different
image transformations, i.e., “Original Image”, “Flipped Image” and “Scaled Image”, do not produce
the same object bounding boxes.

WSOD conducts classification on object proposals (e.g., bounding boxes generated by selective
search [11]) with image-level class labels. The object proposals receive high classification scores
are considered as objects detected by WSOD. As we dive deep into the above issues from a feature
learning perspective, we overlay the attention maps of object proposals that get high confidences
in WSOD (Fig. 1). High intensity in attention maps corresponds to highly discrimiative and biased
features learned by the WSOD networks. We observe the drawbacks of WSOD detection are
closely associated with the issues in feature learning. For “Biased WSOD”, it is clear that salient
objects, clustered objects, and certain object parts contain spatial features that dominate the WSOD
classification. From a statistical machine learning point-of-view, feature domination is typically
established by the biased feature distribution in training data. For “Inconsistent WSOD”, the different
transformations of the same image are typically generated by data augmentation and are used to train
the WSOD networks in different training iterations. The same class image-level labels of transformed
images do not enforce spatially consistent feature learning and may lead to part domination and
missing instances. Note that the inconsistency on feature localization was not an issue for full-
supervised setting where augmented training data with precise bounding box labels can naturally
encourage consistency.

The above observations inspire us to address WSOD issues using an attention-based feature learning
method. We propose a Comprehensive Attention Self-Distillation (CASD) approach for WSOD
training. To balance feature learning among objects, CASD computes the comprehensive attention
aggregated from multiple transformations and feature layers of the same images. The “CASD
(ours)” column of Fig. 1 (a) demonstrates that CASD generates balanced attention on less salient
objects, individual objects, and entire objects, which enables WSOD detection on these objects. To
enforce consistent spatial supervision on objects, CASD conducts self-distillation on the WSOD
network itself, such that the comprehensive attention is approximated simultaneously by multiple
transformations and layers of the same images. The “CASD (ours)” column of Fig. 1 (b) demonstrates
that CASD generates consistent attention on different transformed variants of the same image, leading
to consistent WSOD detection in different transformations.

By computing the comprehensive attention maps, CASD aggregates “free” resources of spatial super-
vision for WSOD, including image transformations and low-to-high feature layers. By conducting
self-distillation on the WSOD network with the comprehensive attention maps, CASD enforces
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instance-balanced and spatially-consistent supervision, therefore robust bounding box localization
for WSOD. CASD achieves the state-of-the-art on several standard benchmarks, e.g. PASCAL VOC
2007/2012 and MS-COCO, outperforming other methods by clear margins. Systematic ablation
studies are also conducted on the effects of transformations and feature layers on CASD.

2 Related Work

2.1 Weakly Supervised Object Detection

Recent WSOD performance are significantly boosted by incorporating Multiple Instance Learning
(MIL) in Convolutional Neural Networks (CNN). [5] introduces the first end-to-end Weakly Super-
vised Deep Detection Network (WSDDN) with MIL, which inspired many following works. [12]
combines WSDDN and multi-stage instance classifiers into an Online Instance Classifier Refinement
(OICR) framework. [7] further improves OICR with a robust proposal generation module based on
proposal clustering, namely Proposal Cluster Learning (PCL). [13] introduces Continuation Multiple
Instance Learning (C-MIL) by relaxing the original MIL loss function with a set of smoothed loss
functions preventing detectors to be part dominating. [8] proposes a multiple instance self-training
framework with an online regression branch. [14] and [15] leverage segmentation maps to generate
instance proposals with rich contextual information. [16] and [17] introduce detection-segmentation
cyclic collaborative frameworks. Different from the above methods that regularize the WSOD outputs,
CASD directly enforces comprehensive and consistent WSOD feature learning.

2.2 Attention Mechanism in Computer Vision DNNs

The attention mechanism provides a fine-grained view of the features learned in CNNs. [18, 19]
introduce the connection between class-wise attention maps and image-level class labels. Due to its
explicit spatial clues, attention maps have been used to improve computer vision tasks in two ways: (1)
Re-weighting features. [20, 21, 22, 23, 24, 25] re-weight features with spatial-wise attention maps.
[26, 27, 28] improve supervised tasks by inverting gradient-based spatial-wise and channel-wise
attention. (2) Loss regularization. [29] introduces a consistency loss between attention maps under
different input transformations for image classification. [30, 31] propose cross-layer consistency
losses over attention maps for image classification and lane detection. To the best of our knowledge,
CASD is the first attempt to explore attention regularization for WSOD. Moreover, existing methods
for other tasks only encourage consistency of features, rather than the completeness of features.
Specifically, the features tend to focus on object parts but fail to localize less salient objects in
WSOD. CASD encourages both consistent and spatially complete feature learning guided by the
comprehensive attention maps, which explicitly addresses WSOD issues above.

2.3 Knowledge Distillation

Knowledge distillation [32, 33] is a CNN training process to transfer knowledge from teacher
networks to student networks. It has found wide applications in model compression, incremental
learning, and continual learning. The student networks mimic the the teacher networks on predictive
probabilities [32, 34], intermediate features [35], or attention maps of intermediate neural activations
[36, 37, 38, 39]. In contrast, CASD is a knowledge self-distillation process that transfers the
comprehensive attention knowledge within the WSOD model itself, rather than another teacher
model, across multiple views of the same data.

3 Method

3.1 Background

We first review a basic WSOD framework called Online Instance Classifier Refinement (OICR) [12],
then introduce CASD as a general training module on top of OICR. Formally, we denote I ∈ Rh×w×3

as an RGB image and y = [y1, ..., yC ] ∈ [0, 1]C as the labels associated with I. C is the total
number of object categories. y is a binary vector where yc = 1 indicates the presence of at least one
object of the cth category and yc = 0 indicates absence. The OICR framework consists of two main
components (See Fig. 2):
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Figure 2: The OICR WSOD network [12] with our Comprehensive Attention Self-Distillation
(CASD) training module. OICR includes two parts: Proposal Feature Extractor extracts feature
vectors for proposals. Multiple Instance Learning Head aggregates the proposal scores for image-
level classification. K branches of instance classifiers are sequentially refined for better localization.
CASD computes proposal attention maps from each proposal feature maps, aggregates attentions into
comprehensive attention maps, and self-distills the comprehensive attention maps to improve WSOD
(described in Sec. 3.2).

Proposal Feature Extractor. From an input image I, the object proposals R = {R1, R2, ..., RN}
are generated by Selective Search [11] where N is total number of proposals (bounding boxes). Then,
a CNN backbone is used to extract the image feature maps for I, from which the proposal feature
maps are extracted respectively. Lastly, these proposal feature maps are fed to a Region-of-Interest
(RoI) Pooling layer [1] and two Fully-Connected (FC) layers to obtain proposal feature vectors.

Multiple Instance Learning (MIL) Head. The MIL head learns the latent instance classifiers
(detectors). This module takes the above-obtained proposal feature vectors as input and conducts the
image-level MIL classification, regarding detection as a latent model learning problem.

Following WSDDN [5], the proposal feature vectors are forked into two parallel classification and
detection branches to generate two matrices xcls,xdet ∈ RC×N . Each column of xcls and xdet

corresponds to a score vector of an object proposal (e.g.,Ri). Then the two matrices are normalized by
the softmax layers σ(·) along the category direction (column-wise) and proposal direction (row-wise)
respectively, leading to σ(xcls) and σ(xdet). Finally, the instance-level classification score for object
proposals are computed by the element-wise product x = σ(xcls)� σ(xdet). The image-level classi-
fication score for the cth class is computed as pc =

∑N
i=1 xi,c. The MIL multiple-label classification

loss is used to supervise MIL classification: Lmlc = −
∑C

c=1 {yc log pc + (1− yc) log(1− pc)}.
The proposal scores x can be used to select proposals as detected objects. However, this step is prone
to selecting proposals corresponding to the most discriminative object instances and object parts.

To address this general WSOD issue, [12] introduces multi-stage OICR branches to refine the MIL
head. The proposal feature vectors from Proposal Feature Extractor are fed to K refinement stages
of OICR instance classifiers. Each kth stage is supervised by the instance-level pseudo-labels
selected from the Nk top-scoring proposals in previous stage. Each instance classifier consists of
an FC layer and a softmax function, and outputs a proposal score matrix xk ∈ R(C+1)×N . (The
background class is the (C + 1)th category in xk.). The loss for the kth classifier is defined as
Lk
ref = − 1

Nk

∑Nk

r=1

∑C+1
c=1 ŷ

k
r,c log xkr,c. (r corresponds to the region Rr.) During the inference,

the proposal score matrices of all K classifiers are summed to predict bounding boxes with Non-
Maximum Suppression (NMS). Besides the refinement loss, [40, 8] also incorporate a regression
loss to further improve the bounding box localization capability. Following Fast-RCNN, we define
Lk
reg = 1

Gk

∑Gk

r=1 smoothL1(tr, t̂r) where Gk is the total number of positive proposals in k-th
branch. tr and t̂r are tuples including location offsets and sizes of r-th predicted and ground truth
bounding-box.

4



Figure 3: Comprehensive Attention Self-Distillation (CASD). Input-wise (IW) CASD in (a) distills
the comprehensive attention maps that are aggregated from the proposal feature maps of the same
image under different transformations (horizontal flipping and scaling). Layer-wise (LW) CASD in
(b) computes the comprehensive attention maps over different network layers. Both IW-CASD and
LW-CASD encourage the WSOD network to learn balanced and consistent representation.

3.2 Comprehensive Attention Distillation

Building upon [12], Comprehensive Attention Self-Distillation (CASD) encourages consistent and
balanced representation learning in two folds: Input-wise CASD and Layer-wise CASD.

Input-wise (IW) CASD. IW-CASD conducts CASD over input images under multiple transforma-
tions (Fig. 3 (a)). Consider a set of inputs including the original image I, its horizontally flipped
image Iflip = Tflip(I) and its scaled image Iscale = Tscale(I). These input images are fed into
the same WSOD feature extractor to get the image feature maps outputted by the last convolution
layer: F, Fflip and Fscale, respectively. At each refinement branch, NK positive and negative object
proposals are selected by the same way as [12]. For the rth object proposal Rr (r = 1, · · · , NK ), the
proposal feature Pr ∈ RH×W×L is cropped from F, and is used to compute the proposal attention
map Ar ∈ RH×W by channel-wise average pooling and element-wise Sigmoid activation.

Ar(m,n) = S(
1

L

L∑
i=1

Pi
r(m,n)), (1)

where Ar(m,n) denotes the proposal attention magnitude at spatial location (m,n) of proposal Rr.
S(·) is the element-wise Sigmoid operator. The proposal attention maps Aflip

r and Ascale
r from

Fflip and Fscale can be computed in the same way as Eq. 1.

The example in Fig. 3 (a) shows that attention maps Ar, Aflip
r and Ascale

r focus on different parts of
proposal Rr. This is the common case in WSOD: for input image under different transformations,
the feature distribution within class does not correlate with the feature distribution between classes.
Unless regularized, the image-level classification of WSOD always relies on the most discriminative
features, which only correspond to the proposals on salient objects or object parts.

The union of these attention maps (denoted by AIW
r ) always covers more comprehensive parts of the

object than individual attention maps,

AIW
r = max(Ar, Tflip(Aflip

r ),Ascale
r ), (2)

where max(·) is the element-wise max operator. We define the input-wise CASD based on AIW
r

as a refinement problem on the WSOD network: updating the WSOD feature extractor such that
any transformed variants of the same image should generate comprehensive attention close to AIW

r .
To this end, AIW

r are simultaneously approximated from individual attention maps. For each kth
refinement branch , the IW-CASD loss function is defined as

Lk
IW =

1

NK

NK∑
r=1

(∥∥AIW
r −Ar

∥∥
2

+
∥∥AIW

r − Tflip(Aflip
r )

∥∥
2

+
∥∥AIW

r −Ascale
r )

∥∥
2

)
. (3)

NK is the total number of selected proposals in the kth branch. The computation ofAIW
r and updating

of the WSOD feature extractor are alternative steps in training. We consider this is a knowledge
distillation process from AIW

r to the WSOD network itself, and hereby name it as self-distillation.
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However, the alternating process above may also lead to local optimum. In particular, the individual
attention map containing more high-intensity elements may dominate attention maps associated with
other transformations. We balance the distillation among different transformations by independently
applying Inverted Attention (IA) [26] on each individual attention. For each attention, IA randomly
masks out top features highlighted by attention maps and force more features to be activated. This
training technique regularizes CASD and produces better results (see ablation study in Section 4).

Additionally, the aggregated proposal score matrices are used in the WSOD network training for
each transformed variant of the same image. Specifically, in the MIL head, IW-CASD takes several
transformed variants of the same image to generate groups of proposal instance score matrices for
each branch (K + 1 in total). Within each kth group, each score matrix provides a transformed view
of the original image for detection. Thus it is natural for WSOD to aggregate the score matrices
within each kth group to form a robust proposal score matrix as x̄k = 1

3 (xk + xk
flip + xk

scale).

Layer-wise(LW) CASD (LW-CASD) operates on proposal feature maps of image I produced at
multiple layers of WSOD feature extractor (see Fig. 3 (b)). The feature extractor network consists of
Q convolutional blocks B1, ..., BQ, each of which outputs a feature map FB1 , ...,FBQ , respectively.
FBQ is used as the feature map for generating proposal feature vectors in the MIL head. As illustrated
by the example in Fig. 3 (b), at the early layers of a CNN, the network focuses on local low-level
features, while at deeper layers, the network tends to focus on global semantic features. Conducting
CASD over layers enriches the proposal features with more granularity.

In LW-CASD, we use RoI pooling at different feature blocks to generate proposal feature maps, such
that they share the same spatial size. From these proposal attention maps, the layer-wise attention
maps ABqs are generated in a similar way as Eq. 1, and aggregated to obtain the comprehensive
attention maps,

ALW
r = max(AB1

r , · · · ,ABQ), (4)
where max(·) is the element-wise max operator. For the kth refinement branch, the IW-CASD loss is

Lk
LW =

1

NK

Q∑
q=1

NK∑
r=1

∥∥ALW
r −ABq

r

∥∥
2
. (5)

The choice of layers in IW-CASD are studied in Section 4.

Remarks. 1) Channel-wise average pooling+sigmoid in Eq. 1 is not the only choice for attention
estimation. We also explored other mechanisms such as Grad-CAM [19], but there is only a negligible
performance difference. Eq. 1 is used due to its simplicity and computation efficiency. 2) Besides
flipping and scaling, any other image transformations could also be used in IW-CASD. 3) In Eq. 3
and Eq. 5, gradients are not back-propagated to the comprehensive attention maps AIW

r or ALW
r .

Overall Loss Function. The overall loss for training a CASD-based WSOD network is composed of
the losses from Sec. 3.1 and Sec. 3.2.

LCASD−WSOD = Lmlc +

K∑
k=1

(αLk
ref + βLk

reg + γLk
IW + γLk

LW ), (6)

where α, β and γ balance the weights of different losses. K is the number of refinement branches.

4 Experimental Results

Datasets and Metrics. Three standard WSOD benchmarks, PASCAL VOC 2007, VOC 2012 [41]
and MS-COCO [42], are used in our experiments. Both VOC 2007 and VOC 2012 contain 20 object
classes with an additional background class. In VOC 2007, the total of 9, 962 images are split into
three subsets: 2, 501 for training, 2, 510 for validation and 4, 951 testing. In VOC 2012, all the
22, 531 images are split into the 5, 717 training images, 5, 823 validation images, the rest 10, 991 test
images. For both datasets, we followed the standard routine in WSOD [12, 8, 5, 7] to train on the
train+val set and evaluate on the test set. For MS-COCO trainval set, the train set (82, 783 images) is
used for training and the val set (40K images) is used for testing. Only image-level labels are utilized
in training. For evaluation, a predicted bounding box is considered to be positive if it has an IoU> 0.5
with the ground-truth. For VOC, mean Average Precision mAP0.5 (IoU threshold at 0.5) is reported.
For MS-COCO, we report mAP0.5 and mAP (averaged over IoU thresholds in [.5 : 0.05 : .95]).
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Implementation details. All experiments were implemented in PyTorch. The VGG16 and ResNet50
pre-trained on ImageNet [43] are used as WSOD backbones. Batch size is set to be T that is the
number of input transformations. The maximum iteration numbers are set to be 80K, 160K and
200K for VOC 2007, VOC 2012, and MS-COCO respectively. The whole WSOD network is
optimized in an end-to-end way by stochastic gradient descent (SGD) with a momentum of 0.9,
an initial learning rate of 0.001 and a weight decay of 0.0005. The learning rate will decay with a
factor of 10 at the 40kth, 80kth, and 120kth iteration for VOC 2007, VOC 2012 and MS-COCO,
respectively. The total number of refinement branches K is set to be 2. The confidence threshold
for Non-Maximum Suppression (NMS) is 0.3. For all experiments, we set α = 0.1, β = 0.05 and
γ = 0.1 in the total loss. Note that we reimplemented the OICR loss in Pytorch and found that using
a fixed α = 0.1 is slightlty better than the adaptive weighting policy in vanilla OICR (48.9% mAP0.5

vs. 48.3% mAP0.5 on VOC 2007). Thus we keep the fixed weight α for the OICR loss. Selective
Search [11] is used to generate about 2, 000 object proposals for each image.

To have a fair comparison with other methods, following [12, 7], multi-level scaling and horizontal
flipping data augmentation are conducted in training. Multi-level scaling is also used in testing.
Specifically, in the data augmentation, the short edges of input images are randomly re-scaled to a
scale in {480, 576, 688, 864, 1200}, and the longest image edges are capped to 2, 000, then a random
horizontal flipping is randomly conducted on the scaled images. In evaluation, input images are
augmented with all five scales.

4.1 Ablation Studies

We conducted three sets of ablation studies on the VOC 2007 with metric mAP0.5 (%) in Table 1- 3.
All results are based on the VGG16 backbone.

CASD main configurations. We conducted ablation studies on the main components of CASD
in Table 1 under the mAP0.5 metric. Our baseline achieves 48.9% mAP0.5. With the proposed
Input-wise CASD (“+IW”), the baseline is boosted to 54.1% mAP0.5 while the proposed Layer-
wise CASD (+LW) improves the baseline to 52.3% mAP0.5. Both IW-CASD and LW-CASD can
consistently improve the baseline with a clear 5.2% and 3.4% gain respectively. Combining IW with
LW (“+IW+LW”) can further boost the performance to 55.3% mAP0.5 that is 6.4% better than the
baseline. In addition, IW-CASD without Inverted Attention (IA) and proposal score aggregation
(PSA), “+IW w/o IA+PSA”, could achieve 51.4% mAP0.5 which is 2.5% superior to the baseline.
Proposal score aggregation brings a 1.2% mAP0.5 performance gain, leading to 52.6% mAP0.5 in
IW-CASD without Inverted Attention (“+IW w/o IA”). And Inverted Attention (+IW) has a 1.5%
mAP0.5 performance boost, justifying the effectiveness of IA.

Then we further demonstrate the validity of regression branch and stronger augmentation. With the
regression branch, “+IW+LW+Reg” achieves 56.1% mAP0.5 that is 0.8% better than “+IW+LW”.
Moreover, with stronger data augmentation of “flip+scale+color”, we can achieve the best CASD
performance (“+IW+LW+Reg∗”) 56.8% mAP0.5. Here the “Color” augmentation applies some
photo-metric distortions to the images which is the same as those described in [44, 45].

CASD layer configurations. Built upon the baseline, additional ablation study on layer configura-
tions of LW-CASD are shown in Table 2. The Bi is the ith convolutional block of VGG16 and B4

denotes the last block before the FC layer for image classification. As shown in the table, the best
result 52.3% mAP0.5 is obtained with LW-CASD usingB4+B3+B2 blocks. As demonstrated in Fig.
3 (b), these results indicate that middle-level feature attention maps (e.g. B2 andB3) encode balanced
discriminative clues (more spatially distributed than B1) for WSOD, while the low-level feature
attention maps (e.g. B1) contain noisy spatial information which may deteriorate the performance.
Besides Table 2, all other experiments in this work use the B4 +B3 +B2 configuration in CASD.

Attention regularization strategies. Besides our attention self-distillation, there are other regular-
ization strategies emerged for semi-supervised object detection and multi-label classification such as
Prediction Consistency [46] and Attention Consistency [29]. For a thorough demonstration of the
advantage of our attention distillation strategy, we implement these strategies under the WSOD setting
and compare them with the CASD. Similar to [46], prediction consistency in WSOD is implemented
by minimizing the JS-Divergence between predictions of differently transformed data. Attention
consistency [29] in WSOD force the attention of the last proposal feature maps to be consistent under
different input transformations based on the MSE loss.

7



Method Transformations VOC 2007

Baseline flip+scale 48.9
+IW w/o IA+PSA flip+scale 51.4
+IW w/o IA flip+scale 52.6
+IW flip+scale 54.1
+LW flip+scale 52.3
+IW+LW flip+scale 55.3
+IW+LW+Reg flip+scale 56.1
+IW+LW+Reg∗ flip+scale+color 56.8

Table 1: Ablation study of CASD main configura-
tions. “IW” as Input-Wise CASD, “LW” as Layer-
Wise CASD, “IA” as Inverted Attention, “PSA”:
proposal score aggregation, “Reg” as regression
branch.

Method VOC 2007

B4 +B3 51.8
B4 +B3 +B2 52.3

B4 +B3 +B2 +B1 51.4

Table 2: Ablation study of CASD layer configura-
tions based on the Baseline+LW.

Method VOC 2007

Prediction Consistency [46] 50.2
Attention Consistency [29] 51.0

Attention Distillation (Ours) 52.6

Table 3: Ablation study of strategies for attention
regularization based on Baseline+IW w/o IA.

Method VOC 2007 VOC 2012

WSDDN [5] 34.8 -
OICR [12] 41.2 37.9
PCL [7] 43.5 40.6
C-MIL [13] 50.5 46.7
WSOD2(+Reg.) [40] 53.6 47.2
Pred Net [47] 52.9 48.4
C-MIDN [15] 52.6 50.2
MIST(+Reg.) [8] 54.9 52.1
CASD(ours) 56.8 53.6

Table 4: Comparison with SOTA WSOD results
(VGG16 backbone, mAP0.5) on the PASCAL VOC
2007 and VOC 2012.

Method Backbone mAP mAP0.5

PCL [7] VGG16 8.5 19.4
C-MIDN [13] VGG16 9.6 21.4
WSOD2 [40] VGG16 10.8 22.7
MIST(+Reg.) [8] VGG16 11.4 24.3
MIST(+Reg.) [8] ResNet50 12.6 26.1
CASD(ours) VGG16 12.8 26.4
CASD(ours) ResNet50 13.9 27.8

Table 5: Comparison with SOTA WSOD results
on the MS-COCO dataset.

We compared IW-CASD (“+IW w/o IA”) with the other two methods in Table 3. IW-CASD is
superior to both prediction and attention consistency strategies by a 2.4% mAP0.5 and 1.6% mAP0.5

performance gain respectively. This validates the superiority of CASD over other attention consistency
methods.

Sensitivity analysis on loss weight γ: For the loss weight γ in Eq. 6, we evaluated CASD on
VOC 2007 with γ = 0.05, 0.075, 0.1, 0.15, 0.2, and got mAP 54.1%, 54.7%, 55.3%, 55.0%, 55.0%
respectively, which demonstrates that CASD is robust to γ.

4.2 Comparison with the State-of-the-arts

Here we experimentally compare the full version of CASD with other state-of-the-art methods. In
Table 4, with the same VGG16 backbone, CASD reaches the new state-of-the-art mAP0.5 of 56.8%
and 53.6% on VOC 2007 and VOC 2012, which are 1.9% and 1.5% higher than the latest state-of-
the-art (MIST(+Reg.) [8]). In the results on MS-COCO (Table 5). With the VGG16 backbone, CASD
produces 12.8% mAP and 26.4% mAP0.5, outperforming the VGG16 version of MIST(+Reg.) by
clear margins of 1.4% and 2.1%. With the ResNet50 backbone, CASD achieves the state-of-the-art
13.9% mAP and 27.8% mAP0.5 outperforming MIST(+Reg.) by clear margins of 1.3% mAP and
1.7% mAP0.5. Qualitative visualization of detection results can be found in Fig. 4 and 5 in the
Appendix.

5 Conclusion

In this paper, we proposed the Comprehensive Attention Self-Distillation (CASD) algorithm to
regularize the WSOD training. CASD aggregates “free” resources of spatial supervision within the
WSOD network, such as the different attentions produced under multiple image transformations
and low-to-high feature layers. Through self-distillation on the WSOD network, CASD enforces
instance-balanced and spatially-consistent supervision over objects and achieves the new state-of-
the-art WSOD results. As a training module, we believe CASD can be generalized and benefit other
weakly-supervised and semi-supervised tasks, such as instance segmentation, pose estimation.
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Broader Impact

This paper pushes the frontier of the weakly supervised object detection and reduce its performance
gap with the supervised detection. This work is also a general regularization approach that may
benefit semi-supervised learning, weakly-supervised learning, and self-supervised representation
learning. The ultimate research vision is to potentially relieve the burden of human annotations
on training data. This effort may reduce the cost, balance human bias, accelerate the evolution of
machine perception technology, and help us to understand how to enable learning with minimal
supervision.
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Appendix

A More Experimental Results

A.1 Visualization

Figure 4: Visualization of CASD-WSOD results. Top: success cases; Bottom: failure cases. Only
the attention maps of high confidence proposals by WSOD detection are overlaid on input images.
Green bounding boxes denote the ground truth.

We first present qualitative results of CASD-WSOD in Fig. 4. Recall that WSOD conducts classifica-
tion on object proposals (e.g., bounding boxes generated by Selective Search [11]) with image-level
class labels. The object proposals receive high classification scores are considered as objects detected
by WSOD. In Fig. 4, only the attention maps of high confidence proposals by WSOD detection are
overlaid on input images.

Fig. 4 shows both the success and the failure cases of CASD. When the objects are relatively big and
are completely visible, CASD tends to succeed. The failure cases mainly occur on objects that are
small or under heavy occlusion. We deduce that there are two main factors contributing to the failure:
(1) The Selective Search (SS) [11] algorithm may not generate good proposals for heavily occluded
objects. This could be improved by using better objectness proposal generators such as the RPN of
Faster-RCNN. (2) The incomplete appearance of the occluded objects make CASD difficult to learn
the long-range dependency among the object parts. This could be improved by hard-sample mining
in CASD training.

Fig. 5 compares results of MIST [8] and CASD. CASD has better success in detecting high-quality
bounding boxes than MIST. This localization advantages of CASD benefit from its learning of
comprehensive attention (see the bottom row of Fig. 5). We further demonstrate the localization
quality of CASD in Table 6.
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Figure 5: Comparison of MIST [8] and CASD. Top: MIST detection; Middle: CASD detection;
Bottom: CASD overlaid with attentions.

A.2 CorLoc on Trainval Sets

Correct Localization (CorLoc) was used in some previous works to evaluate performance on the VOC
2007 and VOC 2012 trainval sets. CorLoc only evaluates the localization accuracy of detectors. In
all those works, CorLoc was reported when WSOD is trained on both the training and validation sets,
and tested on both sets. This is probably why CorLoc was mostly used for ablation, not for the main
comparison between algorithms.

For completeness, we provide this additional metric in Table 6. CASD has the best overall localization
accuracy among all compared methods.

Method VOC 2007 VOC 2012

WSOD State-of-the-Art
WSDDN [5] 53.5 -
OICR [12] 60.6 62.1
PCL [7] 62.7 63.2
C-MIL [13] 65.0 67.4
WSOD2(+Reg.) [40] 69.5 71.9
Pred Net [47] 70.9 69.5
C-MIDN [15] 68.7 71.2
MIST(+Reg.) [8] 68.8 70.9
Ours
CASD 70.4 72.3

Table 6: Comparison of the localization performance (CorLoc) on the VOC 2007 and VOC 2012
trainval sets.
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A.3 More Ablation Studies and Clarification

Different γs for LIW and LLW : In Eq. 6, we have a single loss weight γ for both the IW-
CASD loss Lk

IW and LW-CASD loss Lk
LW . Another policy is to set different loss weights

for the two losses respectively. Which way is better? So we conduct the following abla-
tion study on VOC 2007. Fixing γIW = 0.1, CASD gets 55.0%, 55.5%, 55.3%, 54.8%, 54.8%
mAP0.5 when γLW = 0.05, 0.075, 0.1, 0.15, 0.2 respectively. Fixing γLW = 0.1, CASD gets
54.3%, 54.6%, 55.3%, 55.1%, 54.9% mAP0.5 when γIW = 0.05, 0.075, 0.1, 0.15, 0.2 respectively.
At LIW = 0.1 and LLW = 0.075, CASD achieves 55.5% mAP0.5 which is only 0.2% better than
55.3% mAP0.5 (the best performance of single γ). Thus we conclude that single γ is a good trade-off
between performance and hyper-parameter tuning.

Evidence for consistency and completeness in CASD: First, the attention maps and predicted
bounding boxes in Fig. 1 and Fig. 5 compare the results of OICR/MIST and CASD, qualitatively
demonstrating CASD gets more consistent and complete object features. Second, on the horizontal
flipped VOC 2007 test set, CASD achieves 56.5% mAP0.5 which is similar to 56.8% of the unflipped
test set. This indicates that CASD is consistent w.r.t flipping.

CASD with Grad-CAM: In CASD, we utilize channel-wise average pooling+sigmoid to get the
attention map. We conduct an ablation study on layer-wise CASD with Grad-CAM that gets 52.0%
mAP0.5 on VOC 2007. This is slightly worse than 52.6% mAP0.5 of layer-wise CASD with channel-
wise average pooling+sigmoid. Thus the latter is computationally more efficient and adopted in our
paper.

Clarification on the branch number of k in OICR: The vanilla OICR [12] has 3 OICR branches
(k = 3), and suggests the larger k the better results. We only use k = 2 in all our experiments due to
our GPU limitations. Thus CASD may achieve better results by setting k = 3 on GPU with sufficient
memory.
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