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Abstract

In the wake of a natural disaster, locating and extracting victims quickly is
critical because mortality rises rapidly after the first forty-eight hours. In order
to assist search and rescue teams and improve response times, teams of aerial
robots equipped with sensors and cameras can engage in sensing tasks such
as mapping buildings, assessing structural integrity, and locating victims. We
seek to enable large numbers of robots to cooperate to complete such sensing
tasks more quickly and thereby to improve response times for first responders.

When formalized, such sensing tasks encapsulate numerous computationally
difficult (at least NP-Hard) problems related to routing, sensor coverage, and
decision processes. One way to simplify planning for these tasks is to focus
on maximizing sensing performance over a short time horizon. Specifically,
consider the problem of how to select motions for a team of robots to maximize
a notion of sensing quality (the sensing objective) over the near future, say by
maximizing the amount of unknown space in a map that robots will observe
over the next several seconds. By repeating this process regularly (about once
a second), the robots can react quickly to new observations as they work to
complete the sensing task. In technical terms, this planning and control process
forms an example of receding-horizon control. Fortunately, common sensing
objectives for these problems benefit from well-known monotonicity properties
(e.g. submodularity), and greedy algorithms can exploit these monotonicity
properties to solve the receding-horizon optimization problems that we study
near-optimally.

However, greedy algorithms typically force robots to make decisions sequen-
tially. Thus, planning time grows with the number of robots and eventually
exceeds time constraints to replan in real time. This is particularly important
in distributed settings as the accumulation of communication latencies between
robots in sequence can be significant on its own. Further, recent works that
have begun to investigate sequential greedy planning, have demonstrated that
reducing the number of sequential steps while retaining suboptimality guaran-
tees can be hard or impossible.

This thesis demonstrates that halting such growth in planning time is pos-
sible for many sensing problems. To do so, we introduce new greedy methods,
Randomized Sequential Partitions (RSP) and Range-limited RSP. These meth-
ods enable planning with a fixed number of sequential steps that does not grow
with the number of robots. Additionally, we prove that our algorithms ap-
proach the initial near-optimality guarantees for sequential planning for many
sensing problems. In doing so, we develop new methods for quantifying redun-
dancy between potential future observations and highlight the importance of a
relatively unknown monotonicity property of some sensing objectives.



We apply our algorithms to autonomous mapping (known as exploration)
and target tracking problems which serve as proxies for the variety of tasks and
combinations of tasks that may arise in search and rescue scenarios. Simulation
results demonstrate that our greedy planners often approach the performance
of sequential planning (in terms of target position uncertainty) given only a few
planning steps (2-4), even for very large numbers of robots (96). This amounts
to a 24× reduction in the number of sequential steps and an equivalent or
greater reduction in the duration of distributed planning.

With exploration, we apply our methods in the context of a complex system
where robots equipped with depth cameras map unknown, three-dimensional
environments such as an office space or a cave. Moreover, the analysis we
present when applying our planning methods to mapping objectives also pro-
vides valuable insights into the design of such exploration systems. While con-
sistently improving completion times via greedy methods proves challenging,
we demonstrate that sequential planning and RSP increase coverage rates early
in simulation trials and reliably improve solution quality. Finally, we present
a distributed implementation of RSP and simulation results for exploration
of an office environment in real time, along with a 5% improvement in task
completion time in this setting.
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Notation

General mathematical notation
R, R>0 The set of real numbers and real numbers greater than

zero respectively
Z The set of integers
SO(3) The special orthogonal group in three dimensions (rota-

tions)
SE(3) The special Euclidean group for three dimensions (rigid-

body motions)
p, v Examples of vectors
A1:n, AX Examples of indexing “sets.” Elements of sets will gen-

erally be implicitly associated with time or agent indices
which will be accessed using ranges and sets of indices

X?, Xg, Xd Superscripts designating (elements of) an optimal solu-
tion to an optimization problem and examples of output
from greedy and distributed algorithms as will be evi-
dent from context

Information theory and probability
P(X=x|Y =y) Probability that a random variable X equals x condi-

tional on Y =y
E[X] The expected value of X
H(X|Y ) Entropy of X conditional on Y
I(X;Y |Z) Mutual information between X and Y conditional on Z
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Combinatorial optimization
U The ground set
I An independence system
B A block of a partition (matroid)
g(A,B), g(x) Evaluation of a set function g at A∪B where A,B ⊆ U

and implicit evaluation at {x} where x ∈ U
g(A|B),
g(A;B|C)

The former shows evaluation at A “conditional” on
B (g(A,B) − g(A)) using similar notation as for mu-
tual information. More generally, these two are first
and second discrete derivatives of g where g(A;B|C) =
g(B;A|C) = g(A,B,C)−g(A,C)−g(B,C)+g(C) (with
A, B, C disjoint).

Graphs
G A (directed or undirected) graph
E The set of edges of a graph

Ẽ Edges removed from a complete graph, R × R \ E if
robots are vertices

W Edge weights

As hinted above, we will forgo use of a symbol for vertices in favor of the symbol for
the set of objects—generally robots or agents—in question.

Robotics and control
R A set of (mobile) robots
A A set of (immobile) agents
U A set of controls (or sometimes actions)

f(x, u) System dynamics given state x and control u (generally
for an individual robot)

h(x) Sensing or observation function (also for individual
robots)

Algorithm acronyms
SGA Sequential greedy assignment for submodular maximiza-

tion on a partition matroid (acronym used in Chapter 4)
DSGA, DSGAnd

Distributed sequential greedy assignment in general and
in nd rounds, an early version of the methods this thesis
proposes

RSP, R-lRSP Randomized sequential partitions and the range-limited
variant, the main contributions of this thesis
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Chapter 1

Introduction

Robots are often characterized as being able to sense their environment and act upon
it [25]. While the actions that a robot can perform upon an environment—say folding
laundry [130] or preparing a meal—are important [86], sensing is becoming increasingly
prominent. This shift has been driven by changes in the markets for both robot platforms
and the sensors they carry:

• Depth sensors and cameras have become increasingly prevalent, cheaper, and lighter,
and

• Aerial robots have become both popular and pervasive [65, p. 41–51].

Moreover, aerial robots, when equipped with appropriate sensors, are able to navigate
complex [61] and unknown [120] environments to accomplish sensing tasks such as videog-
raphy [22], monitoring crops [17], and mapping [36].

Sensing problems arising from urban disaster and emergency response and in defense
settings are time-sensitive and involve operation in unknown and cluttered environments.
Sometimes, the time-sensitive nature of a task is immediate. One such case is a fire wherein
robots may assist firefighters to outpace the effects of a conflagration. Here, a team of
robots might engage in sensing tasks immediately preceding or in parallel with firefighters
entering a building.1 Disaster response has similar features, but the time-sensitivity is
driven by scale. In the case of a widespread disaster, teams may have ample time to
inspect individual buildings, but when viewed as a whole, the number of locations that
must be inspected and the paucity of responders motivate rapid action. In particular,
mortality typically increases rapidly forty-eight hours after the start of a disaster while
search and rescue teams often operate on a first-come-first-serve basis [138].

Figure 1.1 illustrates an example of how a team of robots may contribute to sensing
tasks that arise while searching a building in a disaster response scenario. For the purpose
of this thesis, we will focus on applications and challenges related to disaster and emergency
response scenarios such as this, although many of the contributions are relevant to other
sensing tasks and optimization problems.

1While human-robot interaction is not a subject of this thesis, humans can be treated as additional
members of a team that may provide additional sensor data, dictate sensing objectives, and must not be
collided with.
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Figure 1.1: This figure illustrates a typical disaster response scenario. Here, first responders wish to
inspect a disaster site, such as after an earthquake, in order to ascertain structural integrity and to locate
any survivors. To do so, they deploy a team of robots from a mobile base station that they transport along
with the rest of their equipment, and the operator uses a tablet interface to instruct the robots to inspect
the disaster site. Because communication infrastructure may have been destroyed in the disaster, the
team has access to little prior information on the environment, and robots take advantage of distributed,
onboard computation to mitigate effects of unreliable communication.

When seeking to improve response times, a designer may work to improve the sensing
platform itself along with planning and control algorithms for individual robots [76, 77].
However, platform constraints will ultimately limit the performance of individual robots.
Additionally, teams of robots can cooperate in sensing tasks to cover more space at once
or to complete tasks more rapidly. We focus on this latter dimension of the problem of
improving response times and ask: how can a designer compose multiple engineered sens-
ing platforms to improve completion time in sensing tasks? Addressing this question for
large teams of robots will involve solving increasingly large planning problems, addressing
communication constraints, and accounting for complications such as inter-robot collision
constraints.

As sensing tasks progress, the robots’ individual and collective understanding of the
world (commonly referred to as belief) can also change rapidly. The process of updating
control actions in response to new sensor data is commonly referred to as adaptation [6,
79, 91]. Adaptation is particularly important for robots operating in cluttered and urban
environments. In these scenarios, as robots obtain new sensor data, they can become aware
of both new regions of interest and new unoccupied and traversable space. Often, as for a
robot that is moving toward unobserved space [76, 77], this data is immediately pertinent
to the selection of control actions. By extension, teams of robots that are able complete
sensing tasks rapidly while operating in unknown environments must also adapt frequently.
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1.1 Challenges for distributed sensing and time-

sensitive sensing domains

The challenges that arise in this thesis can be divided into two categories: technical chal-
lenges related to the design of sensing systems and domain challenges for urban search and
rescue. While the domain challenges will motivate and shape the methods we propose, the
following technical challenges apply more generally to aerial sensing systems:

• Size, Weight, and Power (SWaP) constraints: Robots, especially aerial robots,
have limitations in size and weight based on the application domain. These con-
straints are pervasive and can lead to further constraints on thrust, flight time, on-
board computation, and sensor payloads

• Safety: Robots may operate in close proximity, replan frequently, and have non-
trivial dynamics. Maintaining safety involves avoiding collisions between robots and
other objects despite uncertainties in the states of the robots and the environment.
Moreover, systems should be robust to planners that may sometimes fail to provide
results, and safety may also include more complex conditions such as the ability to
return to an initial state or avoiding hazards

• Sensing: The sensors that aerial robots carry are not trivial. Camera views are sen-
sitive to orientation, and observations are complicated by the geometry of occlusions.
Robots may also carry a variety of sensors such as thermal cameras, range sensors,
or gas detectors, and autonomous sensing systems must account for sensor models,
fuse data, and reason about the contributions of sensing actions

• Communication: Communication bandwidth between robots and operators may
also be limited, and communication links may be unreliable. Communication con-
straints also affect dissemination of sensor data, operation of distributed algorithms,
and interaction with human operators

• Computation: Algorithms related to planning and control may also scale poorly
(e.g. being NP-Hard) and have to be solved suboptimally or approximately to be
tractable. Computational units situated on the robots themselves or elsewhere must
also have access to relevant information such as the robots’ locations and sensor data

Then, considering the application of methods for time-sensitive sensing for disaster and
emergency response in urban environments narrows these challenges and produces more
concrete details:

• Size: Systems—referring to the entire multi-robot system and related equipment—
that are usable by teams of first responders are likely limited in size to what one or
two people can carry or what is portable with a small vehicle [138]

• Hazardous environments: Environments may contain water, dust, gasses, and
other materials that are hazardous to people and robots [138]. Similarly, the struc-
tural integrity of a building may be compromised, and rubble may be unstable. Not
only should robots be resilient to these hazards, but these hazards may themselves
be the focus of sensing tasks, such as to provide situational awareness to responders
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who wish to avoid hazards as well

• Complex geometry: Rubble creates complex formations and small and irregular
voids. Because casualties are often buried deep within the rubble [138], sensing robots
should be able navigate such voids or else be able to recognize voids and mark them
for further inspection

• Limited communication: Disasters frequently destroy communication infrastruc-
ture, and wireless communication within a disaster site may be unreliable such as
due to rubble [138]. Teams of robots may also employ ad-hoc networks [73], and the
communication graphs linking robots may be incomplete or disconnected

• Lack of information: Emergency and disaster response activities typically occur
within hours of an event [138], and teams often work independently and with limited
access to information [137]. By extension and considering other constraints on com-
munication, robot teams will also have limited prior information on the environments
that they operate in

Disaster and emergency response scenarios do not always exhibit all of these challenges.
However, first responders and search and rescue teams are individually responsible for a
wide variety of disasters and emergencies. For this reason, any aerial sensing systems
that are useful in practice will likely be those that are readily accessible to responders
and which those responders have been trained to use. As such, in order to be useful,
robots may have to address many challenges related to different emergencies and disaster
scenarios [136, 138].

1.2 Approach and scope

This thesis focuses on the process of jointly planning sensing actions over short time
horizons (e.g. seconds) and across large teams of robots, with a focus on sensing tasks
arising from urban search and rescue. The proposed approach draws from sequential
greedy algorithms for maximization of submodular functions [69, 140] (discussed in de-
tail in Chapter 3) which are becoming increasingly popular for multi-robot sensor planning
problems [7, 89, 102, 151, 161, 169, 203].

Lack of reliable communication between robots and damage to infrastructure also moti-
vate our focus on distributed planning. Specifically, robots may not be able to communicate
reliably with centralized or remote computational resources (e.g. a mobile base station or
remote server) so robots should be able to plan for themselves. However, we note that some
of the techniques we develop in this thesis could be adapted to produce efficient centralized
and parallel implementations.

While some works that apply submodular maximization to related sensor planning
problems allude to distributed implementation [7, 151], planning time for greedy techniques
still scales at least linearly with the number of robots. Challenges related to distributed
variations of these algorithms have also only begun to be addressed [75, 82, 83], and yet
existing approaches still scale poorly in planning time or suboptimality as the number of
robots increases. Conversely, this thesis proposes techniques for planning via submodular
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Figure 1.2: Diagram of a typical sensing system. This thesis focuses on planning sensing actions for teams
of robots over a receding-horizon (e.g. several seconds). The inputs to the receding-horizon planner are
long-term goals for the sensing process and models of the environment that are locally consistent in space
and time. The outputs of the receding-horizon planner are control actions, typically a smooth trajectory,
which the robot will execute to collect sensor data.

maximization that scale to any number of robots, and we prove that the techniques we
propose maintain constant-factor suboptimality for a variety of sensing tasks.

Specifically, we develop a receding-horizon approach to sensor planning—illustrated in
Fig. 1.2—whereby robots collectively optimize sensing actions over a short time horizon,
typically several seconds. In general, such planners take high-level goals and locally consis-
tent models of the environment as inputs and output control actions in the form of smooth
trajectories. This thesis focuses primarily on the distributed aspect of these receding-
horizon optimization problems. While we address some challenges related to receding-
horizon planning for individual robots, that topic can also be addressed separately [76, 77].
We will also provide little detail on methods for high-level mission planning (or goal as-
signment) and distributed perception which are each necessary components of complete
sensing systems and, themselves, important topics of study. Maintaining distributed rep-
resentations of the environment can also incur significant communication costs. While
there are ways to mitigate such communication costs either by intelligently communicat-
ing or compressing sensor data [57, 72] or by distributed robots in ways that reduce the
need for communication [123], the methods in this thesis will not address this challenge.
Likewise, problems related to estimating robot position and states, particularly simulta-
neous localization and mapping (SLAM), are out of scope both for passive estimation and
as an active control problem [93]. Additionally, since our analysis will apply primarily
to receding-horizon sub-problems, translating improvements in solution quality on these
sub-problems into improvements in task performance—such as for robots to map an envi-
ronment more quickly—will itself pose an important challenge in this thesis.
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Further, this thesis will apply the methods for receding-horizon planning which we
develop to two application areas: exploration (autonomous mapping) and target tracking.
Here, exploration serves as a simple proxy for more complex tasks related to search and
rescue. In particular, planning for exploration addresses the challenge of selecting sensing
actions while operating in an environment with unknown geometry. On the other hand, the
target tracking problems which we study are not immediately relevant to the search and
rescue domain. Instead, these target tracking problems provide an opportunity to study a
special class of factored objectives; for target tracking this arises in an objective which can
be written as a sum over terms associated with each of the targets. More generally, this class
of objectives can capture the multi-faceted sensing tasks that arise in search and rescue.
In this sense, our analysis for such factored objectives could enable designers to extend the
systems we develop for exploration to simultaneously address a variety of nuanced sensing
tasks such as for locating survivors, assessing structural integrity, or identifying hazards.

1.3 Assumptions

The formulations of the exploration and target tracking tasks will also make a few sim-
plifying assumptions. These assumptions are not necessarily realistic in practice but can
often be relaxed with minor modifications to the approach. The following assumptions are
important to various parts of this thesis:
• Homogeneity: We assume teams of robots are homogeneous to simplify exposi-

tion, but our methods could be applied to heterogeneous teams with only minor
modifications

• Spatial locality: A stricter assumption is that robots’ incremental motions and
sensor ranges are bounded. However, we make this assumption primarily for the
purpose of analysis of large teams of robots, and this assumption need only apply
loosely to actual teams of robots. Additionally, spatial locality will arise in different
forms for different tasks and will be treated on a case-by-base basis

• Static environments: For exploration, we assume that robots map static environ-
ments. This assumption that environments are largely static while being searched
is likely realistic—searchers would generally avoid disturbing objects and rubble to
avoid causing collapses and endangering themselves or any survivors. However, robots
may also have to avoid collisions with responders who are moving about the environ-
ment or may have to recognize minor changes in the map such as after responders
clear some rubble or open a door. Thus, while the environment may remain predom-
inantly static for the purpose of the sensing task, addressing extraneous dynamics in
and around the environment will be left to future work

1.4 Contributions and outline

This thesis provides two kinds of contributions: development of scalable, distributed al-
gorithms with performance guarantees for multi-robot sensing and development of sensing
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applications for exploration (autonomous mapping) and target tracking. Moreover, the
central contribution of this thesis is a planning algorithm that guarantees constant factor
sensing performance on average for a variety of sensing problems and requires only a fixed
number of sequential planning steps for any number of robots. The rest of the thesis will
involve implementing such algorithms, analysis of relevant sensing objectives, and develop-
ing methods for operating in and exploring unknown environments. These contributions
are outlined below:

• Planning for single- and multi- robot exploration: Chapter 4 proposes a first
attempt toward a distributed sensing algorithm for sensor planning via submodular
maximization—by modifying to existing greedy methods [69]. The approach provides
post-hoc guarantees and benefits from parallel computation when single-robot plan-
ning is expensive. We develop this approach, along with methods for single-robot
planning based on Monte-Carlo tree search, to develop a receding-horizon planner
for exploration with teams of aerial robots. And, the rest of this thesis applies simi-
lar approaches to single-robot planning, throughout. Additionally, we guarantee that
robots do not collide with each other or the surrounding environment and describe
some weak conditions that are sufficient to guarantee liveness. Notably, this is also
the only chapter to include experiments with physical robots

• Scalable multi-agent coverage: Chapter 5 presents a greedy algorithm (Random-
ized Sequential Partitions or RSP) for coverage and any other submodular maxi-
mization problems which exhibit a certain higher-order monotonicity condition. Our
algorithm guarantees constant factor suboptimality in the sensing objective (e.g.
coverage) in expectation with fixed numbers of planning and communication rounds
(versus one per robot for sequential greedy methods). This guarantee extends to
any number of robots given certain conditions on spatial locality. To our knowledge
ours is the first algorithm to provide such guarantees for a non-trivial class of sub-
modular functions. As such, the remainder of the contributions continue to develop
applications and implementations of RSP planning

• Target tracking and quantifying inter-robot redundancy with factored ob-
jectives: Chapter 6 introduces target tracking problems and applies similar methods
for planning as the preceding chapters. Although we found in Chapter 5 that some
sensing objectives satisfy a higher-order monotonicity condition that enables develop-
ment of scalable planners with suboptimality guarantees, these results do not apply
in general to some popular objectives (e.g. mutual information). However, we prove
that some special cases of mutual information (those that can be factored as sums)
satisfy similar suboptimality guarantees. We also provide detailed analysis for ap-
plying this result to target tracking problems. Further, this sum decomposition is
relevant to the kinds of multi-objective problems which may arise when robots engage
in more complex sensing tasks. This chapter also provides new analysis for approx-
imate receding-horizon planning in real time that is relevant to sensing problems
throughout this thesis. Last, simulation studies establish performance improvements
for RSP planning in terms of target uncertainty and demonstrate that the subopti-
mality guarantees remain well-behaved for large numbers of robots (with results for
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up to 96 robots, providing a 24× reduction in the number of planning steps compared
to planning sequentially)

• Time-sensitive sensing in unknown environments: Chapter 7 revisits the prob-
lem of multi-robot exploration. We provide more in-depth analysis of objective func-
tions and present one case of a mutual information objective that satisfies the mono-
tonicity conditions we study in this thesis. This chapter also incorporates some
changes in planner design that significantly improve on what Chapter 4 presents.
Regarding simulation results, we find that improving completion times via sequential
or RSP planning (versus having no explicit coordination in planning) can be chal-
lenging. Still, we demonstrate that planning with RSP improves coverage rates early
in simulation trials and reliably improves solution quality (suboptimality)

• Design and implementation of a distributed sensor planner: While the pre-
vious chapters described distributed algorithms, Chapter 8 is the first to provide
a distributed implementation of an RSP planner. Toward this end, we provide de-
tailed discussion of design decisions and results that investigate communication costs.
Simulation results demonstrate this distributed, synchronous, anytime planner in ex-
ploration of an office-like environment, verify that the system behaves as expected,
and identify a 5% improvement in task completion time for coordination via RSP,
albeit for a small set of experiments

1.4.1 Code release

Some of the source code for these contributions is available via the BSD license. The nu-
merical experiments for coverage in Chapter 5, the target tracking simulations in Chapter 6,
and the communication study in Chapter 8 rely on a common code-base,2 written in Julia.
We have also released the distributed implementation of RSP3 that Chapter 8 describes
which has been implemented in C++ via ROS. This release encompasses the distributed
scheduling and communication aspects of RSP and excludes methods for exploration. We
hope that the design of this package can enable incorporation of RSP methods alongside
various single-robot receding-horizon sensor planners with minimal effort.

2https://github.com/mcorah/MultiAgentSensing
3https://github.com/mcorah/distributed_randomized_sequential_partitions
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Chapter 2

Sensing Problems

Before developing the contributions of this thesis, let us pause to discuss the nature of
the problems that we study. So far, the introduction (Chapter 1) has discussed sensing
problems at a high level and from the perspective of applications, particularly search
and rescue. This chapter will focus more closely on problem form and evaluation for
time-sensitive sensing and for target tracking. Later, Chapter 3 will provide technical
background methods and detailed discussion of related works.

We provide one caveat: the discussion in this chapter is primarily for the purpose of
empirical evaluation of the systems we propose and to broadly characterize how features
of sensing problems relate to the requirements of potential solution methods. Where some
sensing processes admit algorithms with formal guarantees [79], features such as robot
motion confound existing methods. Likewise, the receding-horizon techniques and other
methods that we develop involve approximations and heuristics, and we would not expect
the resulting systems to satisfy rigorous suboptimality guarantees.

2.1 Time-sensitive sensing

The time-sensitive sensing moniker intends to provide some formalism and structure to
the problems we study in this thesis. Chapter 1 provided motivation for why completing
sensing tasks quickly can be important. However, designers might consider other criteria.
For example, even early methods for exploration based on frontiers [198] could be described
as complete in the sense that the system will eventually explore the entire environment
under reasonable assumptions.

In defining the time-sensitive sensing problem, we take a cue from Golovin and Krause
[79] and describe the controller using notation for policies. However, in line with the rest
of this thesis and to provide a direct description of the system, we also draw on notation
from control theory.

Consider an unknown static environment E∼E drawn from some known distribution
over possible environments E . One or more robots (this problem definition can be inter-
preted as describing arbitrary systems, consisting of any number of robots) navigate the
environment and obtain observations according to the known dynamics and observation
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model

xt = f(xt−1, ut−1) yt = h(xt, E) (2.1)

where xt, yt, and ut are the state, observation, and control input at the (discrete) time
t. Like the environment, the initial state x0 ∼ X0 is random and drawn from a known
distribution. Given that the robot(s) learn about the environment through the sequence
of observations, the controller is a policy:1

ut = π(X0:t−1,Y0:t−1) (2.2)

where the capital letters represent vectors of states and observations. This policy states
that the robot makes decisions at each time t given the available information, the states,
and observations. Further, as the robot navigates the environment, it must also avoid
collisions or otherwise unsafe states. In general, the robot must remain in some set of safe
states Xsafe(E) at all times. We seek to minimize the expected completion time2 (given
the distribution over environments and starting positions) for a given sensing task—say
mapping a building. Progress in the task is measured by the sensing quality function
J(X0:t,Y0:t) which depends on states and observations while completion is modeled by a
quota B(E) which depends on the environment. For example, this sensing quality may
represent how much of a building that a robot has observed or mapped by a given time,
and the quota may require the robot to map a certain fraction of the building. Putting
this all together, the time-sensitive sensing problem is as follows:

min
π

EE,x0 [T ]

s.t. J(X0:T ,Y0:T ) ≥ B(E)

xt ∈ Xsafe(E)

ut = π(X0:t−1,Y0:t−1)

xt = f(xt−1, ut−1)

yt = h(xt, E)

and the above for all t in {1 . . . T} (2.3)

Solving this problem, even approximately, is challenging. This problem is imbued with
challenges from several different fields such as control theory, artificial intelligence, and
combinatorial optimization as we hint by mixing notation from these fields.

2.1.1 Characteristics of time-sensitive sensing

The following paragraphs discuss some of the challenges and properties of time-sensitive
sensing problems.

1For now, we write the policy and system model as if deterministic. However, the reasoning we present
also applies to stochastic systems and policies, as we study elsewhere in this thesis.

2Similar theoretic works [41, 79, 169] typically use a more abstract monotonic or modular cost which
could represent quantities like time or energy. Although planning with energy costs is an important topic
of study [173, 179], such general cost models do not arise in this thesis.
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2.1.1a Inference and uncertainty

The robot gains information about the environment by collecting observations from a
variety of states. In particular, the set of possible environments that are consistent with a
collection of states X0:t and Y0:t is3

{E : Y0:t = h(X0:t, E) for all possible environments E}. (2.4)

Referring back to (2.3), several features of the problem formulation depend on the envi-
ronment: the observations h(x, E), the safe set Xsafe(E), and the quota B(E). Effects of
uncertainty in observations will naturally arise frequently as this thesis focuses on sensing
problems. On the other hand, uncertainty in the quota could be interpreted as compli-
cating certain solution strategies, but the quota will only appear again in experimental
evaluation where its value will be known.

Although, we will discuss the safe set less frequently, the uncertainty in which actions
are safe has strong implications on system performance such as by bounding maximum
speeds [76]. Likewise, this uncertainty implies that we cannot plan complete paths (such
as to map a building) a priori because those paths may not be safe. Thus, methods for
path planning cannot solve (2.3) on their own. We will continue this discussion later in
this section in terms of safety and feasibility.

2.1.1b Form of the sensing quality

The sensing quality J(X0:t,Y0:t) is immediately in terms of known quantities: states and
observations. However, the sensing quality is also a function of the states and environment

J(X0:t,Y0:t) = J(X0:t, h(X0:t, E)), (2.5)

wherein we abuse notation by applying the observation function to a vector of states. Given
this latter form, we can make inferences about future observations. In this sense, future
sensing progress is uncertain to the extent that the environment remains uncertain but can
also be optimized by selecting robot motions.

Numerous recent works seek to optimize common measures of future sensing progress.
However, common sensing functions (such as those we discuss in this thesis) have sometimes
surprising differences in important functional properties. For this reason, we do not yet
specify the functional form of the sensing quality J . For example, Golovin and Krause [79]
demonstrate that certain sensor coverage functions have a monotonicity property called
adaptive submodularity even though important measures of information gain do not [45, 80].
We will frequently revisit similar functions for coverage and information gain. As these
often have similar properties, distinctions such as this are important. Here, adaptive
submodularity is one factor that determines whether greedy methods can solve (2.3) to

3We could write this more generally for noisy observations using Bayes’ rule. However, some relevant
solution methods [96] only apply to deterministic models. We emphasize the deterministic case to avoid
unduly restricting applicable solutions and because the sensing noise for common depth sensors in map-
ping [87] is frequently small compared to range (meters) and the environment discretization (typically
10 cm).
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near-optimality [79]. However, we will also find that adaptive submodularity does not
apply to many of the problems in this thesis.

2.1.1c Robot dynamics and available observations

The principal effect of the dynamics model is that it changes which information gathering
actions are available at a given time. Here, the information available at a given state
consists of state, observation pairs (x,y). Robots gain information about the environment
by visiting states and inspecting such pairs as y = h(x, E). The information gathering
actions that the robot has available at a state x consists of the set of states the robot can
visit next

{x′ : x′ = f(x, u) for all control inputs u} (2.6)

As such, the set of available observations at any given time depend on the prior selec-
tions. This excludes some methods for adaptive sensing [47, 79] which require the set of
information gathering actions not to change over time.

Another important property of the system dynamics f is whether it produces a directed
or undirected relationship between states. The system dynamics induce an undirected
relationship on the system states if, for any possible state x1 and control u1 pair

x2 = f(x1, u1)

there exists some u2 such that

x1 = f(x2, u2). (2.7)

Alternatively, the dynamics produce a directed relationship if the above does not hold.
Which of these properties holds can determine which kinds of algorithms and analysis [41,
43] apply to the planning problems we discuss in this thesis.

Many of the systems in this thesis will involve trivialized kinematic models with undi-
rected dynamics. However, Chapters 4 and 8 each provide results for systems with more
general, directed dynamics models. Likewise, the methods for distributed coordination
which we develop are independent of the robots’ dynamics.

2.1.1d Stopping and inevitability of collision

Let us consider how dynamics affect safety. Often, we will consider problems where robots
can always stop immediately. In terms of control theory, this means that for all possible
states xt there exists some control input ut that stops the robot so that

xt+1 = xt = f(xt, ut) (for some ut), (2.8)

ensuring that the robot remains in the same state. Individual states where (2.8) holds
are called invariant states4 [150]. Not all states are invariant states in practice—consider

4Similar properties also apply for invariant sets where each state in the set has some control action
which can keep the robot in the invariant set.
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a robot with non-zero velocity and non-trivial dynamics. Now, consider a robot flying
rapidly toward a brick wall; that robot will eventually reach a point of no return where
it cannot stop without hitting the wall—such is the heightening intensity of two children
playing “chicken” who must decide when to act to avoid collision. States past such points
of no return, where no sequence of control inputs can prevent the robot from leaving
the safe set Xsafe(E), are inevitable collision states. Controllers that ensure safety by
preventing robots from entering inevitable collision states are a frequent topic of study in
contemporary control theory in the form of control barrier functions [2, 142, 147] and also
for applications to mobile robots [77, 95, 120, 121, 192]. This will arise in Chapter 4 where
we will maintain safe stopping actions for all robots at all times. Further, some works
have begun to investigate the relationship between safety and inference in mapping [95].
For example, a robot can take a turn widely while accelerating around a corner to obtain
advance warning of what lies beyond. Now, building on these questions about safety, we
can also ask whether a robot will safely complete a sensing task—whether (2.3) is feasible.

2.1.1e Feasibility, failure, and completeness

Our definition of time-sensitive sensing (2.3) sets a high bar for producing even just an
approximate solution. A feasible policy must:

• Complete the sensing task (or else the completion time is infinite),

• Guarantee that the robot will remain in the safe set,

• And must do so for all of the environments that remain consistent with prior obser-
vations (2.4).

Given an instance of (2.3), we may ask several relevant questions about feasibility:

• Does a feasible solution exist?

• Given a policy, does that policy constitute a feasible solution? (A policy that is
feasible and thereby always eventually finishes the sensing task is said to be complete)

• Does any of the above hold for an individual environment and starting position
pairing or a restricted collection of such pairs?

• Does any of the above hold for a given partial history (X0:t,Y0:t)?

• Is the converse true for any of the above? (e.g. Is there no feasible solution?)

We will answer a small subset of this class of questions. Questions about safety already
answer parts of the converse forms (e.g. Is failure imminent? Can a given policy violate the
safety constraint?). Classical frontier-based exploration [198] approaches are also complete
given reasonable assumptions: The robot will navigate to and observe unknown space until
there is nothing left to observe. We will then attempt to replicate aspects of such classical
approaches when considering more nuanced problems involving dynamics, unstructured
environments, and cameras with limited fields of view.
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2.1.1f Decision processes and adaptivity

Time-sensitive sensing problems form decision processes by nature of control via policies
π(X0:t,Y0:t), functions of prior decisions and observations, rather than fixed sequences of
control actions. However, does (2.3) readily fit the form of a classical Partially Observable
Markov Decision Process (POMDP) [104]? At this point, it is important to realize that the
reward (or, more accurately, cost) in (2.3) is the completion time. Although time is easy
to compute, completion depends on the sensing quality J(X0:t,Y0:t) which is a function of
the sequence of states. Adapting these problems to the form of a traditional POMDP then
requires an exponential number of states for the same reasons as described by Golovin and
Krause [79] regarding the adaptive submodular maximization problems which they define.
Alternatively, certain POMDP variants allow for more complex rewards which we discuss
in Sec. 3.3.3

2.1.2 The receding-horizon approximation

Because solving full time-sensitive sensing problems is challenging, this thesis takes the
approach of solving a simpler sub-problem. Given prior states and actions X0:t and Y0:t

we seek to maximize the sensing quality over the next L steps for a fixed sequence of future
control actions u1:L (known as the receding-horizon) and adopt the policy:

π(X0:t,Y0:t) = arg max
u1:L

EE[J(X0:t+L,Y0:t+L)]

s.t. xt+l ∈ Xsafe(E)

xt+l = f(xt, ul)

yt+l = h(xt+l, E)

for all l in {1 . . . L} (2.9)

Receding-horizon methods such as this are common in robotics and control [150] and
for sensing problems like those we discuss in this thesis [20, 36, 116, 160]. We adopt
this approach as a heuristic and would not expect to obtain approximation guarantees.
However, we will be able to guarantee certain properties of the resulting system such as
safe operation. Furthermore, this sub-problem does not involve adaptation and therefore
no longer requires specialized analysis for adaptation [79]. This feature can then enable
application of informative path planning techniques for non-adaptive problems.

2.1.2a Informative path planning

The solution to (2.9) corresponds to a path (as xt:t+L is a function of u1:L) instead of
a policy. This path may be directed or undirected as discussed earlier. Assuming that
EE[J(X0:t+L,Y0:t+L)] satisfies certain properties, existing methods for informative path
planning can solve (2.9) with various guarantees [41, 43, 90, 169, 200]. Much of this thesis
will focus on how to apply those and similar methods to large instance of (2.9) where the
states and dynamics represent teams of robots.
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2.1.3 Exploration

In this thesis, exploration refers to the process of mapping some environment. This section
presents a simplified but also useful model of the exploration process. To begin, we model
the environment as a sequence of nm cells E = [c1, . . . , cnm ] which respectively represent
free and occupied space ci ∈ {0, 1}. This environment is drawn from some probability
distribution, and we will make no assumptions about that distribution at this point.

While navigating this environment the robot must avoid occupied cells while observing
cell occupancy values with a camera or other sensor. For some state x, the camera function
F cam(x, E) ⊆ {1, . . . , nm} returns the set of cells which the robot observes from that state
and given the specific environment. This camera function may then refer an arbitrary pro-
jective camera model.5 Then, the observation function indicates which cells the robot ob-
serves along with their values h(x, E) = {(i, ci) : i ∈ F cam(x, E)}. Similarly, the occupancy
function F occ(x) ⊆ {1, . . . , nm} determines which cells that the robot occupies. A robot is
in the safe set if all the cells it occupies are free Xsafe(E) = {x : ci = 0 for all i ∈ F occ(x)}.
We will reward the robot for the number of cells that it observes. So, the sensing quality
in exploration for given states X0:t and observations Y0:t is

J(X0:t,Y0:t) =
∣∣∣⋃t

i=0
F cam(xi, E)

∣∣∣ . (2.10)

When written as a function of a set (2.10) is a kind of coverage objective and has useful
monotonicity properties (Chapter 3 discusses both coverage and monotonicity in detail).
Additionally, the expectation, which appears in the receding-horizon problem (2.9), retains
similar properties. Yet, unlike some coverage objectives [79], (2.10) is not necessarily
adaptive submodular (see Appendix A.1).

2.2 Time-average tracking

Chapter 6 deviates from the rest of this thesis by focusing on sensor planning for observation
of dynamic systems. Unlike exploration where mobile (dynamic) robots seek to completely
map a static environment, (target) tracking problems are ongoing and can be evaluated
based on average performance. In this case, we can consider tracking a target whose state xt

evolves according to a Markov process so that xt
t ∼ P(xt

t|xt
t−1), (here, the super-script “t”

refers to target states) although more general processes are also relevant to this discussion.
In this case, the sensing quality J(X0:t,Y0:t) might correspond to the number of times
that the robot has observed a target or a measure of the uncertainty in the target’s entire

5An appropriate sanity condition for F cam would be to require the set of cells which the robot observes
A = F cam(x, E) to depend only on the state and the values of the cells that the robot observes. Consider
the occupancy values of those cells EA. We can require for all environments E′ that whenever the values
of the observed cells are the same E′A = EA, then set of cells that the robot observes A = F cam(x, E′)
must also be the same. This avoids inadvertently providing information about cells outside of the field of
view.
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trajectory Xt
0:t. Adapting (2.3) as appropriate, the time-average performance is

max
π

lim
t→∞

E[J(X0:t,Y0:t)]

t
, (2.11)

given some observation model and subject to robot dynamics. Then, given the focus on
time-average performance, the tracking problems we study (unlike exploration) are not
time-sensitive sensing problems as described in Sec. 2.1.

We will now discuss these problems briefly because they are of secondary importance
to this thesis and because many of the same properties and challenges apply.

2.2.1 Long duration Markov processes

The target tracking problem (2.11), as described, is a kind of long duration Markov Deci-
sion Process (MDP) [4], and if the target states Xt are not known exactly, such tracking
problems are also partially observable as for time-sensitive sensing problems. Here, the
key feature of the problem is that (2.11) focuses on average performance for all time and
does not favor near-term gains. Although some solution methods exist for these problems,
the problems that we study also incorporate features that make these problems difficult to
solve such as very large state and action spaces.

2.2.2 Ergodicity

One important property in such problems is ergodicity. For an ergodic system, the dis-
tribution of states for a single trajectory, taken over a very long duration, is the same as
the distribution for many trajectories. In short, ergodicity states that no transitions in
a system have irrevocable effects. This could refer to termination conditions or a system
that falls off a ledge and cannot get back up again.

Long duration problems are typically studied under various sorts of ergodicity condi-
tions [4]. In this sense, ergodicity conditions determine whether (2.11) describes rewards
for an individual trajectory or whether rewards could vary greatly across even very long
trials. Unsurprisingly, ergodicity has also been used in heuristics to solve similar prob-
lems [8, 127, 129].

2.2.3 Information dynamics

We briefly note that concepts from information theory and information dynamics are highly
relevant to target tracking problems and will go into more detail on related concepts later in
this text [23, 58]. Information theory can describe how quickly uncertainty in target states
can grow [58] and can provide further connections to ergodicity or characterize interactions
between system components [23].

2.2.4 Stability

Stability properties are also relevant to tracking problems. In this case stability can de-
scribe whether robots may travel far from the targets that they are tracking or whether
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uncertainty can grow indefinitely [156]. Such conditions will generally produce worst case
rewards in (2.11) (such as zero or infinitely negative reward). Although we will not seek
to characterize stability in the systems we study, this property characterizes the kind of
behavior that could arise in results.

2.3 Ramifications and challenges of multi-robot sens-

ing

In an abstract sense, the discussion so far applies to both individual robots and multi-
robot teams when viewed as a collective. Yet, this chapter has not explicitly addressed the
ramifications of multi-robot sensing. To begin, the following chapters will describe various
methods to decompose and plan for multi-robot sensing problems. These methods are all
much more efficient than applying planners for individual robots to the joint state space
of the entire team.

Additional challenges and constraints also arise when considering multi-robot teams.
For example, safety constraints (Sec. 2.1.1d) can be amended to account for inter-robot
collisions. We also encounter new challenges when considering distributed planning (via
processors onboard each robot) and accounting for communication between robots. Re-
garding distributed planning, robots should be able to obtain solutions in a timely manner,
preferably while taking advantage of parallel computation. Likewise, a distributed planner
may require systems for sharing sensor data or maintaining consistent beliefs via commu-
nication between robots. This, in turn, leads to challenges with respect to communication
as robots may have to maintain connectivity across the team or respect bandwidth con-
straints. We will begin to explore these challenges next with the background and related
work (Chapter 3), and later Chapter 8 will address challenges related to communication
more directly.
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Chapter 3

Background and Related Work

This chapter will establish the theoretic and practical foundations for this thesis and for
sensing and information gathering in unknown environments. We will begin with a high-
level discussion of sensor planning, exploration, and navigation in unknown environments
(Sec. 3.1). This section builds somewhat on the challenges for sensing problems (Chap-
ter 2) and introduces related works in this area. The foundations for questions about
information and uncertainty in robotics come from information theory (Sec. 3.2). More
directly, there is a wide body of literature related to robotics that applies information
theory to planning and control for sensing and information acquisition (Sec. 3.3). And for
the purpose of this thesis, we are particularly interested in applying techniques for sens-
ing and information gathering to multi-robot settings (Sec. 3.4). Many sensing objectives,
especially those based on information theory, share useful monotonicity properties. One
of the best known monotonicity properties is submodularity, and many single- and multi-
robot planning problems can be solved efficiently and near-optimally using techniques for
submodular maximization (Sec. 3.5). In particular, we are interested in applying methods
for submodular maximization to distributed planning for multi-robot teams. There are al-
ready a number of works on parallel and distributed submodular maximization (Sec. 3.6).
However, not all of these works are readily applicable to multi-robot settings. Further, no
existing works are able to scale to large numbers of robots due to increasing planning time.
Therefore, in addition to developing methods for aerial autonomy and exploration, this
thesis also presents new methods for submodular maximization that can scale to arbitrary
numbers of robots.

3.1 Autonomy and exploration in unknown environ-

ments

While sensing goals and objectives can vary significantly, we expect urban emergency and
disaster response tasks to feature cluttered and at least partially unknown environments
and refer to scenarios where mapping is the primary sensing task as exploration problems.
We may then cast navigation and mapping in unknown environments as a sensing prob-
lem [37, 103] and plan to maximize some notion of information gain. However, operation
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in unknown environments is distinguished by several unique challenges:
• Robots must avoid collision with objects and each other;

• The navigable subset of the environment is revealed incrementally while the robot
observes free and occupied space;

• Robot states and positions are uncertain; and

• Environments may be large and informative observations distant.

Further, the non-trivial dynamics of aerial robots exacerbate these challenges. The rest
of this section will address information-based formulations and each of these challenges in
turn.

3.1.1 Safe navigation

Safety reduces to planning collision-free paths for slow-moving ground robots with large
fields of view [116, 172, 198], and authors frequently overlook challenges related to safety
constraints. On the contrary, the aerial robots that we study can move quickly and cannot
stop instantaneously. These same robots can also move side-to-side, outside of the camera
field of view, and may not be able observe what they are moving toward. Constraints on
reachability that ensure set-invariance [150] can ensure that robots always avoid collisions
with the environment and each other or can ensure that robots can return to a starting
position [71]. Safety requirements also constrain how quickly robots move toward [76, 77]
and plan through [95] unmapped space. As such, learning to avoid collisions [152] can also
improve speeds to the extent that the learner can generalize about the environment.

3.1.2 State uncertainty

Thus far, we have emphasized observations of the state of the environment rather than the
states of the robots themselves. As studied in robotics, uncertainty in the states of robots
leads to simultaneous localization and mapping (SLAM) problems and some additional
challenges: estimates of the robot state can drift dangerously over time, and uncertainty in
the state history contributes to uncertainty in the map. Direct observation of position by
GPS or motion capture can mitigate or eliminate these challenges. Except, GPS access can
also be limited when operating in urban environments [137] which motivates development
of reliable SLAM systems for the problems we study.

Robots can also plan to minimize uncertainty via information-theoretic methods for
sensor planning [7, 93, 172] forming methods for what is known as active SLAM. While
classical SLAM algorithms that apply particle filters to two-dimensional SLAM readily
admit joint optimization to minimize uncertainty in the map and robot state [172], methods
for sensing with modern smoothing-based frameworks [7, 93] are somewhat more abstract
and often represent uncertainty in environment geometry indirectly. Additionally, some
works in this area employ the same greedy algorithms for submodular maximization [7, 93]
which we study in this thesis. However, submodularity generally only applies to robots’
histories of states and observations but not to future states, due to dependence on the
robots’ own control actions [7].
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As such, even though this thesis does not address state uncertainty explicitly, methods
similar to those we propose could play a role in systems for active SLAM. Alternatively,
designers may also wish to address uncertainty in future states through constraints on
uncertainty as a matter of safety, and such constraints could be incorporated into the
problem formulations we propose.

3.1.3 Information-based exploration

The mobility of aerial robots exploring some environment contrasted against limitations
on field of view motivate methods that can predict information gain at different view
points such as with mutual information [37, 103, 201] and coverage-like [29, 62] objectives.
Authors have also applied a variety of such objectives along with a numerous techniques
for planning paths and actions [20, 36, 116].

We will apply methods based on motion primitives [139, 179] and Monte-Carlo tree
search [39, 116], and, more recently, our work has addressed motion primitive design in
this framework [76, 77]. Additionally, Chapter 7 will revisit objective design and draw
connections between a number of relevant objectives for robotic exploration.

3.1.4 Frontiers and the distribution of information

Some of the earliest works on exploration [198] emphasize the geometry of the environ-
ment: observations of unknown space by a robot in known free space all pass through the
boundary between the known free space and unknown space which is called the frontier.
Providing the weak assumption that robots are always able to observe nearby frontiers,
navigating toward the nearest frontier can serve as a simple and reliable technique for ex-
ploring an environment to completion. Although frontiers can be useful for selecting local
control actions [50, 62], they also model the distribution of information sources in explo-
ration tasks: after mapping one part of an environment, a robot may traverse a significant
distance to reach the next nearest frontier. In this sense, we can generalize frontiers as sets
of sufficiently informative points in the robot state space [57], and robots can alternate
between maximizing information gain locally and navigating to new information-rich re-
gions of the environment. Moreover, in either case, designers may consider routing robots
between information-rich regions or frontiers [111] to reduce travel distance or completion
time.

3.1.5 Multi-robot exploration

Most works on multi-robot exploration focus on assignment of frontiers [29, 30] and envi-
ronment regions [170] or maintaining maps via communication [40, 57]. Although authors
do not typically apply arguments based on submodularity in this domain, greedy assign-
ment mechanisms are common [29, 30] but at the level of task assignment rather than
receding-horizon planning as in our approach (which we would expect to run at faster
rates than global assignment processes).
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As such, designers seeking to map an environment quickly may deploy large numbers
of robots that interact on short time scales, and this thesis addresses the concomitant
challenges via coordination over finite horizons. Our approach then complements works on
exploration that focus on larger spatial and temporal scales [29, 30, 134], and such methods
may run in outer loops or on centralized nodes to supplement the distributed planners we
propose (as in Fig. 1.2).

3.1.6 Connectivity and communication

Exploration scenarios, such as for search and rescue [138] have the potential to impair
communication between robots via damage to infrastructure and harsh environments (e.g.
due to stone and concrete). Teams of robots may then jointly plan to explore the en-
vironment and to maintain or regain communication links to communicate data to the
operator and each other [13, 14, 181]. Such, methods for maintaining communication are
diverse: Banfi et al. [14] allow robots to become disconnected but enforce recurrent con-
nectivity constraints to enable periodic communication; Tatum [181] proposes a method
where robots jointly explore and place communication nodes with emphasis on subter-
ranean environments; or designers may simply require the team to maintain connectivity
at all times [128, 187].

This thesis does not address connectivity directly. However, the planners we propose
are robust to loss of communication, and our approach could reasonably be extended by
applying any of the cited connectivity-aware methods as part of a high-level planning
component.

3.2 Information theory

Having discussed a few sensing problems in robotics, let us delve into the foundations for
quantifying uncertainty in states and information gained via sensing actions. To begin,
entropy quantifies the uncertainty in a random variable X—such as the position of a robot
or a target—with the average number of bits necessary to encode a realization of that
variable and is denoted as

H(X) =
∑
i

−P(X = i) log2P(X = i). (3.1)

The joint entropy then expresses the combined uncertainty of two (or more) variables X
and Y and simply involves another sum:

H(X, Y ) =
∑
i

∑
j

−P(X= i, Y =j) log2P(X= i, Y =j). (3.2)

Then, conditional entropy encodes the expected uncertainty in X given that Y will be
observed:

H(X|Y ) =
∑
i

∑
j

−P(X = i, Y = j) log2P(X = i|Y = j). (3.3)
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This can be written as an expectation over possible outcomes for Y :

=
∑
i

∑
j

−P(Y = j)P(X = i|Y = j) log2P(X = i|Y = j)

= Ej∼Y [H(X|Y = j)] (3.4)

or in terms of the joint entropy:

= H(X, Y )−H(Y ).

The goal of exploration and other sensor planning problems is often to reduce uncertainty
and therefore entropy of a target variable (say X) by obtaining observations Y .

Mutual information quantifies that expected reduction of the entropy of X given an
observation Y

I(X;Y ) =
∑
i

∑
j

−P(X = i, Y = j) log2

P(X = i)P(Y = j)

P(X = i, Y = j)
, (3.5)

and can be written in terms of entropies

= H(X)−H(X|Y ) = H(X) +H(Y )−H(X, Y ). (3.6)

In some cases, we will also apply the conditional mutual information which simply involves
modifying the definition to include conditioning on the given variable

I(X;Y |Z) = H(X|Z)−H(X|Y, Z) (3.7)

= −H(Z) +H(X,Z) +H(Y, Z)−H(X, Y, Z).

Please refer to Cover and Thomas [58] for further detail on information theory and the
properties of entropy and mutual information and in reference to further discussion in this
section, except when otherwise noted.

3.2.1 Continuous variables

The discussion at the beginning of this section focuses on information theory for the sim-
ple case of discrete variables. Analogous expressions exist for continuous variables and
probability densities. These collectively refer to differential information. For example, the
differential entropy can be written as

h(X) =

∫
−p(X = x) log2 p(X = x) dx (3.8)

where X is a continuous variable, and p(X = x) is its probability density.
The expression for (3.8) is nearly identical to the original expression for entropy in

(3.1) aside from replacing the sum with an integral. Likewise, differential information
satisfies many of the same properties as the discrete form so that the two are frequently
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interchangeable. In particular, this thesis will make use of monotonicity properties such as
submodularity which are discussed later in this chapter; both forms of information satisfy
these properties equally. As such, this thesis will not typically disambiguate differential
and discrete information, except in cases where the two behave differently. One such
difference is that differential entropy may be negative so that h(X) � 0. By extension,
I(X;Y ) = h(X)− h(X|Y ) � h(X) so that mutual information is also not upper-bounded
by differential entropy. Fortunately, even though differential entropy may be negative,
mutual information between continuous variables is always non-negative.

3.2.2 Properties of mutual information

Information theoretic expressions exhibit a number of intuitive properties from which this
theory gains much of its elegance and generality.

Entropy and mutual information satisfy chain rules [58, Theorem 2.5.1–2]. For entropy

H(X1, . . . , Xn) = H(Xn|X1, . . . , Xn−1) +H(X1, . . . , Xn−1), (3.9)

and for mutual information

I(X;Y1, . . . , Yn) = I(X;Yn|Y1, . . . , Yn−1) + I(X;Y1, . . . , Yn−1). (3.10)

These equations allow us to write both kinds of quantities in terms of sums of marginal
gains (the conditional term in each expression). We will later find that we are able to take
advantage of the behaviors of these marginal gains when optimizing information-theoretic
quantities.

Entropy also decreases under conditioning so that H(X|Y ) ≤ H(X) which expresses
that new information cannot increase the uncertainty of a random variable. If we write the
mutual information in terms of entropies, we can rearrange this inequality to prove that the
mutual information between two variables is non-negative I(X;Y ) = H(X)−H(X|Y ) ≥ 0.

Also, independent variables do not carry information about each other. If X and Y
are independent H(X) = H(X|Y ) and therefore I(X;Y ) = 0. Similar statements hold for
conditioning when variables are conditionally independent. Additionally, these properties
can be used to prove that common cases of mutual information are submodular, and we
will come back to that later.

Having an upper bound on mutual information is often useful such as when we would
like to establish when a sensing task is almost complete. For discrete random variables
H(X) ≥ 0 is non-negative (with or without conditioning). As a result of non-negativity,
mutual information for discrete variables can be upper-bounded by entropy as

I(X;Y ) = H(X)−H(X|Y ) ≤ H(X). (3.11)

However, entropy for continuous variables may be negative because, with enough observa-
tions, we may learn the value of a continuous variable with infinite precision and thereby
gain infinite information. However, if observations share a noisy channel, mutual informa-
tion between the observation and target variable is bounded by the mutual information

26



between the target variable and the output of the channel. Specifically, the Markov in-
equality establishes that if X → Y → Z1

I(X;Y ) ≤ I(X;Z). (3.12)

This will be important later for target tracking problems where we will discuss channel
capacities between robots and targets.

3.3 Robotic information gathering

This thesis applies techniques from information theory and combinatorial optimization to
robot sensing and information gathering. As a robot moves through an environment it
may obtain sensor data, reduce uncertainty in its environment model, and gain informa-
tion rewards. Problems related to selecting actions to maximize quality of sensor data are
prominent in robotics and control and studied with a wide variety of tools. The methods
we propose for coordinating teams of robots complement algorithms for individual robots
as both can contribute to improving completion times in time-sensitive sensing tasks. Here,
we provide an overview of such techniques moving from general applications (Sec. 3.3.1),
to more formal informative path planning problems (Sec. 3.3.2), and theory that charac-
terizes how and why robots benefit from replanning and updating their decisions based on
incoming sensor data (Sec. 3.3.3).

3.3.1 Active sensing and information-based control

Sensing and information gathering problems span a wide spectrum that includes tracking
and localization problems [35, 59], robot state estimation [7, 93], sensing problems based
on manipulation and mechanical interactions [1, 21, 53], and active perception problems
for control and reconstruction with image data [10, 153]. Although methods for decision-
making vary, submodular functions and information-theoretic objectives not only generalize
across these domains but are also applied regularly [7, 35, 53, 59, 93, 153]. While we focus on
time-sensitive mapping and sensing problems such as urban disaster response, the methods
we propose may also be applied more broadly. Likewise, we desire planning techniques that
apply across multiple sensing tasks as aspects of different tasks such as localization [35, 59]
and mapping [37, 103] may arise simultaneously.

3.3.2 Informative path planning

Algorithms for informative path planning seek to plan a path for a robot to maximize
information gain or some other submodular function, subject to a limited travel budget.
Such problems have been studied extensively. Performance guarantees exist for algorithms
on graphs [41, 169, 200], and sampling-based methods exist for optimization of paths in
continuous spaces [90].

1The expression X → Y → Z is a Bayes graph and states that the joint distribution of the random
variables can be factored as P(X = x, Y = y, Z = z) = P(X)P(X = x|Y = y)P(Z = z|Y = y).
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(a) No obstacle (b) Obstacle

Figure 3.1: The illustrations above provide a typical example of adaptation (or replanning) during robotic
exploration. Here, a robot will observe unknown space behind a boulder only as that robot navigates
around to the back. This robot may benefit from quick adaptation by (a) navigating into the unknown
space if there is no obstacle. Else, (b) the robot must be prepared to remain in free space if that unknown
space turns out to be occupied.

These and related algorithms can also serve as suboptimal oracles to greedily optimize
paths for individual robots in multi-robot problems [169], and performance guarantees can
be rewritten in terms of the performance of the given planner. In this sense, path planners
can be chosen independently of methods for coordinating the multi-robot team.

3.3.3 Decision processes and adaptation

Decision processes such as Markov decision process (MDPs), partially-observable Markov
decision process (POMDPs), and variants thereof directly model continuing processes of se-
lecting actions, obtaining observations, and selecting new actions to maximize some reward.
Although rewards are typically functions of states and actions, specialized formulations
permit rewards in terms of beliefs e.g. based on mutual information or entropy [5, 171].
Greedy algorithms have been applied to solve combinatorial subproblems when actions are
sets of sensors [159] and in multi-agent problems to optimize sequences of policies [112],
and those lines of work are complementary to our own.

Instead, adaptive submodularity [79] seeks to directly extend techniques for submodular
optimization to decision processes. However, such approaches require strict regularity on
objectives and the sets of actions to maintain monotonicity and diminishing returns. Mobile
robots generally violate these conditions as sets of available sensing actions change while the
robot moves through the environment. Other problems in robotics, such as manipulation,
are more amenable to the requirements of adaptive submodularity [45, 96].

Few methods for decision processes are applicable to mobile robots and large-scale
problems. However, Monte-Carlo techniques for POMDPs provide an avenue to addressing
large-scale decision processes [167]. These techniques and applications in robotic explo-
ration [116] inspired our use of Monte-Carlo tree search for single-robot planning in this
thesis.

Otherwise, rather than seeking to optimize adaptation via policies—which is often
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intractable—we may instead consider the benefit of adaptation and the cost of not adapt-
ing [6, 78, 91]. Operation in unknown environments, as in urban disaster response, also
induces rapidly changing beliefs. Robots moving through cluttered environments may ben-
efit from quickly responding to observations of occluded objects [76, 77] (see the example
in Fig. 3.1), and further, teams of robots should maintain this ability to adapt and replan
as appropriate for the time-scales of a given sensing problem.

3.4 Multi-robot sensing and coordination

The sensing problems that we have discussed to this point also come with multi-robot
counterparts. We are interested in scenarios where robots interact locally while operating
in close proximity and observing nearby regions of an environment, and our methods seek
to enable robots to react to new observations both individually and collectively over short
time spans. The techniques we develop leverage simple greedy algorithms and are scalable
while providing strong performance guarantees. However, various other techniques exist
and are applicable to the problems we consider. Best et al. [18] propose a multi-robot
planner that applies Monte-Carlo tree search as we do but uses a different mechanism for
multi-robot coordination—probability collectives—a generic optimization approach based
on game theory. In this case, our approach will provide stronger guarantees on solution
quality for planning in finite time. We also note that Sung et al. [176] propose a max-min
formulation for tracking problems that addresses similar short time scales that satisfies
performance guarantees before rounding. Sung et al. [176] also address a similar challenge
as we do by developing an algorithm with computation time that is independent of the
problem size. Although we study a slightly different class of sensing problems, we note that
our mechanisms for coordination, based on sharing incremental solutions, are somewhat
simpler and more general than the linear programming methods that they employ.

3.4.1 Sequential greedy maximization for multi-robot sensing

Singh et al. [169] are largely responsible for developing sequential planning methods for
multi-robot sensing (based on methods for submodular maximization which we will discuss
next in Sec. 3.5) and informative path planning.2 In these methods, robots plan in a
sequence, (as illustrated in Fig. 3.2) and each robot seeks to maximize a sensing objective
given all prior decisions. For many objectives, solutions by sequential planning are also
guaranteed to be within half of the optimal objective value, whereas obtaining optimal
solutions is NP-Hard.

While Singh et al. [169] studied a mutual information objective, sequential planners

2Historical note: Singh et al. [169] are most commonly cited for specializing matroid-constrained
submodular maximization to partition matroids for sensor planning and, more specifically, multi-robot
path planning. Goundan and Schulz [81] observed around the same time that this kind of approach
recreates a variant of the locally greedy algorithm described by Fisher et al. [69]. In fact, Singh et al. [169],
Goundan and Schulz [81], and even also Williams [193] all appear to have independently (re)developed
similar specializations to partition matroids (implicitly or explicitly) at around the same time.
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Figure 3.2: Four robots plan sequentially. Each robot selects an action to maximize a sensing objective
given the decisions by the prior robots.

can provide suboptimality guarantees for wide variety of objective functions (which we
will discuss in the next section). As a result, their work influenced not only a variety of
works on informative planning [7, 151] but also problems with more varied objectives such
as search for a moving target [89] and survivability-aware problems where robots may fail
en-route to their destinations [102]. While most of these authors study similar multi-robot
path planning problems, Jorgensen et al. [102] and Williams et al. [194] also apply related
greedy planning methods to more complex assignment problems such as with constraints
on coverage, resources (such as a limited number of runways), and network connectivity.

3.4.1a Single-robot sub-problems in sequential planning

A useful feature of sequential planners is that specialized planners like those in Sec. 3.3.2
can be used to implement the maximization step while retaining similar approximation
guarantees [169] (that is, they serve as maximization oracles). This is particularly impor-
tant because the alternative is to iterate over all possible solutions for a given robot—doing
so is typically intractable for path planning problems as the number of possible solutions
is generally exponential in both the time horizon and the number of available actions at
each step. Moreover, this approach enables designers to take advantage of advances for
planning for individual robots and to apply those methods to planning for multiple robots
with minimal effort.

3.4.1b Adaptation in sequential planning

In non-adaptive settings, (where robots do not replan after obtaining new information)
solutions can be found offline and without strict constraints on time or computation. For
example, Singh et al. [169] plan paths for a sensing task on a lake and compute the entire
paths beforehand. However, this thesis studies adaptive settings (Sec. 2.1.1f) where the
plan or sensing actions change in response to incoming sensor data during execution of the
sensing task, and sequential planning forms a component of a solver for a receding-horizon
optimization problem (Sec. 2.1.2) [20, 38, 116].

Sequential planners for these receding horizon problems then must satisfy time con-
straints for replanning. When planning with large numbers of robots, meeting time con-
straints may require improving efficiency via parallel versions of these planners or by paral-
lelizing the single-robot planners. The following sections will describe the theory for these
sensing problems and provide more detail regarding parallel and distributed planning.
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3.5 Submodular maximization

The sequential planning and informative path planning problems that arise in this thesis
broadly fall into the framework of so-called submodular maximization problems. Specifi-
cally, many sensing objectives increase monotonically and exhibit diminishing returns (sub-
modularity). These classes of functions have been studied extensively from the perspective
of combinatorial optimization, and there are numerous results for exact and approximate
optimization in various settings. In this way, monotonic and submodular functions studied
in combinatorial optimization are analogous to the convex functions studied in nonlinear
optimization: each has been studied intensively and optimization problems involving ei-
ther class of functions can be solved efficiently3. Objective functions with these properties
appear frequently in robotics and especially in sensing problems. For example, notions of
monotonicity or diminishing returns intuitively describe how the value of a collection of
sensing actions changes as actions are added or removed. Later, we will discuss submodular
objective functions such as common cases of mutual information objectives and different
notions of sensor coverage.

Going a step further, we are also interested in different kinds of constraints on these
optimization problems, just as constraints are common in other kinds of optimization
problems. Whereas this section discusses optimizing functions of sets, the constraints in
question will determine which sets to consider. These constraints model concepts such as
which robots can perform an action, how many actions a robot can perform at once, or
which sets of actions will result in collisions between robots. In this sense, these constraints
will describe which sets of actions teams of robots can feasibly execute.

3.5.1 Set functions and submodularity

Consider a finite—but possibly extremely large—set of sensing actions U , commonly re-
ferred to as the ground set. The ground set describes the universe of set elements that are
available in a given optimization problem e.g. the set of all sensing actions or finite-horizon
plans available to any robot. A set function g : 2U → R maps a collection of such actions
to a real value—often a reward—where 2U is the power set of the ground set, the set of
all subsets of U .

Most objectives have zero value at the empty set, or else that value can be subtracted
to normalize the objective.

Definition 1 (Normalized). A set function g is normalized if g(∅) = 0.

A function is monotonically increasing4 (or monotonic) if its value cannot decrease.

Definition 2 (Monotonically increasing). A set function g is monotonically increasing if
for any A ⊆ B ⊆ U then

g(A) ≤ g(B) (3.13)

3There are connections between submodular functions and both convex and concave functions, but
those are unrelated to this analogy.

4Some texts describe the functions that we call monotonically increasing as being “non-decreasing” to
emphasize the weak inequality in the definition.
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Next, a set function is submodular if it exhibits diminishing returns.

Definition 3 (Submodular (supermodular)). A set function g is submodular if for any
A ⊆ B ⊆ U and C ⊆ U \B then

g(A ∪ C)− g(A) ≥ g(B ∪ C)− g(B). (3.14)

Here, the marginal gain for C decreases after adding elements to A to obtain B. The
negation −g is supermodular.

3.5.1a Relevant submodular functions

Objective functions for robot sensing are frequently monotonic and submodular. Mutual
information (3.5) and entropy (3.1) naturally characterize reduction of uncertainty with re-
spect to an unknown environment, and robots may select sensing actions which reduce that
uncertainty. Mutual information with respect to a target variable satisfies monotonicity
and submodularity when observations are conditionally independent [107]. Specifically, if
we associate elements of a ground set a ∈ U with conditionally independent observations
Ya, the set function g(A) = I(X;YA) is normalized, monotonic, and submodular [107].
However, designers may consider other kinds of objectives, either for different tasks or
because mutual information can be expensive to evaluate. For example, we will also study
simpler coverage-like objectives which satisfy the same properties and can be thought of
as representing sums of rewards for observing objects in subsets of the environment.

3.5.1b Notation for sets and set functions

For brevity, we will treat set functions as multi-variate functions with implicit unions so
that g(A,B) = g(A∪B) where A,B ⊆ U . We will also implicitly convert elements of the
ground set to subsets so that g(x) = g({x}) for x ∈ U . We also write incremental changes
as g(A|B) = g(A,B)−g(B) which is analogous to conditioning for mutual information (3.7)
and also expresses the discrete derivative of g at B with respect to A (discussed next in
Sec. 3.5.1c). Using this notation, the expression for submodularity (3.14) can be written
more concisely as

g(C|A) ≥ g(C|B), (3.15)

recalling that A ⊆ B.
When dealing with sets and set functions, being able to concisely specify and index into

sets will be advantageous. Often sets will be specified with an implied ordering as in X =
{x1, . . . , xn}. Subscripts will then be used for indexing subsets as in the following range
X1:i = {x1, . . . , xi} for i ≤ n or sometimes using sets of indices so that XA = {xj | j ∈ A}.

3.5.1c Discrete derivatives of set functions

The definitions of monotonic (3.13) and submodular (3.14) functions are closely related.
The value of a monotonic function may only stay the same or increase, and the values of
incremental changes of submodular functions may only stay the same or decrease.
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(a) g(A) = g(A|∅) (b) g(B|A) (c) −g(B;C|A)

Figure 3.3: In this figure, areas shown in gray are equal in size to (a) zeroth, (b) first, and (c) second
derivatives of a set function g, each evaluated at A. As will be discussed in more detail, later, the derivatives
of some set functions are monotonic such as in this illustration of area coverage. If we interpret A as a
subset of R2, (a) area coverage increases monotonically in A; (b) marginal gains decrease monotonically; (c)
and the second derivative increases monotonically (the negation of which, the highlighted area, decreases).

We can go further and define higher derivatives of set functions and corresponding
monotonicity conditions. To assist in understanding, Fig. 3.3 provides examples of such
derivatives for an area coverage objective. Given disjoint variables A,B,C ⊆ U the second
derivative of g at C in directions A and B is

g(A;B|C) = g(A,B,C)− g(A,C)− g(B,C) + g(C).

Expressions of second derivatives will also arise with respect to the empty set. Such
expressions take the form of

g(A;B) = g(A|B)− g(A) = g(A,B)− g(A)− g(B),

given that g(∅) = 0, and being able to recognize them will be useful. For higher derivatives,
given X ⊆ U and Y1, . . . , Yn ⊆ U , all disjoint, we can define the nth derivative of g with
respect to Y1, . . . , Yn recursively as

g(Y1; . . . ;Yn|X) = g(Y1; . . . ;Yn−1|X, Yn)− g(Y1; . . . ;Yn−1|X). (3.16)

Note that, just as for a continuous derivatives, derivatives of set functions are not sensitive
to the order of the directions.

This notation for set functions and their discrete derivatives also intentionally overlaps
with notation for entropy and mutual information. Continuing with this analogy, the
mutual information could be thought of as the negation of the second derivative of entropy
were it interpreted as a set function as I(A;B|C) = H(A|C)−H(A|B,C). Therefore, one
might adopt the colloquialism I(A;B|C) = −H(A;B|C), although no such notation will be
used in this text.

Foldes and Hammer [70] provide a slightly different definition of the derivative. As
this thesis will reference their work repeatedly, we provide a brief proof of equivalence in
Appendix B.1.
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Figure 3.4: The above illustrates the 3-increasing condition for coverage. Let the area covered by a
number of sets (or sensing actions) be a function g. The green area corresponds to an amount of sensing
redundancy between two sensor coverage actions A and B conditional on a third observation C. The size
of that area in green is equal to the negation of a second derivative −g(A;B|C) = g(A|C) + g(B|C) −
g(A,B|C), and the area decreases monotonically as the region represented by C increases. Then, second
derivatives g(A;B|C) increase monotonically for coverage objectives so we say that g is 3-increasing (as
the first monotonicity condition corresponds to the zeroth derivative).

3.5.1d Higher-order monotonicity and derivatives

Foldes and Hammer [70] also describe monotonic and submodular set functions as being,
respectively, 1-increasing and 2-decreasing and provide detailed discussion of these condi-
tions. More generally, if the nth derivative of a function is non-negative, then derivatives
of order n−1 increase monotonically, and we say that the function is n-increasing. Then,
if that derivative is non-positive, the function is instead n-decreasing. Later, we will ap-
ply this terminology in a requirement that certain objective functions are 3-increasing. In
particular, weighted set coverage is 3-increasing, and we illustrate the intuition in Fig. 3.4.
Later, we will provide more direct analysis when we encounter this condition again.

Higher-order monotonicity conditions, such as this, are not yet common in the literature
on optimizing set functions but are experiencing increasing interest [44, 84, 106, 191]. Wang
et al. [191] apply the 3-increasing condition to develop a variation of the continuous greedy
algorithm, and Chen et al. [44] study functions with alternating monotonicity conditions,
something we will also encounter. Measures of redundancy [68] and analogues of mutual
information [94] also fit the form of second derivatives and are highly relevant to works on
3-increasing functions.

3.5.1e Chain rule for derivatives of set functions

When proving bounds for submodular maximization techniques, we will often want to
decompose a derivatives with respect to sets (say A ⊆ U ) in terms of the contributions of
individual elements (i.e. a ∈ A). Chain rules allow us to do so.

Previously, we have discussed such chain rules in the context of information theory
(Sec. 3.2). Set functions and their derivatives satisfy analogous chain rules. Later, we will
require chain rules for both first and second derivatives of set functions. Toward this end,
the following defines a chain rule for any derivative of a set function.

Lemma 1 (Chain rule for derivatives of set functions). Consider sets Y1, . . . , Yn, X ⊆ U ,
all disjoint. Then, writing the elements of Yn as Yn = {yn,1, . . . , yn,|Yn|}, the derivative of
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g can be rewritten in terms of derivatives with respect to the individual elements of Yn as

g(Y1; . . . ;Yn|X) =

|Yn|∑
i=1

g(Y1; . . . ;Yn−1; yn,i|Yn,1:i−1, X). (3.17)

The proof of Lemma 1 is in Appendix B.2.

3.5.2 Matroids and independence systems

This thesis focuses primarily on multi-robot planning problems that can be described using
combinatorial constraints. Such constraints that describe feasible solution sets are called
set systems. However, a completely general constraint would not be useful for the purpose
of optimization. Independence systems describes constraints that admit subsets of any
feasible set and which is the most general kind of set system that we will find useful.

Definition 4 (Independence system). A tuple (U ,I ) where I is composed of subsets
of the ground set such that I ∈ I → I ⊆ U is an independence system if I satisfies
a heredity property so that for all I2 ⊆ I1 ∈ I then I2 ∈ I and, additionally, I is
non-empty (∅ ∈ I ).

Multi-robot non-collision constraints form one example of an independence system;
eliminating a robot from a non-colliding multi-robot plan will not cause the remaining
robots to be in collision.

A matroid is a special case of an independence system and generalizes the notions
of linear independence from vector spaces to set systems. Matroids have been studied
extensively in the optimization literature (discussed in more detail in following sub-sections)
and find use in this work to model product spaces in multi-robot planning problems.

Definition 5 (Matroid). An independence system (U ,I ) that also satisfies the exchange
property is a matroid, that is if for all I1, I2 ∈ I such that |I1| > |I2| there exists some
x ∈ I1 \ I2 such that I2 ∪ {x} ∈ I .

The reader may think of elements that can be added to a given set as being effectively
perpendicular to that set. For more detail on this topic, the reader may wish to refer to
Schrijver [162]. A consequence of the exchange property is that all maximal independent
sets—those to which we cannot add any more elements—have the same cardinality which
is referred to as the rank of the matroid or rank(I ). Additionally, in this work, the rank
will also be equal to the number of robots or other sensing agents.

Although matroids are the focus of numerous related works on optimization, a matroid
is a somewhat more general structure than is necessary in this thesis, and we will gain in
efficiency from using slightly more specialized constraints. A partition matroid is a special
case of a matroid and is nearly directly analogous to a product space.

Definition 6 (Partition matroid). Consider a partitioning of the ground set into blocks
Bi ⊆ I for all i ∈ {1 . . . n} such that Bi ∩ Bj = ∅ for all i 6= j. Then (U ,I ) is a
partition matroid if

I = {I ⊆ U | ai ≥ |I ∩Bi|, ∀i ∈ {1 . . . n}}
where ai ∈ Z>0 is the maximum number of elements that can be selected from a given block.
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When ai = 1 for all i, the partition matroid will be referred to as a simple partition
matroid [162, Sec. 39.4]. These matroids will be used to model joint action spaces of multi-
robot teams where Bi is the space of trajectories or actions available to robot i, assuming
that there are no inter-robot constraints on action selection. Although the techniques
developed in this thesis will all use simple partition matroids, they all extend to general
partition matroids with slight modification.

Finally, we will discuss one more (and simpler) type of matroid, the uniform matroid,
which expresses a cardinality constraint on sets in the set system.

Definition 7 (Uniform matroid). A uniform matroid is an independence system (U ,I )
that fits the form fits the form I = {I ⊆ U | n ≥ |I|} where n ∈ Z>0.

3.5.3 Submodular maximization and greedy algorithms

The problems studied in this thesis involve selecting control actions to maximize notions
of sensing quality such as mutual information with a map or sensor coverage. When such
objectives are submodular (and generally also monotonic and normalized), the resulting
optimization problems fit broadly into the realm of submodular maximization problems.
Then, when these problems involve planning actions for a multi-robot team, as hinted in
Sec. 3.5.2, we will often also introduce a matroid constraint of some form.

Problem 1 (Submodular (monotonic, normalized) maximization problem). Let g : 2U →
R be a submodular, monotonic, and normalized set function and (U ,I ) a set system.
Together, these define a submodular maximization problem

X? ∈ arg max
X∈I

g(X)

with optimal solution(s) X?.

Now, unless otherwise specified, the objectives in any submodular maximization prob-
lems discussed in this text will also be monotonic and normalized. We will primarily only
refer to other cases when discussing related work on other problems or in passing. Instead,
we now focus on the form of the constraint I and, eventually, further conditions on g.

A general set system may present 2|U | feasible solutions. Although |I | will generally be
smaller, solving submodular maximization problems by iteration is typically intractable.
Recall that when (U ,I ) is an independence system (Def. 4), subsets of feasible solutions
are also feasible. Solutions can then be constructed incrementally by searching U for new
elements to add to partial solutions. In fact, algorithms that construct such solutions
greedily often guarantee solutions within a constant factor of the optimal solution.

Algorithm 1 (Greedy submodular maximization). Greedy submodular maximization pro-
duces feasible (suboptimal) solutions to submodular maximization problem (Prob. 1) where
(U ,I ) is an independence system. Define an incremental solution Xi such that X0 = ∅
and

Xi ∈ arg max
{x}∪Xi−1∈I

g(x|Xi−1). (3.18)

This algorithm outputs a solution, designated Xg = Xn, once no more solution elements
can be added, i.e. once there is no x ∈ U such that {x} ∪Xn ∈ I .
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Solutions can be obtained far more efficiently than by iterating over 2U when using this
algorithm, but keep in mind that solving (3.18) may still be intractable when U is large.
Developing methods that avoid incurring costs of such sequential maximization steps is a
recurring theme in related work and this thesis.

3.5.3a Greedy submodular maximization with cardinality constraints

Cardinality-constrained submodular maximization forms a simple and particularly common
submodular maximization problem. In this case, the statement that the cardinalities of
feasible solutions are no greater than some value produces a uniform matroid (Def. 7)
constraint.

Problem 2 (Cardinality-constrained submodular maximization). Any instance of Prob. 1
where (U ,I ) is a uniform matroid is an instance of cardinality-constrained submodular
maximization.

Cardinality-constrained problems arise frequently in applications [32, 51, 101] due to
the simplicity of the constraint as well as because of strong tightness and hardness guar-
antees. These tightness and hardness guarantees are important to us because uniform
matroids are a special case of set systems such as partition matroids and because many
results for cardinality constrained problems also apply to problems with more complex
constraints (such as by forming lower bounds). Nemhauser et al. [140] proved that greedy
solutions to cardinality-constrained problems satisfy a constant-factor suboptimality guar-
antee g(Xg) ≥ (1 − 1/e)g(X?) ≈ 0.632g(X?). Soon after, some of the authors of that
work also proved that this approximation guarantee is optimal in the value oracle model
(where g is treated as a black box) for algorithms that evaluate g a polynomial number
of times [141]. Still, certain classes of these problems could be easier to solve or could
be solved more quickly given complete access to the problem representation. Feige [66]
proved that no better bound can be achieved by polynomial time algorithms for set cov-
erage objectives5 unless P=NP. Not only is this a stronger guarantee, but the simplicity
of the set coverage objective enables reductions to other relevant objectives. This includes
generalizations of coverage discussed later in this text and, thanks to Krause and Guestrin
[107], Shannon mutual information on Bayes graphs.

3.5.3b Greedy submodular maximization on general matroids

While cardinality-constrained problems provide hardness results that are relevant to this
thesis, matroid-constrained problems will generalize the multi-robot planning problems
that we will discuss.

Problem 3 (Matroid-constrained submodular maximization). An instance of Prob. 1
where (U ,I ) is a matroid is an instance of matroid-constrained submodular maximization.

Fisher et al. [69] proved that when (U ,I ) is a matroid, solutions by Alg. 1 satisfy
g(Xg) ≥ 1/2g(X?). Although this thesis applies greedy algorithms, more recent works [31,
67] propose more advanced methods such as the continuous greedy algorithm [31, 185]

5Set coverage refers to “covering” a set C . The elements of the ground set x ∈ U are subsets of this
set x ⊆ C , and the objective is to maximize the cardinality of their union g(X) =

∣∣⋃
x∈X x

∣∣.
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which guarantee results within 1 − 1/e which is the best possible guarantee given the
hardness results for cardinality-constrained problems.

3.5.3c Locally greedy (sequential) planning on simple partition matroids

Although direct application of Alg. 1 provides solutions within half of optimal, as men-
tioned, the greedy step (3.18) involves iteration over the entirety of U which may be
expensive. This can be avoided in cases such as when the matroid constraint is a partition
matroid. For simplicity, we will focus on the special case of simple partition matroids.

Problem 4 (Simple partition matroid-constrained submodular maximization). An in-
stance of Prob. 1 where (U ,I ) is a simple partition matroid is an instance of partition
matroid-constrained submodular maximization.

Problems constrained with simple partition matroids admit a relaxation of the greedy
algorithm: rather than computing the incremental solutions by maximizing over the entire
ground set, increments can be computed by maximizing over the blocks of the partition.

Algorithm 2 (Locally greedy algorithm for simple partition matroids). The locally greedy
algorithm produces feasible (suboptimal) solutions to partition matroid-constrained maxi-
mization submodular maximization problems (Prob. 4). Define solution elements xi such
that

xi ∈ arg max
x∈Bi

g(x|{x1, . . . , xi−1}) (3.19)

to produce the output Xg = {x1, . . . , xn} where n is the rank of the partition matroid.

Notably, this algorithm implements the same sequential planning process as in Sec. 3.4.1
and will gain guarantees on solution quality for submodular functions. This algorithm is
also similar to the prior algorithm for greedy submodular maximization (Alg. 1). However,
because the maximization steps are now over individual blocks, computation of a complete
solution requires only a single pass over the ground set. Yet, crucially, solutions via Alg. 2
satisfy the same bounds as for Alg. 1: g(Xg) ≥ 1/2g(X?).

The form of the locally greedy algorithm is particularly desirable for distributed imple-
mentations on multi-robot systems. Recall that a simple partition matroid can be used to
model the joint space in a multi-robot planning problem. In this case, Bi is the local set
of actions available to the ith robot. Robots can then plan for themselves by search over
these local sets of actions and given access to prior robots’ plans but without access to the
entire ground set. However, dependency on prior solution elements is a barrier to parallel
computation in distributed implementations. One of the contributions of this thesis is to
eliminate that barrier in multi-robot sensing problems.

3.5.3d Inequalities and intuition for submodular maximization

Monotonicity serves the starting point in the proofs of many common performance bounds.
If X? is an optimal solution to a submodular maximization problem (Prob. 1) and X ⊆ U ,
then

g(X?) ≤ g(X?, X). (3.20)
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Typically, X is the full solution obtained by the greedy algorithm, but that is not strictly
necessary [82]. We can exchange an element of the optimal solution x? ∈ X? for an element
of a greedy solution by applying the principle of greedy choice

g(x?|X̂) ≤ g(xg|X̂) (3.21)

where X̂ is generally a subset of the greedy solution and x? ∈ B belongs to the feasible set
B ⊆ U of a greedy maximization step that solves xg = maxx∈B g(x|X̂). Observe that if we
instead have an expression for g(x|X̄) where X̂ ⊆ X̄ ⊆ U we can apply submodularity to
replace X̄ with X̂ because g(x|X̄) ≤ g(x|X̂). If the greedy solutions are also suboptimal,
we may also apply the expression for the suboptimality to (3.21) to replace the optimal
greedy solution elements with a suboptimal ones.

3.5.3e Online bounds

As Minoux [132] observes, this intuition can be applied more generally to obtain online
bounds [79, 109] for solutions obtained by any algorithm such as by applying (3.20) and
bounding the terms of the sum in g(X?, X) ≤ ∑x?∈X? g(x?|X) e.g. by maximizing over
ground set U or an independence system I . These online bounds have been used to
demonstrate that real solutions by greedy algorithms can often perform significantly better
than worst case bounds in practice [79, 109]. Similar bounds will later prove to be useful
for characterizing solution quality for multi-robot exploration.

3.6 Distributed and parallel algorithms for submod-

ular maximization

An important challenge in this thesis is to reduce computation time for submodular maxi-
mization in multi-robot sensor planning. Ideally, this computation time would be indepen-
dent of the number of robots in the team, and we would achieve this by taking advantage
of parallel computation. However, that is easier said than done due to sequential con-
straints on the decision process and constraints on information access. Further, although
there is a growing body of work on parallel and distributed submodular maximization,
many existing methods are impractical for multi-robot sensor planning. Still, a few works
propose methods that are relevant to this thesis, and we will seek to take advantage of
their contributions.

3.6.1 Assumptions and model for distributed computation

Figure 3.5 illustrates the distributed setting for the submodular maximization problems
that we will study. In this work, robots will solve submodular maximization problems
(Prob. 4) where each robot i ∈ R selects an action from a block of a partition matroid
x ∈ Bi. We assume robots have access to a locally approximate model of the environment
which we refer to here as θi (and which we will omit for most of this text) via a distributed
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Receding-Horizon
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Distributed
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Figure 3.5: Illustration of the model of computation for distributed sensor planning. Each robot i ∈ R
has access to a block of a partition matroid Bi which represents that robot’s space of control actions. The
perception system then provides a locally consistent model θi. Given this model, a robot can accurately
approximate marginal gains in the sensing objective gθi(x|Y ) for its own actions x ∈ Bi given a set of
others’ actions Y (e.g. numbers of newly observed cells in an occupancy map for x or the reduction in
uncertainty of positions of nearby targets). But, that robot cannot compute marginal gains for other,
possibly distant, robots (and distant targets or regions of an occupancy map).

perception system. With this model a robot can approximate marginal gains for its own
actions gθi(x|Y ) given others Y ⊆ U . However, a robot may not evaluate marginal gains
for assignments to other robots because that robot may not have an up-to-date model of
distant regions of an occupancy map or estimates of positions of distant targets.

Additionally, while evaluating different parallel and distributed algorithms, we will
sometimes write results in terms of the number of robots nr = |R| based on the following
assumption:

Assumption 1 (Proportional problem size). Consider a team of nr robots and a sub-
modular sensor planning problem (in the form of Prob. 4). The size of the ground set is
proportional to the number of robots |U | ∈ Θ(nr); the rank of the matroid constraint is nr;
and the blocks of the partition matroid have constant size |Bi| ∈ Θ(1) for all i ∈ R.

3.6.2 Quantities for evaluating of parallel and distributed algo-
rithms

A number of properties of parallel and distributed submodular can contribute to increases
in computation time in multi-robot sensor planning. Consider a team of nr robots that
plan using O(nr) onboard processors.6 We are interested in the following quantities:
• Adaptivity: The number of sequential calls to the objective g. See the next section

(Sec. 3.6.3)

• Parallelism: The number of parallel queries to the objective g that an algorithm
assumes.

6Or, for the purpose of this section, the robots may be supported by a centralized resource with the
same number of processors.
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• Query number: The maximum number of queries to the objective g. Given an
algorithm that runs with k queries, the nr processors require at least O(k/nr) time.

• Query size: This is the cardinality of the largest set |X| that an algorithm uses
to query the objective g. For derivatives (3.16), (such as the marginal gain) this
includes elements of the sets representing the derivative directions.

Previously, Sec. 3.5 mentioned that different algorithms take different numbers of passes
over the ground set. In the same direction, the general greedy algorithm (Alg. 1) involves
Θ(nr

2) queries because it maximizes over the entire ground set at each step. On the
other hand, the locally greedy algorithm (Alg. 2) only completes a single pass for Θ(nr)
queries. Parallelizing the general greedy algorithm over nr processors may then obtain
similar computation times as the local algorithm on a single processor.

The total number of queries for the continuous greedy algorithm is more subtle. How-
ever, we can note that each integration step requires at least Ω(nr) queries (technically, this
scales with the rank of the matroid, but the rank is nr in all cases that we encounter). Al-
gorithms that solve subproblems with the continuous greedy algorithm on single processors
require at least Ω(nr) time.

Additionally, we are not aware of any algorithm (other than what we propose) that
obtains constant-factor suboptimality with a maximum query size that is less than the
number of robots.7 Instead, we are able to achieve constant query size and suboptimality
in certain settings by allowing robots to select actions for themselves given limited access
to prior selections.

3.6.3 Adaptivity and bounds on numbers of sequential steps

Nominally, greedy methods (as in Alg. 2) operate sequentially (e.g. with one step per
robot) because each decision in the sequence takes all prior decisions into account. A
few works, that we will discuss later in more detail, consider variations of such greedy
algorithms where agents can ignore some prior decisions [75, 82]. However, if we fix the
degree of suboptimality, the best algorithms in this class require a number of sequential
steps that is proportional to the number of robots, just as for other greedy algorithms.

More broadly: How much can parallel computation reduce planning time for submod-
ular maximization with any algorithm? To answer this question, recent works have begun
to study the adaptive complexity of submodular maximization problems. Balkanski and
Singer [11] describe the adaptive complexity as “the minimal number of sequential rounds
required to achieve a constant factor approximation when polynomially-many queries [to
the submodular objective] can be executed in parallel at each round.” Moreover, adaptiv-
ity is the worst-case number of sequential steps for a given algorithm; an algorithm that
executes in k steps is k-adaptive. By virtue of parallel execution, none of the queries to the
objective during a given round can depend on another, and the set of queries for a given
adaptive round is known at the beginning of the round.

7The query size for R-lRSP depends on the size of the largest communication neighborhood.
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Caution: Adaptivity is related to but distinct from computational complexity and the
(parallel) duration of computation. Adaptivity provides a lower bound on the growth of
the computation time, but the actual computation time may grow more quickly, depending
on factors such as the number of available processors and the application context. Nev-
ertheless, decreasing adaptivity is a necessary first step toward developing constant-time
algorithms in this thesis.

Looking toward applications in multi-robot sensing, the best known algorithm for sub-
modular maximization with a matroid constraint has adaptivity: O(log |U | log(rankI )) [12,
42]. Further, Balkanski and Singer [11] proved that no algorithm can obtain adaptivity
better than Ω̃(log |U |) (lower-bounded by log |U | up to lower-order logarithmic terms).
Critically, these results improve on prior algorithms for submodular maximization that
obtain constant factor guarantees, including the continuous greedy algorithm [31], which
has adaptivity of at least Ω(|U |) [12, Sec. 3.1] in general.8 However, we caution that the
continuous greedy algorithm may have better or even constant adaptivity on the class of
problems that we study—the same analysis techniques that we apply to sequential plan-
ning in this thesis might also be applicable to the continuous greedy algorithm to obtain
performance bounds where the number of integration steps is independent of the number
of robots.

Further, one limitation of low-adaptivity methods is that converging to non-trivial
constant factor bounds (e.g. to obtain a 1 − 1/e − ε for small ε) can require a large
(polynomial) number of steps in both theory and practice as discussed by [24] and [119].
However, Breuer et al. [24] presented an algorithm for cardinality-constrained problems
which obtains both low-adaptivity and efficiency in practice and is the first to do so. Still,
no such algorithm exists for more general matroid constraints. Likewise, although low-
adaptivity results characterize what is possible for submodular maximization algorithms,
they also depend on shared memory models of computation9 which makes them difficult
to adapt to distributed computation on multi-robot teams.

Table 3.1 summarizes the results we have discussed in this section in terms of the number
of robots nr in a sensing problem. Moreover, the adaptive complexity of submodular
maximization with a matroid constraint lies in Ω̃(log nr). In order to develop algorithms
with constant adaptivity, we will need to restrict the problem class further and rely on
additional structural properties of the sensing problems we study.

8The adaptivity of the continuous greedy algorithm depends on the number of discrete steps in an
integral that are necessary to obtain a performance bound. Balkanski et al. [12] (informally) provide a
lower bound on this number. Additionally, suboptimality guarantees [31] typically produce upper bounds
on the adaptivity.

9Parallel Random Access Machines (PRAM)
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Description
Lower bound
(best possible
adaptivity)

Upper bound
(best known
algorithm)

For any algorithm that achieves constant-factor perfor-
mance (general adaptive complexity) [11, 12]*

Ω̃(log nr) O(log2 nr)

For variations of the local greedy algorithm (Alg. 2) that
allow robots to ignore prior decisions [75, 82]

Ω(nr) O(nr)

*The tilde in Ω̃ or “Soft-Omega” indicates that the expression absorbs lower-order logarithmic terms.

Table 3.1: Adaptivity results (numbers of sequential steps) for submodular maximization on partition
matroids within a constant factor of optimal in terms of the number of robots nr. This thesis presents
algorithms that achieve O(1) adaptivity on a slightly restricted class of submodular maximization problems.

3.6.4 Parallel algorithms for submodular maximization

Many parallel algorithms for submodular maximization apply the popular MapReduce10

model to solve problems with cardinality [133] and matroid [15, 16, 113] constraints. Al-
though these algorithms may appear widely different at first glance, they share features that
make them less suitable for multi-robot sensing. Each of these approaches [15, 16, 113, 133]
seeks to reduce computation time by running greedy algorithms (sequential greedy algo-
rithms or the continuous greedy algorithm) on small subsets of the ground set U . In
doing so, they distribute such subsets across processors and run some greedy algorithm on
each subset in parallel to produce candidate solutions. Although the mechanisms for pro-
ducing subsets differ, those that run sequential greedy algorithms [15, 113, 133] on those
subsets all have high adaptivity (at least O(nr)) which means that computation times will
inevitably increase and become intractable for large enough numbers of robots. Likewise,
all approaches, including those that apply the continuous greedy algorithm [16], produce
full rank solutions when solving subproblems and so have Ω(nr) queries and computation
time on each processor.

Moreover, these approaches are also generally impractical in the multi-robot settings
that we consider in this thesis as each robot would have to compute candidate solutions for
the entire team. Additionally, distributing necessary information for that computation and
collecting the candidate solutions would involve a significant amount of communication.
By contrast, this thesis proposes approaches with low adaptivity where robots plan for
themselves and communicate individual solution elements rather than full solutions.

3.6.5 Distributed algorithms for sensing and submodular maxi-
mization

A number of works have proposed distributed algorithms that are applicable to submodular
maximization for different kinds of networked multi-robot and multi-agent systems [46, 75,

10The MapReduce model [60] is popular due to its simplicity, and roughly consists of three steps: 1)
Distribute data across processors 2) Execute (map) some function on that data in parallel (say by squaring
values) 3) Combine (reduce) the outputs from the prior step (e.g. by summing the squares).
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82, 135, 194, 197]. However, none of these are able to provide suboptimality guarantees
for in constant time as we would like for the problems we study.

Additionally, not all networked systems are relevant to the multi-robot settings that
we study. Mokhtari et al. [135] and Xie et al. [197] present algorithms based on a setting
where the objective is distributed across processors (e.g. g(X) =

∑nr

i=1 gi(X)) such as if the
objective is derived from data that is spread out across all processors. Their approaches are
interesting due to how they apply continuous consensus techniques [28, 143] to distribute
the continuous greedy algorithm across processors. On the other hand, all processors
operate on the entire ground set and constraint structure which requires Ω(nr) time (much
like algorithms in Sec. 3.6.4).

Instead, Robey et al. [154] extend the work of Mokhtari et al. [135] to the same setting
that we apply for multi-robot sensing with the ground set and partition matroid distributed
across the computation nodes. However, convergence still slows with increasing numbers of
robots as evident from inspection of the error bound [154, Theorem 1] and due to limitations
on adaptivity of the continuous greedy algorithm (refer to Sec. 3.6.3, [12]). Although
we will not present novel variants of the continuous greedy algorithm, the methods for
analysis of redundancy that we develop could possibly also be applied to algorithms like
what Robey et al. [154] describe to provide constant time guarantees for the problems we
study. Otherwise, the primary challenge for applying distributed versions of the continuous
greedy algorithm [154, 164] to the problems we study is adapting the continuous greedy
algorithm to use single-robot planners as maximization oracles. Doing so would require
solving path planning problems on the multilinear extension of the objective [31] which
requires costly sampling. Additionally, the large solution spaces endemic to path planning
problems may adversely impact suboptimality as error bounds for the continuous greedy
algorithm depend on the size of the ground set.

3.6.5a Distributed task assignment for submodular maximization

Multi-robot sensor planning is also closely related to task assignment as both can often
written in the form of similar submodular maximization problems. Specifically, there is
a special case of submodular maximization with a partition matroid constraint (Prob. 4)
that is relevant to task assignment, the submodular welfare problem.11 Seeking to solve
such problems, Choi et al. [46] developed the consensus-based bundle algorithm (CBBA)
which implements a distributed version of the general greedy algorithm (Alg. 1). Later,
Williams et al. [194] demonstrated that this approach also applies to problems with more
complex constraints such as intersections of matroids. Most importantly, several works
have extended [98, 166] CBBA, and others have demonstrated distributed implementa-
tions have been demonstrated on aerial robots [146]. Although CBBA-like approaches can
provide significant speedups on relevant problems compared to the general greedy algo-
rithm (which these approaches implement), they still have O(nr) adaptivity in the worst
case. However, CBBA can also converge more quickly in practice which is an important
point for comparison.

11Vondrák [185] provides an example of the reduction from a welfare problem to Prob. 4.
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3.6.5b Game theory for distributed submodular maximization

Distributed submodular maximization has also been studied from the perspective of game
theory. Specifically, various equilibria satisfy constant factor suboptimality guarantees [155].
In fact, the strategy sets for games with submodular utility form a partition matroid, and
Nash equilibria satisfy the same performance guarantees as greedy algorithms on matroid-
constrained problems [184].

When agents employ algorithms that converge to such equilibria, game theoretic meth-
ods can be interpreted as producing algorithms for distributed optimization. Moreover,
Goundan and Schulz [81] observed that one method of doing so would implement the lo-
cally greedy algorithm (Alg. 2) exactly. Additionally, this line of work has been applied to
planning and sensing problems [112] and has produced interesting results for coverage on
Voronoi decompositions [126]. Still, game theoretic methods do not yet provide tools for
reducing the time to find a near-optimal solution which is a key challenge for this thesis.

3.6.5c Distributed planning on directed acyclic graphs

Increasing numbers of robots, unreliable and constrained communication, and limited plan-
ning time all motivate a closer look at algorithms and models of computation for submodu-
lar maximization applied to multi-robot systems. A few works [75, 82] have begun to study
the locally greedy algorithm (Alg. 2) on distributed computation models that are relevant
to multi-robot sensor planning (where each agent in a network selects an action from a
block of a partition matroid). Specifically, Gharesifard and Smith [75] consider variants
of the locally greedy algorithm where agents have limited information about others’ deci-
sions according to a directed acyclic graph (DAG) Fig. 3.6). Crucially, this framework can
describe planners that employ parallel computation [175], and for this reason, we apply
similar models throughout this thesis. Gharesifard and Smith [75] also provided worst-case
analysis on this model (see also Sec. 3.6.3) which Grimsman et al. [82] then extended with
tighter bounds. However, planners based on these worst-case results have Ω(nr) adaptivity
when the suboptimality is held constant. To address this, we will focus on developing
planners that can take advantage of features of problem structure beyond submodularity
in order to provide near-optimal results with a constant number of sequential steps.
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(a) A full sequential communication graph

(b) A graph consisting of two cliques (c) A maximal graph for parallel planning

Figure 3.6: This figure illustrates several directed acyclic communication graphs for submodular maxi-
mization using the model proposed by Gharesifard and Smith [75]. (a) The standard locally greedy algo-
rithm (Alg. 2) corresponds to a completed directed acyclic graph; (b) and although analysis by Gharesifard
and Smith [75] and Grimsman et al. [82] leads to planners consisting of cliques, (c) algorithms proposed
in this thesis use subsets of edges from maximal communication graphs with parallel computation.
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Chapter 4

Toward Distributed Multi-Robot
Exploration

This chapter (which originally appeared in [54, 56]) introduces an early version of the
methods developed in this thesis in the context of a team of robots exploring an unknown
environment. We will continue to use Monte-Carlo tree search for single-robot planning
throughout this thesis as we also do in other related works [57, 76]. The parallel algorithm
for submodular maximization (DSGA) that we describe is also a precursor to methods
based on Randomized Sequential Partitions (RSP) which we will introduce later on. Al-
though possibly interesting in its own right, an actual distributed implementation of DSGA
would be more complex than the distributed implementation of RSP which we introduce
in Chapter 8. Moreover, DSGA requires more communication than RSP methods and does
not fully eliminate certain elements of sequential computation.

However, some of the contributions of this chapter are unique in this thesis. For ex-
ample, this is the only chapter to address inter-robot collisions. Although this introduces
some additional complexity, similar methods could be applied to the RSP planners that
we discuss later. Similarly, this chapter provides the only results involving physical robots.

4.1 Introduction to exploration

We pose multi-robot exploration as the problem of actively mapping environments by
planning actions for a team of sensor-equipped robots to maximize informative sensor
measurements. In this work, we address the problem of planning for exploration with
large teams of robots using distributed computation and emphasize online planning and
operation in confined and cluttered environments.

Informative planning problems of this form are known to be NP-Hard [110]. Rather
than attempt to find an optimal solution in possibly exponential time, we seek approximate
solutions with bounded suboptimality that can be found efficiently in practice. Sequential
planning techniques (Alg. 2) are common in active sensing and exploration [7, 34, 151].
In this chapter, we will refer to Alg. 2 as performing sequential greedy assignment (SGA).
Here, SGA assigns plans to robots in sequence using a single-robot planner to maximize
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(a) (b) (c) (d)

Figure 4.1: An example exploration experiment. A multi-robot team explores a three-dimensional
environment cluttered with numerous obstacles (cubes) while using an online distributed planner. Known
empty space is gray, and occupied space is black. Robots are shown in blue with red trajectories and
obtain rainbow-colored point-cloud observations from their depth cameras. (a) The robots begin with
randomized initial positions near a lower edge of the exploration environment which is bounded by a cube.
(b) After entering the environment robots spread out to cover the bottom of the cubic environment (c)
and then proceed upward to cover more of the volume. (d) Given enough time the robots explore the
entire environment.

mutual information between a robot’s future observations and the explored map given
knowledge of plans assigned prior robots in the planning sequence. Recall that the prop-
erties of mutual information objectives ensure that techniques such as SGA achieve sub-
optimality within half of optimal [69] and that suboptimal single-robot planners achieve
similar bounds [169].

The sequential nature of SGA implies that planning time increases at least linearly
with the number of robots and precludes online planning for large teams. Increasing com-
putation time is especially relevant to exploration problems as new information about
occupancy significantly affects both feasible and optimal plans and necessitates reactive
planning to enable high rates of exploration. We propose a modified version of SGA,
distributed sequential greedy assignment (DSGA), which consists of a fixed number of se-
quential planning rounds. At the beginning of each round, robots plan in parallel using
a single-robot planner. A subset of those plans is chosen to minimize the difference be-
tween the information gain for the entire subset and the sum of the information gains for
each robot individually, which does not consider redundancy between robots. We obtain
a performance bound in terms of the result by Singh et al. [169] that explicitly describes
the additional suboptimality due to parallel planning as the accrual of differences between
actual and computed objective values during the planning process. In doing so, we re-
duce the distributed planning problem to selection of subsets of plans after each parallel
planning phase that minimize these differences. Thus, we are able to take advantage of de-
coupled observations and distributed computation to improve computation times for online
planning without compromising exploration performance.

However, robots may collide with each other and the environment, and aerial robots
have non-trivial dynamics. Therefore, we also introduce inter-robot collision constraints
and modify our algorithms to guarantee collision-free operation. We apply this approach
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to teams of aerial robots and demonstrate collision-free exploration both in simulation and
experimentally in a motion capture arena.

4.2 Multi-robot exploration formulation

This section describes the problem of distributed multi-robot exploration. We begin by
describing the system and environment models and then introduce the planning problem
as a finite-horizon optimization.

4.2.1 System model

Consider a team of robots, R = {r1, . . . , rnr}, engaged in exploration of some environment
m. The dynamics and sensing are described by

xt = f(xt−1, u), (4.1)

yt = h(xt,m) + ν (4.2)

where xt represents a robot’s state at time t ∈ Z≥0 and u ∈ U is a control input selected
from the finite set U . For aerial robots as studied here xt ∈ SE(3). The observation, yt, is a
function of both the state and the environment and is corrupted by noise, ν. We use capital
letters to refer to random variables and lowercase for realizations so M and Yt represent
random variables associated with the environment and an observation, respectively.

4.2.2 Occupancy grids and ranging measurements

The environment itself is unknown and can be with the random variable M which is mod-
eled as an occupancy grid [64] and with an associated approximations of mutual informa-
tion for ranging sensors [37, 103, 201]. This occupancy grid is in turn discretized into cells,
M = {C1, . . . , Cnm}, that are either occupied or free with some probability. Cells occupancy
is independent such that the probability of a realization m is P(M=m) =

∏nm

i=1P(Ci=ci)
where ci ∈ {0, 1}. The conditional probability of M given previous states and observations
is then written

P(M=m|x1:T , y1:T ) =

∏T
t=1P(yt|M=m,xt)P(M=m)∑

m′∈M
∏T

t=1P(yt|M=m′, xt)P(M=m′)
(4.3)

whereM∈ {0, 1}nm is the set of possible environments. As representing an unconstrained
joint distribution between cells is intractable, the conditional probabilities of the cells given
previous observations are also treated as being independent with probability pi,t such that
the conditional probability is

P(M=m|x1:T , y1:T ) =
nm∏
i=1

pi,t (4.4)
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We denote the collection of probabilities as the belief, bt =
⋃nm

i=1 pi,t.
The robots considered in this work are equipped with depth cameras, a form of ranging

sensor. Each sensor observation consists of a collection of range observations which each
provide the distance along a ray from the sensor origin to the nearest occupied cell in the
environment, subject to additive Gaussian noise. For more detail, we refer the reader to
work by Charrow et al. [37].

4.2.3 Problem description and objective

For one robot and one time-step the optimal control input in terms of entropy reduction is

u?1 = arg max
u∈U

I(Yt+1;M |bt, xt). (4.5)

subject to the dynamics (4.1) and observation model (4.2). Consider an l-step horizon.
The problem becomes a belief-dependent, partially observable Markov decision process
(POMDP) as is discussed in more detail by Lauri and Ritala [116] and is an optimization
problem over policies. We instead optimize over a fixed series of actions (see Sec. 2.1.2)
which results in a simpler problem. To simplify notation, let Yi indicate the space of
possible observations available to robot i over the finite horizon induced by the finite set
of control inputs, the dynamics (4.1), and the observation model (4.2). The optimal multi-
robot, finite-horizon informative plan is then

Y ?
t+1:t+l,1:nr

= arg max
Y1:l,1:nr∈Y1:nr

I(Y1:l,1:nr ;M |bt, xt,1:nr) (4.6)

where the indexing x1:t,1:nr represents values at times 1 through t and for robots 1 through
nr. In the following sections, we will drop the time and robot index as well as robot states
and belief when appropriate.

Solutions to (4.6) will be constructed incrementally using greedy algorithms. Using
the definitions in Sec. 3.5.2, the constraints in (4.6) can be interpreted as simple partition
matroid where U =

⋃nr

i=1 Yi and I = {Y ⊂ U | |Y ∩ Yi| ≤ 1, ∀i ∈ R}.

4.2.4 Assumptions

We make the following assumptions regarding the exploration scenario: 1) all robots have
the same belief state, operate synchronously, and communicate via a fully connected net-
work ; 2) incremental motions via f are bounded ; and 3) the sensor range is bounded.
The first assumption simplifies analysis in the context of this work. Here we emphasize
scenarios where large numbers of robots operate in close proximity leading to redundant
observations. Extending the proposed algorithm to incorporate additional considerations
such as communication constraints is left to future work. The second and third assump-
tions ensure that the mutual information between observations made by distant robots is
zero. These assumptions simplify the problem structure and are the key reason that the
proposed efficient algorithm comes with little to no reduction in solution quality.
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4.3 Single-robot planning

We employ Monte-Carlo tree search [27, 39] for the single-robot planner as previously
proposed for active perception and exploration [18, 116, 144] and in multi-robot active
perception [18].

In order to ensure bounded and similarly scaled rewards, constant terms from (4.6) are
dropped when planning for the ith robot to obtain a local objective

I(Yt+1:t+l,i;M |Yt+1:t+l,A), (4.7)

the mutual information between Yt+1:t+l,i and the map conditional on observations Yt+1:t+l,A

obtained by some set of robots A such that A ∩ {i} = ∅.
Denote solutions obtained from the Monte-Carlo tree search single-robot planner max-

imizing (4.7) as

Ŷi = SingleRobot(i, YA) (4.8)

and assume this planner has suboptimality η ≥ 1, such that

ηI(M ; Ŷi|YA) ≥ max
Y ∈Yi

I(M ;Y |YA) (4.9)

as in to the approach of Singh et al. [169].
Although Monte-Carlo tree search does not come with a suboptimality guarantee, some

existing algorithms for informative path planning [41, 169] do. Monte-Carlo tree search is
used instead on account of limited computation time and later for ease in incorporation of
inter-robot collision constraints which are time-varying.

4.4 Multi-robot planning

The main contribution of this work is the design and analysis of a new distributed multi-
robot planner that extends the single-robot planner discussed in Sec. 4.3 or any planner
satisfying (4.9) to multi-robot exploration. In development of a distributed algorithm, we
first present a commonly used algorithm, SGA, which provides suboptimality guarantees
[169] but requires robots to plan sequentially. We then propose a similar distributed
algorithm, DSGA, and analyze its performance in terms of time and suboptimality.

4.4.1 Sequential greedy assignment

Consider an algorithm that plans for each robot in the team by maximizing (4.7) given all
previously assigned plans and continues in this manner to sequentially assign plans to each
robot. We will refer to this as sequential greedy assignment (SGA). Singh et al. [169] use
the properties of mutual information discussed in Sec. 3.5.1 to establish that SGA obtains
an objective value within 1 + η of the optimal solution. The greedy solution using an
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Algorithm 3 Distributed sequential greedy assignment (DSGA) from the perspective of
robot i

1: nd ← number of planning rounds
2: nr ← number of robots
3: YF ← ∅ . set of fixed trajectories
4: for 1, . . . , nd do
5: Yi|YF ← SingleRobot(i, YF )
6: Ii,0 ← I(M ;Yi|YF |YF ) . planner reward
7: Ii,F ← Ii,0 . updated reward
8: for k = 1, . . . , d nr

nd
e do

9: j ← arg min
j∈1:nr

Ij,0 − Ij,F . computed by distributed reduction across robots

10: if i = j then
11: Transmit: Yi|YF
12: return Yi|YF
13: else
14: Receive: Yj|YF
15: YF ← YF ∪ Yj|YF
16: Ii,F ← I(M ;Yi|YF |YF ) . update reward

optimal single-robot planner can be defined inductively as Y g = Y g
0:nr

using a suboptimal
planner as in (4.8) to obtain the solution Y g = Y g

0:nr
such that

Y g
0 = ∅
Y g
i = SingleRobot(i, Y g

1:i−1)
(4.10)

This algorithm satisfies the following suboptimality bound.

Theorem 2 (Suboptimality bound of sequential assignment [169]). SGA obtains a subop-
timality bound of

I(M ;Y ?) ≤(1 + η)I(M ;Y g) (4.11)

This multi-robot planner is formulated as an extension of a generic single-robot plan-
ner and depends only on the suboptimality of the single-robot planner. As robots plan
sequentially, this leads to large computation times as the number of robots grows.

4.4.2 Distributed sequential greedy assignment

Consider a scenario with spatially distributed robots such that the mutual information be-
tween any observations obtainable within a finite horizon by any pair of robots is zero. The
union of solutions obtained for individuals independently is then equivalent to a solution
to the combinatorial problem over all robots, Y ?. A weaker version of this idea applies
such that if the plans returned for a subset of robots are conditionally independent, those
plans are optimal over that subset of robots regardless of the inter-robot distances. The

52



distributed planner, DSGA, is designed according to this principle and allows all robots to
plan at once and then selects a subset of those plans while minimizing suboptimality.

DSGA is defined in Alg. 3 from the perspective of robot i. Planning proceeds in a
fixed number of rounds, nd (line 4). Each round begins with a planning phase where each
robot plans for itself given the set of plans that are assigned in previous rounds (line 5),
stores the initial objective value, Ii,0 (line 6), and copies this to a variable, Ii,F (line 7) that
represents the updated value as more plans are assigned. The round ends with a selection
phase (line 8) during which a subset of d nr

nd
e plans are assigned to robots. The plans are

assigned greedily to minimize the decrease in the objective values, Ij,F −Ij,0, and the robot
whose plan is to be assigned is selected using a distributed reduction across the multi-robot
team (line 9) [114], and ties are broken arbitrarily. The chosen robot sends its plan to the
other robots (line 11), and these robots store this plan (line 15) and update their objective
values (line 16).

Denote a planner with nd planning rounds as DSGAnd
. LetDi be the set of robots whose

trajectories are assigned during the ith distributed planning round and let Fi =
⋃i
j=1Dj

be the set of all robots with trajectories assigned by that round. Denote solutions to
this new distributed algorithm as Y d. Then, let Ŷr|Y d

Fi
represent the approximate solution

returned by the single-robot planner given previously assigned trajectories. The result of
DSGA can then be written as Y d

Di,j
= ŶDi,j |Y d

Fi−1
where Di,j is the jth robot assigned during

round i. DSGA achieves a bound related to Theorem 2 with an additive term based on
the decrease in objective values from initial planning to assignment that DSGA seeks to
minimize (Alg. 3, line 9).

Theorem 3. The excess suboptimality of the distributed algorithm (Alg. 3) compared to
the bound for greedy sequential assignment is given by the sum of conditional mutual in-
formations between each selected observation and prior selections for the same planning
round1

I(M ;Y ?) ≤ (1 + η)I(M ;Y d) + ηψ (4.12)

where ψ =
∑nd

i=1

∑|Di|
j=1 I(Y

d
Di,j

;Y d
Di,1:j−1

|Y d
Fi−1

) represents excess suboptimality. The proof is
provided in Appendix B.3.

This is an online bound in the sense that it is parametrized by the planner solution.
However, as will be shown in the results, ψ tends to be small in practice indicating that
DSGA produces results comparable to SGA. In this sense, small values of ψ serve to
certify the greedy bound of 1 +η empirically without needing to obtain the objective value
returned by SGA explicitly.

4.4.3 Worst-case suboptimality

The main focus of this work is to investigate how aspects of problem structure can be used
to achieve efficient planning with minimal impact on suboptimality. This contrasts starkly

1Although we address multi-robot exploration, this result applies generally to informative planning
problems and general monotone submodular maximization with partition matroid constraints (aside from
notation and problem specialization).
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to the worst-case suboptimality which is inversely proportional to the number of robots.
While worst-case results by Gharesifard and Smith [75] and Mirzasoleiman et al. [133] are
relevant, Grimsman et al. [82] recently proved a somewhat tighter bound that is readily
applicable to Alg. 3.

Theorem 4 (Worst-case suboptimality). The following worst-case bound for Alg. 3 holds:

I(M ;Y ?) ≤ (1 + ηdnr/nde)I(M ;Y d). (4.13)

The proof can be found in Appendix B.4.

According to this bound, the planner may entirely fail to take advantage of additional
robots if additional planning rounds are not introduced. However, this does not account
for locality which can lead distant robots to become decoupled in the solution. This bound
can then be interpreted as a limiting scenario for when locality does not hold such as
due to extremely close proximity or complex interactions between observations and the
environment model.

4.4.4 Subset selection strategies

The subset selection step of DSGA itself uses a greedy strategy. Looking at this more
directly, the negation of the contribution of a single round is

I(M ;Y d
Di
|Y d
Fi−1

)−
|Di|∑
j=1

I(M ;Y d
Di,j
|Y d
Fi−1

), (4.14)

found by application of the chain rule of mutual information (see Sec. 3.2) to (B.7). Equa-
tion (4.14) is submodular and monotonically decreasing unlike the monotonically increasing
objectives considered previously. While we apply a heuristic approach and evaluate results
empirically, other works have evaluated this setting more directly [74].

More generally, approaches that seek to minimize (4.14) over the course of individual
rounds may fail for sufficiently unbalanced problems. For example, a large number of
robots with zero contribution could cause all robots with non-zero objective values to be
selected at once at significant detriment to solution quality. While such scenarios are not
encountered in this work, this is an important direction for future work.

4.4.5 Algorithm run time analysis

We compare the run time of DSGA to SGA for variable numbers of robots with run
time defined as the time elapsed from when the first robot begins computation until the
last robot is finished. We assume point-to-point communication over a fully connected
network requiring a fixed amount of time per message. The messages have fixed sizes and
correspond either to a finite-horizon plan or a difference in mutual information. Given
these assumptions, broadcast and reduction steps each require O(log nr) time [114]. Let
α(nr, bt) bound the run time of the selected single-robot planner, noting the dependence
on the number of robots and the environment. Similarly, let β(nr, bt) bound cost of the
mutual information computation in Alg. 3, line 16.
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SGA consists of nr planning steps, each with one broadcast step. The computation
time of sequential greedy assignment is then

SGA: O(nrα(nr, bt) + nr log nr). (4.15)

Each of the nd rounds in DSGA begins with a single planning phase, coming to a cost
of O(ndα(nr, bt)). The rest of the algorithm consists of subset selection, broadcast of the
chosen plans, and computation of mutual information which cumulatively occur once per
robot for a total cost of

DSGAnd
: O(ndα(nr, bt) + nrβ(nr, bt) + nr log nr). (4.16)

If nd grows slowly or is constant, the performance of DSGA relative to SGA depends on
the relative cost of the mutual information computation (β).

For the approximation developed by Charrow et al. [37], evaluation of mutual informa-
tion is linear in the number of cells of the map that are observed. Given the assumption
of bounded sensor range, evaluation of mutual information scales linearly in the number of
robots so that β(nr, bt) ∈ O(nr). When planning time is dominated by a constant number
of mutual information computation evaluations, such as when using a Monte-Carlo tree
search planner with a fixed number of sample trajectories, then α(nr, bt) ∈ O(nr) so that
both algorithms are quadratic. However, in practice, α includes a large constant factor
leading to a significant speedup for DSGAnd

compared to SGA. In general, α may also
depend non-trivially on factors such as the length of the plan or the scale or complexity
of the environment. This further emphasizes the significance of the of eliminating the nr

coefficient from the single-robot planning step.

4.5 Persistent safe exploration given vehicle dynamics

Up to this point, the analysis has considered maximization of the mutual information
objective over a joint space of finite-horizon trajectories which has the form of a partition
matroid constraint. However, inter-robot collision constraints cannot be modeled using a
matroid, and further challenges arise if the planner can fail to provide a solution or if no
solutions exist.

4.5.1 Independence systems, collision constraints, and subopti-
mality

After including inter-robot collision constraints, the space of feasible joint plans no longer
has the structure of a partition matroid or even a general matroid. Consider, a trajectory
that is free of collisions with one assignment of trajectories to a subset of robots. This
trajectory is not necessarily free of collisions with another assignment of trajectories to
the same subset of robots and neither can a robot in the subset be assigned an additional
trajectory from the first assignment. This violates the exchange property for matroids
(Def. 5). Instead the constraints can be modeled using an independence system (Def. 4),
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given that subsets of collision-free trajectories are also collision-free. In general, greedy
algorithms perform arbitrarily poorly for general independence systems [69]. However,
we can recover a lower bound of 1/(ηnr) by maximizing mutual information using the
first selection in each planning round which is otherwise under-determined because the
differences in Alg. 3, line 9 are uniformly zero for the first plan selected in each round. The
bound follows by observing that the maximal feasible subsets have cardinality of at most
nr and by applying suboptimality of the single-robot planner. This result will be used later
during discussion of system liveness in Sec. 4.5.3.

Although suboptimality bounds change with the constraint structure, this is not nec-
essarily indicative of typical performance in exploration. Mutual information objectives as
used in exploration often favor configurations with large inter-robot distances that min-
imize redundancy in sensor observations. Robots are also often small compared to their
sensor footprints which further mitigates detrimental effects of collision constraints.

4.5.2 Sufficient requirements for safety

Safety is interpreted as meaning that robots do not enter any occupied part of the en-
vironment and do not collide with each other, and each condition is implemented using
thresholds on distances as discussed in more detail in Sec. 4.6. Safety is guaranteed by
enforcing the invariant that the current joint plan is safe and terminates in a controlled
invariant state2 as is common in model predictive control [150]. Plans are executed in
a receding-horizon fashion so that robots do not necessarily enter the planned invariant
states whereas in the case of planner failure, one or more robots may enter invariant states
and remain in those states until a feasible plan can be found.

Safety will be guaranteed under the following assumptions: 1) the initial state, at the
start of the exploration process, is an invariant state; and 2) states that are believed not to
be in collision with the environment are free of collisions with the environment and remain
so for all time. The first assumption ensures safety by induction. The second prevents
arbitrary changes in the conditions for safety. This latter assumption does not always
hold in practice. Approaches, such as selectively relaxing constraints, can address this if
necessary.

Assume that the team of robots is tracking a plan that is safe for all time (i.e. meets
the stated requirements for all time). We modify Alg. 3 to only commit to a single-robot
plan if the resulting joint plan that results from swapping the old single-robot plan with
the new one is also safe for all time. The following constraints are also implemented in
the single-robot planner: 1) plans terminate in an invariant state; and 2) plans respect
collision constraints with other robots and the environment according to the full and current
joint plan at planning time. The joint plan which results from replacing a robot’s plan with
the output of the single-robot planner may not be safe either due to failure to meet the
above constraints or due to updates to other robots’ plans. In this case, the system falls

2In the implementation, robots are required to come to a stop and trajectories are then temporally
extended as necessary. Although these conditions can be relaxed, such as to invariant sets, there do not
appear to be clear or significant benefits from doing so.
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back to the robot’s prior plan which is known to be safe. As a result, joint plan is always
safe for all time.

4.5.3 Liveness in multi-robot exploration

Informally, liveness properties refer to guarantees that a system will make progress toward
a goal. In exploration, a natural statement of liveness for some system state is that the
multi-robot team will eventually select an action that reduces the entropy of the map.
Although liveness is not guaranteed in general, the proposed system design does admit
a limited liveness guarantee. This prevents scenarios such as when a small number of
conflicting robots can create a persistent state of deadlock in the entire system.

Assume that some robot finds a feasible single-robot plan with a mutual information
reward of at least ε. Then, using the results and modifications described in Sec. 4.5.1,
the resulting joint plan also provides a mutual information reward of at least ε which in
turn corresponds to ε entropy reduction in expectation. This condition guarantees live-
ness in exploration with high probability (i.e. barring infinite sequences of disinformative
observations) so long as some robot can find an action that reduces the entropy of the map.

4.6 Results and discussion

The results are divided into two main parts. Section 4.6.1 does not incorporate inter-robot
collisions and addresses scalability and performance of Alg. 3 as well as the suboptimality
in terms of Theorem 3 in the intended context of submodular maximization over a partition
matroid. Section 4.6.2 introduces inter-robot collisions and the application to a team of
aerial vehicles both in simulation and on real hardware. These experiments incorporate the
approach described in Sec. 4.5 in order to address additional challenges related to dynamics
and collision prevention.

4.6.1 Exploration with large numbers of kinematic quadrotors

The proposed approach is first evaluated in a simplified scenario with a team of kinematic
quadrotors, disregarding dynamics and inter-robot collisions, so the discussion in Sec. 4.5
does not come into play. Performance is evaluated in terms of planner objective values,
computation time, and entropy reduction with respect to the map.

Remark. Chapter 7 revisits the results from this chapter. While developing that work we
found that relative transformations for control actions were being applied a second time
before computing the information gain which affects the results in this chapter for the
kinematic model (but not results for the dynamic model or with physical robots). Applying
transforms twice has little effect for translations (as the field of view does not change much)
but significant effect for rotations. Although we include the original results, note that fixing
this error improved completion time (Sec. 7.6.2) by about 18% for that version of the
exploration system and eliminated some aberrant behavior.
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4.6.1a Exploration scenario

We test the exploration methodology in a confined and cluttered environment with obsta-
cles (cubes) of various sizes and with robot positions initialized randomly near a lower edge
as depicted in Fig. 4.1. The environment is bounded by a 6 m × 6 m × 6 m cube, and the
robots model this environment using a 3D occupancy grid with a 0.1 m resolution. The
confines and clutter ensure that robots remain proximal to each other. This leads to redun-
dant observations and potential for suboptimal joint plans over the planning horizon. The
experiments compare DSGA1 through DSGA3 (noting that DSGAnd

represents Alg. 3 with
nd planning rounds) to SGA for 4, 8, 16, and 32 robots over 3000 iterations (time-steps).
Tests evaluating exploration performance are each run twenty times each with randomized
initializations. Experiments that evaluate computation time use specially-instrumented
planner and single trial for each configuration.

4.6.1b Implementation details

We evaluate the proposed algorithm in simulation and run experiments on a computer
equipped with an Intel Xeon E5-2450 CPU (2.5 GHz). The planner and other components
of the system are implemented using C++ and ROS [148]. When timing the distributed
planner, planning steps that would normally be performed in parallel (single-robot plan-
ning during each planning round and information propagation) are executed serially. The
duration of each such step is taken as the maximum duration of the serially computed
steps in order to mimic distributed computation. In practice, computing the reduction to
find the minimum excess term (Alg. 3, line 9) requires an insignificant amount of time. So,
although the analysis assumes a logarithmic-time parallel, we compute this by iteration
over all elements in the implementation.

The simulated robots emulate kinematic quadrotors moving in a three-dimensional
environment with planning, mapping, and mutual information computation each performed
in 3D. The single-robot Monte-Carlo tree search planner is run for a fixed number of
samples (200) using a discrete set of actions consisting of the choice of translations of
±0.3 m in the x–y–z directions or heading changes of ±π/2 rad. Each robot is equipped
with a simulated time-of-flight camera with a range of 2.4 m which is similar to typical
depth cameras and having a 19 × 12 resolution and a 43.6◦ × 34.6◦ field of view which is
oriented with the long axis aligned vertically to promote effective sweeping motions. For
efficient evaluation of the mutual information objective, we substitute the approximation
of Cauchy-Schwarz mutual information (CSQMI) described by Charrow [33] (which is not
necessarily submodular) for the Shannon mutual information (3.5) and downsample rays
by two in each direction. Rather than the uniform prior for cell occupancy (50%) which is
commonly used in mapping, we introduce a prior of 12.5% probability of occupancy during
evaluation of mutual information [179]. This encourages selection of actions that observe
larger volumes of unknown space. This set of experiments is not run in real-time although
the next is. The planner maintains the robot states internally and triggers the camera
after each iteration.
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Figure 4.2: Objective and ψ values for varying numbers of robots and distributed planning rounds: (left)
Mutual information objective values for DSGA2 and DSGA3 closely track SGA while the performance
of DSGA1 (which ignores inter-robot interactions) degrades with increasing numbers of robots. (right)
Variations in the excess, ψ, terms correspond with the objective values—although ψ-values increase with
the numbers of robots, they also decrease with increasing numbers of planning rounds and remain small
compared to the objective for DSGA3. Transparent patches indicate standard-error.
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Alg. nr Objective
(

bits
robot

)
ψ
(

bits
robot

)
Entropy red. rate

(
bits

robot·iter.

)
Total entropy red. (bits)

avg. std. dev. avg. std. dev. avg. std. dev. avg. std. dev.
DSGA1 4 2.84e+01 1.29e+01 2.76e+00 3.90e+00 2.28e+02 4.83e+01 1.54e+05 1.21e+04
DSGA2 4 2.99e+01 1.30e+01 3.39e-01 8.50e-01 2.36e+02 2.96e+01 1.61e+05 2.04e+03
DSGA3 4 2.99e+01 1.34e+01 3.15e-01 8.75e-01 2.32e+02 2.31e+01 1.61e+05 2.41e+03
SGA 4 3.06e+01 1.34e+01 0.00e+00 0.00e+00 2.30e+02 3.68e+01 1.60e+05 2.85e+03
DSGA1 8 2.63e+01 1.04e+01 6.49e+00 5.80e+00 2.07e+02 1.50e+01 1.60e+05 2.23e+03
DSGA2 8 2.82e+01 1.08e+01 1.23e+00 1.66e+00 2.10e+02 1.78e+01 1.63e+05 1.89e+03
DSGA3 8 2.81e+01 1.10e+01 2.67e-01 6.30e-01 2.04e+02 1.41e+01 1.64e+05 1.75e+03
SGA 8 2.84e+01 1.06e+01 0.00e+00 0.00e+00 2.05e+02 1.53e+01 1.64e+05 2.80e+03
DSGA1 16 2.22e+01 7.47e+00 1.24e+01 8.14e+00 1.64e+02 1.11e+01 1.60e+05 1.77e+03
DSGA2 16 2.46e+01 8.08e+00 3.04e+00 2.58e+00 1.77e+02 9.52e+00 1.66e+05 1.42e+03
DSGA3 16 2.52e+01 8.17e+00 9.67e-01 1.30e+00 1.78e+02 8.97e+00 1.67e+05 1.67e+03
SGA 16 2.48e+01 7.86e+00 0.00e+00 0.00e+00 1.74e+02 7.60e+00 1.68e+05 1.65e+03
DSGA1 32 1.69e+01 4.64e+00 2.00e+01 1.00e+01 1.26e+02 4.60e+00 1.61e+05 1.75e+03
DSGA2 32 1.94e+01 4.99e+00 6.00e+00 3.59e+00 1.27e+02 5.45e+00 1.67e+05 1.44e+03
DSGA3 32 2.02e+01 5.30e+00 2.44e+00 1.79e+00 1.29e+02 7.60e+00 1.69e+05 9.94e+02
SGA 32 2.03e+01 4.63e+00 0.00e+00 0.00e+00 1.31e+02 8.73e+00 1.72e+05 6.51e+02

Table 4.1: Exploration performance results for the kinematic exploration scenario: The reduction rate
is computed with respect to the map over the first 250 robot-iterations and is representative of nominal
performance. The total entropy reduction shows the entropy reduction with respect to the map at the end
of the experimental trial (3000 robot-iterations).

4.6.1c Evaluation of planner performance and objective values

Figure 4.2 and Table 4.1 show results for exploration experiments comparing DSGA1

through DSGA3 to SGA. The excess (ψ) is largest at the beginning of each exploration
run as all robots are start near the same location. As the robots spread out, all planners
approach approximately steady-state conditions in terms of both excess suboptimality and
objective values before decaying once the environment is mostly explored. The ψ terms
remain relatively large for DSGA1—which assigns all plans in a single round and does
not reason about conditional dependencies. However, the ψ terms decrease monotonically
with increasing numbers of planning rounds. These values remain small for DSGA3 and
are approximately one-eighth of the objective value on average for 32 robots whereas values
for DSGA1 exceed the value of the objective for the same number of robots. Decreasing
values of ψ are reflected in plots of the mutual information objective. Whereas DSGA2 and
DSGA3 closely track SGA, objective values for DSGA1 degrade with increasing numbers
of robots.

When interpreting these results and entropy reduction results to be shown in Sec 4.6.1e,
it is helpful to note that the scale of the environment remains constant and that increas-
ing the number of robots serves to increase a notion of the density of the distribution of
robots in the environment. In this sense, similar performance can be expected of larger
teams operating in larger environments up to constraints on computation and communi-
cation. Toward this end, the next subsection evaluates computation times for DSGA and
demonstrates that it scales much better than SGA in practice.
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4.6.1d Computational performance

While planning performance is largely consistent, DSGA is able to take advantage of dis-
tributed computation in to provide significantly improved computation times (Fig. 4.3).
Computation times for SGA scale approximately linearly in our simulation experiments.
The average computation time for SGA increases more than seven times from nr = 4 to
nr = 32 robots from 2.25 s to 16.8 s while times for DSGA remain small and decrease slowly.
As a result, DSGA3 provides a 2 to 8 times speedup compared to SGA. With 32 robots, the
computation time increases by only a factor of 2.5 from DSGA1 to DSGA3, despite tripling
the number of planning rounds. These results indicate that DSGA is able to provide
multi-robot coordination for large numbers of robots while accommodating requirements
for online performance well after doing the same with SGA becomes intractable.

4.6.1e Entropy reduction performance

Figure 4.4 compares DSGA to SGA for various numbers of robots and is summarized in
Tab. 4.1. Exploration rates early in exploration runs remain consistent across planners and
degrade by approximately 43% as the numbers of robots increase due to crowding. This
translates to significant improvements in the total rate of exploration even as efficiency
decreases.

The entropy reduction performance of DSGA2 and DSGA3 closely matches SGA for
each number of robots. Interestingly, the performance of DSGA1 is worst for nr = 4
robots where the rate of entropy reduction degrades after initially performing well. For
larger numbers of robots, differences in entropy reduction performance are most apparent
in the total entropy reduction. This is likely a result of the planners involving inter-
robot coordination being able to distribute robots across the environment more effectively.
Because we use local finite-horizon planner, DSGA1 then occasionally fails to allocate
robots to and explore some portions of the environment. Given a spatially global planning
strategy, longer exploration times could then be expected for DSGA1 due to the cost of
traveling to these unexplored regions of the environment.

4.6.2 Simulation and experiments of dynamic robots with inter-
robot collision constraints

This section addresses more realistic systems and involves inter-robot collision avoidance
and non-trivial dynamics in the form of teams of real and simulated quadrotors. Unlike
the previous section, robots now track dynamic trajectories while planning is performed in
real-time. Simulation results for a team of six robots demonstrate that DSGA retains per-
formance comparable to SGA. Experiments using a three real quadrotors serve to ground
the simulation results by demonstrating comparable results on a similarly configured sys-
tem in practice.

61



Alg. nr S.R. Planning Prop. Total
avg. std. avg. std. avg. std.

DSGA1 4 0.600 0.0603 0.0251 0.00529 0.625 0.0610
DSGA2 4 1.19 0.0928 0.0181 0.00422 1.21 0.0934
DSGA3 4 1.11 0.106 0.0189 0.00415 1.13 0.107
SGA 4 2.23 0.150 0.0184 0.00253 2.25 0.151
DSGA1 8 0.630 0.0562 0.0524 0.00664 0.682 0.0577
DSGA2 8 1.22 0.0863 0.0491 0.00696 1.27 0.0886
DSGA3 8 1.82 0.105 0.0428 0.00708 1.86 0.108
SGA 8 4.22 0.243 0.0342 0.00381 4.25 0.245
DSGA1 16 0.609 0.0565 0.106 0.00916 0.715 0.0616
DSGA2 16 1.28 0.0867 0.106 0.00954 1.38 0.0912
DSGA3 16 1.91 0.0911 0.106 0.00985 2.02 0.0923
SGA 16 8.55 0.329 0.0667 0.00543 8.63 0.332
DSGA1 32 0.649 0.0565 0.217 0.0105 0.865 0.0596
DSGA2 32 1.30 0.0547 0.222 0.0110 1.53 0.0583
DSGA3 32 1.92 0.0949 0.218 0.0124 2.14 0.101
SGA 32 16.6 0.592 0.131 0.00816 16.8 0.596

(a) Table of timing data
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Figure 4.3: Computational performance (seconds) in terms of total computation time (time elapsed
from when the first robot starts planning until the last robot stops). (a) Time per iteration spent in the
single-robot planner, propagation of the information reward (DSGA only), and total computation time.
(b) Comparison of the timing differences between SGA and DSGA.
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(a) Information gain per robot (nr = 4)
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(b) Information gain per robot (nr = 8)
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(c) Information gain per robot (nr = 16)
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(d) Information gain per robot (nr = 32)

Figure 4.4: Entropy reduction performance with different numbers of robots and planner configurations:
DSGA2 and DSGA3 closely track SGA in all cases while DSGA1, which does not incorporate inter-robot
coordination, performs worst for nr = 4 and has reduced total entropy reduction for nr = 16 and nr = 32.
Transparent patches show standard-error. Gray lines indicate the maximum mean entropy reduction of
1.72 · 105 bits (data continues through 3000 robot-iterations) and a 90% threshold for task completion
which facilitates approximate comparison to results in Chapter 7.
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4.6.2a Implementation details

As these experiments now involve inter-robot collision constraints, we now incorporate the
details Sec. 4.5 into both the SGA and DSGA planners. Rather than discrete steps, the
Monte-Carlo tree search planner now uses a library of polynomial motion primitives similar
to that described by Tabib et al. [179] to provide actions. Because trajectories are executed
in real-time, the Monte-Carlo tree search planner is run in a fully any-time fashion at a
rate of 1/3 Hz rather than for a fixed number of samples, and time in single-robot planning
is budgeted according to the number of sequential planning steps in the given multi-robot
planner. The planner uses a finite 6 s horizon with motion primitives whose durations vary
from 0.5 s to 10 s (2s is typical), and at each planning step as many as 162 motion-primitive
actions are available although some may be infeasible due to collision constraints. Robot-
environment collision checks are implemented use a truncated distance field for efficient
lookups, and inter-robot collision checks use horizontal distances to prevent any robot from
flying in another’s downwash. This set of experiments uses a custom and simulation and
control framework that implements a standard quadrotor dynamics model and a quadrotor
controller that tracks polynomial trajectories in the differentially-flat outputs [125] and a
team of custom quadrotors equipped with Structure brand depth sensors.

4.6.2b Simulation results

The simulation trials (Fig. 4.5) evaluate a team of six robots exploring a pseudo-planar
rearrangement of the environment shown in Figure 4.1 using sequential planning (SGA),
myopic planning (DSGA1), and distributed planning with three rounds (DSGA3) with
twenty trials per each planner. Single-robot planning steps (Monte-Carlo tree search) were
run in parallel on the same computer as in Sec 4.6.1b.

The simulation environment and results for entropy reduction are evident shown in
Fig. 4.5. The exploration performance is largely similar across planners except that DSGA1

exhibits a slight delay at the start due to a tendency for robots to choose conflicting trajec-
tories. Because robots are initialized near each other, toward the center of the environment,
(with blue lines marking the locations where robots took off) the single-robot planner re-
turns plans that would result in inter-robot collisions most often early in each trial. This is
evident in Fig. 4.6 which plots the cumulative number of times that the multi-robot plan-
ner has had to fallback to the existing safe trajectory due to either inter-robot collisions
or failure of single-robot planning as described in Sec 4.5.2. This is most pronounced for
DSGA1 due to the lack of coordination in the planner. Using the fallback trajectories is
most detrimental at the very beginning of the trial when the fallback consists of staying
stationary at the starting position, causing the delay. Later, once they have been populated
with prior planning results, resorting to fallback trajectories becomes less significant.

4.6.2c Experimental results

An experimental trial with a team of three quadrotors is also included as depicted in
Fig. 4.7. This experiment serves to ground the simulation results described in the prior
subsections on a real system. Due to the small size of the team, only SGA is used for
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Figure 4.5: (left) Six robots explore a pseudo-planar environment using motion-primitive trajectories.
(middle) Robots (such as the green and blue) plan informative and collision-free trajectories using DSGA3

despite operating in close proximity. The portion of each robot’s receding-horizon plan that is currently
being executed is colored in green, and the rest of the horizon is magenta. (right) Planners perform similarly
in terms of entropy reduction although the initial performance of DSGA1 is impaired as it frequently resorts
to using fallback trajectories due to conflicts in planned trajectories.
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Figure 4.6: Cumulative numbers of fallback trajectories selected by multi-robot planner in simulation
results with dynamic quadrotors: The multi-robot planners resort to fallback trajectories when the single-
robot planner fails or returns a plan that would result in inter-robot collisions. DSGA1 uses fallback
trajectories frequently early in trials when robots are near each other and later after most of the environ-
ment has been explored.
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Figure 4.7: (left) A team of three robots explores a motion capture arena occupied by a geometric object
consisting of foam boxes using Monte-Carlo tree search and motion-primitive trajectories and coordination
via SGA and (middle) produce a voxel grid map of the environment (shown from a different vantage-point
to also detail the robot in red which explores behind the obstacle). (right) The entropy of the map decreases
as the robots move through the environment.

coordination as DSGA would be expected to provide little benefit (DSGA3 is essentially
equivalent to SGA for three robots). Planning is performed offboard on a laptop with a
Intel i7-5600U CPU (2.6 GHz). Otherwise, the system configuration is identical to prior
set of simulation results. Whereas the simulation results demonstrate application of the
approach described in Sec. 4.5 for exploration with collision constraints and dynamic robots
using a significant number of robots, these hardware results connect the implementation
and its configuration to a real system.

The experiment is performed in a motion capture flight arena populated with a pile of
foam blocks of various shapes and sizes. During the course of the exploration trial, the
team of robots is able to successfully navigate and map the environment as evident in the
trajectories and cumulative entropy reduction. The rate of entropy reduction per robot
at the beginning of the trial is similar to Fig. 4.7 at approximately 400 bits

s·robot
. While the

simulation results demonstrate efficiency of SGAand DSGAwith and without collision con-
straints these experimental results demonstrate that the planner design and configuration
is also applicable to exploration with a real multi-robot team and performs similarly.

4.7 Conclusions and future work

The proposed distributed algorithm (DSGA) efficiently approximates sequential greedy as-
signment (SGA) and is appropriate for implementation on large multi-robot teams using
online planning. We have applied this algorithm to the problem of multi-robot explo-
ration, and demonstrated consistent entropy reduction performance in simulation for large
numbers of robots exploring and mapping a complex three-dimensional environment. The
results demonstrate that DSGA is able to effectively take advantage of parallel computa-
tion without degradation in solution quality at scales where application of SGA becomes
intractable. We expect that this result will be instrumental in development of physical
multi-robot systems that take advantage of distributed computation for exploration and
other online informative planning problems.

In order to address realistic scenarios, we incorporated robot dynamics and inter-robot
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collision constraints into the problem formulation. Although collision constraints result
in increased problem complexity, we were able to modify the planning approach to guar-
antee safety and liveness under weak assumptions. The simulation results demonstrated
consistent exploration performance and indicate that collision constraints have a relatively
minor impact on exploration performance. Further, including collision constraints makes
this approach viable for application to real robots, and we demonstrated this on a team of
aerial robots flying in a motion capture arena.

Although DSGA can take advantage of parallel computation, the actual assignments in
the subset selection step are fully sequential, and the asymptotic computation time is iden-
tical to sequential greedy assignment even though we obtained significant improvements in
practice. The bound on suboptimality (Theorem 3) also only provides a post-hoc guaran-
tee, and optimization performance could degrade for large numbers of robots (Theorem 4).
Instead, the RSP methods that we introduce in the following chapters eliminate all sequen-
tial computation involving the entire multi-robot team and obtain strong suboptimality
guarantees for any number of robots.
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Chapter 5

Scalable and Near-Optimal Planning
for Multi-Agent Sensor Coverage

Many objective functions that arise in sensor planning problems such as mutual informa-
tion objectives [169] (and as in Chapter 4), objectives for sensing in hazardous environ-
ments [102], and various notions of area, set, and sensor coverage [153] are submodular.
Intuitively, submodularity implies diminishing returns when constructing sets of sensing
actions. This work explores multi-agent planning problems with submodular objective
functions and especially variants of set and sensor coverage. We emphasize problems that
feature networks of large or even unspecified numbers of agents seeking to maximize a
global submodular objective, and the planners we propose obtain constant-factor perfor-
mance under mild conditions such as for agents with limited sensor range and spatially
local sensing actions.

Chapter 4 began to address the challenge that sequential planning scales poorly as the
number of agents increases. Further, solving agents’ local planning subproblems can be
time-consuming on its own as the space of actions may be nearly infinite [169]. At the
same time, we have already seen that dynamic environments and beliefs motivate real-
time planning so that efficient multi-agent coordination is critical when scaling to large
numbers of agents. We address this issue by proposing efficient distributed planners that
consist of fixed numbers of sequential planning steps and approach existing constant-factor
performance bounds (in expectation) when known pairwise interactions between agents are
proportional to objective values.

Several recent works [75, 82] also address the core challenge of this work: design of
parallel variants of sequential planners for multi-agent systems. Gharesifard and Smith
[75] define a class of distributed planners based on directed acyclic graphs where agents
perform greedy planning steps using only a subset of the decisions made by prior agents.
Although they provide worst-case bounds on suboptimality, Grimsman et al. [82] provide
tighter results for the same framework. However, both works obtain bounds that are
inversely proportional to the maximum number of agents that can plan in parallel. In
contrast, Chapter 4 demonstrated that such planners can be effective when agents that
plan in parallel can find sets of decoupled actions. However, that approach also only
provided post-hoc bounds and did not scale to arbitrary numbers of agents as some steps
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(a) Area coverage (b) Inter-agent redundancy

Figure 5.1: Consider a team of robots maximizing (a) sensor area coverage. Intuitively, distant agents
may make decisions independently with no loss in optimality. We exploit such conditions to enable efficient
distributed planning. Specifically, (b) inter-agent redundancy quantifies the maximum coupling between
two agents. The distributed algorithm that we propose requires planning time that is independent of the
number of agents and guarantees near-optimal performance when redundancy decreases monotonically
subject to prior observations as is true for coverage objectives.

remained fully sequential.

We continue in the direction of the previous chapter by seeking to develop efficient
distributed planners that exploit problem structure. As discussed in Fig. 5.1, our approach
is inspired by the intuition that decisions by distant agents are often decoupled. We model
this notion with a concept of inter-agent redundancy which describes how much one agent’s
marginal gain can decrease as a result of ignoring another agent. Our approach requires
such redundancy to decrease monotonically in the presence of actions selected by previous
agents in the planning sequence. This condition is equivalent to requiring the objective to
satisfy the next higher-order monotonicity property after submodularity.

Together, these properties enable use of pairwise redundancy to bound the effect of
ignoring an agent at any step of the planning process which relates total redundancy to
suboptimality. We propose an algorithm—Randomized Sequential Partitions (RSP)—that
randomly partitions agents and obtains a constant-factor bound when the optimal solution
is proportional to the cumulative pairwise redundancy between all agents. This condition is
generally satisfied by problems involving limited sensing range and distributions of agents
with bounded density, and the approach further admits features such as local adaptation
and limits on communication range. We refer to the latter case as Range-limited RSP(or
R-lRSP). Finally, we prove that a generalized variant of weighted set coverage satisfies
higher-order monotonicity conditions and provide simulation results for two cases, area
coverage and a probabilistic detection scenario.

This chapter originally appeared in [55].
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5.1 Background discussion

5.1.1 Properties of set functions and the 3-increasing condition

Consider a set function g : 2U → R where U is the ground set. Just as for the previous
chapter, the functions we study in this one are normalized, monotonically increasing, and
submodular according to the definitions in Sec. 3.5.1.

We now introduce the next higher-order monotonicity property (see Sec. 3.5.1d) [70]:
the objectives in this chapter are 3-increasing.1 Given the definition of the derivative of a
set function (3.16) and for A ⊆ B ⊆ U and disjoint subsets X, Y ⊆ U \ B, 3-increasing
functions satisfy

g(X;Y |A) ≤ g(X;Y |B). (5.1)

When expanded and negated, this expression takes the form g(X|B) − g(X|B, Y ) ≤
g(X|A) − g(X|A, Y ). Given that A ⊆ B, this can be interpreted as stating that con-
ditioning reduces redundancy, and expressions of the form −g(A;C) = g(A)− g(A|C) will
be referred to as expressing the pairwise redundancy between A and C. Such higher-order
monotonicity properties have not been used extensively in the literature on optimiza-
tion of submodular functions although a few works study the same and similar proper-
ties [44, 70, 106, 149].

Weighted set cover is an example of a submodular function that is 3-increasing, and
such objectives have been studied extensively and used to prove hardness results for sub-
modular maximization [66] and tightness results for distributed planning [82]. Because
existing results already use functions that are 3-increasing, requiring this condition does
not impact hardness of an optimization problem. At the same time, some common sub-
modular objectives are not necessarily 3-increasing. Figure 5.2 describes one such scenario
for a submodular mutual information objective.

5.1.2 Partition matroids

Recall from Sec. 3.5.2 that partition matroids describe multi-agent problems where the
joint action space is a product of local action spaces for each agent. The ground set of
the partition matroid (U ,I ) is partitioned by a set of blocks {B1, . . . ,Bn}, and the
admissible sets of actions are I = {X ⊆ U | |X ∩Bi| ≤ `i} for `i ≥ 0.

5.2 Problem statement

Consider a multi-agent planning problem with agents A = {1, . . . , na} where each agent
i ∈ A is associated with a set of actions Bi which is also a block of the partition matroid.
Agents may select at most one action so that |X ∩ Bi| ≤ 1 for each admissible set of

1Previously, we referred to the 3-increasing condition as supermodularity of conditioning [55]. Wang
et al. [191] also refer to the combination of this condition with submodularity as “strong submodularity.”
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Figure 5.2: This illustration depicts an example of a submodular objective that is not 3-increasing
and generalizes common examples for when mutual information increases under conditioning [58]. In
this example, boxes in the set C = {1, . . . , n} are colored green or gold independently and with equal
probability. Sensors may observe either end directly {Y1, Yn} and differences colors of adjacent boxes
{Y1\2, . . . , Yn−1\n}, to obtain a submodular mutual information reward g(Y ) = I(C;Y ) where Y is a set
of such observations. Each individual observation provides one bit of information, and pairs obtain two
bits and have no redundancy. This trend only changes once we consider all of the observations together:
we can determine the color of the last box in the sequence by observing the first box and each subsequent
change in color. This violates the 3-increasing condition (5.1) as the addition of last observation signifies
an increase in redundancy and equivalently a decrease in the second derivative of the objective. That is
g(Y1;Yn) = 0 but g(Y1;Yn|Y1\2, . . . , Yn−1\n) = −1.

actions X ∈ I . Further, the agents are engaged in a sensing task with an objective g that
satisfies the conditions outlined in Sec. 5.1.1 and so seek to solve

X? ∈ arg max
X∈I

g(X). (5.2)

Previously, Sec. 3.5.3c described the local greedy heuristic (sequential maximization, Alg. 2)
which obtains approximate solutions by recursively applying a greedy maximization step.
Further, solutions via this approach are guaranteed to be within half of optimal.

5.3 Greedy planning on directed acyclic graphs

Sequential planning (Alg. 2) on a large network of agents is time-consuming as each agent
must wait to receive the incremental solution from the previous agents before beginning
computation. Gharesifard and Smith [75] propose a related class of planners where agents
may ignore the decisions of previous agents according to a directed acyclic graph. Rather
than planning with respect to all prior decisions as in Alg. 2, these planners obtain the
solution Xd = {xd

1, . . . , x
d
na
} by evaluating

xd
i ∈ arg max

x∈Bi

g(x|Xd
Ni

) (5.3)

using incremental solutions from Ni ⊆ {1, . . . , i− 1}, the set of in-neighbors of agent i in
the directed acyclic graph. This model can be used to design distributed planners where
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distant agents do not communicate or where subsets of agents execute their planning
steps in parallel. Prior works studying such planners examine worst-case behavior for
objectives that are submodular and monotonic [75, 82]. These fail to obtain constant-
factor suboptimality when given only a fixed number of sequential planning steps but
an arbitrary number of agents. Instead, this work examines sufficient conditions for a
distributed planner with a fixed number of sequential planning steps to approach the
performance of a sequential planner (half of optimal, see Sec 3.5.3c) We begin by analyzing
(5.3) based on the redundancy of sensing actions between pairs of agents.

5.4 Analysis using inter-agent redundancy

The performance of the distributed planner will be analyzed by bounding decreases in
marginal gains due to failure to condition on choices by prior agents i.e. g(xd

i |Xd
Ni

) −
g(xd

i |Xd
1:i−1). The 3-increasing condition enables derivation of bounds on such changes in

marginal gains using pairwise redundancies between elements.
Define the inter-agent redundancy graph as a weighted, undirected graph G = (A, E ,W)

with agents as vertices, edges E = {(i, j) | i, j ∈ A, i 6= j},2 and weights

W(i, j) = wij = max
xi∈Bi, xj∈Bj

−g(xi;xj). (5.4)

This connects the notion of redundancy to the multi-agent planning problem via maximum
(and undirected) inter-agent redundancies.

Decreases in marginal gains can be bounded using the pairwise redundancies from the
inter-agent redundancy graph using the following lemma.

Lemma 5 (Pairwise redundancy bound). Consider disjoint subsets A,B,C ⊆ U . Then

g(A|B,C)− g(A|C) ≥
∑
b∈B

g(A; b) (5.5)

Proof. Lemma 5 follows from the chain rule (Lemma 1) and g being 3-increasing. Given
an ordering B = {bi, . . . , b|B|}, construct a telescoping sum

g(A|B,C)− g(A|C) = g(B|A,C)− g(A|C)

=

|B|∑
i=1

g(bi|B1:i−1, A, C)− g(bi|B1:i−1, C)

=

|B|∑
i=1

g(bi;A|B1:i−1, C)

Then, (5.5) follows because g is 3-increasing (5.1). Finally, note that, although the expres-
sion for (5.5) is tailored to its usage, the left hand side has the form of a second derivative
of g so that g(A;B|C) = g(A|B,C)− g(A|C). �

2Being undirected, (i, j) and (j, i) are the same edge.
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Although produced independently, the above lemma is equivalent to [191, Lemma 1].
The total weight of the redundancy graph will characterize suboptimality for our ap-

proach. We will refer to a problem defined according to (5.2) as α-redundant for α > 0
if

αg(X?) ≥
∑

(i,j)∈E
wij. (5.6)

Instances of (5.2) with finite objective values and numbers of agents are all α-redundant for
some α although specific values are not guaranteed in general. We will use α-redundancy
to absorb additive terms proportional to graph weights into constant-factor multiplicative
bounds in terms of α.

5.4.1 Analysis of distributed planners using inter-agent redun-
dancy

The inter-agent redundancy graph defined in the previous section can be applied in the
analysis of distributed planners (5.3) using a similar approach as in the previous chapter
(Chapter 4). Let N̂i = {1, . . . , i − 1} \ Ni be the set of preceding agents that are ignored
at step i of the assignment process according to (5.3) so that the set of all deleted edges is
Ẽ = {(i, j) | i ∈ A, j ∈ N̂i}. Then the planner suboptimality can be bounded in terms of
the weights of these deleted edges.

Theorem 6 (Suboptimality of distributed planning). The suboptimality of a planner obey-
ing (5.3) can be bounded using the cumulative weight of deleted edges as

g(X?) ≤ 2g(Xd) +
∑

(i,j)∈Ẽ

wij. (5.7)

Proof. Theorem 6 follows from application of pairwise redundancy on the inter-agent re-
dundancy graph to the standard proof technique for sequential maximization,

g(X?) ≤ g(X?, Xd)

= g(Xd) +
na∑
i=1

g(x?i |Xd, X?
1:i−1)

≤ g(Xd) +
na∑
i=1

g(x?i |Xd
Ni

)

≤ g(Xd) +
na∑
i=1

g(xd
i |Xd

Ni
)

= 2g(Xd) +
na∑
i=1

(
g(xd

i |Xd
Ni

)− g(xd
i |Xd

1:i−1)
)
. (5.8)

The first equality is a telescoping sum. The inequalities follow first from g being mono-
tonically increasing, second from submodularity, and third by greedy choice according to
(5.3). The last equality is another telescoping sum. The main result (5.7) follows from
application of (5.5) and (5.4) to the sum in (5.8) and the definition of Ẽ . �
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5.5 Randomized distributed planners

Let us now apply the analysis from the previous section to design of randomized distributed
planners. A set of agents can execute planning steps in parallel if no pair of agents in the
set shares an edge in the planner model (5.3). Considering this, we construct distributed
planners by partitioning the agents and eliminating edges within blocks of the partition and
then bound suboptimality for randomly assigned partitions. Finally, we present conditions
for such planners to scale to an arbitrary number of agents and to admit features such as
limited communication range.

5.5.1 Distributed planning on partitioned agents

Consider a planner where subsets of agents plan in parallel according to a partition
{D1, . . . , Dnd

} of agents A = ∪nd
i=1Di. In such a planner, nd corresponds to the maxi-

mum number of sequential planning steps. Let di map each agent i to its block in the
partition so that i ∈ Ddi , and let the total ordering of agents respect a partial ordering
induced by ordering the blocks of the partition so that i < j implies di ≤ dj. We con-
struct a planner (5.3) from the partition and ordering of agents and blocks by eliminating
neighbors that share the same block from the complete directed acyclic graph

Ni = {1, . . . , i− 1} \Ddi , N̂i = {1, . . . , i− 1} ∩Ddi . (5.9)

Ideally, the partition would minimize the cumulative weight of edges eliminated in the
subgraphs of the blocks. However, that is equivalent to maximizing the weight of edges
outside of the subgraphs which is the Max k-Cut problem on the inter-agent redundancy
graph. Finding exact solutions is intractable because Max k-Cut is NP-Complete [105].
Therefore, the next section proposes randomized approaches that produce approximate
solutions.

5.5.2 Planning with random partitions

As observed by Andersson [3], a random partition obtains a trivial nd−1
nd

by observing that
edges are removed uniformly at random. The approach presented here is similar and is
presented from the perspective of individual agents.

Consider a distributed planner as defined by (5.3) where agents share partial solutions
with neighbors given a partition of the agents as in (5.9). Let each agent select its partition
index di independently and uniformly at random from {1, . . . , ki} so that nd = maxi∈A ki.
We refer to such planners as implementing Randomized Sequential Partitions (RSPnd

)
as this approach partitions agents into nd groups which plan sequentially over the same
number of sequential steps.

We consider two policies for selection of ki based on the weights of the redundancy
graph (5.4) and a per-agent budget for additive suboptimality γ > 0. For global adaptive
planners agents i ∈ A select from a fixed number of partition indices proportional to the
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total redundancy so that

ki = nd =

 1

naγ

∑
(i,j)∈E

wij

 . (5.10)

With local adaptive planners ki is proportional instead to the cumulative redundancy for
that agent which may be large compared to other agents but involves less global knowledge

ki =

 1

2γ

∑
j∈A\{i}

wij

 . (5.11)

Note that the factor of two in arises because the sum in (5.11) counts each edge twice
unlike (5.10). Both local and global planners respect the following bound.

Theorem 7 (Suboptimality of RSP planning). Given a budget γ > 0 for per-agent subopti-
mality and a planner defined according to (5.3) which partitions agents according to (5.9) by
drawing partition indices di uniformly from {1, . . . , ki} using (5.10) or (5.11) suboptimality
is bounded in expectation as

g(X?) ≤ 2E[g(Xd)] + naγ. (5.12)

Proof. The expectation of the cumulative weight of deleted edges for either planner is
bounded as

E

 ∑
(i,j)∈Ẽ

wij

 =
1

2

na∑
i=1

E

 ∑
j∈Ddi

\{i}
wij


≤

na∑
i=1

1

2ki

∑
j∈A\{i}

wij (5.13)

where the inequality accounts for when dj > ki. That is, when another agent j selects a
partition index dj > ki outside of the set considered by i, the corresponding edge cannot
be deleted from the perspective of agent i. For global adaptive planners, ki = nd for all
i and (5.13) simplifies to 1

nd

∑
(i,j)∈E wij and holds with equality. Then (5.12) follows by

applying (5.10) or (5.11) and substituting into the expectation of (5.7) over partitions of
agents. �

Restating in terms of α-redundancy provides a stronger statement that is useful when
varying the number of agents.

Corollary 7.1 (Constant factor suboptimality). Problems with fixed α-redundancy satisfy
the constant-factor bound

1− ε
2

g(X?) ≤ E[g(Xd)] (5.14)
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for ε > 0 and a budget of

γ =
ε

αna

∑
(i,j)∈E

wij (5.15)

by substituting (5.15) into (5.12), applying (5.6), and rearranging.

Corollary 7.2 (Fixed nd for global planning). Given fixed α-redundancy, global adaptive
planners (5.10) provide constant-factor suboptimality for nd = dα

ε
e sequential planning

steps which follows by rearranging (5.15) to match (5.10).

5.5.3 Near-optimality for varying numbers of agents

In this section, we present sufficient conditions to preserve these guarantees when increasing
the number of agents. These conditions correspond intuitively to scenarios where agents
have access to local actions and where the environment volume and rewards scale with the
number of agents.

We say problems (5.2) with na agents exhibit β-linear scaling for β > 0 if

g(X?) ≥ βna (5.16)

which expresses the condition that rewards scale with the number of agents.
In order to express the relationship between inter-agent distances—or the distribution

of agents—and inter-agent redundancy, define a function of inter-agent distance r : R≥0 →
R≥0 so that

wij ≤ r(||pi − pj||) (5.17)

where || · || is some norm and pi,pj ∈ Rd are appropriately defined agent positions associ-
ated with the blocks of the partition matroid. The following theorem identifies sufficient
conditions for problems to have finite α on average and in turn to satisfy Theorem 7 and
corollaries which implies a constant expected number of sequential steps (nd) for the global
planner design (5.10) and any number of agents.

Theorem 8 (Finite average redundancy). Consider a class of problems (5.2) with a dis-
tribution of agents in Rd with finite density of at most ρ that satisfies linear scaling (5.16)
and has redundancy bounded in terms of inter-agent distance (5.17) for fixed β and r. If∫∞

0
r(s)sd−1 ds is finite, the average value of α, interpreted as a random variable, is also

finite.

Proof. Let ρ be an upper bound on the marginal density of agents in Rd, and let Ad
be the surface area of the unit sphere under the chosen norm. Because the distribu-
tion of agents has fixed maximum density ρ, we may obtain results for arbitrarily large
numbers of agents by taking the limit as this distribution of agents covers the entire
Euclidean space. By applying (5.17) and integrating over spheres centered on pi for
an arbitrarily large environment, the expected redundancy for a given agent is at most

r̂ = ρAd
∫∞

0
r(s)sd−1 ds ≥ E

[∑
j∈A\{i}wij

]
which is proportional to the integral in Theo-

rem 8. Treating α as a random variable so that (5.6) is tight and applying (5.16) we get

E[α] ≤ E
[∑

(i,j)∈E wij

g(X?)

]
≤ r̂

β
which is finite if r̂ is also finite given that β > 0. �
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5.5.4 Limited communication range

Similar analysis can be used to analyze or design limits on communication range. Let
rc be the maximum communication range so that the set of agents that are in range is
Bi = {j | rc > ||pi − pj||}. Then, any existing communications graph can be readily
modified by intersecting the set of in-neighbors with the set of agents that are in range
to obtain a new set of neighbors N̂i = Bi ∩ Ni. Doing so significantly reduces messaging:
instead of each robot sending a number of messages proportional to the total number of
robots, range limits reduce the number of messages per robot to the average size of B. To
emphasize this difference, we refer to this approach as Range-limited RSP (or R-lRSP).

To account for ignoring agents past a given range, applying (5.17) to Theorem 6,
demonstrates that each agent incurs at most∑

j∈A\({i}∪Bi)

wij
2
≤

∑
j∈A\({i}∪Bi)

r(||xi − xj||)
2

(5.18)

additional suboptimality (i.e. increase to γ in (5.12)). Then, as in Sec. 5.5.3, the expec-
tation of (5.18) over the distribution of agents is upper-bounded by ρAd

∫∞
rc
r(s)sd−1 ds.

This reduces the problem of limited communication range to a question of whether the
additional suboptimality is acceptable and whether techniques such as multi-hop commu-
nication are necessary to extend the communication range. Note that even though the
communication range can be designed to incur arbitrarily little additional suboptimality,
limiting the communication range is not sufficient to reduce the number of sequential plan-
ning steps as those agents within range of any one agent may, in turn, depend on agents
that are out of range of that agent and so on.

5.6 Probabilistic coverage objectives

Although submodular set functions have been studied extensively, set functions with
higher-order monotonicity properties have received relatively little interest [44, 70, 149].
Before moving on to present simulation results, let us examine one such objective which
satisfies the conditions presented in Sec. 5.1.1. The two scenarios that we will study in
simulation involve special-cases of this following objective which is a mild extension of
weighted set cover.

Consider a general event detection or identification problem with independent, proba-
bilistic failures. We define a set of events E and let each event e ∈ E have value ve ≥ 0.
Each event e ∈ E and element of the ground set x ∈ U is associated with an independent
failure probability 0 ≤ pex ≤ 1. The expected value of identified events given a set of
sensing actions X ⊆ U is then

g(X) =
∑
e∈E

(
1−

∏
x∈X

pex

)
ve (5.19)

and is equivalent to the well-known weighted set cover objective in the deterministic case
(pex ∈ {0, 1}).
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The probabilistic sensor coverage objective is monotonically increasing, submodular,
and 3-increasing and even satisfies alternating monotonicity conditions on higher deriva-
tives [9, 44].3 These conditions follow inductively by demonstrating that differences are
similar in form to the original function. We note that similar results exist in the litera-
ture for coverage Wang et al. [191, Section 4.1] and related generalizations thereof [157,
Theorem 13].

Theorem 9 (Probabilistic coverage is monotonic, submodular, and 3-increasing). Cov-
erage with sensor failure (5.19) and, by extension, weighted set cover satisfy alternating
monotonicity conditions and are i-increasing and i-decreasing respectively for odd and even
i. As such, each is monotonic, submodular, and 3-increasing.

Proof. The probabilistic coverage objective (5.19) can be written in the form

g(X) = a−
∑
e∈E

∏
x∈X\A

pexv̂e (5.20)

for a ∈ R, A ⊆ U , v̂e ∈ R≥0, and 0 ≤ pex ≤ 1 for e ∈ E and x ∈ U . Observe that
g is monotonic due to the form of the product and because the terms of the product
are probabilities. Recall the recursive definition of the derivative (3.16), and consider the
derivative g(Y |X) in the direction Y ⊆ U evaluated at X ⊆ U \ Y which has the form

g(Y |X) = g(Y,X)− g(X)

= −
∑
e∈E

∏
j∈(X∪Y )\A

pej v̂e +
∑
e∈E

∏
k∈X\A

pekv̂e

=
∑
e∈E

(
1−

∏
j∈Y \A

pej

) ∏
k∈X\A

pekv̂e. (5.21)

Because −g(Y |·) has the same form as g, this first derivative g(Y |·) is decreasing; that
is, g is submodular. Applying the recursive definition of the derivative (3.16) to g(Y |·)
then produces the second derivative which is, in turn, a monotonically increasing function
with the same form as g. Therefore, g is 3-increasing (5.1). Moreover, by induction
g also satisfies alternating monotonicity conditions on higher derivatives (Sec. 3.5.1d).
Finally, probabilistic coverage (5.19), having the same form, satisfies the same monotonicity
conditions. �

5.7 Results and discussion

The proposed distributed planning approach is evaluated through two sets of simulation
experiments, each using a variant of the objective function analyzed in Sec. 5.6. The
first evaluates the performance of distributed planners (RSP) that use various numbers of
sequential planning steps (agent partition size nd) in an area coverage task. The second
set of experiments evaluates adaptive planning and limits on communication range (RSP

3See discussion of the Möbius inversion [9, Sec. 6.3].
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Area Coverage Probabilistic Sensing
By na na = 50 By na na = 50

rs

√
2/(naπ) 0.113

√
0.6/(naπ) 6.18 · 10−2

ra 2rs 0.226 4rs 0.247

Table 5.1: Agent (ra) and sensor (rs) radii as a function of the number of agents (na =50 in this chapter).

and R-lRSP) in a more complex problem with spatially varying rewards and probabilistic
sensing.

5.7.1 Common parameters of experiment designs

Several aspects of experiment design are kept constant in each scenario. Each scenario is
evaluated in 50 random trials4 and features a large number of agents (na =50) so that the
proposed distributed planners utilize many times fewer sequential planning steps than a
standard sequential planner (Alg. 2). Agent positions are distributed uniformly at random
over the unit square, and each agent has a choice of 10 available sensing actions (Bi) which
are sampled from a uniform distribution over a disk with radius ra centered on the agent
position. Although the two sets of simulation experiments do not use the same sensor
model, each is a function of sensor radius rs. The sensor and agent radii used in each
experiment5 are listed in Tab. 5.1. In each case, the objective is designed to take on values
no greater than one.

5.7.2 Area coverage and evaluation of distributed planning

The reward for the area coverage task is the area of the union of discs, each with radius
rs, intersected with the unit square. In terms of the sensor model defined in Sec. 5.6,
this is equivalent to having a failure probability of one outside the disk and zero inside.
An example of one simulation trial (using parameters tuned for visualization purposes) is
depicted in Fig. 5.3. The experiments compare distributed planning with RSP and fixed
partition sizes, ki = nd ∈ {2, 4, 8}, to sequential planning (Alg. 2) and two naive planners:
completely random action selection and myopic maximization of the objective over the
local space of sensing actions (wherein agents ignore each entirely, equivalent to nd = 1).
Figure 5.4 shows the results of these experiments.

Our RSP planners perform well, although the performance bounds (Theorem 7) are
technically degenerate for these instances because the deleted edge weight generally ex-
ceeds the maximum possible objective value (one unit of area) which is evident from the

4Unless otherwise specified, each trial features both random planners and scenarios according to their
respective designs.

5Agent and sensor radii are set according to a normalization over the number of agents and by using
parameter search to minimize the ratio of the average performance of myopic and sequential planning to
identify hard problem cases.
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Figure 5.3: This figure depicts a maximum area coverage problem and a sequential solution. Agents each
have a unique color and are distributed uniformly throughout the environment. Sensing actions (∗) are in
turn distributed uniformly within agent radii (dashed lines). The solution consists of one selected action
(?) for each agent; these actions are centered on the translucent disks which make up the covered area.

cumulative weights of the inter-agent redundancy graph.6 However, the trend in perfor-
mance is similar to what would be expected for increasing nd as the objective values of
our RSP planners approach the performance of sequential planning approximately with
1/nd: the difference in area coverage compared to sequential planning decreases by ap-
proximately half each time nd is doubled and by 9.9 times from nd = 1 to nd = 8. Overall,
the performance of the distributed RSP planner represents a significant improvement over
sequential planning. Given the number of agents, even the greatest value of nd provides a
6-times improvement in the number of sequential planning steps. Then, by the scalability
analysis in Sec. 5.5.3, similar performance can be expected for larger problems given similar
densities of agents.

5.7.3 Adaptive planning with probabilistic sensing and non-uni-
form events

The goal of the probabilistic sensing task is to maximize the value of correctly identified
events (e.g. correct classification of objects moving through the environment). For each
trial ne = 50 events, each worth a value of 1/ne, are sampled from a fixed Gaussian

6Note that the bound ceases to be degenerate for larger values of nd and that all results for subopti-
mality and scaling still apply.
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Figure 5.4: Results for the area coverage problem (Fig. 5.3): (a) Objective values for myopic and random
planning (no coordination), variations of the distributed RSP planner with nd sequential planning steps,
and fully sequential planning (intractable for large numbers of agents). The performance of the proposed
distributed planner approaches sequential planning given many times fewer sequential planning steps. (b)
Redundancies are computed for each pair of agents. Sensing actions (disks) for distant agents cannot
overlap resulting in many zero weighted edges, and remaining edges are distributed according to varying
degrees of overlap in potential sensing actions. (c) The total weight of the redundancy graph is largely
between 13 and 17. Even though the planners perform well, our suboptimality bounds would no longer be
meaningful as deleted edge weights would exceed maximum objective values.

mixture, rejecting samples outside the unit square. An example is shown in Fig. 5.5
although using agent parameters more appropriate for visualization purposes but the same
Gaussian mixture and number of events. This results in a spatially varying distribution of
reward and redundancy. The success probability of the sensor model is e−x

2/rs4 , where x
is the distance from sensor to event location. This success probability effectively amounts
to area coverage with soft edges.

This set of experiments evaluates adaptive planning and limited communication range.
The budget for deleted edge weight per-agent for the local and global planners is set to
γ = 0.4/n = 8 · 10−3. Range-limited RSP planners are obtained by deleting edges from the
respective instances of the distributed planners with a communication range of rc = 2ra

which allows for a small amount of redundancy at the limits of the sensor range rs. Random
planning is not included in this set of experiments because it vastly under-performs myopic
planning as the problem design ensures that a large fraction of sensing actions provide little
value.

Fig. 5.6 shows the results of these experiments. Local and global adaptation each per-
form almost identically in terms of distributions of objective values and with distribution
only slightly below that of sequential planning. Because the objective and actions are
highly local, enforcing limits on the communication range has little impact on the planner
performance in terms of either objective value or cumulative weight of deleted edges. The
global adaptive RSP planner obtains consistent partition sizes by averaging over all agents.
In contrast with the local planners, agents sometimes select from as many as 33 planning
steps. Sec. 5.5.3 provides some discussion of mitigation strategies to avoid such long plan-
ning times. More generally, mixing the extremes of the local and global RSP planning may
be desirable and avoid computing averages over all agents.
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(a) Scenario (b) Planner result

Figure 5.5: This figure shows an example of a probabilistic sensing scenario and a sequential solution.
Parameters for the scenario are identical to the experimental trials, but the parameters for the agents
have been tuned for purpose of visualization. The goal of this task is to maximize the expected number
of successful detections or identifications. (a) For each trial, events (x) are sampled from a mixture of
Gaussians and are identified correctly with some probability dependent on the sensing actions. (b) Agents,
each shown in a different color, are distributed uniformly throughout the environment. Sensing actions (∗)
are distributed uniformly within the agent radius (dashed lines), and each agent selects a single sensing
action (?) and successfully identifies events according to a soft-coverage sensing model. The resulting
identification probability given selected actions is shown in the background; identification probability is
high (yellow) near selected sensing actions and, for good selections, near the events.

5.8 Conclusion

Efficiently solving submodular maximization problems on sensor networks is challenging
due to the inherent sequential structure of common planning strategies. Whereas prior
works [75, 82] have shown that worst-case performance degrades rapidly when reducing the
number of sequential planning steps, we show that constant-factor performance approach-
ing that of the standard sequential algorithm can be obtained via randomized planning
(RSP) so long as cumulative redundancy between agents is at most proportional to the
objective values. Toward this end, the inter-agent redundancy graph expresses the degree
of coupling between agents in the submodular maximization problem, and functions that
are 3-increasing admit performance bounds in terms of this graph structure. Further, we
have demonstrated that the bounds we obtain with this approach are readily applicable for
planner design such as for adapting the number of sequential planning steps or via range
limits on communication.

Later chapters will apply these results to the design of online anytime receding-horizon
planners for target tracking tasks and exploration (as in Chapter 4). Likewise, this same
approach is applicable to other multi-robot sensing tasks which the reader might encounter.
Ultimately, planning in real time will also require increased attention to timing for planning
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Figure 5.6: Results for the probabilistic sensing problem (Fig. 5.5): (a) The proposed local and global
adaptive RSP planners along with their Range-limited RSP counterparts outperform myopic
planning and approach the performance of the fully sequential planner (intractable for large numbers of
agents) in terms of objective values. (b) The global adaptive planner uses 4 to 10 partitions in all trials
while (c) the local adaptive planner occasionally uses local partitions sizes exceeding 20 for agents with
high redundancy. (d) The cumulative weight of deleted edges is on the same order as the objective value
and is below the desired limit of 0.4. Range-limited planners are obtained by deleting edges from the
associated adaptive planner at the cost of relatively little additional deleted edge weight.

steps such as reasoning about the impact of available planning time on anytime planning
performance.

Additionally, we have noted that submodular objectives such as mutual information are
not necessarily 3-increasing. Identifying when objective functions are 3-increasing (exactly
or approximately) is central to broad application of the results in this chapter, and we
will find ways to obtain similar results for mutual information objectives for both target
tracking and exploration.

Finally, high-order monotonicity conditions have been useful in other problems involv-
ing submodular objectives [84, 106, 157, 191], and developing these applications would be
an interesting direction for future study.
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Chapter 6

Receding-Horizon Planning for
Target Tracking with Sums of
Submodular Functions

Planners for robotics and sensor planning problems frequently introduce notions of locality,
coupling, or redundancy amongst robots, sensors, or locations [26, 108]. Chapter 5 intro-
duced one such notion of redundancy using properties of 3-increasing functions in order to
design scalable planners. In this chapter, we expand on the idea of redundancy as a tool
for planner design by analyzing a class of factored mutual information objectives that are
relevant to target tracking and form sums of submodular functions.

Chapter 5 provided performance bounds for a slight generalization of weighted set
coverage but also presented a counterexample for mutual information with conditionally
independent observations (i.e. for typical submodular mutual information objectives, see
Sec. 3.5.1a). Mutual information is particularly important for perception and control [37,
103, 163] and is the focus of Chapter 4. As such, generalizing to a variety of objective
functions, as we will begin to do here, is an important part of this thesis.

Additionally, this chapter applies the RSP and R-lRSP planners from the previous
chapter to produce anytime, receding-horizon planners and includes additional analysis for
this setting.

6.1 Introduction for target tracking

In target tracking problems, robots seek to observe a number of discrete targets whose
states may evolve in time, such as for surveillance, monitoring wildlife [52], and intercepting
rogue UAVs [165]. Such sensing tasks typically involve planning to observe a number of
discrete objects, targets, whose states change with time. When a large quantity of targets
are spread over more space than a single robot can cover, deploying teams of robots can
improve tracking performance.

Even simple target tracking problems, such as with noisy range sensors, produce multi-
modal posterior distributions that do not have closed-form solutions; planning and tracking
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systems may then approximate both the posterior and sensing utility [34, 35]. Realistic
environments can also induce complex motion models which arise in search on road net-
works [145] and in indoor environments [89]. This motivates selection of sufficiently general
objectives and path planners to capture the degree of complexity in these problems. To
address this, we provide analysis that applies to general problems and even adversarial
problem selection so long as the targets’ dynamics do not depend on the tracking robots.1

Systems for target tracking in multi-robot settings often rely on greedy algorithms [182,
202] for submodular maximization. However, existing results and those in Chapter 5 that
seek to develop scalable planners that are relevant to target tracking problems are also
limited to coverage-like objectives [177]. Analysis for sequential planners also typically
assumes individual robots obtain either exact [7, 69] solutions or solutions within a constant
factor of optimal [102, 169]. Although that analysis is appropriate for single-robot planners
with guarantees on solution quality [41, 102, 169], assuming constant-factor suboptimality
is less suited for approximate, anytime, and sampling-based planning [7, 90, 116] which we
will address in this chapter.

6.1.1 Contributions

This chapter presents a distributed planning algorithm, analysis that accounts for common
algorithmic approximations, and design of such a planner along with simulation results.

6.1.1a Analysis of pairwise redundancy for distributed planning

The analysis in this chapter demonstrates that RSP planners are applicable to target track-
ing problems by providing guarantees on solution quality in terms of pairwise redundancy
between robots’ actions via an extension to sums of submodular functions. This extends
our prior results for coverage-like objectives (Chapter 5) to include more general objec-
tives such as for mutual information2 which can represent information gain with respect
to targets that have complex states and dynamics.

6.1.1b Analysis of an approximate, anytime planning

We also account for the contributions of common sources of suboptimality (approximation
of the objective and suboptimal single-robot planning). Our results affirm that methods for
submodular maximization are applicable for target tracking in the presence of approximate
objective values and anytime planners that may occasionally produce poor results or fail.

6.1.1c Design of a planner for multi-robot multi-target tracking

Finally, we apply these results to develop a planner for multi-robot multi-target tracking
with a mutual information objective, and we show that distributed planning for target

1The latter condition excludes pursuit-evasion problems [49, 165].
2Fig 5.2 describes a mutual information objective that violates requirements on “coverage-like” objec-

tives.
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Figure 6.1: A team of
aerial robots R (black) plan
over a receding horizon to
track a number of targets T
(red). In doing so, robots se-
lect sensing actions to mini-
mize uncertainty in the tar-
get states which evolve in-
dependent of each other and
the robots.

tracking with Range-limited RSP in constant time, independent of the number of robots can
guarantee suboptimality approaching that of fully sequential planning. Finally, simulation
results support our claim that R-lRSP maintains consistent solution quality while planning
for up to 96 robots. This produces over a 20× reduction in the number of sequential
planning steps and an even further improvement in computation time (sequential planning
is intractable at this scale).

6.2 Target tracking problem

Consider a set of moving targets T = {1, . . . , nt} and robots tracking those targets R =
{1, . . . , nr}, seeking to minimize uncertainty (entropy [58]), as illustrated in Fig. 6.1. Let
xr
i,t ∈ Rd

r
and xt

j,t ∈ Rd
t

be the respective states of robot i ∈ R and target j ∈ T at time
t ∈ {0, . . . , T}. The states of each evolve in discrete time, according to known dynamics

xr
i,t+1 = f r(xr

i,t, ui,t), xt
j,t+1 = f t(xt

j,t, ε
t
j,t), (6.1)

where ui,t ∈ U is a control input from the finite set of control inputs U and εti,t is a random
disturbance. The robots receive noisy observations yi,j,t of the target states according to

yi,j,t = h(xr
i,t,x

t
j,t, ε

y
i,j,t) (6.2)

where εyi,j,t is observation noise. We refer to states and observations collectively using
boldface capitals as Xr

t, Xt
t, and Yt, each at time t.

6.2.1 Receding-horizon optimization problem

The robots plan to jointly maximize a mutual information (MI) objective over a receding
horizon, starting at time t with duration l. Specifically, robots maximize a submodular,
monotonic, and normalized objective g subject to a partition matroid constraint, and the
optimal set of control actions is

X? ∈ arg max
X∈I

g(X) (6.3)
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where I is a partition matroid that represents assignment of sequences of control actions
to robots such that

Bi = {(i, u1:l) | u1:l ∈ U l} ∀i ∈ R, (6.4)

and g is the mutual information between observations and target states given the choice
of control actions. Interpreting future states Xt

t+1:t+l and observations Yt+1:t+l as random
variables (induced by the process (6.1) and observation (6.2) noise), and write Yt+1:t+l(X)
for X ⊆ U 3,4

g(X) = I(Xt
t+1:t+l; Yt+1:t+l(X)|Y0:t,X

r
0:t) (6.5)

where I(X;Y |Z) is the Shannon mutual information between X and Y conditional on
Z and quantifies the reduction in uncertainty (entropy) of one random variable given
another. Although we discuss properties of entropy and mutual information, we refer
interested readers to Cover and Thomas [58] for detail and definitions. Critically, mutual
information objectives are normalized, monotonic, and submodular (defined in Sect. 3.5.1)
when observations are conditionally independent of target states [107] although higher-
order monotonicity conditions may not apply (see discussion in Fig. 5.2). Because the
robot states are known and deterministic, individual targets and observations of the same
are jointly independent so that (6.5) can be written as a sum over the targets

g(X) =
∑
j∈T

I(Xt
j,t+1:t+l; Yj,t+1:t+l(X)|Yj,0:t,X

r
0:t) (6.6)

because the mutual information is a difference of entropies [58, Eq. 2.45] which, in turn,
decompose as sums over targets [58, Theorem 2.6.6].

6.2.2 Spatial locality

Spatial locality in target tracking problems arises when the capacity to sense a target
decreases with some measure of distance. The variations in each robot’s i ∈ R ability
to sense different targets j ∈ T take the form of channel capacities Ci,j from information
theory [58, Chapter 7] so that

Ci,j = max
x∈Bi

I(Xt
j,t+1:t+l; Yj,t+1:t+l(x)|Yj,0:t,X

r
0:t). (6.7)

This channel capacity is itself an informative planning problem although designers may
apply existing results for channel capacities by relaxing (6.7) such as given bounded travel
distances on the robot and target.

3More formally, Yt+1:t+l(X) is a random variable that encodes the noisy observations (6.2) that
robot i receives after executing u1:l according to (6.1) for each (i, u1:l) ∈ X. When X ⊆ U includes
multiple hypothetical assignments to the same robot—which arises in the analysis—duplicates obtain
unique observations and observation noise εt.

4All analysis applies to discrete and continuous mutual information and transformations of target
states e.g. for MI with position but not derivatives.

88



Uncertainty in target positions is closely related to spatial locality in target tracking
problems. Even when sensing power falls off quickly with distance, distant robots may
expect to gain small amounts of information about sufficiently uncertain targets. Rather
than introduce additional machinery to characterize suboptimality in terms of uncertainty
in target positions, we will quantify the effect of spatial locality in terms of channel capac-
ities (6.7).

6.2.3 Computational model

A common feature of distributed planning problems is limited access to information. The
central assumption for our computational model is that each robot i ∈ R is able to ap-
proximate the objective for its own set of actions Bi. That is, each robot has access to an
approximation of marginal gains g̃i(xi|A) for each action xi ∈ Bi in its local set and for
prior selections A ⊆ U . This may reflect both approximate evaluation of mutual infor-
mation and constraints on access to sensor data such as allowing robots to ignore distant
targets.

Robots also have limited access to the ground set U : they produce elements of their
local sets Bi ⊆ U implicitly via local planners and obtain access to other robots’ actions
when they communicate their decisions.

6.3 Distributed planning algorithm

Algorithm 4 Distributed algorithm for receding-horizon target tracking with Randomized
Sequential Partitions (RSP) from the perspective of robot i ∈ R for execution starting at
time t.

1: N in ← in neighbors of robot i
2: N out ← out neighbors of robot i
3: θ ← sensor data (or summary), accessible to robot i

4: Receive: Xd
N in from N in

5: g̃ ← approximation of g given θ
6: xd ← PlanAnytime(g̃,xr

t, X
d
N in)

7: Send: xd to N out

8: Execute: xd starting at time t and until the beginning of the result of the next
planning round

The distributed planner that we present in this section extends methods from Chapter 5.
Algorithm 4 provides pseudo-code for this distributed RSP algorithm based on a directed
acyclic graph where robots are vertices with incoming edges N in (and outgoing N out).
Although we do not emphasize timing, this algorithm runs in synchronous epochs whereby
the robots collectively maximize information gain to collectively solve instances of the
joint receding-horizon optimization problems (6.3). The output of this planner is then the
collection of the robots’ decisions Xd = {xd

1, . . . , x
d
nr
}.
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Each robot begins planning after receiving decisions from a set of in-neighbors and ap-
proximates the objective based on available data (θ) and computational resources (lines 4–
6). Once the planner exits or runs out of time, the robot commits to an action which it
sends to any out-neighbors and then executes in a receding-horizon fashion (lines 7–8). In
this exposition, we assume the in- and out-neighbors are known for brevity. However, the
planner graph can also be implicit based on the messages the robot has received when it
starts planning. Through this process, the single-robot planners (PlanAnytime) collec-
tively run in nd sequential steps. We assume robots are randomly assigned to planning
steps via the RSP methods presented in Chapter 5.

6.4 Cost model for approximate distributed planning

Aside from applying RSP to receding-horizon optimization, we seek to account for approx-
imations (sampling based planning and objective evaluation and ignoring distant targets)
pursuant to constraints on computation time and information access. Specifically, the
analysis (Sect. 6.5) will account for costs of approximations arising in distributed planning,
objective evaluation, and anytime (single-robot) planning. These costs will then relate the
suboptimality of Alg. 4 to the nominal bound for sequential planning.

6.4.1 Generalized cost of suboptimal decisions for individual robots

Before moving on to the individual costs, let us present a generalized expression of costs
for approximations in decision making. Any of the approximations we encounter can
inhibit exact evaluation of maximization steps (PlanAnytime) in the distributed planner
(Alg. 2). Rather than assume constant factor suboptimality at each step [169]—as would be
appropriate if the local planner provided a consistent performance guarantee—we present
a more flexible cost model that accounts for uncertain results that arise when planning in
real time. Given an instance of (6.3) and a distributed solution Xd, the cost to robot i ∈ R
for making a suboptimal decision xd

i is the difference between the value of that decision
and the true maximum over Bi

γi(g,X) = max
x∈Bi

g(x|X)− g(xd
i |X) (6.8)

for the true objective g marginally specific prior decisions X ⊆ Xd
1:i−1.

6.4.2 Cost of distributed planning on a directed acyclic graph

In the nominal sequential greedy algorithm (Alg. 2), robot i ∈ R plans with access to
all previous decisions by robots {1, . . . , i − 1}. However, in our approach (Alg. 4) robots
only have access to a subset Ni ⊆ {1, . . . , i − 1} of these decisions (N in in the algorithm
description), which induces a directed acyclic graph with edges (j, i) for each robot j ∈ Ni
whose decision i uses while planning [75, 82]. In a sense, the robots ignore decisions
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by the remaining robots N̂i = {1, . . . , i − 1} \ Ni, and the cost of doing so is a second
derivative (3.16):

γdist
i = g(xd

i |Xd
Ni

)− g(xd
i |Xd

1:i−1) = −g(xd
i ;X

d
N̂i
|Xd
Ni

). (6.9)

Later, we will upper bound the right-hand-side in terms of N̂i.

6.4.3 Cost of approximate evaluation of the objective

Although we do not focus on the communication and representation of sensor data, we as-
sume robots have access to relevant data for exact or approximate evaluation of the mutual
information objective (6.5). However, robots may ignore distant targets or approximate
the objective via sampling. We say robot i ∈ R has access to a local approximation g̃i of
the objective, and the cost of this approximation (treating stochasticity implicitly) is at
most the sum of the maximum over- and under-approximation of g

γobj
i = max

x1,x2∈Bi

(g̃i(x1|XNi
)− g(x1|XNi

) + g(x2|XNi
)− g̃i(x2|XNi

)) . (6.10)

Here, x1 and x2 are respectively the points where g̃i most under- and over-approximates g
over all decisions Bi available to robot i.

6.4.4 Cost of approximate (anytime) single-robot planning

Selecting sensing actions for individual robots produces informative path planning prob-
lems [41, 169]. Each robot has a limited amount of time available for planning and must
terminate planning and transmit results soon enough so that later robots can make their
own decisions before the plans go into effect (at time t in Algorithm 4).

Although some existing methods provide performance guarantees [41, 169, 200], de-
signers who apply these methods may have to vary replanning rates or tune problem
parameters to satisfy constraints on planning time for operation in real-time. On the other
hand, methods such as randomized planning [90, 116] and gradient- and Newton-based
trajectory generation [36, 93] converge to local or global maxima but provide no specific
guarantees on solution quality before convergence for anytime planning. Along these lines,
we will now provide analysis based on empirical performance and will apply Monte-Carlo
tree search [27, 39] later for single-robot planning in the simulation results as in Chapter 4.

The cost of approximate single-robot planning in terms of empirical performance is
then

γplan
i = γi(g̃i, X

d
Ni

). (6.11)

This approach captures this inherent uncertainty of anytime planning and enables us to
characterize collective performance in terms of the bulk suboptimality of single-robot plan-
ning.
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6.5 Analysis of suboptimality of distributed planning

The distributed planner described in Alg. 4 achieves a performance bound that approaches
that of sequential planning (Alg. 2) with additional suboptimality that arises from eval-
uating the objective, planning for individual robots, and distributed coordination of the
team.

Theorem 10 (Suboptimality of Alg 4 for target tracking tasks). Consider an instance of
(6.3), any solution Xd that Alg. 4 produces satisfies

g(X?) ≤ 2g(Xd) +
∑
i∈R

(
γdist
i + γobj

i + γplan
i

)
, (6.12)

and the total cost of distributed planning is bounded by∑
i∈R

γdist
i ≤

∑
i∈R

∑
j∈N̂i

Ŵ(i, j) (6.13)

where Ŵ is a collection of edge weights which we will define later that describes redundan-
cies that arise when pairs of robots may observe the same targets.

The proof of Theorem 10 is in Appendix B.6, and we provide a brief summary at the end
of this section in Sect. 6.5.3 after introducing some preliminary results related to the first
(Sect. 6.5.1) and second (Sect. 6.5.2) parts of this theorem.

Regarding the structure of Theorem 10 the bounds describe the performance of practical
implementations of Alg. 4. An idealized version of this distributed algorithm would have
access to exact objective values and maxima so that the associated costs γobj and γplan

would all be zero. From this perspective, (6.12) describes how real implementations may
deviate from this ideal and states that the total suboptimality is a simple accumulation of
individual inefficiencies.

6.5.1 General suboptimality in multi-robot planning

The following lemma expresses the suboptimality of any decision as a sum of costs of
suboptimal decisions.

Lemma 11 (Suboptimality of general assignments). Given a submodular, monotonic, nor-
malized objective g, any basis (assignment of actions to all robots) Xd ∈ I on a simple
partition matroid satisfies

g(X?) ≤ 2g(Xd) +
nr∑
i=1

γi(g,X
d
1:i−1). (6.14)

The proof of Lemma 11 is in Appendix B.5.
Observe that if we obtain Xd via exact sequential maximization, the terms (γ) of the

sum in (6.14) go to zero, and we obtain the original result by Fisher et al. [69]. Simi-
larly, [169, Theorem 1] on constant factor suboptimal solvers follows after substituting the
suboptimality into the cost model (6.8).
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6.5.2 Bounding the cost of distributed planning for target track-
ing problems

This section provides tools for characterizing the cost of distributed planning (6.13) in
target tracking problems. We begin by discussing decomposition of the objective as a sum
over targets and derive a bound in terms of the result. Applying this bound produces a
collection of weights that relate the cost of distributed planning to the channel capacities
(6.7) between the robots and targets.

6.5.2a Decomposing objectives as sums

The objectives of sensing problems can often be written as sums is true for our target
tracking objective (6.5) which is a sum over information sources (6.6). Specifically, let
G = {g1, . . . , gnt} be a collection of set functions so that for j ∈ T and X ⊆ U then

gj(X) = I(Xt
j,t+1:t+l; Yj,t+1:t+l(X)|Yj,0:t,X

r
0:t). (6.15)

This decomposition will enable characterization of interactions between distant robots in
terms of each robot’s capacity to sense near and distant targets.

Definition 8 (Sum decomposition). A set of submodular, monotonic, and normalized
functions G = {g1, . . . , gn} decomposes a set function g if

g(X) =
∑
ĝ∈G

ĝ(X), for all X ⊆ U . (6.16)

Closure over sums [70] ensures that g is submodular, monotonic, and normalized if the
same is true for each ĝ ∈ G as in Def. 8. Further, although some such sum decomposition
always exists (G = {g}), the choice of decomposition will determine the tightness of our
performance bounds; here, we are interested in decompositions that express how interac-
tions vary with distance. Choosing G according to (6.15) captures spatial locality arising
out of distributions of robots and targets.

6.5.2b Derivatives and the sum decomposition

Given some G that decomposes g, the second derivative (3.16) at X ⊆ U with respect to
A,B ⊆ U , all disjoint, is

g(A;B|X) =
∑
ĝ∈G

ĝ(A;B|X) (6.17)

and likewise for all other derivatives which are linear combinations of values of g at different
points.

This derivative has the same form as the cost of ignoring prior decisions during dis-
tributed planning γdist (6.9). The rest of this section is devoted to obtaining upper bounds
relating each robot’s decision to the decisions they ignore (A and B) while eliminating the
decisions each robot takes into account (X).
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6.5.2c Bounding second derivatives using sum decompositions

Applying monotonicity and submodularity respectively provides a trivial upper bound on
the second derivative of a set function

g(A;B|X) = g(A|B,X)− g(A|X) ≥ −g(A|X) ≥ −g(A) (6.18)

where A,B,X ⊆ U are disjoint subsets of the ground set. By symmetry

g(A;B|X) ≥ −min(g(A), g(B)). (6.19)

Then, expressing the second derivative of g in terms of the sum decomposition (6.17) and
bounding the derivatives of ĝ ∈ G yields

g(A;B|X) ≥
∑
ĝ∈G

−min(ĝ(A), ĝ(B)). (6.20)

Remark. Chapter 5 relies on g(A;B|X) increasing monotonically in X, and we could make
a similar statement here by writing the right-hand-side of (6.19) in terms of marginal gains
with respect to X.

More broadly, generalizing (6.20) to include any relevant lower bounds on second deriva-
tives of ĝ ∈ G unifies the results we present here with those for 3-increasing functions in
Chapter 5. This enables development of multi-objective applications such as for robots
covering an environment while simultaneously localizing objects.

6.5.2d Quantifying inter-robot redundancy

Bounding the second derivative of g (6.20) leads to bounds on interactions between agents.
The upper bounds on these interactions form a weighted undirected graph G = (R, E ,W)
connecting the robots with edges E = {(i, j)|i, j ∈ R, i 6= j} and weights

W(i, j) = max
xi∈Bi,xj∈Bj

∑
ĝ∈G

min(ĝ(xi), ĝ(xj)). (6.21)

Evaluating the right-hand-side of the above expression is difficult as doing so involves
search over the product of two robots’ action spaces. To make evaluation of the weights
tractable, relaxing this expression by taking the pairwise minimum of the maximum values
of each objective component produces an upper bound in terms of the channel capacities
(6.7) that avoids search over a product space

Ŵ(i, j) =
∑
k∈T

min (Ci,k, Cj,k) =
∑
ĝ∈G

min

(
max
xi∈Bi

ĝ(xi), max
xj∈Bj

ĝ(xj)

)
≥ max

xi∈Bi,xj∈Bj

∑
ĝ∈G

min(ĝ(xi), ĝ(xj)) =W(i, j),
(6.22)

recalling that in (6.15) we chose G to decompose g by targets T so that the second equality
follows from (6.7). As the terms of the sum are the smaller channel capacities, this bound
captures the idea that if sensing quality decreases with distance so do interactions between
robots.
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Figure 6.2: Visualizations of eight and
sixteen robots tracking same numbers
of targets. Robots with dotted finite-
horizon trajectories are blue and targets
red. The background illustrates the sum
of target probabilities at each grid space,
increasing from purple to yellow.

6.5.3 Summary of the proof of Theorem 10

Theorem 10 consists of two parts. The first, the effect of approximations on planning
performance (6.12) follows by applying Lemma 11, on the suboptimality of general assign-
ments, and substituting the definitions of the costs ((6.9), (6.10), and (6.11)). The second
part (6.13) characterizes suboptimality due to distributed planning and follows by applying
the chain rule to the definition of cost of distributed planning (6.9) and substituting (6.20),
(6.21), and (6.22). Please refer to Appendix B.6 for the full proof.

6.6 Run time and scaling

Algorithm 4 requires a number of sequential planning steps that depends on the structure of
the planner graph (Sect. 6.4.2) and a constant number of sequential steps for RSP planners.
Yet, the sequential greedy algorithm (Alg. 2) requires one step per robot. Further, when
the optimum is proportional to the sum of weights (ignoring the objective and planner
costs) distributed planning with a constant number of steps independent of the number
of robots can guarantee constant-factor suboptimality in expectation, approaching half of
optimal (by extension of Theorem 7).

Spatial locality—more specifically ensuring that the robot-target channel capacities (6.7)
decrease sufficiently quickly with distance—can enable robots to ignore distant robots and
targets with bounded costs and provides optimization performance independent of the
number of robots. Incorporating range limits in planning by ignoring robots and targets
past a given distance and tracking targets using sparse filters can ensure that computation
time for the single-robot planner is also constant. Likewise, regarding communication,
robots send one message for each edge in the directed planner graph (Sect. 6.4.2), and
ignoring distant robots reduces this to a constant number of messages per robot. Further,
Appendix A.2 presents sufficient conditions for the cost of distributed planning γdist (6.9)
to be bounded and so to provide constant optimization performance for any number of
robots.
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6.7 Results

To evaluate the approach, we provide simulation results (visualized in Fig. 6.2) for teams of
robots tracking targets (one target per robot), robots moving according to planner output
and targets via a random walk, all on a four-connected grid (with side length

√
12.5nr).

The robots estimate target locations using Bayesian filters given range observations to each
target with mean d̂ = min(d, 20) and variance 0.25+0.5d̂2 where d is the Euclidean distance
to the target in grid cells. For the purpose of this chapter, all robots have access to all
observations or, equivalently, have access to centralized filters. All simulation trials run
for 100 time-steps; all initial states are uniformly random; and initial target locations are
known. Additionally, all results ignore the first 20 steps of each trial to allow the system
to converge to steady-state conditions.

Robots plan actions individually using Monte-Carlo tree search (MCTS, PlanAny-
time) [39] with a two step horizon and collectively according to the specified planner. To
ensure tractability we replace the original objective (6.5) with a sum of mutual information
for each time-step

gsim(X) =
l∑

i=1

I(Xt
t+i; Yt+1:t+i(X)|Y0:t,X

r
0:t), X ⊆ U . (6.23)

This objective is equivalent to [156, (18)] and can be though of as minimizing uncertainty
at the time of each planning step. Being a sum, (6.23) remains submodular, monotonic,
and normalized so Theorem 10 still applies. Like Ryan and Hedrick [156], we evaluate this
objective by simulating the system and computing the sample mean of the filter entropy.
Because MCTS itself is sample-based, the planner estimates the objective implicitly by
simulating the system once per MCTS rollout; by sampling the more valuable actions
more often, MCTS produces increasingly accurate estimates for nearly optimal trajectories.
Planners with sixteen or more robots use sparse filters with a threshold of 1e− 3.

The experiments compare methods for multi-robot coordination including: sequential
planning (Alg. 2, which has one step per robot); the proposed distributed planner (Alg. 4)
with each robot assigned randomly to one of nd sequential steps according to the RSP
methods from Chapter 5; myopic planning (MCTS without coordination, one step); and
random selection of actions. Additionally, we provide some results for distributed planning
with range limits (R-lRSP) where robots plan while ignoring targets further than 12 units
away (in terms of mean position) and other robots further than 20 units. Given the use of
sparse filters, this latter planner runs in constant time.

We evaluate the distributed planning approach in terms of task performance (average
target entropy) for various numbers of robots (Fig. 6.3), objective values on a common
set of subproblems (6.3), and the redundancy per robot (6.22) for increasing numbers of
robots which is proportional to 1/n times the bound on cost of distributed planning (6.13)
for randomized assignment in n rounds (see Chapter 5). The results for average target
entropy—which captures the uncertainty in target locations [58]—are based on 20 simula-
tions of target tracking for each configuration. Results for objective values and redundancy
use planning subproblems (6.3) taken from the simulation trials for distributed planning
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Figure 6.3: (a) For target entropy (lower is better) which is the task performance criterion distributed
planning with RSP consistently improves upon myopic planning and approaches sequential planning given
many times fewer sequential steps. (b) Objective values on common 16-robot subproblems reflect a similar
trend, and results for distributed planning (bold) are effectively equivalent to sequential planning given
only four planning rounds. (6.3). (c) Average objective value and total redundancy weight (6.22) per
robot for RSP with nd = 4. Traces depict values for trials from (b) and five additional trials with R-lRSP
reaching up to 96 robots. Values of each initially increase but appear to approach an asymptote which
indicates that the distributed planner approaches constant factor suboptimality at large scales.
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in four rounds. The results for objective values by solver are normalized according to the
maximum values across solvers for each planning problem and reflect trials with 16 robots.
For the results on redundancy, an additional five trials for a four-round distributed planner
with range limits demonstrate behavior for up to 96 robots.5

Proposed distributed planners provide consistent improvements in target tracking per-
formance (average target entropy) (Fig. 6.3a) compared to myopic planning; distributed
planning in eight rounds roughly matches sequential planning despite requiring as much
as five times fewer planning steps and produces 5–13% better (lower) target entropy than
when planing myopically. The objective values (Fig. 6.3b) exhibit a similar trend, and all
distributed planners closely match sequential planning, even in terms of the distributions
of results.

Although the redundancy per robot (Fig. 6.3c) initially increases with the number of
robots, that redundancy eventually levels off. This is consistent with the analysis of scaling
performance in Appendix B.5 which indicates that the suboptimality approaches a constant
factor bound. Overall, the results indicate that a small amount of coordination that does
not scale with the number of robots is sufficient to produce performance comparable to
sequential planning in receding-horizon settings.

6.8 Conclusions and future work

This chapter has presented a distributed planner for mutual information-based target track-
ing that mitigates the effects of the sequential structure of existing methods for submodular
maximization. The analysis provides bounds on suboptimality for distributed planners that
can be designed to run with fixed numbers of planning steps. By explicitly accounting for
suboptimal local planning (e.g. anytime planning) and approximation of the objective, we
affirm that the proposed approach is applicable to practical tracking systems. The results
demonstrate that distributed planning improves tracking performance (in terms of target
entropy) compared to planners with no coordination and that distributed planning with
little coordination can even match fully sequential planning given a constant number of
planning rounds.

Although we focus on target tracking, the analysis applies to general multi-objective
sensing problems and generalizes the results in Chapter 5 on coverage. In this sense, we
present a first positive result for mutual information objectives where the second discrete
derivative is only nearly monotonic.

5Planning at this scale is intractable for other planner configurations.
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Chapter 7

Time-Sensitive Exploration of
Unknown Environments

The line of work that led to this thesis began with multi-robot exploration of unknown
environments (Chapter 4), and we will now revisit this topic in greater depth. Obtaining
improvements in performance for exploration—in terms of completion time—via submodu-
lar maximization had proven to be a challenge as the earlier results exhibited little variation
in task performance across different methods for submodular maximization. The methods
for analysis of redundancy that we have developed since then also do not immediately apply
to mutual information objectives for exploration (see discussion in Fig. 5.2). We address
the former through more thorough development and evaluation of the exploration system.
Toward the same end, we also consider the design of objectives for robotic exploration. In
doing so, we also address the theoretic limitations related to mutual information in order
to apply our existing analysis for RSP planning to multi-robot exploration.

Unlike the target tracking problem that we studied in the previous chapter (Chapter 6),
mutual information and submodular maximization on their own do not address a number
of key challenges for multi-robot exploration. First, environments for exploration do not
reflect the common assumption that cells are occupied with independent probability. Such
cell independence assumptions are central to existing information-theoretic objectives [37,
103, 201] which often strongly emphasize efficient computation [37, 87, 118, 201]. Although
these independence assumptions can be limiting, they admit changes to the occupancy prior
for unobserved space (typically decreasing the prior) [87, 88, 179] (see also Sec. 4.6.1b).
Still, even though recent works [118, 201] establish that Shannon mutual information can
be evaluated efficiently and accurately for an individual range observation along a ray,
methods for evaluating the joint contributions of multiple rays and camera views depend
on approximation by summing over rays [37]. Our analysis highlights connections between
mutual information and coverage objectives and suggests that coverage can accurately
represent joint contributions when the prior probability of occupancy is low. Moreover,
our results demonstrate that switching to a coverage objective can improve completion
times by as much as 16%.

The same connections to coverage support applying RSP planning to provide efficient,
distributed submodular maximization for exploration with large numbers of robots. To-
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ward this end, we investigate the design of exploration systems and the potential impacts
of methods for submodular maximization on the time to explore an environment. First,
we introduce a reward for reducing distance to sufficiently informative views [57] which
ensures reliable completion of exploration tasks and mimics methods that obtain similar
effects via navigation toward frontiers [37, 198]. We also provide simulation results for
more than a thousand simulation trials which compare methods for multi-robot coordina-
tion via submodular maximization for different environments and numbers of robots. The
results demonstrate that sequential (greedy) and RSP planning substantially improve sub-
optimality for receding-horizon planning for multi-robot exploration. However, decreasing
time to complete exploration tasks remains a challenge as the improvements in suboptimal-
ity translate primarily into increases in coverage rates early in the exploration process that
are not often sustained through the end. Still, we remain optimistic that incorporating
methods for planning and task assignment at larger spatial scales [134, 168] can realize
sustained improvements in exploration performance.

7.1 Time-sensitive exploration problem

The following problem description parallels and reiterates prior discussion in Sec. 2.1 and
Sec. 2.1.3 which include additional details on the properties of exploration and related
problems.

Consider a team of robots R = {1, . . . , nr} seeking to map a discretized environment
E = [c1, . . . , cnm ] consisting of cells C = {1, . . . , nm} that are each either free (0) or occupied
(1) (that is ci ∈ {0, 1} for i ∈ C) according to some probability distribution. Each robot
r ∈ R moves through the environment with state xt,r ∈ R3 at some discrete time t
according to the following dynamics

xt,r = f(xt−1,r, ut,r) (7.1)

where ut,r ∈ U belongs to a finite set of control inputs U . Robots must remain in free space
which induces the constraint that they remain in a safe set

xt,r ∈ Xsafe(E). (7.2)

The robots observe the environment with depth cameras (or other ray-based sensors such
as lidar sensors). For the purpose of this chapter we assume that measurements are deter-
ministic, without noise; robots can infer definitely that cells in the path of each ray are free
up to the first occupied cell or the maximum range along the beam. For brevity, we ab-
stract this process of inference and state that, at each time-step, robots observe sets of cells
F cam(x, E) ⊆ C with depth cameras and obtain their occupancy values via observations

yt,r = h(xt,r, E) = {(i, ci) : i ∈ F cam(x, E)}. (7.3)

Through the process of exploration, robots seek to maximize the number of cells ob-
served

J(X1:t,Y1:t) =

∣∣∣∣⋃t′∈{1,...,t},r∈R
F cam(xt′,r, E)

∣∣∣∣ . (7.4)
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We refer to this quantity as the environment coverage.1 Exploration is complete once the
environment coverage reaches an environment-dependent quota B(E) when

J(X1:T ,Y1:T ) ≥ B(E), (7.5)

and the robots seek to minimize the amount of time T required to reach that quota and
complete the exploration process.

7.2 Planning for exploration

Like previous chapters, we propose planning with a receding-horizon approach whereby
robots collectively maximize an objective g over a horizon with L steps

max
u′1:L,1:nr

g(Xt:t+L,1:nr)

s.t. xt+l,r ∈ Xsafe(Y1:t)

xt+l,r = f(xt+l,r, u
′
l,r)

yt+l,r = h(xt+l,r, E)

for all l ∈ {1 . . . L} and r ∈ R, (7.6)

where Xsafe(Y1:t) refers to the subset of the state space that is known to be safe given
available observations (unlike (7.2) which refers to the complete set of safe states). After
solving (7.6), robots then execute the first control actions in the sequence u′1,1:nr

.
Likewise, we can interpret g as a submodular, monotonic, and normalized set function

and can rewrite (7.6) as a submodular maximization problem with a simple partition ma-
troid constraint (Problem 4). From this perspective, the ground set consists of assignments
of control actions to robots U = R×UL, and the blocks of the partition matroid (Def. 6)
are assignments {r} × UL to robots r ∈ R.

We propose an objective that consists of two components gview and gdist so that, given
some assignment of actions X ⊆ U , then

g(X) = gview(X) +
∑
r∈R

gdist(Xr), (7.7)

where Xr is the assignment to robot r ∈ R. The view (or information) reward seeks to
capture the value of observations from camera views over the planning horizon while the
distance component provides reward for moving toward regions of the environment (beyond
the planning horizon) where valuable observations can be obtained.

Note that g is normalized (g(∅) = 0) will retain the monotonicity properties of gview so
long as gdist is positive and zero when trajectories are not assigned because the distance
terms are additive.2

1Previously, (in Chapter 4) we also used entropy to evaluate exploration performance. Appendix A.3
explains the reasoning behind this change.

2Being additive, marginal gains for the distance reward are fixed and do not depend on other robots.
As such, aside from increasing monotonically, all higher-order monotonicity conditions hold because all
second and higher-order derivatives (3.16) are zero.
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7.3 Spatially local volumetric reward

The volumetric reward gview seeks to capture the joint value of observations (camera views)
in terms of the amount of unknown space that the robots will collectively observe. Ideally,
gview would correspond directly to the increment in environment coverage (7.4). Except,
the environment E and, in turn, future values of the environment coverage are unknown.

To mitigate this issue, prior works predominantly either compute rewards given an
assumed [20, 30, 62, 168] (or possibly learned) guess at the environment instantiation or
else approximate information gain (i.e. mutual information (3.5)) for observations given a
Bayesian prior [36, 37, 87, 103] (Chapter 4 applies such methods) so far always assuming
independent (Bernoulli) cell occupancy.

As well as presenting the approach for this chapter, the following discussion unifies
and contrasts different kinds of exploration rewards and demonstrates that our analysis for
RSP planning applies to a variety of volumetric rewards.

7.3.1 Expected coverage

We will connect different exploration rewards in terms of expected coverage. Consider
some possible distribution over possible environments Eguess. The only restriction is that
any environment that Eguess assigns non-zero probability E ′ ∼ Eguess must be consistent
with observations up to the current time Y1:t (Eguess may even assign zero probability to
all but one possible environment). Now, for convenience define the set of future states that
robots will visit while executing a set of actions X ⊆ U as Φ(X). Given non-negative
weights on cells wcell : C → R>=0 the expected weighted coverage is

gcov(X) = EE′∼Eguess

 ∑
i∈Ccov(X,E′)

wcell(i)

 (7.8)

where Ccov is the hypothetical set of cells that the robots may observe:

Ccov(X,E ′) =
⋃

x∈Φ(X)
F cam(x, E ′). (7.9)

An obvious weighting scheme, which we apply often in this chapter, is to provide a uniform
(fixed) reward for each newly observed cells

wnew(i) =

{
0 i ∈ ⋃t′∈{1,...,t},r∈R F

cam(xt′,r, E)

1 otherwise (for newly observed cells)
. (7.10)

However, other weighting schemes are also relevant. For example, Yoder and Scherer [199]
propose a system for inspecting surfaces. Their surface frontier approach would be similar
in spirit to a scheme that provides increased weight to unobserved cells that are near
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known occupied cells. Later, we will see that weighting cells by entropy produces a mutual
information objective.3

Now let us discuss the properties of the expected coverage and the relationship to
mutual information.

7.3.1a Expected coverage retains monotonicity properties

The expected coverage (7.8) is normalized and satisfies alternating monotonicity conditions
(including being monotonic, submodular, and 3-increasing). This follows because these
conditions hold for weighted coverage (Theorem 9)4 and because the expectation forms a
convex combination which preserves monotonicity conditions5(and being normalized) [70].

Likewise, all the analysis for RSP planning in Chapter 5 applies to receding-horizon
planning for exploration with expected coverage.6

Note that the expected coverage is not necessarily adaptive submodular [79]. See
Appendix A.1 for more detail.

7.3.1b Well posed volumetric rewards

The previous section described how expected coverage has favorable properties for solving
optimization problems. We now comment briefly on a property related to the exploration
process. Specifically, the volumetric reward gview should be non-zero if and only if the actual
environment coverage (7.4) (given the true environment E) will increase after taking an
observation. As such the robot will never be rewarded by gcov for visiting a state where
it will not observe any unknown cells or obtain zero reward when it will observe unknown
cells.

A condition for this to hold for depth sensors is for the weight wcell to be zero if and
only if a cell i ∈ C has already been observed (i ∈ ⋃t′∈{1,...,t},r∈R F

cam(xt′,r, E)). Note that

the uniform weighting scheme (7.10) satisfies this requirement by construction.

This sanity condition follows, specifically for depth sensors, because each ray either:

1. Terminates (or reaches the maximum range) in known space for all environments
that are consistent with prior observations, or

2. Terminates in unknown space, providing the occupancy value of at least one cell
(even if the first unknown cell in the path of the ray is occupied).

3If not for mutual information, we would define the weighted expected coverage (7.8), concisely, in terms
of unobserved cells and the weight (7.10) as a constant for all cells. However, probabilistic occupancy does
not lend itself to explicit distinctions between known and unknown values.

4In fact, the same argument is valid for Theorem 9 which describes the probabilistic coverage objective.
5Moreover, the expectation is itself weighted coverage, covering a possibly exponentially larger set.

This is evident by observing that the sum over weighted coverage functions is equivalent to duplicating
the set being covered for each summand and adjusting weights according to probability.

6Note that none of the complications that arise in Chapter 6 apply to this chapter either for the 3-
increasing condition or for the behavior of bounds on suboptimality for large numbers of robots, the latter
because robots have clearly defined sensor ranges and are not observing objects with uncertain positions.
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This observation is intuitive and not particularly interesting on its own. However, the
consequence is that seemingly pathological assumptions, such as assuming that all unknown
cells are occupied, can still produce sane rewards.7

7.3.2 Noiseless mutual information for depth sensors

Most existing works on mutual information for occupancy mapping assume noisy measure-
ments via either a simplified (often Gaussian) [37, 201] or more general [103] noise model.
However, Zhang et al. [201] find that the choice of information metric and noise model
has little impact on performance in exploration experiments. Likewise, Henderson et al.
[87] observe that the sensor noise for modern lidar sensors and depth cameras is typically
small compared to the maximum range. For these reasons, we assume that sensor noise
is negligible for the purpose of evaluating mutual information for exploration8 and ignore
sensor noise in this chapter. Additionally, prior works on mutual information for map-
ping [37, 103, 201] typically assume cell occupancy is independent according to the prior
Eguess on the environment.

The combination of cell independence and lack of sensor noise produces a special case
of an expected coverage objective:

Theorem 12 (Noiseless mutual information with independent cells is 3-increasing). The
mutual information I(E; Y(X)) between an environment E with uncertain occupancy and
hypothetical future observations Y(X) can be written as

I(E; Y(X)) = EE′∼Eguess

[∑
i∈Ccov(X,E′)

H(ci)

]
. (7.11)

(7.8) given that:

1. Cell occupancy probabilities Eguess are independent, and

2. There is no sensor noise.

This expression (7.11) has the form of expected weighted coverage (7.8) and is therefore
3-increasing.

The proof is included in Appendix B.7. Note that Theorem 12 implies that our results
for RSP planning for 3-increasing functions apply to noiseless mutual information just as
for expected coverage. This holds even though mutual information is not 3-increasing in
general (see Fig. 5.2).

Whether the sanity condition that Sec. 7.3.1b describes applies to mutual information
depends on the updates to cell occupancy probabilities as observed cells would have to
be marked as occupied with probabilities of either zero or one to ensure zero entropy and
reward. However, this can be attributed to pedagogy as this chapter puts relatively limited
weight on probabilistic models. Instead, we note that Julian et al. [103, Theorem 2.5] proves
similar properties for mutual information objectives in general.

7This does not exclude the limiting case for weights wcell approaching zero which will occur for mutual
information objectives if an unobserved cell is marked as free or occupied with probability approaching
one.

8Alternatively, note that sensor noise is likely more relevant to perception tasks such as surface recon-
struction.
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7.3.2a Limitations of existing approximations for computing mutual informa-
tion

Our presentation of mutual information (7.11) (and also expected coverage (7.8)) does
not yet address computational challenges. While either could be evaluated via sampling,
doing so would significantly increase computational costs for systems that need to react
quickly to operate effectively [63, 76]. For this reason, many works on information-based
exploration [37, 87, 118, 201] emphasize computational contributions and approximate eval-
uation. However, relatively little is know about how design decisions and approximations
can affect decision-making and exploration performance.

Moreover, Chapter 4 applied a CSQMI objective [37] while this chapter will apply a
coverage-based objective instead. Our results for a small study indicate that this choice
significantly improved exploration performance (by as much as 16%). However, we caution
that we do not intend to establish conclusively that one objective is better than another
and note that the optimistic coverage objective we compare to is itself a limiting case
for mutual information objectives (see Sec. 7.3.3b). We believe that these connections
between mutual information and coverage are useful for evaluating and improving mutual
information objectives, and we highlight some of these points and provide additional results
in Appendix A.4.

7.3.3 Remarks on specializing exploration objectives

Let us now expand on the prior two sections (Sec. 7.3.1 and Sec. 7.3.2) which define
volumetric exploration objectives and their properties and discuss the ramifications of
these observations for objective design.

7.3.3a Optimistic coverage

For the purpose of this chapter, we select a degenerate prior over environments by optimisti-
cally assuming that unobserved space is empty along with the uniform weighting scheme
(7.10). This choice is similar in effect to numerous other works on exploration [30, 168]
and is compatible with our definition and discussion of expected weighted coverage, despite
failing to produce a meaningful distribution. Moreover, accurate evaluation of optimistic
coverage objective is trivial, even for joint observations by teams of robots.9

7.3.3b Occupancy priors for mutual information and optimism

Mapping applications and even numerous papers on exploration [37, 103, 201] frequently
assume that unobserved cells are independent and occupied with a probability of 0.5. Given
a prior on occupancy of p, a beam will terminate after traversing 1/p cells which works
out to two for a prior of 0.5. However, the environments that robots explore may, more

9While writing this thesis, optimistic coverage served an important role to characterize the performance
of submodular maximization for exploration. Because the objective values for optimistic coverage are
not approximate and provide oracle rewards in some cases, we can better attribute potential causes for
deficiencies in exploration performance.
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predominantly, consist of open space. For this reason, Chapter 4 and our prior work [179]
both select priors with relatively lower occupancy probability.10 Similarly, Henderson [88]
provides detailed discussion and illustrations that demonstrate how the occupancy prior
can affect decisions.

In the limit, a prior with low occupancy probability assumes that all unobserved cells are
unoccupied like the optimistic coverage objective. In fact, optimistic coverage is equivalent
to mutual information in this case after applying a scaling factor to normalize entropies of
the unknown cells in (7.11) (and assuming entropies of observed cells are zero). This is a
useful observation, because it provides a special case of the mutual information that can
be evaluated exactly and efficiently.

7.3.3c Learned models and oracle objectives

Another useful property is for the objective to provide rewards for observations given
access to the environment E (i.e. ground truth) and thereby the true increment in the
environment coverage (7.4). Comparing to an oracle is a useful tool for characterizing
limits on performance as having an oracle provides the planner with additional information
about the environment.11,12 Prior works on problems related to exploration sometimes
apply oracles similarly [158] while Choudhury et al. [48] use such oracles in a learning
process to train an exploration policy.

Notably, the optimistic coverage objective is an oracle for empty environments, and we
provide results for one such environment later in this chapter (Fig. 7.2).13

Likewise, a learned model may emulate an oracle [158, 190] and serve in a similar role as
part of an expected coverage objective (with a degenerate prior) or a mutual information
objective (while introducing a small amount of uncertainty). Our results where the objec-
tive is an oracle also provide insight into how well an exploration system with a learned
model could perform.

7.3.3d General distributions over environments

Finally, the prior Eguess might also encode a distribution over environments such as pro-
duced by a generative model where cells are not independent. Choudhury et al. [48] study
expected coverage in a similar setting.

For such general priors, mutual information and expected coverage may differ because
cell occupancy may not be independent. This leads to a philosophical issue for robotic
exploration: Should robots seek to observe portions of the environment which they are
certain of but have not seen? In this case, expected coverage encodes the affirmative (all

10Inspection reveals that some of this work [179] did not address the topic of priors in as much detail
as remembered.

11Note that we still constrain the robot to operating in the known safe set Xsafe(Y1:t) despite having
access to oracle rewards.

12An optimal policy for time-sensitive exploration (Sec. 7.1) would obtain strictly better performance
with access to an oracle. Given that we do not have access to an optimal policy, actual results may vary.

13Our implementation of the optimistic coverage objective includes access to the bounding box for
exploration so it is a true oracle for our Empty environment.
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Figure 7.1: This visualization of sampled informative views in Xgoal (7.12) (red arrows) and view distance
(rainbow with red corresponding to least distance), demonstrates how sufficiently informative views, near
the boundary of the unobserved space, (light gray) can play a similar role as frontiers for exploration.

unobserved cells are valuable), and mutual information the negative (only uncertain cells
are valuable). Of course, this question is rhetorical, and answers will depend on the setting.
However, we note that our analysis for RSP planning applies to the former, and the latter
is a matter for future work.

7.4 Spatially global distance reward

In addition to being able to evaluate the value of nearby views over the duration of a
planning horizon, robots should be able to reason about the value of visiting view points. A
common approach is to navigate toward the nearest boundary of unoccupied and unknown
space [198] (the frontier, Sec. 3.1.4) which is much like approaches that have robots navigate
toward view points at or near frontiers [30, 36, 168].

The second term of the exploration reward (7.3) seeks to address this issue. Our distance
reward gdist is based on methods developed in our prior work [57]. This approach defines
informative regions of the environment in terms of view value via a level set

Xgoal = {x | gview(x) ≥ εview, x ∈ Xsafe(Y1:t)}. (7.12)

where εview > 0 is a threshold on view value. Rather than evaluating (7.12) exactly, we
approximate this set by sampling and updating states in Xsafe (which we call informative
views) similarly as described by [57].14

Next, solving for shortest path distances between each point in Xsafe to any point in
Xgoal produces a distance field dgoal : Xsafe → R≥0. Figure 7.1 provides an example of such

14Some notable changes are that we replace the novelty threshold with thresholds on yaw and translation
distance and only count new views toward the sample limit. We also compute distances over the entire grid
to obtain more idealized results unlike our prior work which approximated values over a local sub-map [57].
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(a) 80 robot-iters. (b) 448 robot-iters. (c) 816 robot-iters. (d) 1184 robot-iters.

Figure 7.2: The images above visualize an example of the process of exploration of the Skylight environ-
ment with 16 robots and RSP planning with nd = 6. Additionally, a video providing examples of the explo-
ration process for each environment and number of robots is available at: https://youtu.be/B9j8LVIs384

a distance field along with the sampled informative views. Reducing distances in dgoal then
brings robots closer to valuable views in the goal region Xgoal. This distance field can be
computed efficiently (for low-dimensional problems as we do on a three-dimensional grid)
using the fast marching method [183] which generalizes Dijkstra’s algorithm.

The distance reward at time t is proportional to the greatest reduction in the path
distance over the course of the trajectory

gdist(Xr) = α · max
l∈{1,...,L}

(
dgoal(xt)− dgoal(xt+l)

)
. (7.13)

Note that this value is non-negative. Selecting the maximum along the trajectory is in-
tended to provide sane rewards for when robots are near the informative region (7.12) and
may exit the region by the end of the planning horizon.

Also, just as for frontier methods, this distance term provides the system with a weak
notion of completeness. So long as there are states with observations worth a given value,
robots will navigate to those states once local rewards from gview have decreased sufficiently.

Finally, observe that the distance to the nearest view in (7.13) could be replaced with the
distance to a specific goal location. This provides an avenue for incorporating methods for
goal assignment (e.g. by solving a cardinality-constrained problem, Prob. 2) or scheduling
which is common in other works related to multi-robot exploration [46, 134, 168]

7.5 Experiment design

The following section describes the design of the exploration experiments for this chapter.
We provide results for 10 trials per each configuration and environment and for various
numbers of robots (4, 8, 16, and 32). For intuition, Fig. 7.2 visualizes an example of the
exploration process and provides a link to a video providing examples for all environments
and numbers of robots.

7.5.1 Robot and sensor model

The robot dynamics and sensor model are the same as in the kinematic model in Sec. 4.6.1b.
The set of control actions consists of 0.3 m translations in the cardinal directions with
respect to the body frame as well as π/2 rad yawing motions. Robots obtain observations
from depth cameras with a range of 2.4 m, a resolution of 19 × 12, and a field of view of
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Planner
MCTS
samples

cp Horizon (L)
View Value
Threshold (εview)

View Distance
Factor (α)

Discount Factor

Sequential 200 1500 10 900 500 0.7
Myopic 200 1500 10 300 700 1.0

Table 7.1: Planner parameters for receding-horizon exploration. The myopic and sequential planners
were tuned separately to maximize performance for 16 robots in the Boxes and Empty environments
(Table. 7.2). All RSP planners use parameters for sequential planning. The parameter cp belongs to the
MCTS planner [27] and is set to roughly half the typical value of the objective for a single robot.

43.6◦× 34.6◦, facing forward, oriented with the long axis vertical. Unlike Chapter 4, we do
not downsample rays when evaluating mutual information and coverage objectives.

7.5.2 Single- and Multi-robot planning

Like prior chapters, robots plan by collectively solving receding-horizon planning problems
(7.6)—here with the optimistic coverage objective Sec. 7.3.3a—and plan individually via
Monte-Carlo tree search (MCTS) and collectively via some method for submodular maxi-
mization. For submodular maximization, we compare sequential planning (Alg. 2), myopic
planning (wherein robots plan via MCTS and ignore others’ decisions), and RSP plan-
ning15 with 1, 3, and 6 rounds (nd) except for the larger Office environment (see Sec. 7.5.3)
for which we only provide results for nd = 6.

We selected parameters by iteratively varying values of individual parameters in simula-
tion trials in the Boxes and Empty environments. Parameters were selected separately for
myopic and sequential planners with RSP inheriting parameters for sequential planning.16

Table 7.1 lists the parameters for planning.

7.5.2a Discounting rewards

We also discount rewards and treat each robot as if having an independent probability of
failure after each time-step. This discounting strategy produces a distribution over the
states which robots will visit that is independent of the realization of the environment and
is compatible with the theory for the objectives we study Sec. 7.3.1 and 7.3.2. Although
we will not go into detail, evaluation of the optimistic coverage objective also remains
straightforward.

Ideally, discounting prevents pathological behaviors where robots indefinitely put off
rewards to a future time-step and would weight one robots’ early horizon view above
another’s overlapping late horizon view (which is ostensibly more uncertain). However,
preliminary experiments demonstrated relatively minor impacts on performance.

15Appendix A.5 compares suboptimality for RSP to DSGA (proposed for exploration in Chapter 4).
Although DSGA generally outperforms RSP for a given number of planning rounds, RSP remains a more
practical choice for distributed settings.

16Note that RSP1 is equivalent to myopic planning but will use the same parameters as sequential
planning so that any adverse impacts of parameter selection for the myopic planner will be evident.
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7.5.3 Environments and simulation scenarios

The simulation results evaluate performance across a variety of environments (listed in
Table 7.2). In each case, robots start with random yaw and slightly perturbed positions
near a fixed starting location.17 We determined maximum coverage values and the lengths
of the simulation trials (iterations per robot) through longer preliminary experiments with
a low view value threshold (εview = 100) to encourage more complete exploration. Addi-
tionally, all maps use a 0.1 m discretization so that a volume of 1 m3 contains 1000 grid
cells.

The environments that we study include synthetic environments that encourage dif-
ferent kinds of motions and behaviors, (e.g. upward motion is often slow because robots
cannot easily observe space above them while moving upward) an empty environment
which seeks to characterize maximal steady-state performance (and where optimistic cov-
erage provides oracle rewards (Sec. 7.3.3c)), and more complex office-like and subterranean
environments.

7.6 Methods for evaluation of results

The following describes how we evaluate the performance of the submodular maximization
solvers (e.g. RSP) and overall exploration performance in terms of completion time.

7.6.1 Online bounds on solution quality

While most of this thesis focuses on obtaining bounds on solution quality for broad classes
of problems, submodularity also produces certain online bounds (Sec. 3.5.3e, [132]) which
can provide tighter guarantees for individual solutions [79, 109, 117]. These bounds also
apply to any feasible solution which makes them suitable for comparing different kinds of
planners.

Most works that we are aware of study these online bounds in the context of cardinality-
constrained problems. Adapting these bounds to simple partition matroids produces some
slight differences compared to the cited works which we present below. Specifically, maxi-
mization steps apply to blocks of the partition matroid instead of the ground set. Consider
any—possibly incomplete—feasible solution X ∈ I to an instance of Problem 4 and an
optimal solution X?. The following holds, respectively, by monotonicity, submodularity,
and greedy choice:

g(X?) ≤ g(X,X?) ≤ g(X) +
∑
x?∈X?

g(x?|X)

≤ g(X) +
∑
r∈R

max
x∈Br

g(x|X). (7.14)

We apply two instances of the above bound. For the first, X is the full solution returned by
the planner (assigning actions to all robots) which we refer to simply as the online bound

17Aside from the initial configuration, the planners also introduce stochasticity into the results.
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Image Name
Bounding
Box
Volume

Exploration
Volume

Description

Boxes 216 m3 199 m3
Scattered boxes cause occlusions in a 6 m
cube. Robots start offset at bottom and
move upward.

Hallway-
Boxes

217 m3 202 m3
A rearrangement of the boxes environment
into a 12 m square prism. Robots start at
one end and move toward the other.

Plane-
Boxes

227 m3 212 m3

Rearrangement of the boxes environment
into 2 m tall square planar configuration,
and robots start in the center. This high-
lights performance in common, primarily
two-dimensional environments.

Empty 500 m3 500 m3

Robots start on one end of a 20 m hallway-
like square prism that is completely devoid
of obstacles which highlight steady-state
performance in open space.

Skylight N/A 220 m3

Mesh based on survey data [99, 100, 179,
196] from the Indian Tunnel skylight at
Craters of the Moon National Park, scaled
down to ∼35% of actual size. Robots start
at the top of the mouth (now 7 m in diam-
eter).

Office 1300 m3 1180 m3

A simulated 36 m× 18 m× 2 m office envi-
ronment. This environment almost maze-
like in design, and the height effectively
restricts robots to planar motion. Robots
start in the upper right corner.

Table 7.2: This table lists details and descriptions for the different test environments. The bounding box
volume provides the fixed volume of the bounding box for the experiment while the exploration volume
lists the approximate maximum environment coverage volume for exploration. Images portray partially
explored environments with unknown space (excluding subterranean environments) in gray and occupied
in black.
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Figure 7.3: The above illustrates a representative example for the online and oblivious bounds on
suboptimality (solution value over bound) with five trials for sequential planning and 16 robots, all starting
near the same position. Note that the online bound is tighter early when robots are close together, and
the oblivious bound becomes tighter later, as robots spread out, and more so even later, after robots have
observed most of the environment (environment coverage nears its maximum at about 1000 robot-iterations
for these trials). Note that this bound is not exact as we approximate maximization steps in (7.14) with
MCTS. Shaded regions show the standard error, and dotted lines show individual trials.

because it uses the current solution to bound the optimal solution. Next, we call the case
whereX = ∅ is the empty set the oblivious bound18 because this case can bound the optimal
solution without planning. This oblivious bound reduces to g(X?) ≤ ∑r∈Rmaxx∈Br g(x)
which would produce an optimal solution if g were additive (modular).

Typically, the online case is tightest for solutions where robots observe all nearby cells
such as when robots are operating in close proximity (illustrated in Fig. 7.3).19 On the other
hand, the oblivious case is generally loose when robots are close together with overlapping
fields of view and tightest when robots are spread out and observing disparate regions of
the environment. Regardless, observe that the tightest bound typically exceeds 70% which
is significantly tighter than the a-priori bound of 1/2 for sequential planning.

Later, we will use these bounds to characterize solution quality across trials with dif-
ferent planner configurations in lieu of comparison on common subproblems.

7.6.2 Exploration coverage rates, progress, and completion time

We evaluate task completion in terms of time (simulation time-steps which we refer to as
iterations) to reach quotas for environment coverage (see Sec. 7.1). We provide results for
quotas at 90% (completion the exploration task) and 30% (early progress in exploration)
of the maximum coverage for each environment (Table 7.2). The latter seeks to provide a

18Note that (7.14) provides an upper bound on g(X?) so we can characterize the suboptimality of other
solutions by comparing to the right-hand-side.

19Intuitively, the online bound might also be tight late when there is little left to explore. However,
Fig. 7.3 demonstrates that such behavior can be uncommon in practice, primarily (but not exclusively)
due to the distance term in the objective (7.7).
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measure that is more sensitive to variations in suboptimality of receding-horizon planning
and submodular maximization and is less affected by challenges related to large-scale as-
signment and routing (which we address less thoroughly, Sec. 7.4). Note that all results
for completion times provide statistics based on completion times for trials individually.

To facilitate comparisons across environments and for different numbers of robots, we
also present results for completion time in terms of the coverage rates per robot, per
iteration.

Of course, evaluating fractions of the maximum exploration volume to determine when
the exploration task is complete would not be possible in practice for truly unknown
environments. Instead, defining task completion for exploration as when the collection
of sampled informative views (see Sec. 7.4) becomes empty—indicating that the robots
are not aware of any more information-rich regions of the environment—may work well in
practice.

7.7 Results

Figure 7.4 summarizes the exploration process from the results for the simulations in terms
of environment coverage (7.4) and highlights the maximum coverage values (Table 7.2) and
completion thresholds (Sec. 7.6.2). Although, there is not always much variation across
planner configurations, these plots also illustrate consistency in coverage rates, graceful
degradation in performance, and reliably complete exploration. The latter, reliable task
completion, is evident in the asymptotic convergence and decreasing variance at the end
of each trial. This is a product of the distance reward (Sec. 7.4), and we note that Corah
et al. [57] provide additional results related to this feature. The rest of this section will go
into more detail on the former points regarding time to completion.

7.7.1 Comparison of early and final completion by environment

Figure 7.5 illustrates how coverage rates vary as robots reach the early progress and com-
pletion thresholds for different environments and numbers of robots.20 All environments
exhibit some similar trends as would be expected: slowing exploration over time and with
increasing numbers of robots. Across all this data, coverage rates vary from 120 to 630 (cells
per robot per iteration) a factor of about 5×, and the Empty environment alone exhibits
a variation of 3×. While not all of this slow-down is likely to be avoidable, there may be
room to improve performance significantly through the end of each trial via more effective
goal assignment and long-term planning. On the other hand, coverage rates for completing
the exploration task are somewhat more consistent, excluding the Empty environment, and
per robot performance varies by about 2.4×. Still, Plane-Boxes—where robots can spread
out quickly to cover the volume—is the only environment where new robots consistently
maintain coverage rates (and contribute to improving completion times). On the other

20This figure depicts results for RSP6 which performs reliably and avoids the case for Sequential in the
Hallway-Boxes environment in which not all trials completed the exploration task.
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Figure 7.4: Environment coverage results for each environment. Shaded regions delineate the standard
error. Black lines demarcate (from top to bottom) the maximum environment coverage, the completion
threshold, and the early progress threshold. These plots highlight general performance trends. Other plots
better highlight differences between planners.
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(a) Early Progress Threshold
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(b) Complete Exploration

Figure 7.5: Coverage rates across environments up to (a) the threshold for early progress and (b) up
to completing the exploration task both per iteration (top, solid) and per robot per iteration (bottom,
dashed). In general, the exploration process slows after the beginning of each trial, and contributions
per-robot decrease gradually as more are added.
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Figure 7.6: Lower bounds on suboptimality for receding-horizon planning for exploration in each envi-
ronment. Plots provide mean values and standard error (w.r.t. the standard deviation of trial means)
for data up to the completion time of each trial. These results demonstrate how RSP planning perfor-
mance approaches that of sequential planning with increasing numbers of planning rounds from nd = 1 to
nd = 6. We exclude the Myopic planner as the suboptimality bounds are not directly comparable to those
of the other planners because the choice of parameters (Table 4.1) changes the objective values. Instead,
RSP1 also plans myopically but has parameters that are comparable to other planner configurations, and
Table 7.3 includes data for all planners.

hand, robots slow down significantly after beginning exploration in the Skylight environ-
ment, possibly because the robots can spread out quickly in the central volume but slow
down while covering the passages on either side.

Later, Sec. 7.7.3 (which also includes completion times in Table 4.1) will go into more
detail on exploration times as a function of the method of planning for multi-robot coor-
dination.

7.7.2 Planner suboptimality

Figure 7.6 presents results on mean values of the lower bound21 on suboptimality (the
greater of the two bounds in Sec. 7.6.1), and Table 7.3 lists this data as well. These plots
clearly demonstrate how the suboptimality of RSP planning approaches that of sequential
planning (Alg. 2) with increasing numbers of planning rounds (nd) as the performance

21Bounds are computed approximately via MCTS (for single-robot planning) and are only representative
of suboptimality in multi-robot coordination.
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Num. Robot Myopic Sequential RSP1 RSP3 RSP6
Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std.

Boxes

4 0.90 0.015 0.96 0.010 0.95 0.008 0.96 0.012 0.96 0.005
8 0.77 0.021 0.89 0.012 0.87 0.021 0.89 0.013 0.90 0.011
16 0.69 0.008 0.80 0.016 0.76 0.020 0.79 0.010 0.80 0.015
32 0.70 0.013 0.72 0.008 0.68 0.012 0.71 0.006 0.71 0.008

Hallway-Boxes

4 0.92 0.022 0.97 0.008 0.96 0.014 0.97 0.008 0.97 0.007
8 0.83 0.019 0.94 0.008 0.90 0.014 0.93 0.010 0.93 0.011
16 0.72 0.022 0.86 0.018 0.82 0.014 0.86 0.015 0.86 0.013
32 0.70 0.011 0.79 0.018 0.73 0.018 0.78 0.015 0.80 0.008

Plane-Boxes

4 0.96 0.007 0.98 0.006 0.97 0.010 0.98 0.004 0.98 0.007
8 0.88 0.011 0.96 0.009 0.94 0.006 0.96 0.007 0.96 0.004
16 0.76 0.016 0.90 0.004 0.86 0.012 0.89 0.015 0.89 0.007
32 0.69 0.008 0.79 0.016 0.74 0.015 0.78 0.011 0.78 0.010

Num. Robot Myopic Sequential RSP1 RSP3 RSP6
Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std.

Empty

4 0.94 0.013 0.98 0.003 0.97 0.012 0.97 0.008 0.98 0.006
8 0.87 0.022 0.95 0.008 0.92 0.012 0.95 0.008 0.94 0.007
16 0.75 0.014 0.88 0.012 0.82 0.024 0.88 0.012 0.88 0.010
32 0.68 0.013 0.79 0.020 0.71 0.026 0.80 0.023 0.79 0.022

Skylight

4 0.97 0.006 0.99 0.004 0.99 0.004 0.99 0.004 0.99 0.005
8 0.90 0.016 0.96 0.008 0.95 0.011 0.96 0.008 0.96 0.006
16 0.79 0.023 0.90 0.014 0.87 0.018 0.90 0.011 0.91 0.007
32 0.71 0.021 0.83 0.009 0.78 0.018 0.82 0.012 0.82 0.012

Office

4 0.98 0.006 0.99 0.001 – – – – 0.99 0.002
8 0.95 0.007 0.97 0.007 – – – – 0.97 0.005
16 0.88 0.011 0.93 0.006 – – – – 0.93 0.009
32 0.78 0.016 0.86 0.008 – – – – 0.85 0.007

Table 7.3: Lower bounds on suboptimality for receding-horizon planning for exploration in each environ-
ment. See Fig. 7.6 for more detail.

bounds for these planners would suggest22 (Theorem 7). Moreover, we see that actual
suboptimality is consistently better than the worst case bounds (even approaching one
for fewer robots) which is consistent with observations from related works [79, 109, 117].
Likewise, the performance gaps widen with increasing suboptimality and larger numbers
of robots (with the difference reaching 8% for in Empty). The decrease in these bounds
with increasing numbers of robots is representative of robots operating in closer proximity
and with overlapping observations over the planning horizon (see (7.6)).

7.7.3 Early progress and completion times by planner

The picture for planning performance becomes more complex when we look at the explo-
ration process which is affected by factors such as the design of the exploration objective
(7.7), (including the view and distance components) and the use of a receding-horizon with
fixed trajectories (7.6). This is evident from Table 7.4 which lists statistics for time to com-
pletion and time to reach the early progress threshold (see Sec. 7.6.2). Most planners for
a given environment and number of robots perform comparably both at the end of each
trial and near the beginning.

The exception for complete trials is the Plane-Boxes environment where both the My-
opic and RSP1 planners perform worse for 32 robots (by about 6%). This is likely a product
of how the small size and limited vertical mobility of the Plane-Boxes environment produces
more frequent and complex interactions between robots.

Figure 7.7 compares performance across planners in terms of the rate of increase in
environment coverage (via the data in Table 4.1). Although the variations in coverage
rates are less significant than for suboptimality, the trends that the data does represent
are consistent with expectations: the Myopic and RSP1 planner configurations (which each
involve planning myopically, robots ignoring others’ decisions) perform worst whenever
there are significant differences across planners (e.g. by 14% for 16 robots in the Hallway-
Boxes environment).

The differences in these coverage rates also narrow somewhat going from 16 to 32 robots,
unlike the trends for suboptimality (Fig. 7.6) where the performance gaps widen. The pro-

22Strictly, the bounds for RSP planning only establish convergence to the same worst case suboptimality
as sequential planning (1/2), but we expect comparable suboptimality in practice.
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Figure 7.7: Coverage rates per robot up to the early progress threshold are generally similar across
planners without many significant differences. Still, the differences that do exist consistently highlight
deficiencies in the Myopic and RSP1 configurations (each plans myopically with different parameters).
Shaded regions depict standard error.

118



Num. Robot Myopic Sequential RSP1 RSP3 RSP6
Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std.

Boxes

4 155 19 155 13 157 12 154 13 154 19
8 189 16 181 11 193 20 183 9 183 12
16 244 17 237 12 265 12 253 15 230 14
32 343 30 338 24 359 41 344 21 332 18

Hallway-Boxes

4 129 7 126 4 127 6 132 8 130 7
8 175 9 164 5 173 12 163 10 160 10
16 258 17 211 10 252 14 218 13 221 14
32 359 20 339 16 361 27 345 21 332 13

Plane-Boxes

4 125 12 114 5 123 9 117 12 116 10
8 137 6 129 6 138 3 133 7 127 6
16 178 8 163 7 183 15 167 11 164 6
32 255 18 232 6 243 16 240 12 230 8

Empty

4 249 9 238 4 246 17 239 7 240 11
8 318 7 304 8 322 11 304 13 300 11
16 448 19 396 13 474 29 408 19 396 14
32 692 29 609 18 675 31 609 19 610 22

Skylight

4 119 13 112 10 111 7 116 8 109 5
8 127 12 118 8 120 8 118 6 117 5
16 156 9 136 5 164 13 142 8 145 9
32 200 11 189 7 208 15 190 8 193 11

Office

4 881 74 830 50 – – – – 874 90
8 1,128 55 1,130 60 – – – – 1,110 60
16 1,685 25 1,566 70 – – – – 1,580 49
32 2,672 88 2,578 87 – – – – 2,646 63

(a) Early progress times

Num. Robot Myopic Sequential RSP1 RSP3 RSP6
Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std.

Boxes

4 751 85 698 51 733 38 689 52 721 55
8 761 33 742 30 767 73 736 16 754 42
16 900 29 886 24 946 58 921 39 880 36
32 1,198 56 1,214 46 1,276 86 1,254 65 1,243 56

Hallway-Boxes

4 685 66 ∞ – 676 58 648 37 666 47
8 737 58 701 48 709 34 725 56 707 35
16 942 38 945 43 941 40 935 46 934 53
32 1,495 55 1,457 55 1,491 67 1,507 53 1,497 58

Plane-Boxes

4 737 38 805 119 784 65 777 87 774 62
8 762 38 766 46 768 42 777 32 771 47
16 785 32 758 30 834 33 775 41 776 35
32 949 31 872 23 932 35 900 30 873 19

Empty

4 1,078 24 1,039 29 1,038 32 1,036 33 1,067 36
8 1,138 56 1,091 49 1,111 27 1,072 32 1,075 42
16 1,399 55 1,388 43 1,436 47 1,389 36 1,391 43
32 2,174 47 2,202 72 2,211 61 2,217 44 2,222 38

Skylight

4 960 157 929 140 1,008 192 948 155 1,024 153
8 907 72 908 158 896 69 928 90 915 74
16 1,014 58 1,012 42 1,124 104 1,012 80 1,002 53
32 1,418 90 1,415 60 1,452 52 1,434 41 1,423 66

Office

4 4,675 1,162 3,696 312 – – – – ∞ –
8 3,831 236 4,056 466 – – – – 3,747 178
16 4,538 276 4,482 222 – – – – 4,623 616
32 6,477 275 6,276 206 – – – – 6,250 151

(b) Completion times

Table 7.4: Completion times (in robot-iterations) and times for reaching the early progress threshold for
each environment and planner (see Sec. 7.6.2).

cess for parameter selection (Table 4.1) which focused on completion times for 16 robots
partially explains this phenomenon. However, this may suggest that the receding-horizon
optimization problems we formulate become less representative of actual performance with
increasing numbers and crowding of robots. One possible cause is that the regions robots
are planning to observe toward the end of their planning horizons are frequently being ob-
served sooner by other robots. This produces uncertainty in future actions which assuming
fixed trajectories does not account for but which might be alleviated by selecting a smaller
discount factor.

7.8 Conclusion and future work

The system design and results from this chapter significantly improved on the earlier work
in Chapter 4. Adding a term for distance to informative regions to the objective of the
environment, ensured reliable task completion which would not be true for our prior results
(Fig. 4.4). Likewise, employing a coverage-based objective also improved performance (by
as much as 16%, see Appendix A.4). Incidentally, more mundane changes also contributed.
Running experiments on a 16-core AMD Ryzen processor enabled us to dismiss approxi-
mations such as down-sampling rays and to perform more effective parameter tuning.

This chapter also overcame an important challenge that arose from this thesis by resolv-
ing limitations on applying RSP planning to exploration. This came about by demonstrat-
ing that mutual information on occupancy grids without noise is 3-increasing. Moreover,
this ensures that the suboptimality guarantees for RSP apply to receding-horizon planning
for exploration: constant-factor suboptimality, approaching 1/2, for a fixed number of plan-
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ning rounds (nd) and any number of robots subject to the extent of inter-robot interaction
(via the pairwise weights). To reiterate prior chapters, this provides an O(nr) speed-up
compared to sequential planning (Alg. 2) while approaching the same suboptimality guar-
antee. Additionally, while this chapter did not focus on distributed algorithms, the next
will present a distributed implementation of RSP and application to similar exploration
tasks.

Still, realizing significant improvements in performance via submodular maximization
and RSP planning proves challenging. Our results narrow this gap by establishing sig-
nificant improvements in suboptimality on the receding-horizon subproblems as well as
improvements in coverage rates early in the exploration process.

7.8.1 Improving exploration performance

There are a few clear avenues for further reducing completion time and sustaining improve-
ments in coverage rates.

Regarding solution quality, the online lower bounds suggest that, although solutions
to the receding-horizon optimization subproblems predominantly outperform worst case
bounds (1/2), they may still be far from optimal (as low as 70%). Iteratively improv-
ing solutions [7, 184] or developing an applicable variant of the continuous greedy algo-
rithm [31] could each improve suboptimality. However, there is no guarantee that doing
so would significantly improve exploration performance—this is evident from the large
gaps in suboptimality for trials with 32 robots which do not translate into commensurate
improvements in completion times.

The exploration process also often slows after the beginning of a trial. In some of
these cases, better routing and goal assignment [134, 168] could alleviate this issue. Such
approaches could be implemented within our framework by swapping the distance reward
goal regions (7.12) with distances to specific goals.
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Chapter 8

Implementation of Distributed,
Receding-Horizon Planning for
Exploration

While the last chapter focused on task performance in exploration, this chapter focuses on
the implementation of a distributed, receding-horizon planner. The planner is synchronous
and runs in real time in an anytime fashion. Moreover, the implementation is simple and
does not depend on information about other robots, aside from the sensor data that those
robots use to construct maps of the environment.

A number of works propose distributed or decentralized algorithms for online1 multi-
robot informative path planning problems [7, 18, 151, 160, 174] much like those that arise
in this thesis. Fewer present results for planning in real time in simulation or with real
robots [38, 160, 174] as we do in Chapter 4 and typically with no more than three robots.
Furthermore, actual implementations may still be centralized, again in line with our earlier
work [160]. On the other hand, Sukkar et al. [174] provide results for two robots in an
agricultural active perception task with a distributed implementation of Dec-MCTS. With
this chapter, we seek to provide an implementation of a distributed sensor planning system
that is suitable for large numbers of robots.

Auction algorithms can also solve submodular maximization problems [194] and are
perhaps more mature as Ponda [146] provides results for a task assignment problem with
six robots with wireless communication for both aerial and ground robots and as many as
six robots at once. Those results demonstrate a version of the Consensus-Based Bundle
Algorithm (CBBA) [46].

At a high level, agents in auction algorithms like CBBA compute marginal gains (bids)
and iteratively communicate sets of assignments to neighbors, seeking to come to consensus
on the maximization steps of Alg. 1. We provide a comparison to analogous auction
algorithms in terms of solution quality and messaging costs. While auctions converge
quickly given full access to objective information, our results indicate that constraints on

1As opposed to offline (equivalently non-adaptive) problems where a plan is computed in entirety
before execution time [169].
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information access (so that agents cannot accurately compute rewards for others’ actions)
can slow convergence or harm solution quality for sensing and coverage problems. This
is unlike the setting that Choi et al. [46] study which is more amenable to constraints on
information access.

8.1 Background

Let us begin with a brief background on distributed algorithms and communication net-
works.

8.1.1 Distributed models of computation: synchronous and asyn-
chronous algorithms

This chapter describes a partially synchronous implementation of R-lRSP based on mes-
sage timing and with distributed memory [124]. For contrast, the directed graph structure
of RSP also lends itself to asynchronous implementation. For asynchronous models, com-
putation times, message arrival times, and order all may vary. An asynchronous version of
RSP could be implemented by providing access to neighbors in the directed graph structure
of the planner and making each robot wait to start planning until receiving decisions from
all in-neighbors.

8.1.2 Communication typologies

Given a network of agents, there are many ways by which those agents may communicate.
One the most common is unicast which we also refer to as point-to-point communication.
For unicast communication, individual agents send messages to other individuals. On the
other extreme, broadcast refers to sending messages from one agent to all others. The actual
implementation we present effectively implements broadcasts via ROS. Communication
neighborhoods for R-lRSP are also naturally amenable to multicast communication as the
robots send identical messages to each of their neighbors.

8.1.3 Existing networking and communication systems

This chapter presents a distributed algorithm for implementation on teams of mobile
robots. However, operation in subterranean and urban environments can limit commu-
nication between robots [138]. Designers may then enable communication between robots
that are not immediately connected by establishing a mesh network over the team of robots.

One complication with this approach is that connectivity between robots can change
as they move about the environment. Networks that address this challenge by allowing
for links to change and reconstructing routes online are called mobile ad hoc networks
(MANETs). One example of a MANET protocol that may be appropriate for use along-
side the algorithm we propose is Better Approach to Mobile Adhoc Networking (BAT-
MAN) [115]. However, we note that support for multicast communication appears incom-
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plete, and implementations of RSP may be limited to unicast communication, depending
on the underlying mesh network.

8.2 Distributed Planning for Exploration

This section describes a distributed implementation of RSP with a focus on application to
exploration problems much like those in prior chapters. Toward this end, consider a team
of robots R = {1, . . . , nr} exploring some environment. The robots plan in a distributed
manner and collectively solve receding-horizon sensing problems (Prob. 4) via methods for
submodular maximization while simultaneously maintaining distributed representations of
the environment. The following describes that distributed planner and its operation.

8.2.1 Distributed computation model and assumptions

The distributed algorithm in this chapter is based on a partially synchronous, distributed
memory model. The implementation itself is timing-based [124], and robots solve receding-
horizon submodular maximization problems (Prob. 4) in epochs with fixed start and end
times. For the purpose of presentation, we assume that robots transmit messages reliably
and instantaneously, potentially on some mesh network. Likewise, we assume robots have
access to synchronized clocks; although this work does not address clock-synchronization,
the time scales in this work (seconds) are much slower than the accuracy (milliseconds)
that common methods such as the Network Time Protocol (NTP) can provide [131].

Regarding information access, robots have access to local models of the environment
as in Sec. 3.6.1 and are only able to accurately approximate marginal gains for their own
actions such as due to latency in updates from distant robots.

8.2.2 Maintaining the environment model

Robots have access to some local approximation of the environment θi e.g. an occupancy
map. Maintaining models of the environment involves some sort of distributed perception
system. If robots simply share sensor data, the number of messages sent is quadratic with
the number of robots. Compressed representations [57] can alleviate this burden somewhat
as well as modifying the system to avoid the need for a complete models.

8.2.3 Communication and neighborhoods

On the lines of the definition of the R-lRSP planner in Sec. 5.5.4, we assume robots
communicate with a local neighborhood N c

i for each robot i ∈ R. This neighborhood may
be based on metric distance or a number of hops in a communication graph.

Then, aside from maintaining the local environment model, the only access to (or
knowledge of) the multi-robot team and mesh network that we assume is the ability to
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communicate with these neighbors N c
i . In our analysis, we assume point-to-point messag-

ing on the mesh network, with messages possibly traveling for multiple hops. However, the
design is amenable to other modalities such as multicast.

8.2.4 Long term goals

The exploration system in this chapter also includes a view distance reward like the one
Sec. 7.4 describes. To avoid growth in computation time, we compute the distance field only
on a sub-map around the robot as in our prior work [57]. More generally, a distributed
road mapping strategy would be appropriate and in line with recent works on robotic
exploration [186, 195].

8.2.5 Implementation of a synchronous, distributed, receding-
horizon RSP planner

Algorithm 5 describes the implementation of RSP. Robots solve instances of receding-
horizon planning problems over the course of each epoch, once every ∆d seconds, and
planning for individual robots runs for ∆p = ∆d

nd
seconds (less some time for slack in

practice), recalling that nd refers to the number of sequential planning rounds for the RSP
planner.

At the beginning of each epoch, robots sample their assignments to planning rounds,
uniformly at random (lines 8–9). Each robot i ∈ R then waits for the beginning of its
respective round (line 10) and, meanwhile, listens for planned actions from robots in its
neighborhoodN c

i and receivesXd
N in

i
(line 11). The robot then plans sensing actions (line 12)

over a receding horizon in an anytime fashion—in our case via MCTS—given those received
actions, its state xi, and its local representation of the environment θi. Finally, robots send
their planned actions to their neighbors and execute their plans (lines 13–14).

The following sub-sections expound on the implementation and behavior of this dis-
tributed algorithm.

8.2.5a Message content

The messages that Alg. 5 uses to send and receive decisions consist of:

1. The unique id of the sender

2. The number of the current planning epoch

3. A representation of the finite-horizon plan (e.g. the initial state and time and a
sequence of action indices)

A typical decision message consists of about 130 bytes.

8.2.5b Minimalist design

The implementation of Alg. 5 differs from other distributed algorithms in this thesis (aside
from being the only actual distributed implementation) because it avoids depending on
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Algorithm 5 Synchronous, distributed implementation of Range-limited Randomized Se-
quential Partitions (R-lRSP) from the perspective of robot i

1: ne ← number of the current planning epoch
2: nd ← number of planning rounds
3: ∆d ← duration for execution of the distributed planer
4: ∆p ← ∆d/nd (planning time per robot)
5: N c

i ← Robots (neighbors) within communication range
6: θi ← belief (e.g. map) available to robot i
7: xi ← state (e.g. position) of robot i

8: Wait for the start of the current planning epoch at time ne∆
d

9: di ∼ {0, . . . , nd−1} (randomly select one of nd planning rounds)

10: At time ne∆
d + d∆p

11: Receive: Xd
N in

i
(listen for action selections from nearby robots N in

i ⊆ N c
i )

12: xd
i ← PlanAnytime(θi,xi, X

d
N in

i
,∆p) (plan given available time)

13: Send: xd
i to N c

i (send plan with epoch ne for neighbors in later rounds)
14: Execute: xd

i

objects related to the planning process. Instead, the implementation focuses on handling
messages and scheduling planning times. As such, the planning step (PlanAnytime) is
simply a callback with messages and planning time as inputs and outputs.

We chose this design to simplify the process of augmenting existing single-robot sensor
planning systems with distributed reasoning. The main limitation of this approach is
that the user becomes responsible for tracking any statistics related to planning such as
objective value or solution quality.

8.2.5c Robustness to communication failure

Additionally, the realization of the directed graph structure for the planning process (as
described in Sec. 5.3) is implicit given the set of decisions each robot receives. When a robot
begins planning for itself, it simply uses the messages that are available at that scheduled
planning time. Messages that arrive late or fail to arrive (such as due to a crashed robot or
loss of communication in a subterranean environment) do not prevent or delay the planning
process. Instead, failures in messaging contribute to increasing suboptimality according
to the realization of the directed planner graph (as in Theorem 6 or Theorem 10). This
non-blocking behavior is valuable, considering that a naive implementation of a sequential
planner that waits to receive messages from previous robots will not produce a complete
plan on a disconnected network or if there are communication failures.
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8.2.5d Toward preventing collisions between robots

The planner that we present in this chapter is also not aware of possible collisions between
robots unlike the planner in Chapter 4. Moreover, the approach to preventing inter-robot
collisions in Chapter 4 depends on sequential reasoning to determine which robots execute
planned trajectories and which execute fallbacks. However, a planner could be designed
that allows robots to update their decisions in parallel because:

• Any robot can commit to a new plan if doing so avoids collisions with other robots’
old and new plans.

• Local and global maxima (with respect collision-neighbors)2 given any ordering can
always commit to new plans, using the maxima to break symmetry.

Such an approach would preserve most of the guarantees from Chapter 4 (e.g. liveness)
with only local rules.

Alternatively, other collision-avoidance tools such as barrier methods [189] (which have
also been specialized for aerial robots [121, 188]) can prevent collisions by augmenting
planners that are not necessarily collision-aware. Barriers methods benefit from being
minimally invasive (changing robots’ plans only when necessary). At the same time, such
changes may harm sensing performance along a robot’s trajectory so further study on the
topic of inter-robot collisions would be beneficial.

8.2.6 Characterizing timing and synchronization

Because messages contain the number of the planning epoch, robots are able to determine
whether to accept messages (if they belong to the current epoch) or reject them (because
they did not arrive in time for a previous epoch). This also provides a mechanism for
evaluating whether timing mechanisms are working. Due to random assignment to planning
rounds (line 9) and because robots should receive messages from prior rounds on time, the
nominal message acceptance rate is3

E

[
naccept

naccept + nreject

]
=

1

2

(
1− 1

nd

)
. (8.1)

Tracking whether the empirical acceptance rate matches expectations then enables design-
ers to determine whether the planning system is respecting timing constraints and whether
latencies in messaging are preventing messages from being received in time.

Note that this is distinct from rejecting messages that are outside the communication
range. Hypothetically, a robot might also receive and ignore messages from a distant robot
but at later times due to multi-hop communication. Such messages would then have to be
excluded from these statistics on acceptance rates (based on timing).

2A collision-neighbor is a robot that is near enough that some pair of trajectories over the finite horizon
could be in collision.

3This calculation includes unnecessary messages sent during the last round. Omitting those messages
would require adaptation of this formula.
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8.3 Asymptotic behavior for messaging

To begin, the number of sequential message transmissions—which we refer to as the com-
munication span—for Alg. 5 is constant (nd− 1 or nd if including messages which are sent
during the last round and so not used). The total number of messages sent is in O(nrnn)
where nn = maxi∈R |N c

i | is the largest number of communication neighbors over all robots.
The total number of message hops in a mesh network depends on the length of the longest
shortest-path dn from any robot i to a communication neighbor j ∈ N c

i and comes to
O(nrnndn). The total communication volume, considering the number of decisions being
sent, is the same. The numbers of messages, message hops, and communication volume
are then constant per-robot if nn and dn are bounded.

In general, distributed perception is more expensive. In the worst case, robots may
share all sensor data (or summaries thereof) and exchange O(nr

2) messages per unit time.
Then, if the diameter of the mesh network (the length of the longest shortest-path between
any two robots) is dm, the number of message hops and communication volume come to
O(dmnr

2)
Mechanisms such as compressed representations [53] can reduce these communication

costs. Further improvement may be possible by maintaining spatially local models, but
some sort of global modeling is necessary in the framework we present such as to compute
distances to long-term goals or views (Sec. 8.2.4).

8.4 Results

The results for this chapter include two studies. The first set of results (Sec. 8.4.1) char-
acterize communication costs in relation to other possible distributed solvers in a setting
based on the coverage experiments in Chapter 5. This supports the second set of re-
sults (Sec. 8.4.2) which demonstrate the synchronous, distributed implementation of RSP
(Alg. 5) via a simulation of exploration with dynamic aerial robots (as in Chapter 4) which
runs in real time but in a setting where communication costs are trivial.

8.4.1 Communication networks and messaging study

This study seeks to characterize communication costs for distributed submodular maxi-
mization on a mesh network in comparison to other relevant approaches. The submodular
maximization problems are based on the coverage problems in Sec. 5.7.2. The objective of
these problems is to maximize area coverage over a unit square. Actions cover circles with
radius rs and are distributed around agent centers within a radius of ra. The radii are set
so as to normalize the sum of the areas of all sensing actions for a given number of agents,
as described in Table 5.1. The simulations vary the number of agents from 10 to 100 in
increments of 10, and we provide results for 50 trials for each configuration.

Agents communicate decisions on an undirected communication graph with edges be-
tween any pair of agents within a radius of rc = 3ra. Due to the choice of sensor and agent
radii, this ensures that there is an edge between any two agents that may have non-zero

127



redundancy. Unlike the experiments in Chapter 5, we require agents to form a connected
communication graph (to avoid complications with comparisons to other solvers). To gen-
erate such agent positions, the position of the first agent center is sampled randomly and
the rest by sampling a random agent and a position within range of that agent and inside
the unit square.

The solver configurations compare R-lRSP to sequential planning (Alg. 2) and two auc-
tion algorithms (which converge to results equivalent to Alg. 1). The results for R-lRSP
encompass planning with different numbers of rounds nd ∈ {4, 8, 16}. To reduce sub-
optimality and simplify comparisons, the communication range for R-lRSP is set to one
step (or rc). As such, the cost of ignoring decisions outside the communication range
(5.18) is zero, and agents only communicate with their immediate neighbors during each
round of the planning process. For these results, we assume that agents have access to
their communication-neighbors’ planning rounds4 dj for j ∈ N c

i and only send messages
to agents within range and in later rounds (whereas Alg. 5 includes communication with
all agents within range). For the sequential planner, agents plan in the order they were
generated. Messages travel along shortest paths, and we take advantage of the structure
of the assignment process to consolidate decisions into individual messages sent between
adjacent agents in the planning sequence. The auction algorithms are adapted from CBBA
by Choi et al. [46] in order to be applicable to general submodular objectives. These two
auction algorithms—detailed in Appendix A.6—differ in terms of information access: the
global auction algorithm (Alg. 6) requires full access to the objective g and the ability
to re-evaluate marginal gains for other agents’ actions; and for the local auction algo-
rithm (Alg. 7) agents only compute values of their own actions, and they communicate
assignments in lists along with the corresponding marginal gains. While the global auc-
tion algorithm will converge faster, this comes at the cost of a strict requirement that all
agents have complete and consistent access to the objective5 which violates the assumptions
on information access (Sec. 8.2.1). The local auction converges more slowly but respects
constraints on information access for local models. These auction algorithms represent
two extremes. Specialized implementations might interpolate between the two such as by
tracking whether assignments change within a given distance of each agent, somewhat like
the specialized update rules for CBBA. In the spirit of online planning, we also provide
results for early stopping after a given numbers of steps (matching the numbers of rounds
for R-lRSP) as well as for planning to convergence.6

Figure 8.1 plots objective values and communication costs for varying numbers of
agents. The numbers of messages include each hop on the communication graph. However,
only the sequential algorithm sends messages that travel for multiple hops. The communi-
cation volume then weights messages and hops by numbers of decisions being sent (ignoring
the marginal gains that the local auction algorithm also sends). The span is the number

4This could be implemented by sharing random seeds used to generate the assignments to planning
rounds.

5Issues related to inconsistencies in the objective can prevent convergence which is an important topic
for related works on auction algorithms [98].

6We state that an auction algorithm has converged once all agents have a complete set of matching
assignments.
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of sequential message transmissions or hops so that R-lRSP4 has a span of 3, and the span
for auction algorithms with early stopping is at most as such.

While these results reflect a large variation in the number of agents, the smallest com-
munication radius is still nearly half the length of the unit square. This may explain the
slow growth in spans (Fig. 8.1b) for the global auction algorithm. Likewise, the large
communication radii cause messaging costs to increase quickly compared to asymptotic
rates for R-lRSP and both auction algorithms (due to increasing numbers of neighbors)
and more slowly for sequential planning (as paths between sequential agents are short).
Overall, R-lRSP maintains constant span, small communication volume,7 and consistent
performance in terms of objective values and requires roughly eight rounds to approach
objective values for the global auction solver. Interestingly, the convergence times for
global auctions grow slowly, but this may be a product of small network diameters8 in
our results. The global auction solver may then be appropriate for sensor planning in
similar settings if designers can accept greater communication costs and strict constraints
on information access. On the other hand, the local auction solver better reflects our as-
sumptions on information access, but early stopping significantly harms objective values.9

These results also exclusively address communication; even when either auction algorithm
converges more quickly, the robot whose action is assigned last completes maximization
steps for each prior assignment and incurs a computational cost equivalent to sequential
planning for the entire team (Alg. 2). Conversely, for R-lRSP each robot completes only a
single maximization step.

8.4.2 Anytime distributed planning for exploration

Having, addressed the question of communication costs, let us now evaluate the distributed
planner in the context of simulated multi-robot exploration (with Fig. 8.2 visualizing the
exploration process for these experiments). For these results, the robot and sensor models
are identical to the distributed model in Sec. 4.6.2. Likewise, individual robots plan with
Monte-Carlo tree search [27, 39] with the same motion primitive library. Aside from the
distributed implementation, the primary differences in the exploration system, compared
to Chapter 4, are that planners do not check for inter-robot collisions, inclusion of a
view distance term (see Secs. 8.2.4 and 7.4), and use of the optimistic coverage objective
(Sec. 7.3.3a). The distributed, receding-horizon planner (Alg. 5) runs in real time in an
anytime fashion with an epoch duration of 3 seconds and a horizon of 4 seconds. Because
the epoch duration is constant, robots planning with greater numbers of rounds (nd) have
decreasing amounts of time to plan for themselves. The simulation results include 30 trials
with 8 robots and planning with distributed RSP for 1, 2, and 3 planning rounds. The

7The auction algorithms produce large communication volumes and numbers of messages because all
agents plan and communicate during each communication round and because agents communicate sets of
decisions rather than individual decisions like RSP.

8The diameter is the length of the longest shortest-path between any two agents.
9The distributed exploration system exhibited in Sec. 8.4.2 would also violate the requirements of the

global auction solver, simply because the robots query the maps at different times so that the models for
planning are not entirely consistent with each other.
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Figure 8.1: Objective values and messaging statistics for various distributed submodular maximization
algorithms. Shaded regions (although small) show standard error. (a) Objective values (out of one)
remain consistent with increasing numbers of agents, except for the local auction solver which degrades
significantly when querying solutions before convergence. RSP requires eight or more communication
rounds to obtain performance comparable to the sequential solver or global-information auction. (b)
When considering the span (number of sequential message hops), only RSP obtains constant values, but
the global-information auction solvers still retain a small spans, peaking at slightly over nine. (c) Numbers
of messages (including hops) and (c) total message volume (by numbers of decisions and hops traveled)
all grow super-linearly as the smallest communication radius (0.48) covers nearly half the length of the
environment. While sequential planning benefits from being able to consolidate messages, RSP obtains
the smallest communication volumes and consistently outperforms all auction planners by about at least
an order of magnitude on both metrics.
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(a) 27 seconds (b) 418 seconds (c) 809 seconds (d) 1200 seconds

Figure 8.2: The above images visualize exploration of an office environment with eight robots and RSP
planning with nd = 3. Time stamps are approximate. A video of the exploration process can be found at:
https://youtu.be/MMr9NxT_J8c
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Figure 8.3: Results for exploration with the distributed RSP implementation. (a) Mean environment
coverage and standard error (shaded regions) for different numbers of robots. Black lines demarcate the
maximum environment coverage and a 90% threshold for task completion. (b) Message acceptance rates
closely match predictions (8.1) which indicates that the synchronous execution of anytime planning rounds
is functioning properly. (c) Planning with two or three rounds (nd) improves median completion times by
about 5% compared to the same planners after disabling communication of control actions. Note that the
cases for nd = 1 effectively represent the same configuration.
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simulations in the Office environment pictured in Table 7.2. The mesh is scaled to 166%
of the size in Chapter 7 so that the longer dimension is now 60m, and the exploration
volume10 is 2687m3.

The implementation of the distributed planner takes advantage of ROS [148] for mes-
saging, and planners for each robot run in separate processes (nodes). The simulations
themselves run on a single desktop computer with a 16-core Ryzen 2950X processor. While
the processor provides ample capacity to run computation in parallel, communication costs
are not well-represented. Providing projected communication costs can ameliorate this is-
sue somewhat. Regarding messaging span and latencies, the largest span (for nd = 3)
produces a span of two. Even significant latency, say 0.1s, produces a time cost of 0.2s
which is small compared to the total planning time (three seconds). The implementation
of the distributed planner does not include range limits on communication so that robots
effectively communicate via broadcast. However, there is no barrier to including range lim-
its, particularly at larger scales. Recalling the discussion of message content in Sec. 8.2.5a,
the total cost of a communication round (assuming point-to-point communication between
all robots) for eight robots is 7.1KiB or, conservatively, at most 7.1KiB s−1. The simulated
robots also maintain maps by assimilating camera data from the entire team. Still, all
planning runs on spatially local sub-maps, and our approach is compatible with meth-
ods for distributed mapping that can significantly reduce communication costs such as via
Gaussian mixture models [57, 178, 180]. Extrapolating from results for Gaussian mixture
mapping [57, Fig. 7],11 maintaining distributed maps for eight robots, again by point-to-
point communication, would require a total of about 400KiB s−1 of communication volume.

Figure 8.3 plots results for environment coverage, message acceptance, and task comple-
tion. The synchronous planner functions as designed (Fig. 8.3b) with message acceptance
rates matching predictions (8.1). This is consistent with the requirement that robots have
access to decisions from prior rounds for RSP planning and subsequently to apply subopti-
mality guarantees for RSP (Theorem 7). In our implementation, robots query their maps
when they begin planning, at the beginning of the assigned round rather than the begin-
ning of the epoch. Because of this the effective latency can vary, the average decreasing
with increasing nd. To address this, we ran a second set of experiments with communica-
tion for RSP disabled which isolates the impact of distributed planning. This narrows the
gap in task completion time to about 5%. Still, the scope of these simulation results is
narrow as the intent is to demonstrate functionality of the distributed planner rather than
to characterize task performance (which is the aim of Chapter 7).

8.5 Conclusion

This chapter has demonstrated a distributed implementation of RSP for receding-horizon
sensor planning in the context of multi-robot exploration. The design is simple, requires

10The discrepancy in exploration volume is a product of differences in handling height. Here, robots
have a height limit of 0.6m without a specific bounding box while Chapter 7 provided a 2m tall bounding
box.

11In these results [57], three robots produce about 0.02MiB s−1 of data or 6.8KiB s−1 per robot.
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minimal knowledge of the network structure, and is naturally robust to communication
failures. Doing so realizes one of the main goals of this thesis, making sensor planning for
large numbers of robots tractable by reducing the growth in planning time for sequential
planners (or conversely the increasing division of fixed planning time) to a constant number
of rounds with fixed duration. As the exploration experiments focused on computation in
a setting where communication is relatively trivial, we also included a numerical study that
inspects communication costs. This study demonstrated that R-lRSP can provide a sig-
nificant reduction in communication compared to likely competitors, auction algorithms.
Moreover, our approach can also provide good solution quality with only locally consistent
models while auctions struggle to do so under time constraints. Again, our results demon-
strate distributed, receding-horizon planning in real time in simulation with eight robots,
significantly more than for comparable works, and we hope that this work can serve to
enable further development of sensing systems with large numbers of robots.
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Chapter 9

Conclusions and Future Work

This thesis has developed and advanced methods for receding-horizon sensor planning for
teams of robots. Specifically, receding-horizon planning for problems such as exploration
involves reasoning about likely observations at different camera views, reasoning about
overlaps and redundancy between views, and collectively optimizing trajectories and views
for teams of robots.

Existing works are able to address some of the challenges related to solving these
problems via greedy algorithms for maximizing submodular objectives—submodularity
being a common property amongst many sensing objectives [69, 169]. However, these
algorithms are not particularly amenable to planning in real time for large numbers of
robots, particularly in distributed settings: numbers of computation and communication
rounds both grow linearly with the number of robots.

Seeking to reduce computation time for submodular maximization problems leads to
results indicating that constant-factor computation time (more specifically, adaptivity,
Sec. 3.6.2) and solution quality cannot co-exist in general [11, 75, 82]. This led us to
develop Randomized Sequential Partitions (RSP) and methods for analysis of pairwise
redundancy for multi-robot sensing problems. In Chapter 5, we identified 3-increasing
functions—which include general coverage objectives—as the class of functions where re-
dundancy between robots’ actions decreases monotonically given others’ decisions. Later,
we applied this result for 3-increasing function to a case of mutual information for ex-
ploration in Chapter 7 via interpretation of the mutual information objective as expected
coverage. Further, in Chapter 6, developing similar methods for redundancy analysis for
sums of submodular functions enabled application of RSP for target tracking problems,
demonstrating consistent task performance for as many as 96 robots in simulation results.
Finally, we described a distributed implementation of RSP in Chapter 8 and provided
simulation results for exploration in real time with eight robots.

9.1 Future work

This thesis work opens up numerous directions for future work which can be divided roughly
between submodular function maximization and active sensing for robotics.
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9.1.1 Submodular function maximization

This thesis also did not thoroughly characterize classes of 3-increasing objectives or more
general classes that satisfy bounds on redundancy such as sums of submodular functions.
For example, we did not identify any meaningful objectives that are 3-increasing but do
not satisfy alternating monotonicity conditions as coverage objectives do.

Additionally, although we focused on greedy algorithms, the continuous greedy algo-
rithm [31] could improve solution quality. While applying the continuous greedy algorithm
to sensing problems, particular informative path planning problems with large spaces of
actions, may prove challenging, there is interest in applying such methods in robotics [154].
Our methods for redundancy analysis could possibly be used to develop versions of such
algorithms that converge with small numbers of integration steps.

Continuous analogues of submodular functions have also been a recent topic of in-
terest [19, 154, 197]. Reformulating our results for 3-increasing functions in continuous
domains could produce interesting results. However, the nature of possible impacts in this
area are unclear.

Future works may also view this text as providing existence proofs that characterize
certain sensing and submodular maximization problems. For example, a corollary to our
results is that the adaptive complexity (Sec. 3.6.3) of a wide variety of receding-horizon
sensing problems is O(1). Likewise, our results could be interpreted as providing upper
bounds on the amount of information access that is necessary to achieve a given bound
on solution quality; doing so could inform design of more complex optimization systems or
machine learning methods.

9.1.2 Active sensing

To begin, this thesis studied two sensing problems: exploration and target tracking. How-
ever, RSP methods are applicable to a broad variety of sensing problems. An interesting
property of the problems we studied is that equilibrium conditions generally perform well
without explicit coordination (i.e. with myopic planning): so long as robots communicate
observations to each other, they tend to distribute themselves evenly across the environ-
ment, automatically. Other sensing problems, one being target coverage, may not exhibit
such equilibrium behavior and may benefit more significantly from coordinated sensor
planning.

Online adaptation of the planner structure was discussed in Chapter 5 but not revived
afterward. Moreover, selecting the number of rounds produces a potentially challenging
tradeoff between planning time and solution quality. Development of impactful methods
for adaptation of RSP planning, particularly for planning in real time as in Chapter 8 is
attractive. Ideal numbers of planning rounds may also vary spatially, and this may pose a
challenging problem, particularly for planning in real time.

While Chapter 6 applied results for sums of submodular functions to target tracking, the
methods can also apply more generally to multi-objective sensing problems. The analysis
for redundancy could capture changes in dependency between robots through the course
of a complex task. For example, robots searching for the source of a gas leak in a building
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may experience large amount of redundancy that decreases after they localize the leak and
focusing, instead, on a mapping task with more local interactions.

The applications in this thesis also focused on receding-horizon planning with fixed
trajectories. However, the problems we solve could be addressed more directly as variants
of POMDPs. Satsangi et al. [159] recursively apply greedy algorithms to obtain guarantees
for certain submodular sensing processes. Similar results could be obtained for partition
matroids in multi-robot problems, and the contributions of this thesis could be applied as
well, possibly to develop efficient, distributed solvers for active perception processes.

In Chapter 7, we provided some incidental contributions toward objective design for
exploration, and in kind with Henderson et al. [87], we identified some limitations of prior
works on mutual information objectives. In one such direction, the interpretation of mutual
information without noise as expected coverage could produce more effective approxima-
tions of joint mutual information (see Appendix A.4). The comparison to CSQMI in same
appendix also strongly suggests that improving approximations for joint mutual informa-
tion could be fruitful in terms of task performance. Such approximations should also be
compared to recent work on approximating conditional mutual information [87].

As a whole, the methods for planning in this thesis are limited by the focus on receding-
horizon planning. Further, realizing consistent improvements in task performance via RSP
may require better and more complete planning methodologies. Chapter 7 cited spatially
global routing and assignment—such as via distributed auctions—as likely directions for
improving performance. Likewise, development of methods for planning with distributed
road maps would be an important step toward improving our methods for computing view
distance rewards.
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Appendix A

Additional Technical Discussion

A.1 Expected coverage and mutual information for

exploration with independent cells are not nec-

essarily adaptive submodular

Although this thesis does not take advantage of adaptive submodularity, the work was
developed in the wake of a number of works that apply adaptive submodularity to active
sensing problems in robotics [45, 48, 96]. For this reason, considering whether and how
adaptive submodularity might apply to problems such as exploration is important to this
thesis.

In simple terms, adaptive submodularity [79] seeks to apply the concept of submodular-
ity (and subsequent suboptimality guarantees) to adaptive settings—wherein agents obtain
realizations of actions or observations (e.g. whether a measurement succeeded or the real-
ization of a actual camera view) at each step of a greedy decision process (as in Alg. 1). In
our work, the receding-horizon planning sub-problems which we formulate (Sec. 2.1.2) are
non-adaptive, and the theory we develop primarily applies to the sub-problem solutions.
However, the decision process by which the robots replan and explore is adaptive, and we
do not provide guarantees for this process as a whole.

Methods based on adaptive submodularity provide the prospect of general suboptimal-
ity guarantees for the entire exploration process. Moreover, Choudhury et al. [48] study an
exploration problem with an expected coverage objective equivalent to (7.8) and cite rout-
ing constraints (e.g. path planning) as the primary theoretic limitation for applying adap-
tive submodularity to exploration (versus existing results for cardinality constraints [79]).
However, we note that they only assume that the objective is (or is approximately) adap-
tive submodular. Although this is true for some special cases [79, Sec. 7.1], such exploration
objectives are not adaptive submodular in general which we will prove by counterexample
after introducing adaptive submodularity more formally.

Consider a function g : 2U ×OU where O is a set of observations or outcomes. Here,
X ⊆ U encodes the set of selections and Φ ∈ OU encodes the outcomes for each observa-
tion. Further, agents receive an observation whenever they execute an action, and there is
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Figure A.1: The above illustrates a counter-example which demonstrates that mutual information for
ranging observations with independent cells is not necessarily adaptive submodular. The target variable,
the environment, consists of four cells E = [C1, . . . , C4] which are each independent and free (0) or occupied
(1) with probability 0.5 (each cell with 1 bit of entropy). Two available observations B and A provide
distances to the nearest occupied cell along a given ray, as illustrated.

some probability distribution Φ over the outcomes for each action in U . Then, following
Golovin and Krause [79], we can define the expected marginal gain as

∆(x|ψ) = E [g(dom(ψ) ∪ {x},Φ)− g(dom(ψ),Φ) | Φ ∼ ψ] (A.1)

where x ∈ U , ψ is a partial realization that consists of action-outcome pairs, dom(ψ) is
the associated set of actions in U , and Φ ∼ ψ indicates that the full realization Φ is drawn
conditional on the partial realization ψ. A function g is adaptive submodular with respect
to the distribution over outcomes OU if for all ψ, ψ′ ⊆ ψ, and x ∈ U , then

∆(x|ψ) ≥ ∆(x|ψ′). (A.2)

In other words, the expected marginal gains for all actions must decrease regardless of the
outcome of a selection.

Now, let us move on to the counterexamples for mutual information1 and expected
coverage.2 Note that we now use more traditional notation for mutual information since
that already includes mechanisms for encoding outcomes for observations and expected
marginal gains which are equivalent to the ones Golovin and Krause [79] describe.

Theorem 13 (Noiseless mutual information for depth sensors with independent cells is not
necessarily adaptive submodular). Consider an environment E which consists of Bernoulli
cells that are each free or occupied with some probability and possible observations U from
a depth sensor which provide ranges to the nearest occupied cell along collections of rays
according to descriptions in Chapter 7 and Sec. 7.3.2.

The mutual information I(E;X) for X ⊆ U is not adaptive submodular.
1The fact that mutual information is not adaptive submodular in general is well-known [80]. We prove

that the same holds more narrowly for exploration and as part of the proof for expected coverage.
2Note that this does not preclude some cases being exactly or approximately adaptive submodular as

in the work of Choudhury et al. [48].

140



Proof. Consider the scenario that Fig. A.1 illustrates and the resulting distribution over
environments E and ground set U = {A,B}.

The mutual information between B and E will violate adaptive submodularity. Now,
note that B either observes the value of only one cell (if C1 is occupied) or else all four.
As such, the mutual information between the two is initially

I(B;E) = 1 + 0.5 · 3 = 2.5 (A.3)

given the expected information gain (7.11) and the entropies of the cells. However, the
mutual information for B increases if we observe A and determine that C1 is free

I(B;E|C1 = 0) = 3. (A.4)

This increase in mutual information violates adaptive submodularity (A.2) which completes
the proof. �

Corollary 13.1 (Expected coverage for exploration is not necessarily adaptive submodu-
lar). Expected coverage as described in Sec. 7.3.1 is not necessarily adaptive submodular.

Proof. This follows from Theorem 13 because noiseless mutual information with indepen-
dent cells is an expected coverage objective (Theorem 12). �

Still, there is still room to apply adaptive submodularity or similar properties to explo-
ration policies. In fact, theory for objectives based on the size of the hypothesis space still
applies [45, 79, 96, 97]. Further, Gupta et al. [85] provide results for a routing problem in
a similar setting.

However, reducing the size of the hypothesis space has its limitations. Consider the
reduction in the hypothesis space h and the following hypothetical bound for a greedy
maximization process:

hg ≥ αh? (A.5)

For a uniform prior over n hypotheses, the relationship between a reduction in the hypoth-
esis space h and the information gain I is

I = log2

(
n

n− h

)
= log2(n)− log2(n− h), (A.6)

and

h = n− 2log2(n)−I. (A.7)

Substituting into the bound

Ig ≥ log2

(
n

n− α(h?)

)
(A.8)
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Consider if h? = n (such as for mapping an entire environment) so that

Ig ≥ log2

(
1

1− α

)
(A.9)

which works out to one bit for α = 1/2 and 1.44 bits for α = 1− 1/e.
In general, we can expect bounds on the reduction of the hypothesis space to be most

useful for small hypothesis spaces (such as to distinguish between a small number of likely
environments predicted by a learner or localizing objects [96]). However, such bounds
would be less impactful for the exploration problems that we study which exhibit large
information gain and exponentially hypothesis spaces.

A.2 Analysis for scaling target tracking to large num-

bers of robots

The analysis in this section establishes sufficient conditions for the cost of distributed
planning γdist (6.9) for each robot to be constant (in expectation) for planners with a fixed
number of sequential steps, independent of the number of robots. Afterward, we discuss
how this analysis relates to the design and analysis of target tracking systems.

Consider a distribution of robots and targets on Rn with at most α robots and β targets
on average per unit volume. Then assume that the channel capacities (6.7) between each
robot i ∈ R and target j ∈ T satisfy a non-increasing upper bound φ : R≥0 → R≥0 (possibly
in expectation) so that Ci,j ≤ φ(||pr

i − pt
j||2) where pr

i and pt
j are the robot position and

target mean position in Rn. Now, taking the expectation of the total weight for targets
distributed on a n-ball centered around one robot and for robots on another ball centered
on each target, each ball with radius R, produces an upper bound on the expectation
for robots and targets within a radius of R/2 of the given robot. Given the bound on
interaction between robots in terms of interactions between robots and targets (6.22), and
designating the zero-centered ball with radius R as B this expectation has the form:

E

[ ∑
j∈R\{i}

W(i, j)

]
=

∫
B

∫
B

αβmin(φ(||x||2), φ(||y||2)) dx dy . (A.10)

By integrating over the surface of each ball (each an (n−1)-sphere with surface area Sn−1)

= αβ

∫ R

0

∫ R

0

Sn−1
2r1

n−1r2
n−1 min(φ(r1), φ(r2)) dr1 dr2 . (A.11)

Given that φ is non-increasing, separating the minimum produces:

= αβSn−1
2

(∫ R

0

∫ r2

0

r1
n−1r2

n−1φ(r2) dr1 dr2

+

∫ R

0

∫ R

r2

r1
n−1r2

n−1φ(r1) dr1 dr2

)
, (A.12)
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and by swapping the bounds of the second integral, combining, and evaluating the inner
integral, we get:

= αβSn−1
2

(∫ R

0

∫ r2

0

r1
n−1r2

n−1φ(r2) dr1 dr2

+

∫ R

0

∫ r1

0

r1
n−1r2

n−1φ(r1) dr2 dr1

)
(A.13)

= 2αβSn−1
2

∫ R

0

∫ r1

0

r1
n−1r2

n−1φ(r1) dr2 dr1 (A.14)

=
2αβSn−1

2

n

∫ R

0

r1
2n−1φ(r1) dr1 . (A.15)

The above integral (A.15) converges in the limit if φ ∈ O(1/x2n+ε), or most relevantly, on a
plane this condition comes to φ ∈ O(1/x4+ε).3 Given that sensor models purely with sensor
noise proportional to distance do not fit this constraint, designers may wish to consider
the effects of constraints on the total sensor range or the number of observations one robot
can obtain at once.

A.2.1 Scaling and sensor models

The sensitivity to how quickly interactions between robots and targets fall off motivates
attention to sensor design and modeling lest planners perform poorly for large numbers
or require additional computation time. For example, additive Gaussian noise with the
standard deviation proportional to distance (as is common in range sensing models [35]) is
insufficient which is evident from the channel capacity of a Gaussian channel [58, Chap. 9].

At the same time, robots in realizable systems cannot obtain and process observations
of unbounded numbers of targets, and features such as a maximum sensor range can
model these limits. Still, the observation of whether a target is within range provides
some information. Here, a narrow tails assumption on the probability distributions for
the targets—such as that the tails approach zero exponentially—ensures that φ decreases
sufficiently quickly. As a result of this sensitivity to the tails, the scaling behavior (A.15)
may be difficult to characterize a-priori, even when known to be bounded.

A.3 An argument in favor of coverage over entropy

reduction for evaluating exploration performance

Chapter 7 applies coverage-based performance measures while, previously in Chapter 4,
we used entropy reduction to evaluate exploration performance. However, the systems for
exploration that we study in this thesis are subject to little or no noise and are tuned
so that cell occupancy values converge quickly. Anecdotally, we have observed significant

3This requirement on interactions between robots and targets is stricter than the equivalent one between
robots (see Theorem 8) as interactions between robots must decrease as O(1/xn+ε).
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Figure A.2: Compare entropy reduction and environment coverage for five exploration trials with 16
robots in the boxes environment (jagged lines are individual trials). Notice that these coincide exactly
when scaled to match.

changes in maximum entropy reduction for exploration trials in the same environment as
systems and parameters have changed over time. Moreover, entropy results for our systems
closely match environment coverage when scaled by a constant factor (Fig. A.2) which
likely reflects design decisions such as limits on occupancy certainty (which are common
in practice [92, (4)]) rather than any feature of performance. Instead, a coverage-based
metric provides a consistent measure of the amount of volume that robots have observed
(given cell volume) and is less affected by design parameters such as limits on occupancy
uncertainty.

A.4 Evaluating the performance of an approximate

mutual information objective

Initially, we chose the optimistic coverage objective in Chapter 7 primarily because exact
evaluation is tractable and because optimistic coverage is 3-increasing.4 As such, we wish
to clarify how this decision affects performance, particularly in comparison to the CSQMI
objective applied in Chapter 4. Additionally, we are not aware of any other works that
compare ray-based mutual information [37, 103] to coverage-like approaches which are
also common [20, 62, 168]. On the other hand, Zhang and Vorobeychik [200] found that
Shannon mutual information objectives behaves similarly as CSQMI.

Figure A.3 presents results for exploration in the Boxes and Empty environments where
optimistic coverage provides a 16% and 11% improvement in average completion time, re-

4We made this decision before identifying the connection between mutual information and expected
coverage.
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Figure A.3: The above plots compare exploration with optimistic coverage and CSQMI objectives in
terms of environment coverage in the Boxes and Empty environments (for ten trials with sequential plan-
ning and 16 robots). Black lines demarcate (from top to bottom) the maximum environment coverage,
the completion threshold, and the early progress threshold.

spectively, compared to exploration with a CSQMI objective with an occupancy prior of
0.125.5 Note that some improvement in performance is expected for the Empty environ-
ment because the optimistic coverage objective provides oracle values.

These results are somewhat limited. First, we do not vary the parameters of the CSQMI
objective such as the prior and parameters for the independence test. In particular, the
results suggest that one way to improve performance may be to select a lower occupancy
prior (compared to 0.125). Additionally, we did not put the exploration system with the
CSQMI objective through the same parameter tuning process as we did for optimistic cover-
age. Still, the average completion times for CSQMI in the Boxes and Empty environments
(1067 and 1526 robot-iterations, respectively) exceed the average for any configuration of
the optimistic coverage objective that we tested.

That said, these results indicate several ways by which exploration performance could
be improved for systems based on mutual information objectives:

To begin, selecting priors with low occupancy probabilities may improve performance
(in agreement with Henderson et al. [87]) given that optimistic coverage is equivalent to
mutual information with a prior approaching zero. Toward this end, normalizing the mu-
tual information (such as by dividing by the entropy of unobserved cells) would mitigate
the issue of the mutual information trending toward zero for small priors. The motiva-
tion for such normalization is self-evident from the form of (7.11), and we note that the
optimistic coverage objective effectively realizes this normalization in the limit.

5Chapter 4 uses the same value for the prior.
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Additionally, approximation of joint mutual information6 via the method of Charrow
et al. [37]) may significantly affect accuracy for small occupancy priors.7 Notably, recent
work by Henderson et al. [87] provides accurate values for individual camera views by
treating the view as a continuous integral as well as new bounds for multiple views, and this
approach could significantly improve approximations for multiple views and robots. For
either case, optimistic coverage, having the advantage of being exact for a certain regime,
could provide a useful point of comparison for evaluating the impact of approximation.

A.4.1 Upper and lower bounds on mutual information

As stated, approximations of mutual information for multiple rays and camera views fre-
quently apply upper and lower bounds on joint mutual information [37, 88]. The interpre-
tation of noiseless mutual information as expected coverage likewise leads to useful bounds
on mutual information. Specifically, the expectation for the mutual information in (7.11)
commutes and can be computed cell-wise. The expectations for individual cells can then
be bounded via upper and lower bounds on probabilities that an observation along a given
ray will infer the occupancy value for that cell.8 The maximum probability that any of
several rays will observe a cell produces a lower bound on the mutual information while
summing probabilities of observation (and capping at one) produces an upper bound. No-
tably, both of these bounds become tight as the prior probability of occupancy approaches
zero because the probability of observing all cells in range approaches one.

A.5 Comparison of suboptimality for RSP and DSGA

The proposed RSP planners overcome a number of limitations of DSGA (Chapter 4):
DSGA does not provide offline suboptimality guarantees, distributed implementations
would involve broadcasts and reductions over all robots during each round, and the as-
signments themselves are sequential. We provide the following comparison as a point of
reference as DSGA may be impractical in practice.

Figure A.4 compares lower bounds on suboptimality (Sec. 7.6.1) for DSGA and RSP
given different numbers of planning rounds (nd). On average, DSGA outperforms RSP
planning in these results. Even though RSP provides stricter performance guarantees,
this result is not surprising. While RSP partitions robots randomly, DSGA effectively
partitions robots in the midst of the planning process. This could enable DSGA to better
take advantage of problem structure or random improvements in planner results across
rounds (as DSGA selects a subset of results from all robots during each round).

6Arguably, accurate evaluation of joint mutual information is much more important to this work than
others on exploration since we study the collective contributions of teams of robots.

7One case where the approximation of the joint by Charrow et al. [37] would perform poorly is when
many rays traverse a single, previously unobserved cell but collectively observe many unobserved cells.
However, the contributions of only one or few rays would be counted.

8Such probabilities are trivial to compute [37, 103].

146



2 3 4 5 6

0.78

0.79

0.8

0.81

0.82

Num. Rounds (nd)

S
u
b
o
p
ti
m
a
li
ty

(l
o
w
er

b
o
u
n
d
)

DSGA

RSP

Sequential

Figure A.4: Comparison of lower bounds on suboptimality for planning for exploration with RSP and
DSGA for ten simulation trials in the Boxes environment. The red line is based suboptimality results for
sequential planning in the same configuration from Table 7.3.

A.6 Description of auction methods for distributed

submodular maximization

Chapter 8 compares RSP planning to auction methods much like those which are common
for task assignment [46]. Such auction algorithms converge to greedy solutions (Alg. 1) and
can even be extended to complex constraints [194]. However, the auction algorithms that
Choi et al. [46] describe (e.g. CBBA) are specific to the assignment problems they study
and do not immediately apply for general submodular objectives. Specifically, they take
advantage of how the value of an assignment to one robot is independent of assignments
to others to avoid recomputing marginal gains (bids) when updating assignments.

The following algorithms (Algs. 6 and 7) are similar and are suitable for the kinds of
assignment problems we study in this thesis (e.g. (2.9)) The two differ based on assump-
tions on how agents evaluate objective values. The first requires full information—the
ability to evaluate marginal gains for any agents’ actions—in order for agents to reorder
existing assignments. This likely produces behavior that is comparable to CBBA which
can often avoid re-evaluating marginal gains. For simplicity we assume that both run
synchronously on an undirected communication graph where each agent i has neighbors
Ni. Both algorithms eventually converge to the maximum value9 across all agents at each
step of the assignment process and so eventually obtain solutions equivalent to the general
greedy algorithm (Alg. 1). Although we do not seek to prove this point, the arguments
would be similar to those by Choi et al. [46].

Algorithm 6 requires consistent, global access to the objective g. This algorithm con-

9Like Choi et al. [46] we assume that there is a deterministic mechanism to break symmetry in com-
parisons (e.g. via agent and action indices).
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sists of exchanging assignments with neighbors and simply executing that general greedy
algorithm (Alg. 1) on a reduced ground set to update the agent’s assignments, much like
the approach of Luo et al. [122]. The reduced ground set consists of the agent’s own
block of control actions along with its and its neighbors current assignments. The output
then preserves maxima at each assignment position and includes some best-guess at the
assignment to that agent (i). This greedy process can enable agents to collectively identify
multiple elements of the final solution during a single synchronous communication round
and sometimes converges in fewer synchronous communication rounds than the number of
agents. However, this approach strictly requires global access to the objective g because
the agents evaluate the value of others’ assignments during the greedy decision process and
to ensure that the outputs are consistent and deterministic. As such, this algorithm does
not represent a practical solution to the problems we study as asymmetry in information
access is common in distributed settings [46].10

Algorithm 6 Auction algorithm with global information. One synchronous iteration from
the perspective of agent i.

1: Xi ← Current set of assignments for agent i
2: Bi ← Set of actions available to i
3: Ni ← Set of communication neighbors

4: Send: Xi to Ni
5: Receive: Xj from j for j ∈ Ni

6: G← ⋃
j∈Ni∪iXj ∪Bi

7: Xi ← Greedy(G) (Executing Alg. 1 for objective g and partition matroid I )

Algorithm 7, which performs auctions with local information, is somewhat more com-
plex because agents are not allowed to evaluate marginal gains for others’ assignments so
that these values have to be communicated along with the decisions and so that updates
require more care. The main body (lines 5–8) of this algorithm is similar to the last in
that agents exchange assignments with neighbors before updating the local solution. Ex-
cept, this time, values and assignments are exchanged in lists in assignment order. The
update itself is based on the first position where the assignments differ and consists of three
cases: (line 12) the current assignments dominate (and already include an assignment to i);
(line 14) the other’s assignments dominate and include some assignment to i (in block Bi

of the partition matroid), obtained via the following procedure; or finally (line 16) agent
i must update the other’s assignments with an assignment to itself. Seeking to emulate
Alg. 1, agent i checks whether its best marginal gain beats the value of the previous win-
ning assignment Vo,m at each point m in the decision process. Once identifying a winning
assignment position (or implicitly beating a null assignment) the agent concatenates its
assignment and value (using “·” to represent list concatenation) onto the sub-lists of prior

10For example, robots in Chapter 6 use different local approximations for target tracking, and for the
distributed exploration implementation in Chapter 8, even though robots construct maps with sensor data
from all robots, the maps are not synchronized and generally differ.
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assignments and values (line 21) and returns this result. The agent thereby discards as-
signments at later positions in the sequence as inserting the assignment for i invalidates
any following marginal gains. This behavior also implies that, unlike Alg. 6, this auction
algorithm requires at least one synchronous round per each element of the final solution
(i.e. one per robot) as the incremental construction of the solution in line 21 ensures that
the agents also collectively produce the full solution sequentially.

Both of these algorithms can be implemented more efficiently from a computational
perspective. But, given that the discussion in Chapter 8 focuses on communication costs,
efficient computation will not be necessary for this text. Still, even efficient implemen-
tations of these auction algorithms will be more computation intensive than RSP (where
agents together complete a single pass over each block Bi of the ground set). The auction
algorithms both execute a complete pass over the ground set in the first synchronous round
alone and may require many times more computation to converge. Likewise, auction algo-
rithms incur greater communication costs because all agents exchange assignments during
each round (rather than a subset) and because agents exchange sets of assignments rather
than individual assignments as in RSP.

Algorithm 7 Auction algorithm with local information. One synchronous iteration from
the perspective of agent i.

1: Xi ← List of assignments for agent i (in assignment order)
2: Vi ← List of marginal gains (values) for assignments Xi

3: Bi ← Set of actions available to i
4: Ni ← Set of communication neighbors

5: Send: Xi, Vi to Ni
6: Receive: Xj, Vj from j for j ∈ Ni

7: for j ∈ Ni do
8: Xi, Vi ← UpdateAssignments(Xi, Vi, Xj, Vj)

9: . Update local assignment in light of one from an other agent
10: procedure UpdateAssignments(X`, V`, Xo, Vo)
11: ndiff ← minn V`,n 6= Vo,n

12: if V`,n ≥ Vo,n then (Agent i’s assignments dominate. Return.)
13: return X`, V`
14: else if Bi ∩Xo 6= ∅ then (Other’s assignments reflect i’s choices)
15: return Xo, Vo

16: else
17: for m ∈ {n, . . . , |Xo|} do (Search for a viable assignment position)
18: x← arg maxx′∈Bi

g(x′|Xo,1:m−1)
19: v ← g(x|Xo,1:m−1)
20: if v > Vo,m then (i’s bid wins at position m)
21: return Xo,1:m−1 · x, Vo,1:m−1 · v (values Vo valid up to m− 1)
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Appendix B

Assorted Proofs

B.1 Proof for representations of derivatives of set func-

tions

Equation (3.16) defines the nth derivative of a set function as

g(Y1; . . . ;Yn|X) = g(Y1; . . . ;Yn−1|X, Yn)− g(Y1; . . . ;Yn−1|X). (B.1)

This is equivalent to the definition by Foldes and Hammer [70],

g(Y1; . . . ;Yn|X) =
∑

Y⊆{Y1,...,Yn}
(−1)n−|Y |g(X ∪ Ŷ ), Ŷ =

⋃
Y ′∈Y

Y ′. (B.2)

with the exceptions that we define derivatives with respect to sets for convenience (where
the extension follows from closure properties Foldes and Hammer [70]) and omit set differ-
ences by requiring disjoint sets.

Proof. The proof follows by expanding the right hand side of (B.1) and combining the
resulting expressions. Define the union of a collection of sets as φ(X) =

⋃
X′∈X X

′. Then

g(Y1; . . . ;Yn−1|X, Yn)− g(Y1; . . . ;Yn−1|X)

=
∑

Y⊆{Y1,...,Yn−1}
(−1)n−1−|Y |g(X ∪ Yn ∪ φ(Y ))−

∑
Y⊆{Y1,...,Yn−1}

(−1)n−1−|Y |g(X ∪ φ(Y ))

=
∑

Y⊆{Y1,...,Yn−1}
(−1)n−(|Y |+1)g(X ∪ Yn ∪ φ(Y )) +

∑
Y⊆{Y1,...,Yn−1}

(−1)n−|Y |g(X ∪ φ(Y ))

=
∑

Y⊆{Y1,...,Yn}
(−1)n−|Y |g(X ∪ φ(Y )) = g(Y1; . . . ;Yn|X).

�
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B.2 Proof of Lemma 1, chain rule for derivatives of

set functions

Proof. The proof follows by expanding the derivative (3.16), forming a telescoping sum,
and rewriting the summands as individual derivatives:

g(Y1; . . . ;Yn|X) = g(Y1; . . . ;Yn−1|Yn, X)− g(Y1; . . . ;Yn−1|X)

=

|Yn|∑
i=1

(
g(Y1; . . . ;Yn−1|Yn,1:i, X)− g(Y1; . . . ;Yn−1|Yn,1:i−1, X)

)
=

|Yn|∑
i=1

g(Y1; . . . ;Yn−1; yn,i|Yn,1:i−1, X). (B.3)

�

B.3 Proof of Theorem 3, post-hoc suboptimality of

DSGA

Proof. The proof of the suboptimality bound relating DSGA to SGA incorporates subop-
timality of the single-robot planner and is similar to [169] or [7]. We obtain the following
by monotonicity and by rearranging the resulting telescoping sum

I(M ;Y ?) ≤ I(M ;Y ?) +
nr∑
i=1

I(M ;Y d
i |Y d

1:i−1, Y
?
i+1:nr

)

= I(M ;Y d) +
nr∑
i=1

I(M ;Y ?
i |Y d

1:i−1, Y
?
i+1:nr

). (B.4)

By submodularity

I(M ;Y ?
i |Y d

1:i−1, Y
?
i+1:nr

) ≤ I(M ;Y ?
i |Y d

1:i−1).

Without loss of generality, assume that agent indices correspond to the selection order and
rewrite in terms of the planning rounds such that I(M ;Y ?

i |Y d
1:i−1) = I(M ;Y ?

Dj,k
|Y d
Dj,1:k−1∪Fj−1

)
and note that although Y ? is formally a set, the mapping from elements to robots can be
obtained by the intersections Y ? ∩ Yi given that the sets Yi are disjoint. Then, by sub-
modularity,

I(M ;Y ?
i |Y d

1:i−1) ≤ I(M ;Y ?
Dj,k
|Y d
Fj−1

).

By (4.9) and the greedy maximization step in Alg. 3

I(M ;Y ?
Di,j
|Y d
Fi−1

) ≤ ηI(M ;Y d
Di,j
|Y d
Fi−1

). (B.5)
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Substitute (B.5) and preceding inequalities into (B.4) to obtain

I(M ;Y ?) ≤ I(M ;Y d) + η

nd∑
i=1

|Di|∑
j=1

I(M ;Y d
Di,j
|Y d
Fi−1

). (B.6)

The distributed objective can be rewritten as a sum so that
I(M ;Y d) =

∑nd

i=1

∑|Di|
j=1 I(M ;Y d

Di,j
|Y d
Di,1:j−1∪Fi−1

) and substituted into (B.6) to obtain

I(M ;Y ?) ≤ (1 + η)I(M ;Y d) + η

nd∑
i=1

|Di|∑
j=1

(
I(M ;Y d

Di,j
|Y d
Fi−1

)− I(M ;Y d
Di,j
|Y d
Di,1:j−1∪Fi−1

)
)

(B.7)

which expresses the suboptimality in terms of decreases in the conditional mutual informa-
tion from when the plans were first obtained from the planner (Alg. 3, line 7) to when they
were assigned, (Alg. 3, line 9) potentially after other assignments in the same round. By
rewriting mutual information in terms of entropies we can rearrange to obtain the following

I(M ;Y1)− I(M ;Y1|Y2) = I(Y1;Y2)− I(Y1;Y2|M).

If Y1 and Y2 are conditionally independent given M , then the mutual information,
I(Y1;Y2|M) = 0 and so I(M ;Y1)− I(M ;Y1|Y2) = I(Y1;Y2). By substitution into (B.7) we
can obtain the slightly more concise and final expression for the suboptimality in terms of
the mutual information between observations

I(M ;Y ?) ≤ (1 + η)I(M ;Y d) + η

nd∑
i=1

|Di|∑
j=1

I(Y d
Di,j

;Y d
Di,1:j−1

|Y d
Fi−1

). (B.8)

�

B.4 Proof of Theorem 4, worst case suboptimality of

DSGA

Proof. Equation (4.13) follows from Theorem 1 by Grimsman et al. [82] which proves a k+1
bound where k is the clique cover number of a directed acyclic graph associated with the
planner structure. In this directed graph, each robot represents a vertex, and the graph has
a directed edge (a, b) between robots a, b ∈ R if b maximizes its objective (4.7) conditional
on the sequence of observations selected by a. Here, a clique, which is a complete subgraph,
is analogous to a set of robots that plan sequentially given the choices by all prior robots in
the clique. For Alg. 3, any set of robots A ⊆ R with at most one robot from each planning
round (|A∩Di| ≤ 1 for i ∈ {1, . . . , nd}) forms a clique in the associated directed graph. A
clique cover of size dnr/nde = maxi∈{1,...,nd} |Di| can be obtained by selecting cliques with
a single robot (as available) from each planning round (D1, . . . , Dnd

) without replacement.
Then, (4.13) follows by substitution of (4.9) to obtain a factor of η. �
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B.5 Proof of Lemma 11, suboptimality of general as-

signments

Proof. This result follows a similar approach as the other proofs related to sequential
submodular maximization that arise throughout this thesis with slight deviation to assist
in book-keeping:

g(X?) ≤ g(Xd, X?) (B.9)

= g(Xd) +
nr∑
i=1

g(x?i |X?
1:i−1, X

d) (B.10)

≤ g(Xd) +
nr∑
i=1

g(x?i |Xd
1:i−1) (B.11)

≤ g(Xd) +
nr∑
i=1

(
g(xd

i |Xd
1:i−1) + γi(g,X

d
1:i−1)

)
(B.12)

= 2g(Xd) +
nr∑
i=1

γi(g,X
d
1:i−1). (B.13)

Above, (B.9) follows from monotonicity; (B.10) expands a telescoping series; (B.11) follows
from submodularity; (B.12) upper bounds the incremental values optimal robot decisions
with the incremental value of each actual decision and its suboptimality (6.8); and (B.13)
collapses the telescoping series. �

B.6 Proof of Theorem 10, suboptimality of distributed

planning for target tracking

Proof. Theorem 10 consists of two parts, (6.12) and (6.13). We prove each in turn. Since
the costs in both equations involve sums over robots, both proofs analyze costs with respect
to some robot i ∈ R.

Proof of Theorem 10, part 1 (6.12)

According to the standard greedy algorithm (Alg. 2), robot i would plan conditional on
decisions by robots {1, . . . , i− 1}. However, in Alg. 4 that robot instead plans conditional
on a subset of these robots Ni ⊆ {1, . . . , i − 1} and ignores N̂i = {1, . . . , i − 1} \ Ni. We
can then write the cost of a suboptimal decision from (6.14) in terms of γdist

i as

γi(g,X
d
1:i−1) ≤ γi(g,X

d
Ni

) + g(xd
i |Xd

Ni
)− g(xd

i |Xd
1:i−1)

= γi(g,X
d
Ni

) + γdist
i ,

(B.14)

where the first step follows by substituting the cost model (6.8) and given that
maxx∈Bi

g(x|Xd
1:i−1) ≤ maxx∈Bi

g(x|Xd
Ni

) due to submodularity, and the second follows

154



from the definition of the cost of distributed planning (6.9). To incorporate the cost of
suboptimal planning γplan

i , observe that

γi(g,X
d
Ni

) = γi(g,X
d
Ni

) + γplan
i − γplan

i

= γplan
i + γi(g,X

d
Ni

)− γi(g̃i, Xd
Ni

)
(B.15)

which follows from the definition of the planning cost (6.11). The cost of approximation
of the objective γobj

i upper bounds the difference of the last two terms in (B.15):

γi(g,X
d
Ni

)− γi(g̃i, Xd
Ni

) = g̃i(x
d
i |Xd

Ni
)− g(xd

i |Xd
Ni

)

+ max
x∈Bi

g(x|Xd
Ni

)−max
x∈Bi

g̃i(x|Xd
Ni

)

≤ g̃i(x
d
i |Xd

Ni
)− g(xd

i |Xd
Ni

)

+ g(x̂|Xd
Ni

)− g̃i(x̂|Xd
Ni

), for x̂ ∈ arg max g(x̂|Xd
Ni

)

≤ γobj
i

(B.16)

by expanding and rearranging the costs (6.8) on the left-hand-side, using an upper bound
to match the arguments of the last two terms, and by using the definition of the objective
cost (6.10) to bound the two differences.

Then, the expression for the costs in (6.12)

γi(g,X
d
1:i−1) ≤ γobj

i + γplan
i + γdist

i (B.17)

follows by substituting the prior three equations into each other: (B.15) into (B.14)
and (B.16) into the result. Finally, substituting this inequality (B.17) into (6.14) from
Lemma 11 on the suboptimality of general assignments yields the expression for (6.12)
which completes the first part of this proof.

Proof of Theorem 10, part 2 (6.13)

The second part of Theorem 10 (6.13) follows by referring to definition of γdist
i in (6.9),

applying the chain rule (3.17), and substituting the bound on second derivatives (6.20)
and the definitions of the weights (6.21) and (6.22) in turn:

γdist
i = −g(xd

i ;X
d
N̂i
|Xd
Ni

) (B.18)

= −
∑
j∈N̂i

g
(
xd
i ;x

d
j |Xd

Ni
, Xd
N̂i∩{1:j−1}

)
(B.19)

≤
∑
j∈N̂i

W(i, j) ≤
∑
j∈N̂i

Ŵ(i, j). (B.20)

Then, (6.13) follows by summing over R. This completes this second and last part of the
proof of Theorem 10. �
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B.7 Proof of Theorem 12, noiseless mutual informa-

tion with independent cells is 3-increasing

The following proof takes advantage of cell independence liberally to write mutual infor-
mation in terms of the expected entropy of the cells that the robots will observe.

Proof. We can write the mutual information (3.6) between the environment E and future
observations Y(X) in terms of entropies:

I(E; Y(X)) = H(E)−H(E|Y(X)). (B.21)

The conditional entropy can then be rewritten in terms of the expected entropy (3.4) given
the direct observations of cell occupancy (7.3) associated with a hypothetical instantiation
of the environment E ′ while abbreviating observed cells as C ′ = Ccov(X,E ′):

= H(E)− EE′∼Eguess [H(E|EC′=E ′C′)] , (B.22)

and that conditional entropy is simply the entropy of the cells that have not yet been
observed D′ = C \ C ′ due to independence:

= H(E)− EE′∼Eguess [H(ED′)] . (B.23)

Then, bringing the entropy of E into the expectation does not change its value, and
separating the independent observed and unobserved cells simplifies the expression:

= EE′∼Eguess [H(EC′) +H(ED′)−H(ED′)] . (B.24)

= EE′∼Eguess [H(EC′)] . (B.25)

Finally, the joint entropy of the cells the robot will observe is the sum of their individual
entropies

I(E; Y(X)) = EE′∼Eguess

[∑
i∈Ccov(X,E′)

H(ci)

]
. (B.26)

This expresses a weighted expected coverage objective (7.8) where the weight wcell(i) of
each cell i ∈ C is equal to its entropy H(ci). Observing that weighted expected coverage is
3-increasing (Sec. 7.3.1a) completes the proof. �
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