
Routing for Persistent Exploration in
Dynamic Environments with Teams of

Energy-Constrained Robots
Derek Mitchell

Sept 14, 2020

CMU-RI-TR-20-52

The Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee:
Nathan Michael, CMU, Chair

Katia Sycara, CMU
Maxim Likhachev, CMU

Stephen L. Smith, University of Waterloo

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Robotics.

Copyright c© 2020 Derek Mitchell

Abstract
Disaster relief scenarios require rapid and persistent situational awareness to in-

form first-responders of safe and viable routes through a constantly shifting envi-
ronment. Knowing what roads have become flooded or are suddenly obstructed by
debris can significantly improve response time and ease the distribution of resources.
In a sufficiently large environment, deploying and maintaining fixed camera stands
would be ineffective and prohibitively expensive, so we look to deploying teams of
robots equipped with sensors to persistently cover the region of interest. In this case,
the main challenge is determining how to distribute the robots to cover the entire
region with limited travel speed and duration.

Basic multi-robot coverage and exploration methods take a passive approach
that direct robots to evenly cover the space and populate a map of the environment
with the observations the robots acquire as they move. More reactive frontier-based
approaches will continuously guide robots towards unobserved regions until the en-
vironment is fully known. These approaches, however, are less effective when the
environment changes over time. When the number of robots is limited and can only
operate for finite durations, the planner must prioritize which regions to visit in order
to provide the most accurate map possible.

In this thesis, we propose to plan deployments of teams of quadrotors equipped
with range sensors to cooperatively cover an environment such that a map can be
persistently updated as the environment topography evolves. Here, we present a
systems-based approach that breaks up planning into stages and computes feasible
plans over a sliding-window horizon. These plans are extended over subsequent
horizons up to the limit that each robot’s battery capacity will allow, ending with
robots returning to home base and recharging. We initially show that the proposed
planner is able to outperform greedy frontier assignment in terms of map accuracy
and confidence. We then show how the objective function we initially used to dis-
tribute robots can be modified to incorporate the ‘goodness-of-fit’ of the environment
dynamics model by biasing robots towards regions whose dynamics are less under-
stood. The updated objective results in a system that quickly converges to robots
revisiting regions only as often as they are expected to change.

While there is a physical limitation to how much area a team of energy-constrained
robots can cover persistently, the system we present leverages an understanding of
environment dynamics to maximize model improvement over time in a computa-
tionally tractable fashion. This is shown with a comprehensive study of the compu-
tational complexity of each component of the proposed system and an evaluation of
how overall performance evolves over time relative to the choice of system parame-
ters and environment conditions. We additionally show that the system can be tuned
to better address environments experiencing changes of greatly varying magnitudes
and scale. The result is a complete system that enables perpetual deployment and
efficient distribution of robots throughout the environment to ensure no changes go
unobserved for too long.

Acknowledgments
I can confidently say I could not have come this far without the support of my

mentors over the years. I have been extremely fortunate to have constant access to
teachers, supervisors, colleagues, and advisors that see potential in me and provide
ample support to help draw it out. In particular I am most grateful to my advisor,
Nathan Michael, who not only provided the opportunities, resources, and advice I
needed to polish my skills and delve deeply into engaging research, but also gave
me many chances to put my efforts into public view. His constant drive to push the
boundaries of the state of the art in a manner that is visible and accessible to those it
may interest has had significant impact in shaping my approach to research. I would
also like to thank my thesis committee members, Katia Sycara, Maxim Likhachev,
and Stephen Smith, who have been very helpful and accommodating throughout this
process, with special thanks to Katia who helped co-advise me during my time as a
Masters student.

Next, I would like to thank all my friends and colleagues at the Resilient Intelli-
gent Systems Lab, whose care and advice has made this long journey enjoyable and
rewarding. Foremost, I would like to thank my office mates, Ellen Cappo, Micah
Corah, and the fish for their constant care, advice, and company (especially the fish).
I have also received ample research advice and help managing robots from Arjav
Desai, Matt Collins and Curtis Boirum, without whom much of my more interesting
demonstrations would never have come to fruition. Many others in the lab, past and
present, have helped me to polish my research and presentations through discussion
and peer review, sacrificing their time and attention to help better my work. In partic-
ular, I offer my gratitude to Wennie Tabib, Kumar Shaurya Shankar, John Yao, Xun-
ing Yang, Cormac O’Meadhra, Aditya Dhawale, Alex Spitzer, Lauren Lieu, Mosam
Dabhi, Vishnu R. Desaraju, Vibhav Ganesh, Erik Nelson and Shihyun Lo.

Outside of the lab, I want to give special thanks Allie Del Giorno, whose friend-
ship over the last seven years has helped me maintain some level of sanity and kept
me from disappearing into the solitude of my apartment. I also have to offer my
gratitude to Chuck Whittaker and James Teza, who worked directly with me to build
many of the complex charging interfaces I needed to test my long duration deploy-
ments, as well as Karen Widmaier, Ashley McClinton, Nora Kazour, and Suzanne
Lyons Muth who have provided ample administrative support to help me navigate
the Ph.D. process smoothly.

Finally, I would like to thank my friends and family back home, who have been
extremely patient and allowed me to disappear into my work for the past half a
decade or so. While I appreciate the constant support and encouragement, the great-
est help has been their forgiveness for missing the occasional holiday. Knowing that
I can pour all my effort into my work when deadlines loom overhead, certain in the
knowledge that my family is supporting me from home and will be there when I need
them, has given me the strength and freedom to tackle challenges however suits me
best.

Contents

1 Introduction 1
1.1 Core Challenges . 4
1.2 Summary of Contributions . 5

2 Background 7
2.1 Environment Mapping . 9

2.1.1 Dynamic Environments . 11
2.1.2 Active Perception . 12

2.2 Motion Planning . 13
2.3 Long-Duration Autonomy . 16

2.3.1 Capacitated Routing . 17

3 Persistent Multi-Robot Mapping in an Uncertain Environment 23
3.1 Problem Formulation . 23
3.2 Methodology . 25
3.3 Simulation Evaluation . 38
3.4 Conclusion . 43

4 Allocating Limited Sensing Resources to Accurately Map Dynamic Environments 44
4.1 Problem Definition . 44
4.2 Methodology . 47

4.2.1 HMM Occupancy Grid . 47
4.2.2 Observation Utility Measure . 49

4.3 Results . 51
4.3.1 Experiment Setup . 51
4.3.2 Comparison of Objective Functions . 52
4.3.3 Varying Parameters . 55
4.3.4 Varying Environments . 57

4.4 Discussion . 58
4.5 Conclusion . 58

5 Deployment Planning for Online Mapping of Dynamic Environments 59
5.1 Environment Model . 62

5.1.1 Computational Complexity . 63

iv

5.2 Sensor Model . 63
5.2.1 Computational Complexity . 65
5.2.2 Observation Utility . 65
5.2.3 Computational Complexity - Utility Function 67

5.3 Waypoint Selection . 68
5.3.1 Computational Complexity . 70

5.4 Path Planning . 71
5.4.1 Trajectory Generation . 72
5.4.2 Computational Complexity . 73

5.5 Waypoint Assignment . 74
5.5.1 Greedy Assignment . 74
5.5.2 Minimum Cost VRP . 76
5.5.3 Min-Makespan VRP . 77
5.5.4 Ensuring Feasible Configurations . 78
5.5.5 Computational Complexity . 80

5.6 Conclusion . 81

6 Experimental Evaluation in Simulated Environments 82
6.1 Setup Details . 83
6.2 Approach Comparison . 85
6.3 Parameter Evaluation . 91
6.4 Physical Limits . 99
6.5 Environment Conditions . 106
6.6 Urban Environment . 110
6.7 Conclusion . 113

7 Conclusion 117
7.1 Summary of Contributions . 118
7.2 Future Work . 119

A Online Energy-Constrained Adaptation and Scheduling of Persistent Coordinated
Behavior-Based Multi-Robot Deployments 123
A.1 System Overview . 124
A.2 Experimental Evaluation . 136
A.3 Conclusion . 141

Bibliography 142

v

List of Figures

1.1 Images showing the devastation that can be caused by natural disaster. 2

2.1 Visualization of the intersection of related fields to which the proposed work
belongs. 8

2.2 Three distinct models of environment topography. 9
2.3 Enforcing long duration operation trajectory swapping. 17
2.4 Graphical representation of a Vehicle Routing Problem. 20

3.1 Deployment planner system diagram . 24
3.2 The planning pipeline expressed in graph form 26
3.3 The observation model . 27
3.4 Confidence decay for the log-odds and probability representation of occupancy

likelihood . 29
3.5 Waypoint Selection uses the Sensor Model to determine the optimal observation

locations . 30
3.6 Representation of the simulated environment populated by static and dynamic

objects . 34
3.7 Evaluation of system performance under various conditions 36
3.8 Evaluation of dynamics modeling and energy expenditure of a sample run 42
3.9 Evaluation for an environment with objects that move at a random frequency . . . 42

4.1 This work explores an example scenario where Nc cells are directly observed by
Nr sensors and Nr < Nc. 46

4.2 A time series comparison of binary-state models given sparse observations. . . . 48
4.3 The set of test environments. 51
4.4 Comparison of allocation objectives. 52
4.5 Evolution of priority as the environment model is learned when allocating 150

observations per time-step according to the proposed objective. 55

5.1 Updated System Diagram . 60
5.2 The variables associated with the Sensor Model. 64
5.3 Planning grid visualization . 70
5.4 Motion primitive library . 73

6.1 We evaluate on randomly generated environments, where cells oscillate between
states at a regular frequency. 83

vi

6.2 Diagram showing the differences between evaluated approaches. 86
6.3 Comparison of approaches evaluated in the environment from Fig. 6.1a. 88
6.4 Vignette of the environment models for simulated runs for the Min-Makespan

and pure greedy approaches. 89
6.5 Comparison of computation times for the various approaches. 91
6.6 Performance analysis relative to varying numbers of waypoints processed per

horizon. 93
6.7 Comparison of the numbers of waypoints assigned to deployed robots. 94
6.8 Performance analysis relative to the maximum number of robots active at any

given time. 95
6.9 Performance analysis relative to the horizon advance duration 97
6.10 Performance analysis relative to the horizon window duration 98
6.11 Performance analysis relative to the mixed objective weight. 100
6.12 Performance analysis relative to energy capacity 102
6.13 Performance analysis relative to travel speed. 103
6.14 Performance when varying the maximum sensor range. 105
6.15 Performance when varying the span of a sensor sweep action. 106
6.16 Performance when varying the number of beams per sensor sweep. 107
6.17 Testing environments differentiated by the percentage of dynamic cells outside

of the safety region. 109
6.18 Comparison of varying environment dynamics and distributions. 110
6.19 Urban test environment. 111
6.20 Urban scenario vignette . 113
6.21 Urban environment dynamics. 114
6.22 Comparison of performance between the system-based and pure greedy approaches

in the urban flooding scenario. 115
6.23 A comparison of environment models at key time frames for the Min-Makespan,

system-based approach and the pure greedy assignment approach. 116

7.1 Visual representation of multiple charging areas. 122

A.1 System architecture for persistent formation flight. 124
A.2 Updating the set of energy feasible behaviors for a 30 robot team 126
A.3 Three voltage traces from three different quadrotors during flight. 130
A.4 Trajectory generation process. 131
A.5 Representative example of an exchange operation. 135
A.6 Images of robot behaviors in simulation and in hardware. 136
A.7 Parameter learning from simulated voltage data. 137
A.8 Robot trajectories as a function of distance from origin. 137
A.9 Parameter learning from live trials. 140

vii

List of Tables

3.1 Evaluation of performance over various parameters 40

4.1 Comparison of approaches for runs in the 30% dynamic environment for 10,000
seconds. 54

4.2 Evaluation of performance as a function of parameter choice. 56
4.3 Comparison of performance for different concentrations of dynamics. 57

6.1 System used in the simulation experiments and their default values. 85
6.2 Physical limits used in the simulation experiments and their default values. 85
6.3 Comparison of approaches. 91
6.4 Evaluation of system performance while varying Nw and Nr. 96
6.5 Evaluation of performance as horizon variables vary over several runs. 99
6.6 Evaluation of performance as the objective weight α varies over several runs. . . 101
6.7 Comparison of steady-state performance while varying capacity L and travel

speed vtravel. 104
6.8 Steady-state performance when varying sensor parameters. 108

viii

Chapter 1

Introduction

Autonomous exploration is a well studied problem with many applications in domains such as

search-and-rescue, surveillance, and mapping. The exploration problem involves deploying one

or more robots to build an accurate model of an unknown environment. In dynamic environ-

ments, the unknown regions can grow over time as the environment evolves without being ob-

served. This is of particular relevance to disaster response, where a persistent understanding of

the environment is necessary to avoid dangerous regions and preserve infrastructure. An example

of one of the major threats to infrastructure is flooding (Fig. 1.1), as roads needed to transport

supplies are initially blocked or destroyed. However, once the water ebbs and rescue teams effect

repairs, the roads become passable again and the environment model must be updated. Areas ex-

hibiting potential threats, such as fire or shifting rubble, must be constantly monitored in case the

danger spreads. Efficient coverage in such domains requires a reactive and online robot deploy-

ment strategy that is robust to changes in the environment despite the limited number of robots

available to deploy.

The obvious solution for achieving coverage is to evenly spread robots over a boustrophedon

path [1] that serpentines over the whole environment. However, we require a more directed ap-

proach when the environment is mostly static, with sparse dynamic regions that evolve indepen-

dently over time. When the consequences of recognizing that a road has been made impassible

1

(a) Flooding in Wales, 20121 (b) Hurricane Sandy, 20122

Figure 1.1: Images showing the devastation that can be caused by natural disaster. Note how
accessability (a) changes as a result of flooding and (b), reverts to some degree as the flood
abates.

are that survivors fail to receive the help they need in time, it is imperative that changes to the

environment are recognized quickly. To address these concerns, a planner must satisfy some

critical requirements. First, the planner must be able to differentiate between static and dynamic

regions, prioritizing visitation of those areas more likely to change. Second, plans must extend

far beyond the limited duration a robot is able to operate as changes can occur sporadically over

long periods of time. Thus, a robot deployment planner must generate routes through the envi-

ronment that eventually return to a charging station and account for the expected downtime while

the robot is recharging.

Similar planning problems are often addressed in the field of Operations Research [2, 3, 4],

where the choice of how to route agents to service a selected set of targets, subject to constraints,

can be expressed as a combinatorial optimization problem. This class of problems, which in-

cludes the Traveling Salesman Problem (TSP) [5], the Vehicle Routing Problem (VRP) [6], and

their many variants, has been the subject of many years of research to find provably optimal

minimal cost routes that can be generated quickly for large sets of targets. However, due to

the NP-hard [7] complexity of optimal solvers, varying the problem by adding constraints can

significantly increase computation time for many targets. Additionally, many works focus on

1https://www.bbc.com/news/uk-wales-18378978
2https://en.wikipedia.org/wiki/Effects of Hurricane Sandy in New Jersey

2

finding computationally tractable ways to search for the optimal solution of complex problem

configurations, without considering how to choose targets or determine how to travel between

them [8, 9].

In the single and multi-robot exploration domain, robots are deployed to collect observations

of an environment and generate a model that can be queried for the state of the environment at

any location or time. Some exploration approaches focus on the modeling aspect, leveraging the

more consistent qualities of the environment to predict how the model should look in unobserved

regions [10, 11]. Others focus on efficient deployments by determining which regions of the

environment to prioritize for observation [12, 13, 14, 15]. These approaches tend to prefer the

myopic strategy of continuously directing robots towards ‘unknown’ regions where observations

collected will best inform the model. However, this manner of myopic approach is less suitable

when robots cannot be expected to operate for the full duration of interest and must periodically

return to recharge. Instead, a planner must be able to balance the potential reward of collecting

an informative observation against the cost of traveling too far from the charging station.

In this thesis, we present a systems-based approach to generate plans by combining the rout-

ing strategy of traditional combinatorial optimization problem solvers with the identification of

informative targets and path generation used in robotic exploration algorithms. We mitigate the

additional computational complexity of combining these approaches and improve responsiveness

to changes in the environment by computing plans over finite time horizons, replanning as new

information is collected. As information is acquired over each new horizon, our planner infers

what regions in the environment exhibit more frequent changes and should be given higher prior-

ity for future visits. Utilizing this knowledge, the proposed approach deploys robots to observe

changes in the environment far more quickly than greedy, myopic approaches. We show that,

with the proper choice of planning horizon and other relevant parameters, our strategy can gen-

erate plans whose duration is less than the computation time, allowing the proposed planner to

operate online. Using the proposed approach, robots are deployed to quickly acquire situational

awareness in an unknown and dynamic environment and effectively capture long-scale changes

3

whose periodicity cannot be captured within a single robot’s flight time.

1.1 Core Challenges

The objective of this thesis is to formulate a computationally tractable planning methodology

for persistent deployment of teams of energy constrained robots to efficiently map an unknown,

dynamic environment. As such, there are three major challenges we address in this work:

• Responsiveness: The amount of time that passes after a change in the environment occurs

before it is observed must be minimized.

• Energy Feasibility: Each single-robot plan cannot expect energy expenditure to exceed

battery capacity.

• Computational Tractability: Plans must be generated faster than they are executed to

ensure continuous, online operation.

When deploying teams of energy constrained robots in unknown, dynamic environments,

the immediate priority is to understand how the environment evolves over time. With limited

resources, in terms of robot team size and battery capacity, there is a finite rate at which obser-

vations can be collected. Without understanding the concentration and distribution of dynamic

regions in an environment, the deployment planner will waste time observing regions that are

persistently static and be unable to respond to changes elsewhere. This issue is compounded

by the need to learn the dynamics model online. Similar to the problem of aliasing in signal-

processing, insufficient sampling can result in a misidentification of the inherent environment

dynamics. If a region changes at a higher frequency than the model predicts, the planner will not

be able to correct the error unless it is capable of recognizing the discrepancy and redistributing

robots accordingly. This can have drastic consequences when monitoring a disaster scenario if

robots only visit a road that is vital to the distribution of supplies when it is clear and fail to

observe it flooding once every six hours for two hours straight. With observations only acquired

4

when the road is passable, the system would believe that the road is statically clear and direct

robots there less frequently, ensuring that any further changes would go unobserved.

1.2 Summary of Contributions

This thesis develops a planning strategy that leverages standard techniques in task allocation and

path planning to devise a system of algorithms capable of persistently generating and updating

deployment plans for a team of robots operating in a dynamic environment. We present a system

structure that interleaves path planning and task assignment over an infinitely repeating sequence

of finite time horizons in a computationally tractable manner. This approach is made computa-

tionally tractable not only by confining planning to a finite horizon, but also by decoupling the

task selection, path planning, and task assignment components of deployment planning as an

alternative to planning informative paths in a high-dimensional, multi-robot state-space. Listed

below are brief descriptions of subsequent chapters and the contributions they present:

• Chapter 3 - Persistent Multi-Robot Mapping in an Uncertain Environment: We in-

troduce the core system framework that decouples path planning and task allocation com-

ponents to enable tractable reactive planning. We show how a simple, structured planning

approach can generate more accurate maps more quickly than sequential greedy assign-

ment. [16]

• Chapter 4 - Allocating Limited Sensing Resources to Accurately Map Dynamic En-

vironments: We present an improved objective function for selecting viewing targets by

factoring both the known/unknown state of the environment model and the learned environ-

ment dynamics. This approach is applied to a Hidden Markov Model (HMM) occupancy

grid and shows better performance than prior selection objectives.

• Chapter 5 - Deployment Planning for Online Mapping of Dynamic Environments:

The system framework presented in Chapter 3 is updated with the new model and utility

5

score from the Chapter 4 and revised to plan through more waypoints per horizon. A

complexity analysis is provided for each component of the system.

• Chapter 6 - Experimental Evaluation in Simulated Environments: The system is eval-

uated over many runs with varying parameter settings and in different environments. We

show that the proposed approach significantly outperforms greedy assignment and high-

light how performance might be inferred based on the robot parameters and environment

conditions.

With the proposed system, we are now able to deploy robots to autonomously explore dy-

namic environments, prioritizing attention based on the dynamics model learned over many plan-

ning horizons. By incorporating energy constraints, we ensure that deployments can persist long

enough to capture the periodicity of slowly evolving environment dynamics. As a result, robots

quickly learn the dynamics model and converge to deployments that cover regions relative to

their frequency of change. We expect future works will build on this approach to assess the time-

varying density of environment dynamics from the model, determine the necessary number of

robots (demand) for a desired level of model accuracy, and adjust deployment team size online

relative to the energy reserves of available robots (supply). As a result, the system will be able

to achieve a high level of model accuracy despite the limited availability of robots and a demand

that varies over time.

6

Chapter 2

Background

The multi-robot persistent exploration problem is a complex amalgamation of three major robotics

research domains, namely: Environment Mapping 2.1, Motion Planning 2.2, and Long-Duration

Autonomy 2.3. Figure 2.1 shows a visualization of these domains and the related topics consid-

ered in this work. This thesis shows how to leverage, combine, and build upon techniques from

these domains to create a system capable of persistently generating deployment plans for a team

of robots to persistently monitor a dynamic environment. We provide the necessary background

for understanding these component techniques in this chapter.

To aid in understanding how the component domains interact in this work, we provide a brief

description of the multi-robot persistent exploration problem. Robots are continuously deployed

from a collective charging area to build and maintain a model of the environment topography.

Once the robots are deployed, they must return before completely exhausting their battery supply,

completing a route through the environment. At each iteration of a planning cycle, multi-robot

routes are generated by extending existing plans or creating new ones. After each planning cycle,

robots traverse their routes, collect observations, and update the environment model for a fixed

duration before starting the next cycle. The more effective the planning strategy, the faster the

model converges to high confidence and accuracy. More details on this formulation are provided

in Chapter 3. Specific to this work, we make several simplifying assumptions:

7

Figure 2.1: Visualization of the intersection of related fields to which the proposed work belongs.
The topics listed inside the circles represent domains of particular relevance to the approach
described in this thesis.

• No robot-robot collisions - The proposed application considers the use of aerial robots in

outdoor settings, where we can assume there is sufficient open space to allow for reactive

collision avoidance with minimal impact on energy expenditure.

• Perfect communications - The proposed approach uses a centralized planning strategy. To

accommodate the sharing of sensor input and controls, we assume robots can communicate

with the centralized planner instantaneously with zero cost.

• Perfect localization - To reduce the complexity of integrating sensor measurements into

the environment model, we assume robots have perfect knowledge of their location in the

environment.

• Fixed orientation - Robots in this work are equipped with downward facing sensors that

exhibit rotational symmetry about the vertical axis. We assume robots maintain a fixed

orientation to limit the dimensionality of path planning.

8

(a) Occupancy Grid (b) Gaussian Process [10] (c) Hierarchical GMM [18]

Figure 2.2: Three distinct models of environment topography. (a) The occupancy grid shows
the occupancy likelihood via shading (free cells are white, occupied cells are black). (b) A plot
of the variance of a Gaussian Process representation of an environment. Higher values indicate
unknown regions (few data points). (c) Hierarchical Gaussian Mixture Models represent surfaces
in the environment with clusters of Gaussians.

2.1 Environment Mapping

The key problem to solve in the environment mapping domain is how to accurately model the

topographical structure of an environment. In the field of robotics, most mapping algorithms are

probabilistic [17]. Even with perfect knowledge of robot position, the inherent noise in sensor

observations necessitates a probabilistic environment representation to fuse observations into a

coherent map. While sensors can come in many forms (camera, force sensor, infrared, depth

sensor, etc.) this work primarily considers range sensors, which measure the time of flight of

beams cast into the environment at different orientations to determine how far the robot is from

visible surfaces.

Occupancy Grids [19] are one of the more prevalent mapping techniques in robotics as they

are easy to implement, do not rely on specific environment features, can be queried quickly,

and can easily represent unobserved areas as unknown, which is of vital importance for ex-

ploration tasks. A typical occupancy grid is expressed as a discrete grid of cells superim-

posed on the environment, where each cell is associated with a likelihood of intersecting a

physical obstruction. The grid can be expressed as a map m consisting of a set of N cells,

9

m = {m1, · · · ,mi, . . . ,mN}, each storing the occupancy likelihood of the form:

p(mi = occ|o1, . . . , on) ∈ [0, 1],

where mi can be in either the occupied (occ) or free (free) state, and {o1, . . . , on} is a set of

n observations where oj = {hit,miss} indicates whether or not the jth observation recognizes

cell mi as occupied. An example of this sensing action is shown in Fig.2.2a, with a single beam

impacting a green obstacle. For the sake of brevity, we assume that the robot location and sensor

action are directly correlated, thus any probability conditioned on oi is also conditioned on the

robot location when the observation is collected. Note that

p(mi = occ|o1, . . . , on) = 1− p(mi = free|o1, . . . , on)

and that when

p(mi = occ|o1, . . . , on) = p(mi = free|o1, . . . , on) = 0.5

a cell’s state is completely unknown. The goal of exploration algorithms is to prioritize the

observation of these unknown cells, and cells with occupancy likelihoods close to 0.5, in order

to maximally decrease the uncertainty in the environment model.

Gaussian Processes (GPs) are a fairly common technique for regression or classification that

can robustly model functions with sparse and noisy data [20]. GPs represent functions as a Gaus-

sian probability distribution in function space, using a kernel function to describe the correlation

between inputs. O’Callaghan and Ramos [10] show how the GP can be used to model envi-

ronment topography by incorporating beam measurements in a similar fashion as the occupancy

grid. However, since a GP does not discretize the space, the point of impact is treated as a point

with a high likelihood of occupancy and the space the beam passed through as free space. As

a result, the map a GP generates is much more detailed and much smoother than an occupancy

grid could generate. Additionally, the variance of the GP at points in space, as visualized in

10

Fig. 2.2b, can serve to identify unexplored regions, as regions with fewer data points will have

higher variance. However, querying the occupancy state of points in the space scales poorly with

the number of input observations. Even though there has been significant advances in maintain-

ing the same quality of representation with sparser data [21], the sheer volume of multiple robots

taking many measurements over long periods of time precludes the use of GPs for the proposed

application.

Hierarchical Gaussian Mixture Models (HGMMs) have also shown promise in representing

environment topology [18]. HGMMs work by converting the sensor observations into point

clouds and using Expectation Maximization to learn the Gaussian parameters that best fit the

cloud. If a measurement is taken in the presence of an HGMM, the point cloud is evaluated for

novelty. Data that is determined to belong to the HGMM is integrated into the model, while

novel data is used to spawn another Gaussian. The result is an approach that models surfaces

in the environment with Gaussians of various sizes that adapt to the resolution required for high

accuracy. Unfortunately, the model does not represent unknown space well, making it difficult to

determine where new measurements are required. Additionally, the model is not easily extended

to handle dynamic environments.

2.1.1 Dynamic Environments

The main challenge in modeling dynamic environments is that these models, which require effort

to be learned, require a comparable effort to be unlearned when the environment changes. If the

changes in the environment occur as the result of objects moving, one solution is to model the

objects explicitly and remove their effects from the static model [22]. Another solution is to

model the propagation of change using particle filters [23]. While these approaches improve

the accuracy of the model, they provide us little information about the nature of the environment

dynamics. To benefit from long duration deployments, a model must be able to recognize patterns

in the dynamics and use them to inform planning. Recall that the purpose of this work is to

11

identify regions that change rapidly and prioritize those regions to ensure they remain covered.

From the exploration perspective, the desired effect is an increase in uncertainty relative to the

frequency at which regions experience change. The more often a region is in the unknown state,

the more frequently it will be visited by exploring robots. In this work, we investigate different

means of growing uncertainty and their effect on the overall performance of the proposed system.

2.1.2 Active Perception

When planning deployment strategies to efficiently build an environment model, the key chal-

lenge becomes: how to choose where to deploy robots to maximize the accuracy of our model.

More specifically, we need to determine the set of observations, given the sensors available on

the robot platforms, which collectively best improve the model accuracy. Selecting behaviors in

this manner is referred to as active perception. The most intuitive approach continuously drives

robots towards unknown frontiers, which are defined as the boundaries between known and un-

known space [12, 24]. However, these approaches only consider the space a sensor action would

reveal, not the degree of improvement a measurement would provide.

Alternatively, information theoretic techniques [25] can be used to determine the most in-

formative set of observations while also accounting for the diminishing returns of redundant,

overlapping measurements. Observations are chosen based on the Mutual Information (MI) be-

tween the known map and the candidate observation, expressed as the difference in entropy of

the map m and the map entropy conditioned on the observation o:

IMI [m; o] = H[m]−H[m|o]

If m is an occupancy grid, entropy can be expressed as:

H[m] = −
∑
mi∈m

p(mi) log2 p(mi) + (1− p(mi)) log2(1− p(mi)),

12

which can be interpreted as a measure of how uncertain we are about the true state of all cells. As

these component probabilities converge towards 0 or 1, the entropy approaches zero, signifying a

high level of confidence in the model. Thus, controllers that maximize MI will steadily increase

model confidence until the entire environment is known. The proof of this is provided by Julian

et al. [26].

Subsequent works look towards approximating MI with a more tractable Cauchy-Schwarz

Quadratic Mutual Information (CSQMI) score [27], applying MI to continuous occupancy maps

in the form of Gaussian Processes [13], and coupling state-lattice motion primitives with CSQMI

to enable real-time exploration of extensive environments [15]. Following the trend of applying

Information Theory to new models and planning strategies, this work investigates the application

of these techniques to dynamic occupancy grids with multi-robot, energy-constrained deploy-

ments.

2.2 Motion Planning

Motion planning, or path planning, involves defining a sequence of states a robot can move

through to progress from its starting location to a specified goal. Since this work builds a system

tightly integrated with an occupancy grid, the motion planning techniques of most interest are

graph-based searches. For these algorithms, the grid m is treated as a graph with |m| nodes

and connectivity from each cell to neighboring cells, which typically include all cells in direct

contact. The neighborhood can differ between implementations, but rarely includes more than

the direct neighbors as the graph-search algorithms scale poorly with connectivity. If we assume

that motion is possible between unoccupied cells, then a solution path consists of the sequence

of states, s, whose positions correspond to the centroids of cells from map, m, a robot travels

through to reach the goal state, sn:

P = [s1, . . . , sn|m].

13

Most grid based path planners are derived from Dijkstra’s algorithm [28] or one of its variants.

Dijkstra’s algorithm is a graph search algorithm that begins at the starting node and iteratively

extends paths from the shortest current path to the next closest node, unless a shorter path already

leads to that node. As a result, paths grow in a wave from the start location until the goal is found

or there are no more paths to find. Each path found is, by construction, the shortest path from the

start location. This quality is particularly attractive for the proposed problem, as we are interested

in deploying multiple robots to simultaneously observe locations in the environment. Rather than

compute a single path for each possible motion from start to observation or from observation to

observation, it is possible to grow paths from each location and extract those paths that are

required to compute the high-level routes. As this algorithm is used in the proposed system, a

more detailed description is provided in Algorithm 2.

The next extension of Dijkstra’s algorithm is the A∗ [29] algorithm, which uses a heuristic

cost-to-go to choose the nodes to extend. As a result the algorithm finds the solution with less

nodes considered. However, the multi-goal planning capability of Dijkstra’s algorithm is bet-

ter suited for the proposed system. Further extensions include D∗ [30] and Lifelong Planning

A∗ [31], which are tuned to quickly resolve changes in graph edge costs during run-time. An

interesting extension to this work would be the application of these methods when the system

must plan for scenarios where robots interact with dynamic obstacles. Similarly, Wagner and

Choset [32] present a multi-robot A∗, known as M∗, that efficiently handles robot to robot col-

lisions through subdimensional expansion, which only couples planners when and where they

intersect. Otherwise, each robot computes an individual A∗ path. Considering the explosion of

dimensionality when using A∗ to compute multi-robot paths, which must necessarily include the

joint configuration space of each robot, M∗ might offer insight into the tractable computation of

safe paths with the proposed system when robot to robot collisions are allowed.

For quadrotors, defining a sequence of feasible states in state space is difficult. The state

space can be expressed in terms of position, velocity, and orientation of the robot’s center of

14

mass and angular velocity:

s = [x, y, z, φ, ψ, θ, ẋ, ẏ, ż, p, q, r],

which is far too large to search, both in terms of complexity and memory requirements. Typical

trajectory generation algorithms leverage a result provided by Mellinger and Kumar [33] that

exploits the differential flatness of quadrotors to define a much more manageable search space:

f = [x, y, z, ψ],

which consist of the center of mass position and yaw. Any curve in the space of the flat outputs

of the form

f(t) : [t0, tm]→ R3 × SO(2)

that is smooth up to the third derivative can be followed by a quadrotor. Many state of the

art techniques use a hierarchical approach to decouple aspects of the planning problem. For

instance, Richter et al. [34] use a sampling-based planner to generate a piecewise-linear path to

a desired goal. Then, the path is updated by using Quadratic Programming to solve for minimal

snap polynomials that pass through the path nodes. However, as the resulting polynomial differs

in shape from the original path, further refinement is required to avoid collisions.

Alternative approaches seek to avoid this issue by defining a library of feasible motions that

can be concatenated into piecewise-cubic splines

S(t) =



f1(t) : t ∈ [t0, t1]

f2(t) : t ∈ [t1, t2]

f3(t) : t ∈ [t2, t3]

f4(t) : t ∈ [t3, t4]

.

15

The set of polynomials, f1(t), · · · , fn(t), known as a motion primitive library, has proven effec-

tive in both single-robot [35] and multi-robot [36] planning. For this work, we construct a library

that describes all possible motion between cells in a grid such that any path generated by the

Dijkstra’s algorithm can be quickly converted into a dynamically feasible, smooth polynomial

spline. The details of this effort are listed in Sect. 5.4.

2.3 Long-Duration Autonomy

When robots have a limited battery capacity and are assigned to tasks that require more than this

limit, persistent deployment plans must consider the periodic replenishment of expended energy.

The most obvious solution is to compute energy-agnostic plans, segment them into many energy-

feasible plans, and assign the new set to available robots [37]. In this manner, we can divide the

effort of performing the plan among available robots at the cost of planning the corresponding

approaches and departures for each segment. Once the segments are determined, the remaining

challenge lies in computing collision-free trajectories that effect the exchange. This process is

highlighted in Fig. 2.3, where exchange trajectories are computed at a specific swap in a manner

which minimizes the divergence from the original plan.

This approach is of particular relevance when the divergence from the plan must be mini-

mized, such as in theatrical scenarios [38], where the visual effect depends on robots following

a specific trajectory. However, in cases where the main objective is to service targets with sig-

nificant separation and there are few restrictions on how robots move through the environment,

segmenting a single-robot plan into a multi-robot, energy-feasible plan will result in more excess

travel through the environment than if targets are appropriately clustered before being assigned

to robots.

An alternative approach [39] applies Control Barrier Functions (CBFs) to the control input to

force the robot towards charging stations when energy is low. When a robot’s stored energy ex-

ceeds the energy required to travel to the charging station, the control input is entirely influenced

16

(a) Trajectory swapping process (b) Robot swapping action [38]

Figure 2.3: Enforcing long duration operation by computing trajectories that extract active robots
with low battery and replace them with fully charged robots. (a) Splines for the exchange are
computed by splitting trajectories at the desired time, tswap, exchanging the trajectory compo-
nents at t > tswap, and computing smooth trajectories to reconnect the splines. (b) The process
shown on robots in formation flight. Green robots are in the active formation, the red robot is
leaving to charge, and the blue robot is entering the formation.

by the desired control. As the energy depletes, the safe region a robot can inhabit shrinks, which

limits the control input such that the robot can always reach the charging station with the energy

remaining. In this manner, the robot is drawn to the charging station until the energy is so low

that the only available control input drives the robot onto the charging station. At this point, the

robot is constrained to continue charging until it reaches a user specified level. Afterwards, the

restriction on control input is relaxed and normal operation can resume. While this approach is

very flexible and generally applicable to any control input, it requires a clear path to the charging

station at all times to ensure feasibility.

2.3.1 Capacitated Routing

The above approaches enforce energy constraints by repairing non-constrained plans or controls.

Alternative approaches directly compute energy feasible plans by periodically routing robots

back to the charging station. The Vehicle Routing Problem (VRP) [6] and its variants are par-

ticularly suited to these approaches as routes, by definition, are cycles through a set of locations

that start and end at the same place.

17

This problem is heavily explored in the operations research community, where routes be-

tween cities are computed to efficiently distribute resources from a centralized depot [2, 40, 41].

The core problem is solved using branch and bound techniques to efficiently search through the

space of feasible solutions, but handling the additional complexity of travel distance, resource

capacity, and time window constraints requires heuristic approaches to find reasonable solutions

within practical time limits. Some heuristics define a simple improvement function, such as 2-

opt exchanges, to iteratively increase the optimality of the current best solution [42], while others

rely on Genetic Algorithms [9] or Tabu search [8] to refine the search process.

For robotics problems, these approaches have been adapted to operate in unknown environ-

ments with stochastic operation costs [43, 44]. Rather than expending effort to find optimal

solutions to the entire problem, VRP instances are defined over finite horizons and solved in

succession as new information becomes available. In particular, Stump and Michael [45] present

a solution to the VRP with Time Windows (VRPTW) that pursues the periodic visitation of a set

of sites by defining the VRPTW over a sliding-window horizon. In the proposed work, we adapt

these proven combinatorial optimization techniques to incorporate the predicted changes in cost

and demand derived from the learned environment model.

We first approach the persistent exploration problem by investigating how the combinatorial

optimization approaches can adapt to unknown or changing costs. The problem is formulated

as an energy-constrained Vehicle Routing Problem. A typical VRP instance consists of a graph

G = {V,E} where V is a set of nodes an agent must visit and E is the set of edges connecting

each of the nodes. The solution is then found by determining the optimal value of the objective

function:

min
xkij

∑
k∈K

∑
i∈V

∑
j∈V

cijx
k
ij (2.1)

18

subject to the following constraints:

∑
k∈K

∑
j∈V

xkij = 1 ∀i ∈ V (2.2)

∑
i∈N

xkih −
∑
j∈N

xkhj = 0 ∀h ∈ V, k ∈ K (2.3)

∑
j∈V ∪Sg

xkoj ≤ 1 ∀k ∈ K (2.4)

∑
i∈So∪V

xkig ≤ 1 ∀k ∈ K (2.5)

xkij ∈ {0, 1} ∀i, j ∈ V (2.6)

where cij ∈ R+ is the cost of traversing the edge (i, j) between nodes i and j, and xkij is the

binary decision variable that determines whether or not (i, j) is is traversed by robot k in the set

of K robots. Constraint (2.2) ensures that only one edge leaves node i for all i. Constraint (2.3)

forces the number of edges leaving a node to equal the number entering. The last two constraints

represent the depot departure (2.4) and arrival (2.5) constraints, ensuring that each agent leaves

and enters the collective starting node at most once.

This formulation is known as an Integer Linear Program (ILP), which is an extension of

the more general Linear Program (LP). A typical LP is represented by a linear objective and a

series of linear constraints. The constraints effectively define an n-dimensional polytope with the

objective function describing the vector along which the optimal solution resides. One way to

solve for the optimal solution, known as the Simplex algorithm, is to walk along the edges of the

polytope in the direction of vertices with non-decreasing objective values until the optimum is

reached. When the decision variables are constrained to be integers, a technique known as branch

and bound is often employed. This approach begins by relaxing the integer constraints (2.6)

and solving the resulting LP to optimality. If the resulting decision variables are not integer,

we recursively split the search space by forcing the non-integer components to take the closest

integer values. At each iteration, the problem is branched by generating two new problems, one

19

with a non-integer variable rounded up and one rounded down. As integer solutions are found,

we track the minimum objective value and cease branching when relaxed solution’s objective

value is greater than the current best solution. This is known as bounding and prevents exploring

space that cannot contain a more optimal solution.

Figure 2.4: Graphical representation of a Vehicle Routing Problem. (Left) A graph is repre-
sented by nodes that require visitation and edges that denote the cost to transition between nodes.
(Right) The solution to a VRP is a series of routes that specify the sequence of nodes each robot
is assigned to visit.

Figure 2.4 shows a visual representation of a VRP. After solving the ILP (2.1)- (2.5), the

decision variables xkij describe a series of routes through the node set. A route, in this context,

is defined as the sequence of nodes assigned to a single robot. We derive the sequence from xkij

by recursively adding a node to the sequence, then extending along the only active edge (where

xkij = 1) to the next node, starting from the start node So and ending at the goal node Sg.

Capacitated VRP is particularly applicable as robots are given a limited capacity of a resource

(e.g. energy), Bmax ∈ R+, and routes are constrained to deliver or expend less than this amount.

For energy-constrained routing, there are several expressions of these constraints that apply. The

20

simplest describes the energy constraints as proportional travel cost:

min
xkij

∑
k∈K

∑
i∈V

∑
j∈V

cijx
k
ij

s.t. VRP Constraints, (2.2) - (2.6)

ζk
∑
i∈V

∑
j∈V

cijx
k
ij ≤ Bmax,k ∀k ∈ K

where ζk ∈ R+ is a constant that describes the rate of energy expenditure (per unit travel cost)

for robot k and Bmax,k is the capacity specific to robot k.

Mitchell et al. [46] present an alternative formulation that draws from the single robot energy

constraints in [47]. There are some slight differences in the formulation, given that the objective

pursues a minimum makespan of travel and node visitation cost:

min
xkij

max
k∈K

∑
i∈N

∑
j∈N

(cij + di)x
k
ij,

and the scenario allows for multiple depots, requiring a set of subtour elimination constraints.

However, the constraints of interest, related to energy capacity are as below:

rj − ri + fij ≤M(1− xkij) ∀i, j ∈ V, k ∈ K (2.7)

rj − ri + fij ≥ −M(1− xkij) ∀i, j ∈ V, k ∈ K (2.8)

rj −Bmax + fij ≥ −M(1− xkij) ∀i ∈ D and j ∈ V, k ∈ K (2.9)

rj −Bmax + fij ≤M(1− xkij) ∀i ∈ D and j ∈ V, k ∈ K (2.10)

ri − fij ≥ −M(1− xkij) ∀i ∈ V and j ∈ D, k ∈ K (2.11)

0 ≤ ri ≤ Bmax ∀i ∈ T. (2.12)

In these constraints, the decision variable ri represents the amount of energy left in a robot when

it departs node i, fij is the energy cost to travel between nodes i and j, D is the set of depot

21

nodes, and M ∈ R+ is a large constant value that can be chosen to be Bmax + maxij∈V ∪D fij .

The constraints are constructed such that a pair of constraints can represent a single constraint

that is only active if a certain edge is included in the solution. For instance, constraints (2.7)

and (2.8) can be represented by the constraint ri − rj = fij if xij = 1. This pair of constraints

ensures that the energy lost between two nodes is equal to the energy cost of traveling between

them. Constraints (2.9) and (2.10) can be expressed asBmax−rj = fij and establish the condition

that the energy level at a target visited after leaving a depot is equal to the energy capacity minus

the energy cost of traversing the connecting edge. Constraint (2.11) similarly can be represented

as ri ≥ fij and restricts the energy lost in approaching a depot to being at most the cost to travel

from the preceding target. Finally, constraints (2.12) restricts the energy level, ri, to [0, Bmax].

Expressing capacity constraints in this manner allows robots to recharge multiple times per cycle.

However, the formulation is so complex that it requires a heuristic algorithm to generate a feasible

starting point before it can be applied [46].

In this work, the set of nodes, V , through which robots are routed each planning cycle changes

as the locations that are most unknown change. If we choose to plan over a finite horizon that

is less than the flight duration of robots on maximum charge, then a robot will have no need to

visit a charging station mid-horizon. As such, we can assume that no robots take off after the

beginning of a new planning horizon, significantly reducing the formulation to

min
xkij

∑
k∈K

∑
i∈V

∑
j∈V

cijx
k
ij

s.t. VRP Constraints, (2.2) - (2.6)

ζk
∑
i∈V

∑
j∈V

cijx
k
ij ≤ Bmax,k ∀k ∈ K.

This formulation serves as the core of the routing problems addressed in this thesis.

22

Chapter 3

Persistent Multi-Robot Mapping in an

Uncertain Environment

This chapter presents a system developed to enable persistent exploration with a team of energy-

constrained robots. Typical occupancy map approaches assume a static world; however, we

introduce a decay in confidence that degrades the occupancy probability of grid cells and pro-

motes revisitation. Further, sections of the map whose occupancy differs between observations

are visited more frequently, while unchanging areas are scheduled less frequently. While plan-

ning informative, energy-feasible paths is intractable through the entire space of multi-agent

spatiotemporal states, the proposed algorithm decouples planning such that constraints are re-

solved separately by solving tractable subproblems. We evaluate this approach in simulation and

show how the uncertainty of the world model is maintained below an acceptable threshold while

the algorithm retains a tractable computation time.

3.1 Problem Formulation

Addressing the persistent exploration problem requires a map representation that enables learn-

ing the dynamics of an environment and a motion planner that directs robots to collect observa-

23

Waypoint
Selection

Environment
Model

Waypoint
Assignment Path Planning

Sensor
Model

Node
Locations

Occupancy
Probability

Cell Updates

Simulator

Trajectories

Obstacle
Locations

Observations

Waypoint
Paths

World Model

Beam
Model

Figure 3.1: System Diagram. The planning pipeline (yellow blocks) generates plans executed by
the simulation environment (red blocks), which generates observations for the observation model
(green blocks) that provides map information to the planning pipeline.

tions that best inform the map. The system we propose utilizes a 3D occupancy grid represen-

tation of the environment, where p(mi) ∈ [0, 1] denotes the probability that a cell i in grid m

is occupied by an object. The occupancy state is determined by threshold values γfree and γocc,

where cell i is occupied if p(mi) ≥ γocc, free if p(mi) ≤ γfree, and unknown otherwise. The

likelihood of occupancy given a series of observations is defined as

p(mi|o1:n) =
p(mi|on)p(on)

p(mi)

p(mi|o1:n−1)
p(on|o1:n−1)

, (3.1)

where on represents the last in a series of n sequential observations and o1:n = {o1, . . . , on}.

The standard assumptions for occupancy grid mapping include: 1) Cells are independent of

one another (p(m|o1:n) =
∏

i p(mi|o1:n)) 2) robots have perfect localization, and 3) unobserved

cells begin with a uniform prior occupancy likelihood (p(mi) = p(¬mi) = 0.5). Given this

representation, the mapping aspect of the exploration problem in dynamic environments can be

redefined as: learn a function p(t,mi|o1:n) that describes the time dependence on the occupancy

likelihood given a set of observations of the environment.

24

We simplify the planning aspect of this problem with a sliding-window framework, where

plans are generated for an established time window from tstart to tend that is advanced by a duration

dadv after each iteration. Per horizon window, we determine the optimal plan to deploy a team of

energy-constrained robots to collect the set of observations that best inform p(t,mi|o1:n). This

is a complex, multi-faceted problem that is made tractable by decomposing it into the following

three component problems: 1) Define a set of observations, o1:n of high utility whose locations,

x1:n (hereafter referred to as waypoints), are reachable from a starting location, xs, 2) compute

trajectories that direct robot motion between waypoints without entering unknown or occupied

regions, and 3) determine the optimal routes through waypoints such that energy expenditure

does not exceed robot capacity.

3.2 Methodology

The system we propose in this work is outlined in Figure 3.1, with the planning pipeline presented

in graphical form in Figure 3.2. A planning cycle begins with the Waypoint Selection algorithm

which iteratively selects the Nw most informative waypoints from a set of reachable locations.

Intuitively, a waypoint scores high if the corresponding observation, provided by the Sensor

Model, measures a large number of uncertain cells with high probability, with diminishing returns

provided for repeated coverage. Note that we limit the number of waypoints selected to reduce

the computational burden of the rest of the pipeline and restrict the number of robots deployed

over the planned horizon.

Once waypoints are selected, the Path Planning algorithm generates a set of shortest-distance

paths between all pairs of waypoints. The focus is to provide a fast estimate of cost and feasibility

to inform Waypoint Assignment, as opposed to investing in high-quality paths that may never be

traversed. To simplify collision avoidance, we assume all dynamic objects exist outside a user-

defined safety region, designated by a radius of rsafe around the starting location, xs, and all

locations above a height of hsafe. Given the proposed scenario, this is a reasonable assumption

25

Figure 3.2: The planning pipeline expressed in graph form. (Left) A set of informative waypoints
(grey), reachable from the starting location (blue), are selected. (Middle) The paths are computed
between all waypoints. (Right) Efficient, energy-constrained routes through the waypoints are
chosen.

that allows Path Planning to assume an accurate Environment Model.

The Waypoint Assignment algorithm uses these path costs to generate an instance of the Ve-

hicle Routing Problem with Time Windows (VRPTW). The time windows, which define when

a waypoint can be visited, open the instant any cell viewed from a waypoint transitions to un-

known and close the last instant the path to xs can be traversed, ensuring feasible motion while

maximizing information gain. Once the routes are generated, trajectories are formed by concate-

nating paths between the waypoints along each route. The Simulator then executes these plans,

using the Sensor Model to generate observations at a constant rate along trajectories traversed,

for a duration of dadv. The Environment Model is then updated and the planning pipeline starts

over with a new horizon.

Under the traditional occupancy grid formulation, the Environment Model would simply pro-

cess these observations to update the occupancy probability of all cells observed. However, the

proposed model searches for discrepancies in the sequence of observations of each cell and tracks

a period of change, Ti, to suggest when the occupancy probability should transition to unknown.

As observations are collected and Ti is learned, p(t,mi|o1:n) will decay exponentially towards

p(mi) at a rate corresponding to the dynamics of cell i, allowing us to focus the efforts of our

limited system only where it is needed.

26

(a) Beam Model (b) Sensor Model

Figure 3.3: The observation model. (Left) A single beam update marks all cells passed through
as a miss (p(mi|on) = γmiss) and the final cell as a hit (p(mi|on) = γhit) if it impacts and obstacle.
(Right) The sensor model consists of one upward facing range sensor with a wide angle and a
short range and one downward facing sensor with a close angle and long range.

Sensor Model In this chapter, we consider a robotic platform equipped with multiple range

sensors. The model for a single beam is depicted in Figure 3.3a, where each cell a beam passes

through is registered as a miss (p(mi|on) = γmiss) and any cell in which the beam impacts an

object registers a hit (p(mi|on) = γhit). The Sensor Model shown in Figure 3.3b simulates two

range sensors by extending beams upwards 0.825m in a 270 degree arc about the x and y axes

and downward 1.75m in a 60 degree arc. This configuration allows for the robot to explore the

space it travels while focusing its attention towards the dynamic area below hsafe. Given the

symmetry about yaw and the slow motion typical of quadrotors performing exploration tasks, we

assume robots operate at a fixed orientation.

Environment Model Our key innovation for the occupancy grid representation lies in the intro-

duction of confidence decay, which drives known cells towards the unknown state in accordance

with environment dynamics. We modify the occupancy likelihood update rule (3.1) to generate

the recursive summation:

logit(p(mi|o1:n)) = logit(p(mi|on))− logit(p(mi)) + logit(p(mi|o1:n−1), (3.2)

27

also known as the inverse measurement model [48]. Note that, logit(p) = log p
1−p for a proba-

bility p and is known as the log-odds expression of p, which not only simplifies the update rule,

but also improves robustness to floating-point errors for small probabilities. Given that this rep-

resentation shifts the domain of occupancy likelihood from [0, 1] to (−∞,∞), we can directly

apply an exponential decay to cause cells to asymptotically approach p(mi) = 0.5

logit(p(t,mi|o1:n)) = e−αi(t−tlast,i) logit(p(mi|o1:n)), (3.3)

where tlast,i is the last time cell i was updated and αi is a parameter that defines the rate of decay.

For the purpose of tracking environment dynamics, it is convenient to define αi in terms of the

time it takes a cell to transition to the unknown state from a high occupancy likelihood, γmin or

γmax

αi =



1
Ti log(γmax

γocc
) if p(mi|o1:n) > 0.5

1
Ti log(γmin

γfree
) if p(mi|o1:n) < 0.5

0 otherwise

. (3.4)

Thus, the occupancy probability evolves over time, as depicted in Figure 3.4, crossing the thresh-

old between states after a duration of Ti, the decay period.

The decay period is tracked from a sequence of observations by recognizing two types of

measurements. The first occurs when the observation of a cell disagrees with the model, for

instance, if a cell is in the free state and registers a hit:

Tmeas = t− tlast,i. (3.5)

This can be interpreted as an observation that there has been a change between t and tlast,i, there-

fore, the period of change must be at least Tmeas. The second measurement occurs when an

28

Figure 3.4: Confidence decay for the log-odds (left) and probability (right) representation of
occupancy likelihood. To simplify labels, l represents log-odds parameters (lfree = logit(γfree)).
Plots show the progression of a cell beginning in the free (blue) or occupied (red) state at high
confidence and decaying over time. The decay function is designed such that cells with high
model confidence transition to the unknown state within a duration of Ti.

observation is made after the decay period (Tmeas > Ti) that agrees with the model:

Tmeas = t− tshift,i, (3.6)

where tshift,i is the previous time that cell i changed to a free or occupied state from some other

state. We interpret this as an observation that the cell has been consistent since tshift,i, therefore,

the decay period must be at least Tmeas.

Updating Ti is handled using the Kalman filter update rule:

dT = Tmeas − Ti, dρ = ρi + ρproc

K =
dρ

ρmeas + dρ

Ti = Ti+KdT , ρi = (1−K)dρ

where ρi is the variance of the estimate of Ti, ρmeas is the measurement noise, and ρproc is the

process noise. Both noise parameters can be tuned to suit the expected variance in dynamics of

29

Figure 3.5: Waypoint Selection uses the Sensor Model to determine the optimal observation loca-
tions. In this top-down horizontal slice of the occupancy grid, where the occupancy probability
of a cell is indicated by the shade of gray, the eight most informative locations extend beams
through cells that are predominantly gray (unknown), as opposed to white (free) or black (occu-
pied).

the environment, where increased measurement noise can blend widely varying measurements

and increased process noise can prevent the estimate from converging too quickly. While this

is a somewhat simple and imprecise approach to modeling periodicity in the environment, it is

effective at differentiating between static and dynamic regions while dismissing transient changes

as noise.

Waypoint Selection The first stage of the planning pipeline identifies a set of up to Nw reach-

able locations from which informative observations can be made. The informative quality of a

set of locations is determined from the Mutual Information (MI) in the observations taken at all

30

locations, defined as:

IMI [m; o] = H[m]−H[m|o]

= −
∑
i,j

p(mi, oj) log
p(mi)p(oj)

p(mi, oj)

where H[m] is the map entropy and H[m|o] the map entropy conditioned on the set of all obser-

vations. Intuitively, this utility score prefers a set of observations that cover the largest volume of

unknown space, with diminishing returns for overlap, as shown in Figure 3.5. Cauchy-Schwarz

Quadratic Mutual Information (CSQMI) [27] provides an alternative measure of MI in the form

ICS[m; o] = − log
(
∑

m

∫
o
p(m, o)p(m)p(o)do)2)∑

m

∫
o
p2(m, o)do

∑
m

∫
o
p2(m)p2(o)do

.

The key benefit of CSQMI is that the integrals can be computed analytically, resulting in a

faster solution than the numerical integration of MI. Additionally, Charrow et al. [27] present an

approach to further marginalize joint probability distributions between multiple beams intersect-

ing the same cells by ignoring beams that impact cells already being observed. We leverage this

measure to score the utility of observations, where the observation set with the largest CSQMI

value provides the best potential improvement of map confidence. For convenience, we assume

a locally static map, where CSQMI is evaluated against p(tstart,m|o1:n) derived from (3.3).

Algorithm 1 shows the details of the Waypoint Selection algorithm. First, function Dijk-

straReachables uses the path planning approach to find the set of all cells reachable from the

start location xs and store their centroids in L. In lines 3 to 17 the CSQMI function is used to

determine the information value of a set of waypoints. The waypoint which provides the set W

with the most additional information is appended toW . Note that if the added value is less than a

threshold ε, the algorithm breaks early and returns all waypoints found. This prevents the added

computational burden of scheduling uninformative waypoints.

31

Algorithm 1 Waypoint Selection
1: procedure WAYPOINTSELECT(m,xs, Nw, ε)
2: L← DijkstraReachables(m,xs)
3: W ← ∅ . Waypoint position set
4: while |W | < Nw do
5: wnext = arg maxl∈L CSQMI(m, tstart,W ∪ l)
6: d = CSQMI(m, tstart,W ∪ wnext)
7: −CSQMI(m, tstart,W)
8: if d < ε then
9: return W

10: end if
11: W = W ∪ wnext

12: end while
13: return W
14: end procedure

Path Planning Algorithm 2 presents Dijkstra’s algorithm modified to generate shortest-distance

paths to all reachable cells through our time-dependent occupancy grid. Feasibility of motion is

determined by assuming a constant travel speed, vtravel, and checking if cells are free at the time

of arrival. Dijkstra’s algorithm typically begins with an open set of nodes Q, initially only con-

taining the start node s (line 2), corresponding to the cell from which paths are generated. Then

neighboring cells are evaluated, as in lines 12 to 20, to determine if the path through the cur-

rent cell belongs to the shortest path. Two vectors, dist and prev, store the cost-to-come to cell

i from cell s and the previous cell in the shortest path available, respectively. After all reach-

able cells have been processed, the closed set of nodes, P , contains the set of all reachable

cells and the shortest paths are derived by iterating backwards through predecessors until s is

reached. The feasibility of transitioning to a cell is checked in line 15, where the boolean func-

tion isTraversable(mj, t) confirms the following conditions relative to cell j at the time of arrival,

t are satisfied:

height(j) > hsafe or distance(j, xs) < rsafe

p(t,mj|o1:n) < γfree.

32

Algorithm 2 Dijkstra’s Algorithm with Dynamic Occupancy
1: procedure DYNAMICDIJKSTRAS(m, s, ts, vtravel)
2: Q = {s} . Open nodes
3: P = ∅ . Closed nodes
4: for i = 0, . . . , |m| do
5: dist[i] =∞ . Distance from start
6: prev[i] = ∅ . Previous node
7: end for
8: dist[s] = 0
9: while Q 6= ∅ do

10: i← Q
11: Q = Q \ i, P = P ∪ i
12: for each j ∈ Neighbors(i) do
13: d = dist[i] + length(i, j)
14: t = d/vtravel + ts
15: if d < dist[j] and isTraversable(mj, t) then
16: dist[j] = d
17: prev[j] = i
18: Q = Q ∪ j
19: end if
20: end for
21: end while
22: return dist, prev
23: end procedure

The first condition checks if cell j is within the safety region, comparing the height of cell j

against hsafe and the radial distance of j from the vertical axis through xs against rsafe. The

second condition ensures that cell j is free.

In Waypoint Selection, the set of all reachable cells is determined by evaluating

DynamicDijkstras(m,xs, tstart, vtravel) to grow paths from the start location and extracting reach-

able cells from P . Once the set of waypointsW has been chosen, pairwise paths are computed by

evaluating DynamicDijkstras(m,w, tw, vtravel) for allw ∈ W , where tw = tstart+dist(xs, w)/vtravel

is the earliest instance waypoint w can be reached. Paths begun after tw are not guaranteed fea-

sibility, but we determine the instant a path becomes infeasible and schedule routes accordingly

in Waypoint Assignment.

33

(a) (t = 5) (b) (t = 320) (c) (t = 580) (d) (t = 1200)

Figure 3.6: Representation of the simulated environment populated by static (green) and dynamic
(orange) objects, with the starting location, xs, indicated in blue. Robots are displayed as cylin-
ders with tails showing the last 5 seconds of motion. The small gray blocks indicate occupancy
probability by their shade, with free cells being excluded for visibility. (a) Initially the world is
populated by unknown cells (p(mi) = 0.5). (b) As robots explore the environment, the decay
rate is learned from repeated measurements. (c) Cells in static areas decay via the same process,
but the rate of decay decreases with subsequent concurring observations. (d) When the model
reaches a steady state, static cells become consistent and the only unknown cells are those that
periodically contain objects.

Waypoint Assignment For the Waypoint Assignment algorithm, we leverage the work

of Stump and Michael [45] to schedule visitations by formulating an instance of the Vehicle

Routing Problem with Time Windows (VRPTW) for the current horizon and solving it using the

Stabilized Cutting-Plane Algorithm (SCPA) [49]. The main contribution of [45] was to incorpo-

rate virtual nodes corresponding to the intended locations of robots active at tstart into the VRPTW

formulation as a means of extending previously planned routes. This feature, coupled with the

energy capacity constraints inherent in the VRPTW definition, permits the iterative extension of

energy-aware routes over many horizons.

To construct a VRPTW instance, we define a graph G = (A,E) of nodes A and edges E.

The set A contains two nodes So and Sg corresponding to the start location, xs, at the beginning

and end of the route, Nw nodes corresponding to each waypoint in W , and one virtual node for

each robot whose route can be extended. Extendable routes are determined by evaluating how

much energy would remain if a robot were to continue operating until tstart, adding a virtual node

corresponding to the last scheduled waypoint before tstart.

The edge costs are derived from the paths computed using Algorithm 2. We use the paths

34

computed in Waypoint Selection for the edges between xs and W . The pairwise paths computed

in Path Planning for the set W provide the corresponding edge costs. The paths between the

virtual nodes and W are computed in a similar fashion, using the planned visit time of the last

scheduled waypoint as the path start time tw. Edges between xs and the virtual nodes are given

a travel cost of zero, to mimic the effect of a robot starting at the virtual node. Edges extending

from W to the virtual nodes are disabled to force activation of edges extending from So to the

virtual nodes, ensuring they are visited first in their routes.

The VRPTW instance for this problem is formally defined as:

min
x

∑
k∈K

∑
(i,j)∈A

cijx
k
ij (3.7)

s.t.
∑
k∈K

∑
j∈V

xki,j = 1 ∀i ∈ V (3.8)

∑
j∈V ∪Sg

xkoj = 1 ∀k ∈ K (3.9)

∑
i∈So∪V

xkig = 1 ∀k ∈ K (3.10)

∑
i∈N

xkih −
∑
j∈N

xkhj = 0 ∀h ∈ V, k ∈ K (3.11)

tki − tkj + dij − Z(1− xkij) ≤ 0 ∀(i, j) ∈ A, k ∈ K (3.12)

ai ≤ tki ≤ bi ∀i ∈ N, k ∈ K (3.13)∑
(i,j)∈A

Bijx
k
ij ≤ Bmax ∀k ∈ K (3.14)

where xkij ∈ 0, 1 indicates if the edge between node i and j is active for robot k from the set

of robots K, tki ∈ R+ represents the time at which node i is visited by robot k, cij represents

the cost activating the edge between i and j, V = A \ {So, Sg} is a subset of nodes excluding

the start and goal, and ai and bi define the lower and upper bounds of the time-window for node

35

Figure 3.7: Evaluation of system performance under various conditions. (Left) System operat-
ing under the static assumption (αi = 0) exhibits a lower entropy and higher divergence than
with the dynamic assumption (αi learned online), suggesting that confidence decay increases
accuracy and mitigates overconfidence. (Middle) Entropy and divergence using select param-
eter settings from Table 3.1. Convergence and steady-state improve as Nw increases and dhor

decreases. (Right) Active robot for varying parameters. More robots are deployed per horizon as
Nw increases and dhor decreases, to the limit that robots are capable of completely counteracting
the entropy growth, given the environment dynamics.

i. By setting cij to equal the travel time along the path between the corresponding waypoints,

the objective (3.7) will minimize the sum of travel time over all robots. Constraints (3.8)-(3.11)

ensure that only one robot leaves each node, each robot begins at the start node So and ends at the

goal node Sg, and any robots entering a node must leave it. Constraint (3.12) ensures that a robot

that travels the edge (i, j) arrives at j after tki plus the duration of travel dij . Constraint (3.13)

enforces the time-window bounds, ai and bi, and constraint (3.14) limits energy expenditure to

the battery limit Bmax, where Bij = max(tij, aj − ai) to conservatively estimate the expenditure

of energy assuming a constant discharge rate. Note that Bmax will be equal to the energy capacity

of freshly charged robots, but, for a virtual node, will instead be equal to the remaining capacity

of the active robot when visiting the last planned waypoint before tstart. To ensure the existence

of a feasible solution, we solve this system for a team size of |K| = |V |.

The upper time-window bound bi is set to the latest moment the edge (i, g) can be traversed

before cells encountered along the path transition to the unknown state. The formula to com-

pute the instant a cell becomes unknown is a simple inversion of the exponential decay from

equation (3.3):

tunknown,i =
1

αi
log

(
logit(p(mi|o1:n))

logit(γfree)

)
+ tlast,i. (3.15)

36

The latest departure from waypoint i to reach xs before the path closes can then be expressed as:

bi = min
j∈path(i,xs)

tunknown,j −
distance(i, j)

vtravel
,

where distance(i,j)
vtravel

denotes the travel time between nodes i and j. The lower time-window bound ai

corresponds to the earliest moment a cell observed from waypoint i transitions to the unknown

state:

ai = min
j∈oi

tunknown,j,

where each cell j for an observation oi taken from waypoint i is provided by the Sensor Model.

Note that if ai > bi then we set ai = bi, forcing the waypoint to be visited at the last possible

moment.

Solving a VRPTW in the above form is NP-hard and typically solved using branch and bound

methods to efficiently search the space of feasible solutions. Leveraging the work in [49], how-

ever, we relax constraint (3.8) and decompose the problem into more tractable subproblems.

Note that, excepting (3.8), all constraints are attributable to a single robot. Relaxing (3.8), we

generate a Lagrangian Dual objective of the form:

zLD(λ) = |K|

(
min
x

(cij − λi)xkij +
∑
i∈V

λi

)
, (3.16)

Note that minx(cij − λi)x
k
ij , combined with constraints (3.9)-(3.14), is an expression of the

Elementary Shortest Path Problem with Resource Constraints (ESPPRC) [50] for a single robot

using costs reduced by the Lagrangian multipliers λ. Maximization of this dual objective is then

a matter of testing values of λ against the set of feasible single-robot routes through the waypoint

set.

As it is impractical to test the set of all feasible routes, we rely on SCPA [49] to iteratively

build a set of Pareto-optimal paths while searching for the optimal λ. In each iteration, the

37

ESPPRC is solved for a given set of λ values and the resulting path(s) are appended to the

constraint set bounding (3.16). When the gap between zLD(λ) and the minimal-cost path is

small enough, the set of paths that actively constrain the dual objective become the solution set.

If each node is visited exactly once in the set of paths, then computation is complete. For multiple

visitations, we solve a set of problem formulations with an additional constraint that either forces

or excludes one of the transitions xkij , applied recursively until all feasible routes are considered.

3.3 Simulation Evaluation

We evaluate the proposed system through simulation experiments designed to address four ques-

tions - Q1: How well does the system perform under varying environment dynamics? Q2: How

do the parameter settings affect the evolution of map accuracy and confidence over extended op-

erations? Q3: How closely can the system model environment dynamics? Q4: Do robots make

efficient use of their limited capacity in the planned routes?

Setup Details In an effort to replicate a real-world scenario, we generated the simulated envi-

ronment depicted in Figure 3.6 consisting of 4m x 4m x 2m area populated by static walls and

dynamic objects. The dynamic objects remain still for a duration Tobs before transitioning to

another location, causing the cells they intersect to alternate between the free and occupied state.

Robots depart from and return to the starting location, indicated by the blue square in Fig-

ure 3.6. They are given an energy capacity corresponding to a maximum flight duration of 100

seconds. Note that it is convenient to describe energy capacity in terms of flight duration for

the purposes of evaluation and suffices under the assumption of constant energy expenditure. In

the described experiments, robots are added to the system as they are needed and removed when

they are finished.

38

Confidence and Accuracy The main measures of success considered in this work are model

confidence and accuracy. Confidence in the probabilistic model is evaluated by computing the

evolution of entropy over time:

H(t,m) = −
∑
mi∈m

p(t,mi) log2 p(t,mi) + (1− p(t,mi)) log2(1− p(t,mi)). (3.17)

As more cells trend towards p(t,mi) = 0.0 or p(t,mi) = 1.0 entropy will decrease, indicating a

high level of confidence in the representation.

Model accuracy is evaluated using the Kullback-Leibler divergence between the learned

model and an oracle model constructed from the true state of the world. In this oracle model, cells

that intersect an object at time t are given the occupancy probability of po(t,mi) = 1.0, whereas

cells that do not intersect objects are given po(t,mi) = 0.0. The Kullback-Leibler divergence

between the learned model and the oracle can be expressed as

DKL(t,m) =
∑
mi∈m

po(t,mi) log2

po(t,mi)

p(t,mi)
+ (1− po(t,mi)) log2

(
1− po(t,mi)

1− p(t,mi)

)
, (3.18)

where this value will decrease as p(t,mi) approaches po(t,mi) for all cells.

The left plot of Figure 3.7 shows how these measures evolve under the sample set of param-

eters: the number of waypoints per horizon, Nw = 8, horizon window size, dhor = 40 seconds,

horizon advance, dadv = 20 seconds, and the period of change for objects in the environment,

Tobs = 60 seconds. Assuming a static environment (αi = 0), we see that entropy falls sharply

to a low steady-state value, while divergence remains relatively high. This suggests a overcon-

fidence in a less accurate model representation. Conversely, learning αi during operation (the

dynamic assumption) causes divergence to closely follow entropy, resulting in a higher accuracy

at a minor cost of confidence.

We explore Q1 and Q2 with a series of test runs operating under various parameter con-

figurations and world dynamics. In the middle plot of Figure 3.7, the entropy and divergence

39

Table 3.1: Parameter evaluation. We vary Nw, dhor, dadv, and Tobs over multiple runs and collect:
the average number of robots deployed, Nr, the time divergence reaches 10% of the steady-
state value, tconv, and the entropy and divergence values averaged over the last 100 seconds of
operation, µH and µD. Trends suggest faster convergence to more accurate maps occurs with
higher Nw and lower dhor while higher Tobs converges slower to higher accuracy.

Nw, dhor, dadv, Tobs Nr tconv µH µD
2, 40, 20, 60 1.34 1337 1542 2013
3, 40, 20, 60 1.53 948.0 1578 1788
4, 40, 20, 60 1.81 1049 972.4 1502
5, 40, 20, 60 2.04 629.0 1215 1796
6, 40, 20, 60 2.32 499.0 1013 1640
2, 70, 35, 60 1.06 2225 2020 2268
3, 70, 35, 60 1.40 1853 667.1 1111
4, 70, 35, 60 1.54 1779 521.5 1161
5, 70, 35, 60 1.59 1410 519.4 1226
6, 70, 35, 60 1.73 954.0 433.8 1223

2, 100, 50, 60 0.77 2542 3220 3256
3, 100, 50, 60 1.05 2255 1445 1816
4, 100, 50, 60 1.25 2064 706.8 1323
5, 100, 50, 60 1.36 1669 517.4 1050
6, 100, 50, 60 1.40 1458 519.7 1115
2, 40, 20, 300 1.30 1351 1614 1754
3, 40, 20, 300 1.53 896.0 1203 1180
4, 40, 20, 300 1.69 685.0 1136 1295
5, 40, 20, 300 1.93 502.0 959.0 1089
6, 40, 20, 300 2.12 599.0 992.2 1043
2, 70, 35, 300 0.99 2077 2007 2073
3, 70, 35, 300 1.36 1788 593.3 757.6
4, 70, 35, 300 1.48 1475 471.3 582.6
5, 70, 35, 300 1.54 1378 462.6 602.6
6, 70, 35, 300 1.75 1141 482.3 606.8

2, 100, 50, 300 0.76 2640 2912 2739
3, 100, 50, 300 1.09 2557 1246 1205
4, 100, 50, 300 1.26 2101 719.0 798.4
5, 100, 50, 300 1.36 1668 596.6 699.4
6, 100, 50, 300 1.26 1711 530.2 648.5

decrease towards steady-state as the environment is explored, with the rate of convergence and

steady-state value changing depending on the chosen parameters. In Table 3.1 we see a general

trend of entropy and divergence to converge more quickly to lower values as Nw increases and

40

dhor decrease, which parallels an increase in the average number of robots deployed. Figure 3.7

(right) corroborates this pattern of deploying more robots when more waypoints are computed

for shorter horizons. We interpret from these results that by tuning parameters, we can drive the

system to deploy enough robots to saturate the environment with observations, allowing faster

convergence to a more accurate representation (Q2). Table 3.1 also shows a trend of lower

steady-state divergence (µD) for slower environment dynamics (higher Tobs). However, the con-

vergence rate suffers as it takes longer to observe the period of change (Q1).

Decay Period The precision of the environment dynamics model (Q3) is examined by sam-

pling the tracked decay period, Ti, of cells that periodically intersect objects. The progression

of Ti is portrayed in the left plot of Figure 3.8 for a sample run. The naive update rules (3.5)

and (3.6) may not closely approximate Tobs, but serve to differentiate between static and dy-

namic regions well. As such, cells that periodically contain objects maintain a consistent decay

period, while the decay period of static cells constantly grows.

Capacity Expenditure We check the duration of routes assigned to robots over the course of

an operation by compiling a histogram of expended energy for a sample run (Figure 3.8, right).

Note that the majority of plans operate for over 80% of the established flight duration, suggesting

that the Waypoint Assignment algorithm is taking full advantage of the limited energy capacity

(Q4).

Aperiodic Environments To further validate robustness to dynamic environments (Q1), we

test the system where Tobs is chosen randomly between 60s and 300s for every object every

cycle. Despite this inconsistent periodicity, Figure 3.9 shows that we maintain a consistent pro-

gression of entropy and divergence while maintaining the ability to differentiate between static

and dynamic cells.

41

Figure 3.8: Evaluation of dynamics modeling and energy expenditure of a sample run, Nw = 4,
dhor = 40, dadv = 20, and fobj = 60. (Left) The tracked decay period, Ti for a select set of cells.
The solid lines indicate mean Ti and the shaded areas indicate standard deviation. Cells that pe-
riodically intersect objects approximate Tobs, while cells in static locations consistently increase
Ti. (Right) Histogram suggests that robots prefer to expend the majority of their capacity. Short
duration routes are avoided to improve efficiency.

Figure 3.9: Evaluation for an environment with objects that move at a random frequency with
parameters, Nw = 6, dhor = 100, dadv = 50. (Left) Comparison between aperiodic (dotted line)
and periodic (solid line) dynamics. Spikes are no longer regularly spaced, but the convergence
remains consistent. (Right) Decay periods differ enough to distinguish static and dynamic cells
despite the unpredictable environment.

42

3.4 Conclusion

The method presented in this chapter addresses the base problem of deploying a multi-robot

team to persistently map a dynamic environment. We pursue deployments that actively search

for regions exhibiting discrepancies in observations over time and induce decay in the model

confidence for these regions to promote revisitation at a rate corresponding to the perceived rate

of change. In this manner, we are able to distribute our limited team to the places and times they

will be most effective. This is evidenced by many runs over varying parameter configurations and

environment dynamics that show the system consistently improve map accuracy by identifying

and revisiting dynamic regions. Additionally, we showed how the system may be tuned to deploy

more robots for faster convergence by increasing number of waypoints computed per horizonNw

or decreasing the horizon window dhor.

43

Chapter 4

Allocating Limited Sensing Resources to

Accurately Map Dynamic Environments

This chapter focuses on the problem of allocating limited resources to efficiently map an en-

vironment. First, we show how the Waypoint Selection objective is modified to factor in the

fidelity of the dynamics model when prioritizing regions to visit. This is evaluated in a simple

example, where independent cells are observed directly with no occlusion. We show that, us-

ing the updated objective, robots initially prioritize understanding static space, then transition

to distributing observations among dynamic regions. This results in a better steady state model

quality than MI, with fewer cells being abandoned once they are known with high confidence.

Then, we present an extension to this approach which incorporates the updated objective into the

multi-beam sensor model so that the utility function correctly balances CSQMI and the dynamics

model fit.

4.1 Problem Definition

In this chapter, we seek to accurately model the physical structure of a dynamic environment

where the number of sensing actions that can be taken at any given time is limited. When the

44

environment is initially unknown, the inherent dynamics must be discovered online before obser-

vations can be allocated appropriately. We choose to model the environment as a time-varying

occupancy grid mt = {m1,t, . . . ,mNc,t}, where any cell i can be in the occupied (mi,t = occ) or

free (mi,t = free) state at any time-step t. To model both the environment topography and how

it changes, each cell stores a unique and independent HMM parameterized by the probability the

cell is occupied

p(mi,t = occ) = 1− p(mi,t = free) ∈ [0, 1]

and the probabilities that the cell transitions between states

p(mi,t|mi,t−1) ∈ [0, 1] ∀mi,t,mi,t−1 ∈ {free, occ}.

Note that we assume the transition probabilities are locally stationary, where the value of

p(mi,t|mi,t−1) is held consistent for all t in the absence of observations, but can change when

the observed behavior disagrees with the model.

At each time-step, Nr sensing actions are taken that update the parameters of each HMM

in mt, as depicted in Fig. 4.1. Each sensing action produces an observation oj ∈ {hit,miss},

where γhit = p(oj = hit|mi,t = occ) and γmiss = p(oj = miss|mi,t = occ) describe the

likelihood of sensing the corresponding observation conditioned on the cell being occupied. For

this work, we assume each observation observes one cell directly with no occlusion and that there

is no additional cost incurred when transitioning between sensing actions (as would occur when

robots travel between locations to collect observations). While these assumptions are restrictive,

the results we generate provide clearer intuition as to the influence of limitations and parameter

choice in our approach directly.

The problem we address, then, is how to allocate the Nr < Nc observations available at each

time step to maximize the quality of the resulting model mt, where quality is defined relative to

45

Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6

Sensor 1 Sensor 2

(a) Diagram of example scenario

Occupied State

Cell 1
Cell 2
Cell 3

Free State Measurement

Cell 4
Cell 5
Cell 6

(b) Occupancy state time-series

Figure 4.1: This work explores an example scenario where Nc cells are directly observed by
Nr sensors and Nr < Nc. The objective is to appropriately allocate measurements, where Nr

are available at each time-step t, such that the inherent environment dynamics can be accurately
modeled.

the following three measures: 1) Entropy, expressed as:

H(mt) = −
∑

mi,t∈mt

p(mi,t) log2 p(mi,t) + (1− p(mi,t)) log2(1− p(mi,t)), (4.1)

provides a measure of model confidence as it decreases while the occupancy likelihood of all cells

trend towards 0 or 1. 2) Model accuracy is expressed through the Kullback-Leibler Divergence

between the learned environment model p(mi,t) and an oracle model where po(mi,t = occ) = 0

or 1 according to the ground truth state:

DKL(t,mt) =
∑
mi∈m

po(mi,t) log2

po(mi,t)

p(mi,t)
+ (1− po(mi,t)) log2

(
1− po(mi,t)

1− p(mi,t)

)
. (4.2)

3) The responsiveness of our approach is expressed through the response time dir,t which denotes

the amount of time that passes after cell i changes state before it is observed.

dir,t = (max(tiobs − tichange, t− tichange))dt, (4.3)

where dt is duration between time-steps. In this work, we show how our approach outperforms

standard techniques according to these measures despite the limited observations available.

46

4.2 Methodology

This work proposes an observation allocation strategy that scores cells based on the utility an ad-

ditional observation would provide and chooses which Nr of Nc cells to observe each time-step

based on that score. Section 4.2.1 describes the occupancy grid formulation in detail. Sec-

tion 4.2.2 describes the utility measure which factors in the projected information gain and cur-

rent goodness-of-fit to allocate observations. In Section 4.3, experiments highlight the benefits

of this approach and evaluate the effect of varying parameters on the method’s performance.

4.2.1 HMM Occupancy Grid

The model we use in this work is chosen to mimic the typical implementation of an occupancy

grid. However, a static model regresses all measurements over time directly into the occupancy

likelihood value, making it unsuitable for dynamic environments. As a result, historical bias

will have the dominant effect on occupancy likelihood, eventually forcing the model to stay in

one state, as depicted in Fig. 4.2a. In Chapter 3 we applied an exponential decay to drive the

likelihood back towards 0.5; however, in this chapter we investigate a more principled means of

representing the transition between states.

Meyer-Delius et al. [51] generalize the occupancy grid approach to account for environment

dynamics by defining an HMM at each cell. In this manner, the occupancy likelihood of each

cell evolves over a series of discrete time steps as an independent Markov process according to

the recursive update function:

p(mi,t|o1:n) = ηp(on|mi,t)
∑

mi,t−1∈{free,occ}

p(mi,t|mi,t−1)p(mi,t−1|o1:n−1), (4.4)

where η is a normalization constant.

Typical HMMs [52] are updated using Expectation Maximization (EM) to maximize the

47

0 200 400 600 800 1000
Time (s)

0

0.2

0.4

0.6

0.8

1

O
cc

up
an

cy
 L

ik
el

ih
oo

d

Static Occupancy

Occupancy Likelihood
Observed Values
True State

(a) Static Single Cell Model

0 200 400 600 800 1000
Time (s)

0

0.2

0.4

0.6

0.8

1

O
cc

up
an

cy
 L

ik
el

ih
oo

d

HMM Batch

Occupancy Likelihood
Observed Values
Stationary Probability
True State

(b) Windowed Single Cell HMM

0 200 400 600 800 1000
Time (s)

0

0.2

0.4

0.6

0.8

1

O
cc

up
an

cy
 L

ik
el

ih
oo

d

HMM Online

Occupancy Likelihood
Observed Values
Stationary Probability
True State

(c) Online Single Cell HMM

Figure 4.2: A time series comparison of binary-state models given sparse observations. A static
model has difficulty matching the true value when it oscillates, but the HMM versions learn
transition probabilities that allow for the change. The batched HMM performs sufficiently well
at the cost of storing a window of observations, but we see similar performance with the online
HMM approach without needing to store as much data.

accuracy of the model over a series of observations:

p(mi,t|mi,t−1) =

∑t
τ=1 p(mi,τ−1 = α,mi,τ = β|o1:n, θ)∑t

τ=1 p(mi,τ−1 = α|o1:n, θ)

where α, β ∈ {free, occ} and θ are the HMM parameters learned via the standard forward-

backward procedure. We can implement this method as an online approach by computing tran-

sition probabilities over a sliding window, resulting in the batched HMM update depicted in

Fig. 4.2b. While this may be sufficient in most cases, it still requires storing a significant amount

of data for each cell to accurately represent transition probabilities. Instead, we rely on the online

version derived by Mongillo et al [53] to update parameters as each data point arrives, as shown

in Fig. 4.2c.

Given that the measurements of cells arrive asynchronously, we define a regular time step and

apply measurements with p(on,mi,t) = 0.5 at each time step in between observations, effectively

applying a no-observation update:

p(mi,t|o1:n) =
∑

mi,t−1∈{free,occ}

p(mi,t|mi,t−1)p(mi,t−1|o1:n−1), (4.5)

48

which serves to drive the occupancy likelihood asymptotically towards the stationary probability:

pstat =
po|f

po|f + pf |o
,

where po|f = p(mi,t = occ|mi,t−1 = free) and pf |o = p(mi,t = free|mi,t−1 = occ). We

can see this process in the progression of occupancy likelihood in Fig. 4.2, where the likelihood

exponentially decays towards the stationary probability in the absence of observations.

4.2.2 Observation Utility Measure

Mutual Information is a useful measure of utility as it indicates the amount of information gained

through an additional sensing action. It can be expressed in the form:

IMI [m; o] = −
∑
i,j

p(mi, oj) log
p(mi)p(oj)

p(mi, oj)
,

or interpreted as the change in entropy, or uncertainty, as the result of a measurement:

IMI [m; o] = H[m]−H[m|o],

where H[m] is the entropy of the map and H[m|o] is the map entropy conditioned on the new

observation.

Given that this expression of MI is designed for static environments, it is insufficient when

the occupancy state is subject to change. While MI can be formulated to sufficiently address the

influence of transition probabilities, the additional parameters make the computation complex

and prohibitively expensive. If we used a dynamic model that guaranteed cells return to 0.5,

as in Chapter 3, then cells would never stall at high likelihood and MI alone would suffice.

However, since the HMM model can exhibit stationary probabilities with high confidence, we

consider using the goodness-of-fit of the transition probability parameters to augment the utility

49

measure.

As a measure of the goodness-of-fit, we leverage the Pearson’s χ2 test to determine how

well the transition probabilities match the history of observations. The χ2 test is a used to eval-

uate whether or not an observed frequency distribution conforms to a theoretical distribution.

Kalbfleisch and Lawless [54] show how this test can be used to determine how accurate the

transition probabilities are modeled.

The χ2 value is computed using:

χ2(t) =
∑

ij∈{occ,free}

(nijt − eijt)2

eijt
,

where nijt is the number of observed transitions from state i to state j from time step t−Lw to t

and eijt is the expected number of transitions, where eijt can be expressed as:

eijt = (p(mi,t)Lw)p(mi,t|mi,t−1).

The variable Lw denotes the window size, or the total number of time steps we search for transi-

tions. One can interpret this value as a scaled, square-distance measure of the transition proba-

bility parameter. As we see more or less transitions than expected, we can expect the value of χ2

to increase. If we use this value to modulate the observation rate of a cell, then cells that see the

incorrect number of observations will receive higher priority.

To incorporate the goodness-of-fit into our allocation objective, we compose the weighted

objective function:

ui = IMI [mi; oj] + α
χ2

Lw
, (4.6)

using the value α to balance the relative influence of the component objectives. Note that we

normalize χ2 by the window size Lw to mitigate its influence on the choice of α. This ensures

that the effect of α is consistent as the window grows over time (until t > Lw) or when Lw is

changed between runs, as is evidenced in Sect. 4.3.3.

50

(a) 10% dynamic (b) 30% dynamic (c) 50% dynamic

Figure 4.3: The set of test environments. Each dynamic cell is attributed an oscillation period
between 300s and 2000s, drawn from a uniform random distribution. The percentage of dynamic
cells varies between environments as listed.

4.3 Results

In this section, we compare the performance of the proposed allocation objective against alter-

natives and evaluate performance, as defined in Sect. 4.1, when parameters and conditions vary.

Section 4.3.1 describes the general format of experiments and provides details on the evaluation

criteria. Section 4.3.2 shows how the proposed approach outperforms random selection and the

component objectives used alone. Section 4.3.3 highlights the change in performance as the

relevant parameters are adjusted. Finally, Section 4.3.4 evaluates how performance varies as a

function of environment conditions.

4.3.1 Experiment Setup

In this work, we consider scenarios where the occupancy state of cells evolve over time at regular

intervals, where the state of each cell is represented by a square wave with the frequency fi.

As such, each cell will begin in the free state for a duration of Ti/2, where Ti = 1/fi is the

associated square wave period, before transitioning to the occupied state for the same duration.

Static cells are a special case where the cell exists in its initial state for all time. Excepting the

illustrative example in Fig. 4.4, environments are constructed in a grid of 1073 cells with the set

of dynamic cells and their Ti values sampled randomly. For each environment we test, a ratio of

51

Figure 4.4: Comparison of allocation objectives. The top row shows a time series in the same
manner as Fig. 4.2 where measurements are applied to one of four cells every 10 seconds and
each row within the plot corresponds to a different HMM cell. The bottom row plots entropy
and KL-Divergence for the set of cells in each approach. Random allocation serves as a base-
line for comparison. Allocating based on MI results in accurate models, but can abandon cells
once confidence is high, resulting in low entropy but high divergence. While χ2 alone produces
poor results, the proposed balanced objective can distribute observations based on the learned
dynamics resulting in low entropy and a fast decrease in divergence whenever a change induces
a spike.

dynamic to static cells is chosen and a random sampling of this fraction are assigned a value of

Ti sampled from a uniform distribution between 300 and 2000 seconds. To perform a run, we

allocate Nr observations to the cells chosen based on the specified allocation objective each time

step, advancing dt = 10s after each step. Cells that are observed are updated according to (4.4),

while other cells evolve according to (4.5).

4.3.2 Comparison of Objective Functions

We evaluate performance according to the entropy (4.1), KL-Divergence (4.2), and response

time (4.3) as formulated in Sec. 4.1 with one caveat. While we seek to reduce the response time

for all cells, the value which best reflects our response to changes over the whole map is the

52

average maximum response time fraction

E[dr] =
1

Nc

∑
i=1:Nc

max
t
d̄ir,t.

over all cells, where we define the response time fraction as:

d̄ir,t =
dir,t
Ti
,

interpreted as the response time normalized by the cell’s associated period of change. As a cell

changes state at each 0.5Ti, values of d̄ir,t > 0.5 indicate that cell i is receiving observations less

frequently than changes occur. Providing the average maximum d̄ir,t, as opposed to the maximum

over all cells, permits outliers to reduce the quality of performance without being the dominant

influence.

Figure 4.4 shows how the proposed allocation objective compares against alternatives. A

small test of four independent cells is run for each allocation objective with Nr = 1. A random

allocation objective provides a solid baseline, which exhibits a reasonable approximation of the

time-series occupancy likelihood, but is still capable of missing changes. We further evaluate

performance in Table 4.1, where tests are performed on the grid shown in Fig. 4.3b. The listed

values for average, steady-state entropy µH , divergence µD, and response time fraction E[dr] for

the random allocation case provide a target to exceed for our desired model confidence, accuracy,

and response time. Additionally, the number of cells that go unobserved in the steady-state Nu

highlights when an objective is not effectively distributing focus.

Allocation by MI, while appropriate for maximizing the confidence of individual cells, per-

forms significantly worse than random allocation when applied to the environment model as a

whole. Once an HMM reaches a stationary probability with high enough confidence, priority

is given to cells whose observations suggest dynamics. As time passes without subsequent ob-

servations for a cell, it appears to be static and is ignored. This results in high accuracy for a

53

Table 4.1: Comparison of approaches for runs in the 30% dynamic environment (Fig 4.3b) for
10,000 seconds. Each row corresponds to a separate run with the listed parameters. The µH and
µD terms correspond to the average entropy and KL-divergence of the last 2000s of operation.
E[dr] is evaluated over the last 2000s, where a value of greater than 1.0 suggests that a majority
of state changes go unobserved. Nu indicates the number of cells that are unobserved over the
2000s window. Note that the proposed approach outperforms all other allocation objectives, with
significantly smaller µH , µD, and E[dr] values as well as a sufficiently small Nu value.

Objective Nr µH µD E[dr] Nu

Random 100 337.7 340.4 0.2644 0
Random 150 284.6 299.8 0.1634 0
Random 200 250.5 270.9 0.1238 0
MI only 100 572.5 438.2 0.9315 98
MI only 150 490.1 319.0 0.4498 38
MI only 200 392.8 264.9 0.4319 33
χ2 only 100 276.1 320.8 0.7028 12
χ2 only 150 249.0 282.2 0.4779 1
χ2 only 200 229.3 245.9 0.3470 2

Proposed 100 297.6 325.7 0.1238 1
Proposed 150 222.3 217.3 0.0570 0
Proposed 200 177.8 157.8 0.0333 0

limited subset of cells, but low accuracy and confidence overall. We see the same trend in Ta-

ble 4.1, where Nu is significantly higher than other approaches. As many cells go unobserved in

the steady-state, the environment model exhibits a higher steady-state entropy and divergence as

well as poor response times.

Alternatively, using the χ2 goodness-of-fit measure alone results in measurements being dis-

tributed more evenly, but with less focus on ensuring high confidence. Measurements are drawn

to cells that do not observe the number of transition their HMMs predict. However, measure-

ments that occur immediately succeeding a change will drastically reduce model confidence for

the cell, making it more difficult to recognize subsequent transitions.

In using the proposed objective function, we can infer that the χ2 component serves to draw

attention to cells whose dynamics are inappropriately modeled while MI recovers confidence lost

in adapting to the newly recognized dynamics. Additionally, we note that our approach will bias

early measurements towards static cells, as these produce no transitions, until the transition prob-

54

(a) Heatmap (b) t = 400 (c) t = 1200 (d) t = 3000 (e) t = 6000 (f) t = 10000

Figure 4.5: Evolution of priority as the environment model is learned when allocating 150 ob-
servations per time-step according to the proposed objective. A heatmap of the true dynamics
is shown in a, where red indicates high frequency changes and blue indicates low frequency
changes. The subsequent images reflect the relative number of measurements assigned to the
cell over a 1000s time window preceding time t, with cells appearing more transparent the fewer
measurements they are allocated over the window. Initially, measurements are spread evenly
over all cells. Then focus is directed towards finding the static cells in the environment. Finally,
measurements are distributed with a bias towards dynamics cells until the distribution accurately
reflects the underlying dynamics.

abilities are low enough and confidence high enough that other cells draw focus. This process

is highlighted in Fig 4.5, where our approach is applied to an environment with cells of corre-

sponding dynamics artificially clustered to show how attention is allocated. By expending effort

to initially identify static regions, we allow ourselves significantly more observations for dy-

namic regions, eventually settling on a distribution of attention that reflects the true environment

dynamics.

4.3.3 Varying Parameters

Table 4.2 shows how performance changes relative to parameter choice. The first thing to note is

that altering the time window Lw does not appear to have an appreciable effect on performance.

As Lw simply defines the range of time in which we search for transitions, it is sufficient to define

Lw large enough to account for the expected dynamic range and small enough to quickly forget

data collected before the model has converged.

While we treat Nr as a parameter, it is more accurate to consider Nr as a problem constraint

as the rate of observation collection is usually limited by the available number of robots and

how quickly they can respond. As can be expected, increasing this value results in a drastic

improvement in performance.

55

Table 4.2: Evaluation of performance as a function of parameter choice. Again, each run operates
for 10,000 seconds on the environment in Fig. 4.3b. The objective performs as expected, with Lw
not having a significant impact, Nr improving performance as more observations are available,
and α mimicking the component objectives as it is tuned in either direction.

Lw Nr α µH µD E[dr] Nu

1000 100 10 420.0 416.8 1.332 117
3000 100 10 392.9 451.0 1.632 130
5000 100 10 392.8 452.4 1.604 132
1000 150 10 311.0 343.0 1.202 85
3000 150 10 306.8 350.2 1.298 88
5000 150 10 305.2 350.6 1.369 88
1000 200 10 261.6 268.0 1.011 54
3000 200 10 256.0 267.7 1.052 53
5000 200 10 256.4 267.8 0.9191 50
1000 100 100 290.9 253.5 0.06865 0
3000 100 100 297.6 325.7 0.1238 1
5000 100 100 297.8 347.8 0.1504 1
1000 150 100 219.5 163.9 0.0434 2
3000 150 100 222.3 217.3 0.05703 0
5000 150 100 229.4 238.8 0.06176 0
1000 200 100 185.6 136.7 0.04156 2
3000 200 100 177.8 157.8 0.03326 0
5000 200 100 182.6 169.1 0.03602 0
1000 100 200 334.5 287.9 0.1551 0
3000 100 200 314.3 347.9 0.2521 0
5000 100 200 318.5 345.1 0.2763 0
1000 150 200 228.5 172.2 0.0362 0
3000 150 200 242.3 259.2 0.0742 0
5000 150 200 246.5 265.0 0.1001 0
1000 200 200 197.5 148.4 0.04378 2
3000 200 200 192.0 194.5 0.04598 0
5000 200 200 198.1 206.6 0.05416 0

Varying the objective weight predictably scales the influence of the associated component

objectives. As α becomes smaller, performance mimics a pure MI objective with poorer perfor-

mance measures and a drastic increase in steady-state Nu. Larger α values mimic the pure χ2

objective, with reasonable performance, but less than when properly balanced.

56

Table 4.3: Comparison of performance for different concentrations of dynamics. Tests are per-
formed on the environments depicted in Fig. 4.3 for 10,000s each. The weight α is varied for
each run, while the remaining parameters are fixed to Lw = 3000 and Nr = 150. Environ-
ments with less dynamics cells prefer an allocation objective closer to pure MI while more dense
dynamic cells lean towards pure χ2.

α Dyn % µH µD E[dr] Nu

10 10 114.4 46.56 0.01938 0
50 10 96.60 49.41 0.02549 0

100 10 94.87 57.34 0.03464 0
150 10 99.82 67.95 0.04216 0
200 10 106.3 80.01 0.06319 0
10 30 306.8 350.2 1.298 88
50 30 232.3 235.9 0.1475 6

100 30 222.3 217.3 0.05703 0
150 30 230.8 235.1 0.05913 0
200 30 242.3 259.2 0.07420 0
10 50 442.5 704.2 2.286 247
50 50 383.3 551.3 0.5649 58

100 50 388.7 479.9 0.1110 7
150 50 395.0 472.5 0.09815 1
200 50 401.2 482.4 0.1074 0

4.3.4 Varying Environments

To evaluate performance as environment conditions change, we run simulations on randomly

generated environments of varying density of dynamic cells. Figure 4.3 shows the three environ-

ments tested in this work, with 10%, 30%, and 50% of cells oscillating between the occupied and

free state with periods drawn from a uniform distribution between 300s and 2000s. As expected,

the more the environment exhibits change, the harder it is to model. However, we note that the

best choice of α appears to vary depending on the environment. More static environments prefer

an approach closer to pure MI, while environments with dense dynamics rely more heavily on

the χ2 objective.

57

4.4 Discussion

There are two main limitations when using this approach that we note in this section. First,

the approach is sensitive to an accurate determination of the number of observed transitions,

nijt. If the sensor noise is significant, false positives can be registered, which promote further

measurements of false positives, creating a self-sustaining loop that biases priority towards cells

that produce noisy measurements. Strategies for determining nijt in the presence of noise will

allow this approach comparable performance that is robust to noisy measurements.

Second, cells with low transition probabilities will be revisited at very low frequencies. This

trait is acceptable when the dynamics do not change, but less so when a static region becomes

dynamic at some future time (e.g. a region is designated for parking). We expect that inducing

decay in the confidence of our dynamics model as well as the occupancy likelihood will serve to

promote revisitation of cells that have been considered static for too long a duration.

4.5 Conclusion

This work presents a strategy for allocating limited sensing resources to mapping a dynamic en-

vironment. As expected, the best performance is achieved when the distribution of observations

reflects the dynamics being observed, which is most easily achievable when the dynamics are

learned quickly. The results show that our proposed approach outperforms both the pure MI

and χ2 objectives, which suggests that environments can only be modeled accurately if there is a

balanced effort between reinforcing poorly modeled dynamics and reducing uncertainty in occu-

pancy likelihood. When this balance exists, we are capable of ensuring an average response time

significantly less than 0.5Ti when as little as 14% of cells are observed each time step. While

this value will vary based on the dynamic properties of the environment, future works can extend

these results to provide performance guarantees relative to the available number of robots and

their limited energy capacities while considering the influence of travel time.

58

Chapter 5

Deployment Planning for Online Mapping

of Dynamic Environments

In this chapter, we combine the framework described in Chapter 3 with the HMM-based envi-

ronment modeling strategy and associated waypoint selection objective in Chapter 4. The new

objective is extended to work with a multi-beam sensor (and multiple observations with the same

sensor) to allow for seamless integration within the updated framework. Additionally, we investi-

gate an updated planning strategy that considers multiple planning iterations per horizon as well

as alternative Waypoint Assignment formulations, both to improve performance and to ensure

the discovery of feasible routes when the full set of Nw waypoints is not reachable by available

robots.

The updated system we propose in this chapter is outlined in Figure 5.1. As before, a plan-

ning cycle begins with the Waypoint Selection algorithm, which iteratively selects the Nw most

informative waypoints from a set of reachable locations. However, in the updated version of our

approach we allow for multiple planning cycles each horizon, drawing a new set of Nw way-

points each cycle. This change allows us to extend plans up to the limits of the horizon duration

and/or robot energy capacity. For efficient computation of these planning cycles, it is convenient

to maintain a pool of candidate waypoints, greedily updating the cost relative to the previously

59

selected waypoints and selecting the next best candidate. This process is described in detail in

Sect. 5.3.

Waypoint Selection

Path Planning

Dijkstra's Algorithm

Waypoint
Locations

Waypoint Assignment

Compute Cost Graph Assign Waypoints to
Robots

Build Candidate Pool

Dijkstra's Algorithm

Candidate
Waypoints

Extract Waypoint Paths

Compute Paths Between PointsExtract End Cell
Locations

Compute Splines
Through Waypoints

HMM Query

Environment Model

HMM Update

Occupancy
Likelihoods

Select Informative
Waypoints Waypoint

Paths

Sensor Model

Rasterize Beam

Complete
Trajectories

Simulator

Execute Plans

Collect observations at
regular intervals

Update Horizon

Observed Cells

Incomplete
Trajectories

Active
Robot
Starts

Extract Endpoints from
Incomplete Paths

Active
Robot
Starts

Figure 5.1: System Diagram. The planning pipeline (yellow blocks) generates plans executed
by the simulation environment (red blocks), which generates observations for the observation
model (green blocks) that provides map information to the planning pipeline. Note that, after
the Waypoint Assignment block, the planner loops back to Waypoint Selection to extend plans if
possible. Otherwise, the plans are sent to simulator for evaluation.

Once waypoints are selected, the Path Planning algorithm, Sect. 5.4, generates a set of

shortest-distance paths between all pairs in the set of Nw waypoints. The focus, at this stage,

is to provide a fast estimate of cost and feasibility to inform Waypoint Assignment, as opposed

to investing in high-quality paths that may never be traversed. To simplify collision avoidance,

we assume all rapid changes due to transient motion occur outside a user-defined safety region,

designated by a radius of rsafe around the starting location, xs, and all locations above a height

of hsafe. Given the disaster response application, this is a reasonable assumption that allows Path

Planning to assume an accurate Environment Model. We continue to rely on Dijkstra’s algorithm

to compute energy-feasible paths, but guarantee dynamic feasibility, in terms of velocity and

acceleration limits, through the use of motion primitives to describe the motion between cells.

60

While the Waypoint Assignment algorithm, Sect. 5.5, still relies on solving an ILP-based

graph of the waypoints and corresponding pair-wise paths it has been simplified to remove the

time window constraints, reflecting a reliance on the assumption that our environment is locally

static. These constraints are of less significance without a time-dependent utility measure, as the

exact time an observation is collected will not heavily impact overall performance if environment

changes occur infrequently over many horizons. Additionally, we present several ILP alternatives

and discuss their effect on the overall performance.

Once the routes are generated, trajectories are formed by concatenating paths between the

waypoints along each route. If these trajectories fill the planning horizon, then they can be sent

to the robots and resulting observations can be integrated into the Environment Model. However,

if it is possible to add more waypoints, we repeat the planning cycle as detailed in Algorithm 3.

The key difficulty lies in determining the set of pseudo-waypoints Ws, which serve as virtual

nodes in Waypoint Assignment that robots must visit first to ensure continuity across planning

iterations. At the first planning iteration each horizon, shown in line 4, this set of waypoints

corresponds to the next set of waypoints each robot intends to visit after tstart in the current plan.

Further waypoints are discarded and active robots start from these locations. In subsequent plan-

ning iterations, starting at line 13, Ws includes the last assigned waypoint for each active robot,

allowing Waypoint Assignment to append new waypoints to each robot’s plan. The intention is

to simply extend each plan until robots expend their capacity or the planning horizon ends.

Under the traditional occupancy grid formulation, the Environment Model would simply pro-

cess these observations to update the occupancy probability of all observed cells. However, our

model, described in Sect. 5.1, incorporates the Hidden Markov Model approach introduced in

Sect. 4.2.1, where we leverage existing techniques to learn an HMM online by incorporating

irregularly timed observations, allowing the confidence in the model to decay as time progesses

with no observations.

61

Algorithm 3 Extend Plans over a Finite Horizon
1: procedure COMPUTEHORIZON(tstart, dadv, P)
2: Ws ← ∅ . First waypoint to be used in updated plans for active robots
3: for each pi ∈ P do . Collect the set of waypoints first visited after tstart

4: Ws ← Ws∪{nextVisitedWaypoint(pi, tstart)}
5: end for
6: while 1 do
7: ComputeSchedules(tstart,Ws, P) . Main loop to compute schedules
8: if isExtendable(P, tstart + dadv) then
9: break

10: else
11: Ws ← ∅
12: for each pi ∈ P do . Collect the set of waypoints last visited after tstart

13: Ws ← Ws∪{lastVisitedWaypoint(pi, tstart)}
14: end for
15: end if
16: end while
17: tstart = tstart + dadv

18: end procedure

5.1 Environment Model

The system described in this chapter requires a spatiotemporal representation of occupancy prob-

ability, but has a large degree of flexibility regarding what form this representation takes. While

it is possible to consider other forms of probabilistic environment models, for this work we con-

tinue to utilize the HMM occupancy grid described in Sect. 4.2.1 as it allows for a simple exten-

sion to the complete system described in Chapter 3, which incorporates sensors with long-range

beams and planning that considers movement limitations. Recall the HMM update function for

individual cells:

p(mi,t|o1:n) = ηp(on|mi,t)
∑

mi,t−1∈{free,occ}

p(mi,t|mi,t−1)p(mi,t−1|o1:n−1), (5.1)

which describes how an observation is incorporated into the environment model. Although we

are no longer observing cells individually, the process by which a multiple-cell observation in-

forms each single-cell model does not change.

62

At the beginning of each planning horizon, the HMM for each cell is queried for its value at

time tstart by advancing the model by time steps according to (5.1) and incorporating the appro-

priate observed states. We then use the occupancy likelihoods for each cell at this time for all

subsequent queries, enforcing a locally static assumption. This assumption can be restrictive for

excessively long horizons, but obviates the need for a computationally intractable evaluation of

time-varying observation utility (as described in Sect. 5.2.2).

5.1.1 Computational Complexity

As we have elected to use an online approach to environment modeling, as described in

Sect. 4.2.1, both the updates and queries can be executed in constant time (O(1)). If we had

used the windowed HMM update, complexity would be dependent on window size, but the on-

line approach is both faster and more reactive to changes in the environment. Each individual

cell update evaluates a constant number of values, which is repeated for each observed cell for

the number of time steps between the current and previous observation.

5.2 Sensor Model

The sensor model used in this work represents a range sensor that measures occupancy by ex-

tending beams into the environment, each collecting a set of distance measurements at various

angles. The traditional approach to modeling range sensors updates each cell a beam passes

through as observed in the free state and the cell in which a beam impacts an obstruction is ob-

served in the occupied state with each observation action. We apply a simplification, applicable

in a simulated environment, in which each cell a beam passes through is updated according to its

ground truth state. This circumvents the case where a cell is only partially occupied and a beam

passing through the empty space provides an inaccurate observation of the cell state. While this

assumption may be somewhat restrictive when considering real-world conditions, it is possible

63

Figure 5.2: The variables associated with the Sensor Model. The maximum sensor range, rsense,
describes the maximum distance a beam is extended, the field of view, θsense, describes how wide
the sensor scans vertically or horizontally, and ρsense describes the number of beams per vertical
or horizontal scan.

to devise a model for p(on|mi,t) that appropriately accounts for this pathological case without

requiring any change to the overall environment model.

Figure 5.2 shows the parameters used to describe the sensor model. Given that range sensors

typically scan vertically and horizontally, the key variables of interest are:

• The maximum beam range rsense.

• The scan width θsense.

• The number of beams per vertical or horizontal scan ρsense.

While both θsense and ρsense can have separate definitions for each axis of the scan, we choose

the same scan width and number of beams for both the vertical and horizontal axes to simplify

the evaluation in Chapter 6. Although we define a specific sensor configuration to facilitate

evaluation, other configurations would be equally applicable with no appreciable change to the

overall system.

64

5.2.1 Computational Complexity

To determine which cells a beam passes through, we use a ray-tracing algorithm presented

by Amanatides and Woo [55] that works by iteratively stepping along grid cells from the ray

start to the ray end, ending at the map border if the beam range has yet to be exceeded. Thus, the

complexity of determining the cells an observation intersects is O(BC), where B is the number

of beams in an observation action and C is the number of cells each beam intersects.

5.2.2 Observation Utility

Given the sensor model chosen for this approach, we define a utility function to prioritize obser-

vations that best improve the accuracy of our environment model. The static components of the

model are represented using the occupancy likelihood parameters, while the dynamics are cap-

tured by the transition probabilities. An appropriate utility function will account for both when

determining where to allocate observations. As such, we define a utility function:

ui = ICS[mi; oj] + α
χ2

Lw
, (5.2)

which balances a information theoretical objective ICS[mi; oj] against a goodness-of-fit for the

dynamics model χ2 using a user-defined weighting parameter α. The rest of this section will

elaborate on the components of this mixed objective.

The first component of the proposed objective uses the CSQMI-based utility score introduced

in Sect. 3.2 to prioritize waypoints that maximize information gain relative to the map in its

current state. Recall that CSQMI operates as a measure of the reduction of entropy that occurs

as a result of the observation action, expressed in the form:

IMI [m; o] = H[m]−H[m|o] = −
∑
i,j

p(mi, oj) log
p(mi)p(oj)

p(mi, oj)
.

For a static environment, or in cases where observations can be collected immediately, selecting

65

observations based on this score is the most efficient way to increase model confidence.

However, CSQMI alone is insufficient to define the utility of a measurement for our environ-

ment model that also tracks dynamics. To prioritize the observation of regions that are poorly

modeled with respect to dynamics, we augment the utility function with a goodness-of-fit mea-

sure introduced in Chapter 4. Recall that this measure is expressed the form:

χ2(t) =
∑

ij∈{occ,free}

(nijt − eijt)2

eijt
,

where nijt is the number of observed transitions from state i to state j from time step t−Lw to t

and eijt is the expected number of transitions, where eijt can be expressed as:

eijt = (pstatLw)p(mi,t|mi,t−1).

The variable Lw, denotes the window size, or the total number of time steps we search for tran-

sitions.

Two final considerations for our utility function are: first, how to address multiple observa-

tions of the same cell and second, how to incorporate occlusion into our objective. We account

for these by considering the visibility of cells a beam passes through. Visibility is expressed as:

visb(ci) =
∏
j<i∈b

(1− p(cj)) (5.3)

where j < i defines the set of cells in c that precede i along beam b’s direction vector. Using this

value, we can determine the expected χ2 value of visible cells using the equation:

E[χ2
i] =

∑
i

visb(ci)χ2
i . (5.4)

While this formulation addresses occlusion, we must also consider how multiple observations

from different beams can be incorporated into the utility function. If we were to sum these

66

contributions directly, then the utility function would favor multiple views of the same regions

despite the fact that multiple observations provide limited benefit. To preserve the submodular

property of our objective, we use the maximum visibility across all beams for each cell:

Eo[χ
2
i] =

∑
i∈o

max
b∈o

visb(ci)χ2
i , (5.5)

which has the benefit of considering the utility of observing each cell only once at the cost

of ignoring the potential benefit of viewing a cell multiple times. Incorporating this form of

expected χ2 into the utility function, the final form of our waypoint selection objective function

is expressed as:

ui = ICS[mi; oj] + α
Eoj [χ

2
i]

Lw
. (5.6)

5.2.3 Computational Complexity - Utility Function

Charrow et al. [27] proposes an efficient approach to computing CSQMI with an evaluation of the

computational complexity. It is shown that by assuming cell lengths are larger than the variance

in beam measurement the components corresponding to joint probabilities between cells in (3.2)

can be simplified such that the CSQMI of a single beam can be computed in O(C), where C is

the number of cells the beam intersects. When multiple beams are considered simultaneously

the complexity becomes O(TBC), where T is the number of poses from which an observation

is taken and B is the number of beams cast in a single sensing action. Note that this accounts for

multiple observations taken, as long as the map does not change between observations.

We can apply a similar analysis to the χ2 component of the utility function, given that we

are generating another submodular objective that modifies the contributions of observing cells

based on the source beam. As each cell from the set of C cells provides a χ2 measure which is

multiplied against each of B beams in observations from T poses, we again have a complexity

of O(TBC), which when added to the CSQMI complexity yields a cumulative complexity of

O(TBC). From this result we can conclude that, while the joint objective is more costly than

67

the single objective, is scales no more poorly than the single objective relative to the number of

cells or observations.

5.3 Waypoint Selection

The updated version of our Waypoint Selection approach has been split into two component al-

gorithms to accommodate building a pool of candidates to iteratively draw from each planning

cycle. Algorithm 4 first builds the candidate pool once per horizon, then Algorithm 5 selects Nw

waypoints from this pool each planning iteration. Algorithm 4 is essentially a single iteration

of Dijkstra’s algorithm to determine the set of feasible paths from the starting location, xs, fol-

lowed by storing the set of end locations as candidate waypoints. This process begins with the

DijkstraReachables function, which uses the path planning approach (described in Sect. 5.4) to

find the set of all cells reachable from the start location xs and store their centroids in Cl. Each

waypoint is paired with a utility score, initialized as ∞, and stored in the candidate pool Wc,

from which we draw the set of Nw points each planning iteration.

Algorithm 5 then performs this drawing while lazily updating the scores relative to the cur-

rently selected set W . This output set is initialized with the set of pseudo-waypoints selected at

the beginning of each planning iteration, as expressed in Algorithm 3, and updated each iteration

of the while loop in line 3 as each new waypoint is added. The basic loop starts with the Sort-

ByScore function by sorting the candidate pool Wc relative to the utility score such that the first

drawn waypoint is the highest scoring waypoint. Then, we iterate through each waypoint in the

loop, updating the associated score stored in Wc relative to the set W , until we reach a waypoint

with a score less than the current best score. Given that the utility score is monotonically non-

decreasing with the addition of new measurements, the score of any given waypoint w will never

increase with the addition of more waypoints to W . We can interpret this as:

computeUtility(m,w, tstart,W) ≥ computeUtility(m,w, tstart,W
′) ∀ W ⊂ W ′,

68

which suggests that there is no merit to recomputing the score of waypoints whose last com-

puted score is less than the current best. Also, given that Wc is sorted according to last computed

utility score, the current best waypoint wnext is the highest scoring waypoint of the current iter-

ation. Thus, the algorithm can exit the loop and transition wnext from Wc to W , continuing this

process until Nw waypoints have been added to W . In this manner, we are able to select the

Nw best waypoints in each planning iteration without significantly increasing the computational

complexity.

Algorithm 4 Build waypoint candidate pool
1: procedure BUILDCANDIDATEPOOL(m,xs)
2: Cl ← DijkstraReachables(m,xs) . Candidate locations
3: Wc ← Ws . Scored candidate waypoint
4: for each ci ∈ Cl do
5: Wc ← [ci,∞]
6: end for
7: return Wc

8: end procedure

Algorithm 5 Lazy Waypoint Selection
1: procedure WAYPOINTSELECT(m,xs, tstart, Nw,Wc,Ws)
2: W ← Ws . Waypoint position set
3: while |W | < Nw do
4: SortByScore(Wc)
5: for each [w, s] ∈ Wc do
6: if s < snext then . Exit if utility is less than the current best
7: break
8: end if
9: s = computeUtility(m,w, tstart,W) . Update utility relative to W

10: if s > snext then . Track the highest scoring waypoint
11: snext = s
12: wnext = w
13: end if
14: end for
15: Wc = Wc \ wnext . Move waypoint from candidate to output
16: W = W ∪ wnext

17: end while
18: return W
19: end procedure

69

Figure 5.3: (Left) An example of the testing environment. The dimensions are defined by the
black wireframe box, with the safety height defined by the red square. Dynamic cells are shown
differentiated by color relative to frequency of change, while static cells are not shown in the
figure. Note that all dynamic cells are below the safety height. (Right) The example environment
with the planning grid nodes superimposed as blue spheres. In this figures, the planning grid
is half the resolution of the environment model to simplify the search algorithms. Note that all
planning nodes are above the safety height.

Additionally, to allow for a higher resolution occupancy grid, we select waypoints from a

low resolution planning grid that is superimposed on the environment. This is a similar approach

to subsampling potential candidates that ensures an even spread of potential observations over

the environment. While many cells will not be visited with this approach, a sensor with an

appropriately small beam separation angle will be able to view any cell in the environment model

from a nearby planning grid node. An example of this separation of grid specifications is shown

in Fig. 5.3, where a planning grid is superimposed on an environment model with twice the

resolution.

5.3.1 Computational Complexity

As Algorithm 4 consists of a single application of Dijkstra’s algorithm, the complexity isO((E+

V) log(V)), as described in detail in Sec. 5.4.2. The complexity of Algorithm 5 is largely a

function of how many utility score evaluations must be performed. In the worst case, each

candidate waypoint must be re-evaluated every time a waypoint is selected. This results in NwNl

evaluations of utility score, where Nl = |Cl| = |Wc| is the number of candidate waypoints.

This can become expensive as the number of candidates, drawn from the set of cells reachable

70

from xs, will be large for any environment model of significant size or resolution. The algorithm

shows that each evaluation of utility considers |W | + 1 poses, but it is possible to compute the

relative score of adding an additional waypoint if one stores the likelihood of intersecting cells

with observations from W . As such, the utility computed each iteration only costs O(BC),

resulting in a worst case complexity for Waypoint Selection of O(NwNlBC). Adding to this

the complexity of sorting Wc each cycle of the while loop in line 4 yields a total complexity of

O(NwNlBC + NwNl logNl). In practice, however, the lazy-greedy approach only evaluates a

small subset of candidates per iteration, resulting in a significant decrease in computation time.

5.4 Path Planning

Path Planning between selected waypoints is handled using Dijkstra’s algorithm in the same

manner as presented in Chapter 3. By computing Dijkstra’s paths from each waypoint to each

reachable cell, we can extract all possible paths that could be traveled from any permutation of

waypoint visitations. The proposed system employs the standard implementation of Dijkstra’s

algorithm, with a few adjustments to account for the specific application. First, collision con-

straints are handled using the learned environment model. As we assume a locally static environ-

ment, we evaluate the model at the planning horizon start time tstart and plan paths only through

cells with a high probability of being free: p(mj,tstart|o1:n) < γfree, where γfree is a user-defined

parameter. Second, we restrict movement to a safe region where we assume no fast-moving ob-

stacles exist. This is modeled as a cylindrical region surrounding xs of radius rsafe and all cells

above a height hsafe. This restriction is not significantly limiting when operating with quadrotor

vehicles in a disaster scenario, as the majority of dynamic obstacles will exist at street level and

we can safely assume high model accuracy above a certain height.

71

5.4.1 Trajectory Generation

To enforce dynamic constraints, we build the splines used to describe robot motion from a motion

primitive library. It is trivial to define trajectories that can safely move robots from one cell to the

next and concatenate these primitive motions to generate a spline from the computed Dijkstra’s

path. In the proposed approach, we compute polynomial splines that minimize jerk relative to

endpoint constraints, which is a simple solution of a set of linear equations of the form:

min
f

∫ T

0

(
d3f(t)

dt3

)2

dt (5.7)

s.t.
dkf(τ)

dtk
= xk(τ) ∀τ = 0, T ; k = 0, 1, 2, (5.8)

where f(t) is a nth order polynomial, xk(0) is the kth derivative starting condition (position:

k = 0, velocity: k = 1, acceleration: k = 2), with xk(T) corresponding to the kth derivative

ending condition, and T as the time it takes to travel from start point to end point at the user

specified constant speed, vtravel. Generating a full set of primitives for the proposed approach

requires defining all possible motions a robot may take through a cell. These include:

1. motions that accelerate from 0 to vtravel from the cell centroid to each exit point

2. motions that move from each entrance to each exit starting and ending at vtravel

3. motions as in 2, but which pass through the centroid at τ = 0.5T

4. motions that decelerate from vtravel to zero from each entrance to the centroid

Note that each of these motions is constrained to zero acceleration at each endpoint (x2(0) =

x2(T) = 0). Given these motions, a path begins with a motion taken from 1, concatenates

motions from 2 with motions from 3 used when passing through a waypoint, ending with a

motion taken from 4. A visualization of these primitives is provided in Fig. 5.4.

While it is possible to formulate dynamic constraints that enforce limits across the full spline

by adding inequalities for values of τ = βT for 0 < β < 1, significantly increasing the number

of constraints will make the problem harder to solve and may result in ill behaved trajectories.

72

Figure 5.4: (Left) A sample set of 2D primitives. The Starting trajectories accelerate to vtravel

from the center to the corners and edges. The At-Speed trajectories enter from corners and edges
and exit from corners and edges at vtravel. Transition trajectories perform the same action, but
are constrained to pass through the centroid. Ending trajectories enter from corners and edges,
decelerating to zero at the centroid. (Right) The full set of 3D primitives used in this work. The
motion primitive library can be maintained at a manageable size if motions are constrained to a
single speed at the transition points.

It is sufficient to compute trajectories for a given value of vtravel then lower vtravel if any dynamic

constraints are violated. In this manner, any path generated from the planning grid and con-

structed by concatenating motion primitives will, by definition, be smooth and adhere to velocity

and acceleration limits. Note that it is possible to generate the motion primitive library using any

preferred method without affecting the system process as long as the primitives are dynamically

feasible and defined for all required motions.

5.4.2 Computational Complexity

A single Dijkstra’s operation has been shown to compute in O((E + V) log(V)) time for a

graph of V vertices and E edges if the graph is stored as an adjacency matrix and paths are

grown according to a priority queue. As Algorithm 2 operates on a regular 3D grid, with the

neighborhood determining adjacency, and a priority queue stored in Q, this complexity applies.

Computing paths for all waypoints requires O(Nw ∗ (E + V) log(V)), where V is the number of

cells reachable from the starting cell, s, and E is proportional to V relative to the neighborhood

73

size.

5.5 Waypoint Assignment

Given the selected waypoints and the computed paths, we next formulate a Vehicle Routing

Problem (VRP) and solve for optimal routes. Traditionally, VRPs are expressed in graphical form

G = V,E, where each node in V corresponds to a waypoint and each edge in E corresponds to a

path between waypoints. Optimal routes through G are cycles joined at the node corresponding

to the starting location that, together, visit all waypoints exactly once. Additionally, we constrain

the energy expended in each route to ensure long-term feasibility. This results in a variant of the

VRP known as the Capacitated VRP, which includes a constraint that compares the resources

expended traversing each edge and visiting each node to the assigned robot’s capacity.

There are three main approaches to solving this problem formulation that we consider in this

paper. A greedy, finite-horizon approach serves as a baseline for comparison. Then we present

two Mixed-Integer Program (MIP) formulations with differing objectives and slightly different

constraints to evaluate which better fits the proposed problem. Finally, we discuss how these MIP

formulations might be augmented to ensure feasible problem configurations even when there are

more waypoints than can be assigned given team size and capacity limitations.

5.5.1 Greedy Assignment

First we establish the greedy finite-horizon assignment approach, which differs from pure greedy

assignment in that waypoints are selected as per Sect. 5.3 in batches and iteratively assigned to

robots, extending active plans if they exists and have excess energy capacity. Then the horizon is

extended and the process repeats. This allows us to implement a greedy approach to assignment

while utilizing the horizon formulation and waypoint selection algorithm. The approach used is

expressed in Algorithm 6

74

Algorithm 6 Greedy Waypoint Assignment
1: procedure WAYPOINTASSIGN(xs, Nr,W,A)
2: Pout ← ∅ . Solution path set
3: P ← A . Set first |A| paths to currently active paths
4: for i = |A| : Nr do
5: Pi ← {xs} . Initialize remaining paths to start location
6: end for
7: while |W | do
8: pnext = minp∈P pathEndTime(p) . Earliest ending path
9: Lrem = L− (pathEndTime(pnext)− pathStartTime(pnext)) . Remaining capacity

10: Wreachable = {w ∈ W |Lrem > Cost(pnext(end), w) + Cost(w, xs)}
11: if Wreachable = ∅ then . No more reachable waypoints, end path
12: pnext ← xs
13: Pout ← pnext
14: P ← P \ pnext
15: else . Append next closest waypoint
16: wnext ← minw∈Wreachable

Cost(p(end), w)
17: pnext ← pnext ∪ wnext
18: W \ wnext
19: end if
20: end while
21: for each p ∈ P do
22: p← xs
23: Pout ← p
24: end for
25: return Pout
26: end procedure

The algorithm takes in as parameters the start location, xs, a desired number of robots to

be deployed, Nr, the selected waypoints, W , and the active paths A. The outputs are a set of

paths, Pout, represented as a list of waypoint locations. Lines 2-6 initialize the set of paths being

processed P as the currently active paths with remaining capacity, generating new paths starting

at xs until |P | = Nr. Lines 7-20 greedily assign waypoints from W until there are none left.

Once it is determined that a path can no longer be extended, paths are extracted from P and the

process continues (11-15). Then, once all waypoints are exhausted, all remaining paths in P are

routed back towards xs and appended to Pout.

75

5.5.2 Minimum Cost VRP

Recall that the typical VRP formulation constructs a Mixed Integer Program of the following

form:

min
x

∑
k∈K

∑
(i,j)∈A

cijx
k
ij (5.9)

s.t.
∑
k∈K

∑
j∈V

xki,j = 1 ∀i ∈ V (5.10)

∑
j∈V ∪Sg

xkoj = 1 ∀k ∈ K (5.11)

∑
i∈So∪V

xkig = 1 ∀k ∈ K (5.12)

∑
i∈N

xkih −
∑
j∈N

xkhj = 0 ∀h ∈ V, k ∈ K (5.13)

tki − tkj + dij − Z(1− xkij) ≤ 0 ∀(i, j) ∈ A, k ∈ K (5.14)

ζ
∑

(i,j)∈A

dijx
k
ij ≤ Bmax ∀k ∈ K (5.15)

where xkij ∈ 0, 1 indicates if the edge between node i and j is active for robot k from the set

of robots K, cij represents the cost activating the edge between i and j, dij is the duration

required to traverse edge i, j, and V = A \ {So, Sg} is a subset of nodes excluding the start

and the goal. By setting cij = dij , the objective (5.9) will minimize the sum of travel time over

all robots. Constraints (5.10)-(5.13) ensure that only one robot leaves each node, each robot

begins at the start node So and ends at the goal node Sg, and any robots entering a node must

leave it. Constraints (5.14) define tki as the time node i is visited by robot k and ensures that

node j is visited no earlier than tki plus the time required to travel the edge between i and j.

These constraints are traditionally used when enforcing constraints on the time a node is visited,

but also act as subtour elimination constraints, ensuring that no independent loops exists in the

final routes, disconnected from the starting location. Constraints (5.15) limit energy expenditure,

76

computed by multiplying the durations required to traverse edges dij and the discharge rate ζ ∈

R+, to the battery limit Bmax.

This formulation has been used in many multi-agent routing approaches including our previ-

ous work [16] in developing the initial framework for the systems-based approach presented in

this chapter. As it solves for the minimal cost incurred by the entire team, we can easily solve

for routes that expend minimal energy or have robots deployed for the minimal collective time.

However, for a finite horizon approach that seeks to maximize the rate of waypoint visitation, it

is more effective to minimize the time to completion. As such, we augment this formulation with

a minimum makespan objective.

5.5.3 Min-Makespan VRP

The Min-Makespan VRP is a less common variant that is used to minimize the completion time

of plans. It can be derived from the VRP formulation by replacing the objective (5.9) with

min
x

max
k∈K

∑
(i,j)∈A

dijx
k
ij, (5.16)

which serves to minimize the maximum duration of any robot k’s route. To maintain the Mixed-

Integer Linear Problem formulation, it is convenient to represent this objective in the form

min θ

with the additional constraint

θ ≥
∑

(i,j)∈A

dijx
k
ij ∀k ∈ K,

which represents the duration of the multi-robot plan for this horizon with the variable θ, also

referred to as the makespan.

77

5.5.4 Ensuring Feasible Configurations

One major difficulty in these MIP formulations lies in determining ahead of time if a given

problem formulation is feasible. It is entirely possible that a selection of waypoints cannot be

fully visited given the number of robots available and their remaining capacities. To avoid this

scenario, we augment our formulation to closer model the Orienteering Problem [4], which seeks

to determine the maximum reward achievable by visiting waypoints. By not constraining all

waypoints to be visited and providing reward for each waypoint visited, the MIP is maximized

when the set of waypoints with the maximum total reward are included in the feasible solution.

The typical Orienteering Problem formulation can be expressed similarly to the above prob-

lems, with a slightly different objective

max
x

∑
k∈K

∑
(i,j)∈A

rix
k
ij (5.17)

and waypoint visitation constraint

∑
k∈K

∑
j∈V

xkij ≤ 1 ∀i ∈ V (5.18)

which replace equations (5.9) and (5.10), respectively, leaving the remaining constraints (5.11)-

(5.15) as listed. It is possible to combine this with either of the previous objectives, weighing

the contribution of each objective separately in a mixed objective form. With proper tuning of

the weights, it is possible to ensure that the Orienteering objective does not interfere with the

desired objective, resulting in an optimization routine that allows for a subset of waypoints to be

excluded based on merit. For example, a mixed-objective Min-Makespan/Orienteering problem

78

would be of the form

max
x

∑
k∈K

∑
(i,j)∈A

rix
k
ij − C max

k∈K
dijx

k
ij

s.t.
∑
k∈K

∑
j∈V

xkij ≤ 1 ∀i ∈ V

∑
j∈V ∪Sg

xkoj = 1 ∀k ∈ K

∑
i∈So∪V

xkig = 1 ∀k ∈ K

∑
i∈N

xkih −
∑
j∈N

xkhj = 0 ∀h ∈ V, k ∈ K

tki − tkj + dij − Z(1− xkij) ≤ 0 ∀(i, j) ∈ A, k ∈ K

ζ
∑

(i,j)∈A

dijx
k
ij ≤ Bmax ∀k ∈ K

where ri is the reward for including waypoint i in the solution. With our proposed application,

it is sensible to represent ri = ui as the utility of collecting an observation from waypoint i,

as in Equation (5.2), assuming the observation is independent of other planned observations.

There is a slight loss of optimality due to the independence assumption, however, this loss is

minimized with the appropriate selection of waypoints (waypoints are chosen to be maximally

informative, minimizing overlap), as per Sect. 5.3. The objective weight C = mini∈V riζ/Bmax

is specifically chosen to decouple the objectives. We leverage the fact that no route will exceed

the maximum duration (L = Bmax/ζ) to ensure that no matter how much the min-makespan

objective is decreased, it will never increase the objective more than including the waypoint with

lowest utility (mini∈V ri). Effectively, the min-makespan objective is constrained to the values

[0,mini∈V ri] and each decision variable in the orienteering objective increments the objective by

values greater than (or equal to) mini∈V ri, resulting in a complete disassociation of objectives.

79

5.5.5 Computational Complexity

The greedy assignment approach is the least complex of the presented options, as it is a straight-

forward evaluation of the minimum cost assignment for each waypoint. At each iteration, the

next ending path is selected from the set of robot paths, then the next closest waypoint is selected

from the set of unassigned waypoints. Without consideration of energy capacity limits, the com-

plexity would be O((Nr + Nw)Nw) as each of the Nw cycles would result in the assignment of

a waypoint. With the capacity limits, there may be an additional cycle when determining that

a path can no longer be extended. However, this results in decreasing Nr for subsequent cycles

resulting in faster computation. As such, the complexity does not significantly change with the

addition of capacity limits.

For the additional approaches, we consider the VRP and its variants, which belong to the NP-

hard class of problems. As such, these problems are not guaranteed solvable in polynomial time

and their solutions may not be verifiable in polynomial time. In practice, MIPs may be solvable

in real time with few decision variables, but rapidly become computationally intractable as the

number of decision variables increases. However, our approach fixes the number of waypoints

assigned per planning iteration, which prevents the number of decision variables from scaling

beyond a few virtual nodes for active robots as the known space expands. As such, the com-

plexity of the assignment algorithm scales with the complexity of the environment, namely the

configuration of the cost matrix, cij , relative to the constraint parameters, Bij and Bmax. Most

MIP solvers perform a directed search through the space of feasible solutions, using branch and

bound techniques to iteratively exclude sections of the solution space and quickly arrive at the

optimal solution. While these can be fast for problems where there is a singular optimal solution,

in the worst case, a solver may require an exhaustive search of the entire set of feasible solutions.

80

5.6 Conclusion

In this chapter, we presented the details of our proposed approach, combining the core frame-

work from Chapter 3 with the environment model and utility function from 4, along with a

section by section analysis of computational complexity. In compiling these details, we note sev-

eral key relationships between parameters, model representations, and algorithm choices. Most

importantly, we recognize that performance, in terms of information gained per horizon, is most

directly influenced by the number of waypoints assigned each horizon and the informative quality

of those waypoints. Other choices tend to indirectly affect performance through their influence

on these values. For instance, the choice of number of waypoints processed per planning cycle

Nw affects the amount of coupling between waypoints considered each cycle. The greater the

amount of coupling considered, the more efficient the resulting plan, and the more waypoints

that can be assigned per horizon. Alternatively, the choice of objective weight, α, affects the

quality of waypoints selected by biasing the selection process towards cells whose dynamics

model is poorly fit, which serves to compensate for environment changes that violate the locally

static assumption. Making effective use of the proposed strategy relies on understanding the in-

fluence component algorithms and their associated parameters have on the number and quality

of waypoints visited.

81

Chapter 6

Experimental Evaluation in Simulated

Environments

While the previous chapter focused on establishing the theory behind the proposed system and

describing how the component algorithms influence each other, in this chapter we focus on thor-

ough evaluation of the proposed approach as influenced by parameter settings. We address three

types of parameters: 1) algorithm variables that are chosen by a user, 2) physical constraints and

limitations relative to the robotic platform used in deployments, and 3) conditions of the envi-

ronment being explored. In this manner, we show how performance can be tuned with proper

choice of parameters and what a user can expect in terms of performance relative to the choice

of robotic platform or the dynamic properties of the environment. Additionally, we provide a

comparison study of the proposed approach against the alternative Waypoint Assignment formu-

lations highlighted in Section 5.5 as well as a pure greedy selection approach that iteratively adds

waypoints to available robots.

82

6.1 Setup Details

To evaluate the performance of our approach, we devised a simulation environment where grid

cells change state at set intervals. Fig. 6.1 shows several examples of the types of environ-

ments generated. We seek to evaluate performance in randomly generated worlds with key

qualities, namely a specified range of dynamics and type of distribution. As such, we gener-

ated environments where the state of each cell oscillates at a random frequency, chosen from

the range [1/2000, 1/300] Hz, where the distribution of dynamic cells is chosen at random. We

primarily test in an environment where cell states of a given oscillation period are clustered in

groups (Fig. 6.1a), but also consider environments where the distribution of dynamics is random

(Fig. 6.1b).

(a) Clusters in static empty space (b) Pure random

Figure 6.1: We evaluate on randomly generated environments, where cells oscillate between
states at a regular frequency. Most tests are performed on a map where cells in clusters change
state at the same frequency and phase (a). However, Sect. 6.5 also compares performance when
the distribution of dynamics is purely random (b). The frequency of change in the above images
is indicated by color, with the associated values indicated by the gradient on the right. Each
environment is bounded by the black box, with robots deploying from the central green square
and limited to flying in the region above the red line.

Robots depart from and return to the starting location, indicated by the green square in Fig-

ure 6.1. We assert that they are given an energy capacity corresponding to their maximum flight

duration, noting that it is convenient to describe energy capacity in terms of flight duration for

83

the purposes of evaluation and suffices under the assumption of constant energy expenditure. In

the described experiments, robots are added to the system as they are needed and removed when

they are finished, effectively ensuring enough robots will always be available for the system to

deploy. Observations are collected at the instant a robot visits a waypoint to ensure the map

is updated at the planned locations. To also include observations collected when transitioning

between waypoints, additional observations are collected at a frequency of one per second.

To further simplify computation, cells within the safety region are given a prior of p(mi) =

0.001 or p(mi) = 0.999 based on the ground truth state of mi. Given that these cells are not

subject to the confidence decay of the environment model and that the sensor model is always

accurate by design, the traversability of this region will remain consistent over all time. As such,

the area robots traverse remains constant and, as a result, the evaluations below do not reflect

the conditions of traditional exploration techniques where the space a robot can traverse grows

over time. Instead, this work focuses on exploring the speed and optimality of solutions given

full access to traversable space. While the system would be perfectly capable of operating in

a fully unknown environment, subject to the restrictions on the locations of dynamic objects

noted earlier, it is reasonable in our desired application to assume enough knowledge of free and

occupied space to obviate the need for this early stage of exploration.

The following set of tables list the parameters evaluated in this chapter. Unless otherwise

specified, the listed values are used as default in the subsequent experiments. Table 6.1 lists the

system parameters whose effects on performance are evaluated in Sect. 6.3, where Nw is the

number of waypoints processed each planning iteration, Nr is the maximum number of robots

active at any given time, dadv is the amount of time the planning horizon advances after each

instance of updating the environment model, dhor is the duration of the planning horizon, and α

is the weight in the Waypoint Selection objective function that biases the utility score towards

CSQMI or χ2-based objectives. Table 6.2 lists the physical parameters of the robot team whose

effects on performance are evaluated in Sect. 6.4, where vtravel is the standard speed robots at

which travel between waypoints (though the speed may change as robots accelerate and deceler-

84

Table 6.1: System used in the simulation experiments and their default values.

Nw Nr dadv dhor α
6 3 100s 120s 150

ate as necessary), L corresponds to the duration a robot can operate on a single battery, rsense is

the maximum range of beams the sensor projects, θsense is the sensor’s field of view in both the

horizontal and vertical directions, and ρsense is the number of beams per slice of the field of view

both horizontally and vertically.

Table 6.2: Physical limits used in the simulation experiments and their default values.

vtravel L rsense θsense ρsense
6 300s 12 40◦ 10

6.2 Approach Comparison

This section evaluates the performance of the chosen approaches for Waypoint Assignment the

proposed system utilizes. As a comparison, we implement a pure greedy approach, in which

a new waypoint is selected the instant a robot reaches its next assigned target, and compare

against the proposed system using the greedy assignment approach, as described in Sect. 5.5.1,

the VRP assignment described in 5.5.2, and the Min Makespan assignment approach, described

in Sect. 5.5.3. The pure greedy approach we consider uses the mixed objective:

wnext = arg min
w∈Wr

CSQMI(m, t, w ∪Wplanned) + Cd(Cost(x,w)) (6.1)

that combines the CSQMI utility measure, which computes the value of observing from a can-

didate waypoint w given the planned future waypoints Wplanned, with a weighted path-length

measure. The variable Wr corresponds to a set of candidate waypoints for which a path to the

starting location exists and traversing the path from the current location x, to the waypoint, and

85

Figure 6.2: Diagram showing the differences between evaluated approaches. All approaches
begin with computing the utility score of reachable waypoints to find candidates. The Min-
Makespan, VRP, and greedy selection approaches then downsample to the Nw best subset and
compute routes, with the greedy selection approach iteratively extending routes by selecting the
next closest robot-candidate pair. Alternatively, the pure greedy approach cycles directly between
computing utility score and assigning the highest scoring waypoint to the next available robot.

then to xs is possible given the remaining capacity

Wr = {w : L− Lcurrent > Cost(x,w) + Cost(w, xs)},

where Lcurrent is the current remaining capacity. The distance weight Cd defines how much

the distance objective is emphasized relative to the utility objective. Refer to Fig. 6.2 for a

visual representation of how pure greedy assignment differs from the proposed approach and its

associated Waypoint Assignment algorithms.

Figure 6.3 shows the evolution of the performance of the approaches compared in this section.

Recalling that we compute entropy as:

H(mt) = −
∑

mi,t∈m′t

p(mi,t) log2 p(mi,t) + (1− p(mi,t)) log2(1− p(mi,t)),

86

and KL-Divergence as:

DKL(t,m) =
∑
mi∈m′t

po(mi,t) log2

po(mi,t)

p(mi,t)
+ (1− po(mi,t)) log2

(
1− po(mi,t)

1− p(mi,t)

)
,

the entropy and divergence plots show performance increasing over time as these values decrease.

Note that entropy and divergence use a modified map m′t ⊂ mt that excludes any cells within

the dynamic clusters that will always be occluded when they are in the occupied state and, thus,

only observed in the free state. We exclude these cells as they will only degrade model accuracy

despite the fact that there is little difference between a hollow and solid object for mapping

purposes.

The response progression plot in Fig. 6.3 shows the evolution of response fraction over time,

where response fraction is computed using:

d̄ir,t = max(tiobs − tichange)/Ti (6.2)

each time an observation is collected. The response fraction in the plot is displayed as a win-

dowed maximum to simplify the plot, showing only the greatest value of d̄ir,t for each observation

collected in a 100 second window. This is a slightly modified version of the response fraction

introduced in Chapter 4 that expresses the multiples of period of change, Ti, that exist within the

duration between the first instance a cell changed state after the previous measurement, tichange,

and the next time an observation is taken, tiobs. By plotting d̄ir,t against tiobs for each measure-

ment collected, we can see where the system begins to converge and observations are regularly

collected within the period of change.

From Fig. 6.3, we can conclude that the Min-Makespan, VRP, and Greedy selection ap-

proaches outperform pure greedy assignment. Entropy and divergence converge more quickly to

much lower values for the system-based approaches and the response fraction is much more well

behaved. While the system-based approaches converge to low response fraction early (around

87

Figure 6.3: Comparison of approaches evaluated in the environment from Fig. 6.1a using the
default values listed in Tables 6.1 and 6.2, exhibiting entropy (left), KL-Divergence (middle), and
the response fraction (right). Both the entropy and KL-Divergence plots show the pure greedy
approach at significantly higher values than the system-based approaches, for each value of Cd,
suggesting lower model confidence and accuracy. Additionally, the response fraction plot shows
many new observations of cells after they have gone through more than 5 cycles of changes,
suggesting that the pure greedy approach is slow to respond to regions that have already been
observed. The choice of the Waypoint Assignment approach, however, appears to have minimal
impact on performance at the scales visible in these plots. Refer to Table 6.3 for a more precise
comparison of steady-state values.

t = 4000) and stay low after that, the pure greedy approaches exhibit spikes of greater than 5

well after t = 8000. Figure 6.4 shows a series of images of the occupancy grid at several time

steps for both the pure greedy approach and the Min-Makespan approach. From these images,

we see the Min-Makespan approach learning the static regions much more quickly than the pure

greedy approach. As such, the dynamic regions are discovered earlier and the steady-state is

reached much more quickly. The pure greedy approach focuses on the dynamic clusters until

they are known with high confidence, but applying many observations in a short period of time

is less effective when the environment exhibits changes on a slow time scale.

With a CSQMI-based objective, the robots tend to prefer sensing locations with an unob-

structed view with many cells of low certainty at the edge of the field of view. As such, robots

may tend to “carve” away at areas they have already begun to observe rather than observe a new

area with a flat surface of unknown cells. When the environment is static, this behavior is ac-

ceptable as the map will eventually become entirely known. However, in dynamic environments

uncertainty continues to grow in the regions already explored, continuously drawing robots back

to these areas. By batching the selection of target waypoints, without allowing multiple obser-

88

Figure 6.4: Vignette of the environment models for simulated runs for the Min-Makespan and
pure greedy approaches. Note that the Min-Makespan approach learns more of the map faster
than the pure greedy approach, while the pure greedy approach expends extra effort on observ-
ing the dynamic clusters until they are represented with high confidence. The Min-Makespan
approach is preferable for the proposed scenario as the entire static region is uncovered earlier,
ensuring stray clusters will not be missed while robots focus on nearby clusters.

vations from the same position in a single planning horizon, the proposed approach promotes

the visitation of a more varied set of locations resulting in a more even spread of focus. In this

manner, the system learns the dynamic model of the environment more quickly, slowing down

the growth of uncertainty enough to allow for the small amount of robots to more effectively

cover the dynamic regions at the appropriate frequencies.

Table 6.3 provides a more detailed view into key evaluation criteria used to differentiate the

performance of the individual approaches. The criteria evaluated are as listed below:

• E(Nr): the average number of robots deployed over the entire run. This value decreases as

more time is spent after one robot lands before another takes off, whether through longer

durations or more frequent instances.

• tconv: the time it takes for the model entropy to converge to 10% of the steady-state value.

• µH : the steady-state entropy value averaged over the last 1500 seconds of operation

• µD: the steady-state KL-Divergence value averaged over the last 1500 seconds of operation

89

• E(dr): the average response fraction at the end of the run. This value is computed us-

ing (6.2) where tiobs is set to the run end time, averaged over the set of unobstructed cells,

m′t. Compared to the windowed maximum in the Response Progression plot in Fig. 6.3,

which shows the worst performing cell at each instance of time, E(dr) expresses the aver-

age response performance of the model.

• Nu: the number of cells in m′t that are unobserved at the end of the run.

With the system-based approaches, there is a distinct improvement in model performance evident

in the µH and µD values for the thin Min-Makespan approach. Additionally,Nu is lower for Min-

Makespan, suggesting that the approach exhibits more complete coverage than VRP or Greedy

Selection. While the average response fraction E(dr) is slightly higher for Min-Makespan, it is

still significantly less than 0.5, which would suggest that, on average, the system responds well

enough to prevent aliasing effects.

Regarding the pure greedy approaches, there is a significant improvement to performance

with the inclusion of a distance weighted objective, resulting in a lower average entropy, di-

vergence, and response fraction when compared to the non-weighted approach (Cd = 0). The

number of unobserved cells, Nu, also decreases with the addition of the distance weight, but

begins to rise again as the weight is increased further (Cd = 0.1). As the weight increases, the

planner becomes more myopic and constrains itself to nearby unknown space.

The computation time of the tested approaches are shown in Fig. 6.5. As the pure greedy

approach only builds the candidate pool and selects the best option, each instance only requires 2-

5 seconds. However, for a greedy approach, this can be prohibitively expensive as the computed

splines may require significantly less time to traverse if the goal is nearby. The system-based

approaches require significantly more time per iteration, but the plans generated allow for a

planning duration of up to dadv before the next set of plans will be required. While the displayed

computation times for Min-Makespan and VRP occasionally exceed dadv = 100s in the plot, we

can tune parameters to reduce computation time appropriately, as explored in Sect. 6.3.

90

Table 6.3: Comparison of approaches. In each run we evaluate: the average number of robots
deployed, E(Nr), the time for entropy to reach 10% of the steady-state value, tconv, the entropy
and KL-Divergence values averaged over the last 1500 seconds of operation, µH and µD, the
average response fraction, E(dr), and the number of unobserved cells, Nu. The system-based
approaches all outperform the pure greedy approaches, with Min-Makespan having a comparable
µH and µD and the lowest Nu overall.

Approach E(Nr) tconv µH µD E(dr) Nu

Min-Makespan 2.87 7695 1688 1867 0.0018 440
Greedy Selection 2.88 7694 1831 1946 0.0011 495

VRP 2.93 7769 1678 1873 0.0012 501
Pure Greedy Cd = 0 2.94 7180 4652 4767 0.0345 1804

Pure Greedy Cd = 0.05 2.98 9802 2875 2800 0.0149 1009
Pure Greedy Cd = 0.1 2.98 9397 2912 2640 0.0089 1217

(a) Pure greedy approaches (b) System-based approaches

Figure 6.5: Comparison of computation times for the pure greedy approaches (a) and the system-
based approaches (b). The pure greedy approaches are faster to compute, but require more
iterations. The greedy selection approach is the fastest of the system-based approaches, given
that Waypoint Assignment requires the majority of the computation time for the Min-makespan
and VRP.

6.3 Parameter Evaluation

This section shows the performance of our approach as we vary the core system parameters.

Evaluations are performed in the environment with clustered dynamics shown in Fig. 6.1a using

the Min-Makespan Waypoint Selection approach. The first set of parameters we focus on are

the maximum number of robots deployed at any given time Nr and the number of waypoints

selected per horizon Nw. For the most part, these parameters effect performance in a very intu-

91

itive fashion, which we show through plots of specific parameter sets followed by a table of key,

steady-state values to highlight long term performance.

Considering the plots of performance for different values of Nw, as shown in Fig. 6.6, we

see lower entropy and KL-Divergence as the coupling of waypoints per planning iteration is

increased. The response fraction seems to converge to steady-state at roughly the same time for

each value of Nw, suggesting that Nw (for the tested values) has little impact on timely coverage.

However, we see that compute time increases drastically as Nw increases. For small Nw, the

system invests most of its computation time in the Waypoint Selection and Path Planning phases,

for which the required compute time is relatively consistent. However, asNw increases, Waypoint

Assignment becomes the dominant component and we see a large variance in compute times

each cycle as the difficulty of the planning problem can vary greatly depending on the waypoints

selected and their pairwise travel costs. We see from these graphs that increasing coupling results

in a slight improvement to performance at a cost that appears to grow exponentially.

To investigate this further, we evaluate the ability of the planner to efficiently assign way-

points by counting the number of waypoints that are assigned to each robot, shown in Fig. 6.7.

We can see that there is a general trend to assign more waypoints to each route the higher we

set Nw. The more waypoints we consider in each planning cycle, the more efficient the resulting

plan will be, resulting in more waypoints assigned to each robot. Given that there are somewhere

between 20 and 70 waypoints assigned to each route, with 3 robots operating simultaneously

(each traversing their own route of 20-70 waypoints), it is likely that even Nw = 12 is too

small to generate a significant improvement in performance. Considering that computation is

already prohibitively expensive (85s > dadv = 60s), future improvements will have to rely on

sub-optimal heuristic solvers to leverage coupled waypoint routing in real-time.

The most obvious improvements to performance we can see are when we vary the number of

robots Nr, as shown in Fig. 6.8. While increasing Nw increases the number of waypoints each

robot services, increasing Nr adds more agents to service waypoints independently. As such, the

addition of more robots allows the system to distribute observations more widely across the map,

92

(a) (b)

(c) (d)

Figure 6.6: Performance analysis relative to varying numbers of waypoints processed per horizon
Nw, with Nr = 3, dadv = 60s, dhor = 120s, α = 150. While performance appears consistent
over chosen values, both entropy (a) and KL-Divergence (b) decrease faster for higher Nw. The
response fraction (c) is largely consistent, with some later spikes when there is less coupling
between waypoints (lower Nw). Computation time (d) shows a minor baseline increase as Nw

increases, but with large spikes as the Waypoint Assignment algorithm begins to dominate in
complex MIP configurations. Also, note that there is a significant decrease in computation time
whenever the set of active robots reach their full operating capacity (L = 300s). Planning
complexity is reduced significantly in this case as there are less waypoints that can be added
without exceeding L.

resulting in better compensation for the growth of uncertainty. This results in a faster conver-

gence to lower entropy and KL-Divergence, with response fraction converging much faster the

more robots we deploy (as more of the environment is observed well enough to track dynamics

more quickly). For computation time, we note that the Waypoint Selection and Path Planning

components are agnostic toNr, so the main contributor to complexity, relative toNr, is Waypoint

93

Figure 6.7: Comparison of the numbers of waypoints assigned to deployed robots. The ith
schedule index corresponds to the ith route traversed in a given run (regardless of the specific
robot traversing the route). For the above plot, the index also correlates the start time of the
associated routes (for each Nw, the ith schedule starts at the same time). It is relatively obvious
that increasing the coupling between waypoints (via Nw) results in a significant increase in the
number of waypoints assigned to any given route. This result coincides with our intuition that
more coupling generates more efficient routes that, in turn, allow for the assignment of more
waypoints.

Assignment. In this case, the more decision variables we manage in the ILP, the more difficult

the problem is to solve. Given that there are NwNwNr variables in xijk, the number of decision

variables scales linearly with the number of robots deployed. While this is not as bad as scaling

Nw, the computation time can grow quickly as Nr increases when the number of waypoints per

planning iteration is high.

Table 6.4 reinforces our conclusions about these trends, as we see significant increases to

performance over all values as Nr increases and minor improvements to convergence rate tconv

for higher Nw. One thing to note, though, is that the expected response fraction E(dr) and

number of unobserved cells Nu exhibits diminishing returns as Nr increases. This is likely due

94

(a) (b)

(c) (d)

Figure 6.8: Performance analysis relative to the maximum number of robots active at any given
time Nr, with Nw = 8, dadv = 60, dhor = 120, and α = 150. Entropy (a) and divergence (b)
converge much more quickly as Nr increases, allowing robots to cover more of the environment
at any given time. We also see a decrease in the steady-state values as larger deployments are
better suited to counter uncertainty growth. There is also a clear increase in the convergence
of the response fraction (c) as the improved distribution allows for faster response to expected
changes. However, these improvements come at the cost of computation time (d) as the com-
plexity of solving an ILP is directly tied to the number of decision variables, of which there are
N2
wNr in this problem. This results in a almost linear increase in computation time in the above

plot, though the variance appears to grow the more difficult the problem becomes.

to the limited map size, resulting in a limited amount of work for any given set of robots to do.

As we increase the team size, the closer we get to saturating the map with observations and the

more redundant many of our observations will become.

The next set of parameters we consider are the horizon advance dadv and horizon duration

dhor. For the horizon advance parameter plotted in Fig. 6.9, we see no significant change in

95

Table 6.4: Evaluation of system performance while varying Nw and Nr, for dadv = 60, dhor =
120, and α = 150. Trends suggest faster convergence to more accurate maps occurs when Nw

and Nr increase. The response fraction and coverage, shown by E(dr) and Nu, show a marked
increase with higher Nr, but less so with higher Nw. These trends indicate that the system can
greatly improve performance with more robots, but will require more development to reap the
benefits of improving the coupling between waypoints.

Nr Nw E(Nr) tconv µH µD E(dr) Nu

2 1 1.91 10270 2636 2564 0.0066 633
3 1 2.87 8039 1741 1958 0.0022 434
4 1 3.80 6435 1443 1663 0.0013 303
2 4 1.92 10290 2620 2559 0.0061 651
3 4 2.85 7980 1748 1988 0.0023 454
4 4 3.81 6225 1436 1664 0.0009 320
2 8 1.95 10000 2557 2483 0.0045 620
3 8 2.86 7605 1689 1991 0.0015 494
4 8 3.82 6165 1412 1724 0.0008 325
2 12 1.90 10190 2424 2463 0.0039 647
3 12 2.88 7500 1671 1896 0.0010 453
4 12 3.80 6070 1411 1701 0.0012 312

performance as the parameter varies. Recalling the locally static assumption we make relative

to the environment model, dadv effectively denotes how new the information is that the system

processes each planning horizon. Given that changes to the environment occur on the order

of 300-2000 seconds, those changes that occur between each horizon are infrequent enough to

not be significantly impacted by the locally static assumption. Also acknowledging the design

choice that robots are only deployed at the beginning of each horizon, we always choose dadv

to be less than the robot capacity L to ensure that robots do not finish their run before the next

horizon starts. When L is significantly less than the period of environment dynamics, no choice

of dadv < L can be expected to reduce the performance of our system.

Another quirk related to design choice is that performance is maximized when dadv is a mul-

tiple of L. In this case, each deployed robots capacity ends at the end of a planning horizon.

Otherwise, robots fully deplete energy reserves in the middle of a horizon and must wait for the

next before another robot can be deployed. However, given the complexity of including the de-

ployment of new robots mid-horizon in the Waypoint Assignment phase, it is simpler to restrict

96

(a) (b)

(c) (d)

Figure 6.9: Performance analysis relative to the horizon advance duration dadv, with dhor = 100,
Nw = 8, Nr = 3, and α = 150. Performance does not significantly change for varying values of
dadv. This suggests that it is possible to update plans relatively infrequently, while still remaining
responsive to the changes in the environment.

choices of dadv to multiples of L.

For the horizon duration parameter dhor, with evaluation results depicted in Fig. 6.10, we see

a similar trend where performance is consistent in most cases. However, we note that the case

where dadv = dhor exhibits a slight decrease in performance. In this case, the next horizon starts

after the current plans end and the system becomes unable to extend schedules over multiple

horizons. As a result, the effective single-robot deployment duration becomes dhor as opposed

to the maximum-flight duration L, given that dhor < L by design. The decrease in performance

occurs as a result of robots spending more time traversing to and from the charging station, as

discussed in more detail in Sect. 6.4. To ensure the system operates properly, we must enforce

97

(a) (b)

(c) (d)

Figure 6.10: Performance analysis relative to the horizon window duration dhor, with dadv = 100,
Nw = 8, Nr = 3, and α = 150. We notice a slight dip in performance when dadv = dhor =
100. This can occur due to schedules not being properly extending across multiple horizons,
resulting in schedules operating for only dhor < L. The other significant difference to note is the
computation time, as more time is required to compute longer horizons. This increase appears
roughly linear as increasing dhor simply increases the number of planning iterations.

L > dhor > dadv, with the horizon duration extending far enough beyond dadv to ensure continuity

across horizons.

Finally, we consider the objective function weight α introduced in Chapter 4. Figure 6.11

shows a distinct variation in performance as α changes. Low values of α, which favor the MI-

based objective, quickly reduce entropy and divergence in the early stages. Then, once the en-

vironment dynamics start to become known, the χ2 objective starts to become more effective,

favoring high α values. Given the known influence of α from the experiments in Chapter 4, we

can surmise that at this time step (roughly t = 3800) that high α values cause the system to

98

Table 6.5: Evaluation of performance as horizon variables vary over several runs with Nw = 12,
Nr = 3, and α = 150. Values are largely consistent over all runs. Note a dip in performance
for dadv = dhor = 100 as the system ends schedules early when the horizon advances beyond the
current set of plans.

dadv dhor E(Nr) tconv µH µD E(dr) Nu

30 100 2.90 7889 1716 1945 0.0019 462
60 100 2.86 7665 1689 1986 0.0021 499
75 100 2.88 7784 1706 1975 0.0016 455

100 100 2.83 8010 1813 1993 0.0015 475
30 120 2.88 7634 1716 2026 0.0018 491
60 120 2.87 7680 1712 1986 0.0017 457
75 120 2.86 7725 1726 2025 0.0017 460

100 120 2.96 7809 1718 1949 0.0012 414
30 150 2.86 7545 1706 1978 0.0023 480
60 150 2.86 7740 1701 2006 0.0022 454
75 150 2.92 7754 1706 2019 0.0021 478

100 150 2.88 7800 1708 1930 0.0012 431
30 200 2.86 7695 1755 1927 0.0020 480
60 200 2.88 7770 1716 2010 0.0025 465
75 200 2.86 7650 1705 1961 0.0018 465

100 200 2.86 7785 1705 1890 0.0018 431

transition focus to favor static regions while low α values focus on observing regions that are

somewhat known. Spreading focus in this manner allows robots to better distribute attention

to allow for faster response to changes, as evidenced in Fig. 6.11c with high alpha values con-

verging to a stable response fraction earlier than lower values. This trend is further evidenced in

Table 6.6, with performance significantly improved for greater values of α. In particular, we note

that the number of unobserved cells Nu decreases significantly for higher values of α as robots

are directed to explore more of the environment.

6.4 Physical Limits

In this section, we evaluate parameters related to the limitations of the system and, as such, are

not chosen by the user. The first we consider energy capacity parameter, as depicted in Fig 6.12.

While it is a significant aspect of the proposed problem, the actual value has little effect on

99

(a) (b)

(c) (d)

Figure 6.11: Performance analysis relative to the mixed objective weight α, with Nw = 12,
dadv = 60, dhor = 120, and Nr = 3. This data set has an interesting progression, as the best
parameter choice varies over time. Initially, when most of the environment is unknown, low α
values, which bias towards the CSQMI objective, are preferable. Once the dynamics become
known, however, better performance is achieved with a bias towards the χ2 objective (higher
α). When purely evaluating relative to the response fraction (c), though, we see a definitive
bias towards high α values as these objectives bias observation focus towards regions where the
observed dynamics differ from the learned model.

performance as there is no limit to the number of robots deployed. Instead, the current active

limit Nr is maintained whenever a robot fully depletes its energy capacity by deploying another

robot in the subsequent horizon. Any small fluctuations in entropy and divergence will occur

as a result of robots with less capacity needing to return to the charging station more often, thus

redundantly covering the area around the charging station. This effect is more prominently shown

in the response fraction plot Fig. 6.12c, where higher values of L converge more quickly to the

100

Table 6.6: Evaluation of performance as the objective weight α varies over several runs with
Nw = 12, dadv = 60, dhor = 120, and Nr = 3. We see the steady-state values prefer α to be
higher, to better direct robots towards less well modeled regions.

α E(Nr) tconv µH µD E(dr) Nu

0 2.90 8220 2636 2310 0.0046 729
1 2.90 8244 2556 2224 0.0059 803

10 2.89 8004 2368 2167 0.0042 639
50 2.91 7284 2110 2050 0.0029 541

100 2.97 7067 2003 2038 0.0016 537
150 2.90 7020 1975 2021 0.0024 486
300 2.88 6924 1938 1951 0.0016 481

1000 2.91 6936 1880 1918 0.0022 497
∞ 2.89 7020 1851 1911 0.0026 582

steady-state response fraction. Robots that are deployed for longer periods are better able to

spread their coverage throughout the map and ensure each cell is visited regularly. Also note that

the choice of L has little effect on compute time, as L only has minor influence as a limitation to

the range of motion in each of the planning pipeline components.

The second physical limit considered is traversal speed, vtravel, which corresponds to the as-

sumed constant velocity used in the planning phases. While the actual speed of robots will vary

greatly during operation, this value helps to determine the potential visitation times given the

computed path length. Figure 6.13 shows how the system generates high confidence and ac-

curacy maps more quickly when robots are able to move faster. With higher vtravel, the plans

generated each iteration can be traversed more quickly, resulting in more planning iterations per

horizon. As a consequence, more waypoints are processed each horizon, requiring more time to

compute, but providing more coverage of the environment. Further evidence of these trends are

visible in Table 6.7.

In addition to movement limitations, we also evaluate sensor parameters and their effect on

the proposed system. Given that the robots are equipped with beam sensors, the key parameters

of interest are the maximum sensor range rsense, the maximum sensor span θsense, and the number

of beams per vertical or horizontal span ρsense. The effect on performance of rsense is shown in

101

(a) (b)

(c) (d)

Figure 6.12: Performance analysis relative to energy capacity L expressed as flight duration, with
vtravel = 6, Nw = 6, Nr = 3, dadv = 100s, dhor = 120s, and α = 150. The influence of capacity is
less significant than other parameters as we do not limit the number of robots deployed. However,
note that the response fraction (c) converges to steady-state much more quickly when L is high.
When robots are deployed for longer durations, they spend less time traveling to and from the
charging station, allowing them more freedom to cover more of the environment. Also, note that
compute time is consistent across all values of L as the complexity is minimally impacted by
robot capacity.

Fig. 6.14, where we see entropy, divergence, and response fraction all converge significantly

faster with longer range sensors. The approach, however, is still able to utilize sensors with

smaller rsense and learn the model well enough to converge to roughly the same steady-state

entropy and divergence, albeit at a much slower pace. Computation time, however, does not

exhibit significant variance, despite the additional cells that require processing as a result of

farther reaching beams. As such, the proposed approach is capable of leveraging long-range

102

(a) (b)

(c) (d)

Figure 6.13: Performance analysis relative to travel speed vtravel, with L = 300, Nw = 6, Nr = 3,
dadv = 100s, dhor = 120s, and α = 150. Increased speed allows for routes to be completed faster,
resulting in more planning iterations and more waypoints visited per horizon. As a result, entropy
(a) and divergence (b) converge more quickly to lower steady-state values, while computation
time (d) increases with the number of iterations performed per horizon. The response fraction
(c), on the other hand, does not vary greatly with travel speed, except for a slight increase in
steady-state response when vtravel is low.

sensors without significantly influencing the frequency of plan generation.

Figure 6.15 shows the progression of performance as a function of the span of the sensor

sweep θsense. Given that beams are projected in sequence horizontally and vertically, this number

represents the field of view of the sensor along the vertical and horizontal axes. As such, the wider

the view used, the more cells a sensor can observe. In most cases, this results in an improvement

to performance, with minimal impact on computation time as the number of additional cells

observed per sensing action is minimal. Further discussion on how this effect is impacted by

103

Table 6.7: Comparison of steady-state performance while varying capacity L and travel speed
vtravel. There is a clear trend of improved entropy and divergence reduction as vtravel increases,
given that faster moving robots can cover more of the environment more quickly. There is also
a minor improvement in steady-state entropy and divergence evident when L is increased, as
robots expend less time traveling to and from the charging station.

L vtravel E(Nr) tconv µH µD E(dr) Nu

300 6 2.96 7809 1718 1949 0.0012 414
600 6 2.98 7733 1719 1902 0.0012 413
900 6 2.98 7689 1706 1873 0.0013 455
300 8 2.86 6855 1545 1858 0.0013 507
600 8 2.98 6883 1540 1793 0.0012 485
900 8 2.99 6879 1521 1821 0.0010 521
300 10 2.85 6660 1503 1850 0.0011 435
600 10 2.93 6585 1495 1829 0.0010 415
900 10 3.00 6609 1492 1766 0.0008 430

ρsense is included in the subsequent paragraphs.

Although the number of beams per sweep, ρsense, is a function of the choice of sensor, a user

can adjust this value by downsampling the number of beams used in processing an observation.

This is an important property, as there is little benefit to having a high density of beams when

multiple measurements of the same set of cells provides little extra information. In Fig. 6.16, we

see a general trend of improved performance as a result of increasing ρsense, with diminishing

returns observable at ρsense = 10. However, this comes at the cost of increased computational

complexity as increasing the number of beams considered greatly increases the number of cells

processed with each computation of the utility function.

In Table 6.8, we see that KL-Divergence suffers with increasing θsense when ρsense is low.

Additionally note the increase in unobserved cells,Nu, as a result of the widening span. Consider

the distance between the beam end locations as determined by the law of cosines:

a2 = 2r2sense

(
1− cos

(
θsense
ρsense

))
.

Any cell with a span smaller than a in the horizontal or vertical plane of the sensor’s field of view

104

(a) (b)

(c) (d)

Figure 6.14: Performance when varying the maximum sensor range rsense, with θsense = 40◦

and ρsense = 10. Entropy, divergence, and response fraction converge much more quickly to
steady-state with long-range sensors. However, the potential addition of a few extra cells to the
end of each beam does not appear to heavily influence computation time in this example.

is likely to be missed as the sensor scans across the planes. As such, the minimum number of

beams per span to which an observation can be downsampled is given by:

ρsense =
θsense

cos−1
(

1− a2

2r2sense

) .
With a cell length and width of 2 m, θsense = 60◦ and rsense = 15, this value translates tor-

oughly 5.5 beams per span, which corresponds to the reduction of performance we begin to see

in Table 6.8.

105

(a) (b)

(c) (d)

Figure 6.15: Performance when varying the span of a sensor sweep action θsense, with rsense = 12
and ρsense = 10. The wider the span, the greater the width of observed space. If ρsense is
high enough to keep from opening gaps in the observed region, a wider span will provide more
information without significantly increasing computation time.

6.5 Environment Conditions

Another factor that can have significant impact on performance is the state of the environment and

how we choose to model it. There are some model-specific parameters, such as HMM window

size and occupancy likelihood prior, that we do not investigate in this work as there is little benefit

to understanding their effects if we elect to change the model. Instead, we make the general

comment that the more accurate a model we use, the more effective our approach. However,

we can investigate with different environments under different conditions to give a sense of our

performance as the environment becomes more difficult to process. As such, this section presents

106

(a) (b)

(c) (d)

Figure 6.16: Performance when varying the number of beams per sensor sweep ρsense, with
rsense = 12 and θsense = 40◦. The higher this number, the more beams are extended into the same
space. As a result, performance improves with diminishing returns approaching 10 beams per
sweep, as more observations of the same cells will not provide significantly more information.
However, each additional beam necessitates processing of another subset of cells, resulting in an
observable increase in computation time.

the results of testing the proposed approach under varied distributions and concentrations of

dynamics.

Altering the distribution of dynamics, in this case, refers to how the dynamic cells are dis-

persed in the environment. We examine the six cases depicted in Fig. 6.17, for which half exhibit

dynamic cells that are distributed randomly and half in which dynamic cells are clustered, with

each cell in a cluster changing state at the same time as the rest of the cluster. The key differ-

ence lies in how rapidly the environment changes. When the dynamics are randomly distributed,

changes are small and more evenly distributed across time. When they are clustered, the envi-

107

Table 6.8: Steady-state performance when varying sensor parameters. As expected, sensors with
longer range, rsense, and wider span, θsense significantly improve convergence rate and steady-
state entropy. However, as evidenced in Figs. 6.14, 6.15, and 6.16, the steady-state convergence
trends towards the same value after enough of the model has been observed. The sensor res-
olution, ρsense, also improves performance when increased, but we see diminishing returns for
higher values as multiple measurements of the same cells provide little extra benefit. Addition-
ally, note for lower ρsense, increasing θsense can result in an increase in the number of unobserved
cells Nu in at the end of a run as beams can skip over cells, resulting worse coverage during each
sensing action.

rsense θsense ρsense E(Nr) tconv µH µD E(dr) Nu

10 40 5 2.94 10870 2215 2397 0.0046 528
12 40 5 2.86 8415 1853 2323 0.0023 379
15 40 5 2.97 6428 1470 2500 0.0017 193
10 50 5 2.96 7840 1657 2342 0.0015 824
12 50 5 2.96 6984 1537 2322 0.0017 709
15 50 5 2.85 5745 1335 2434 0.0014 337
10 60 5 2.97 8035 1638 2351 0.0022 962
12 60 5 2.97 6952 1478 2286 0.0015 783
15 60 5 2.86 5970 1315 2357 0.0013 324
10 40 7 2.98 10130 2025 2289 0.0032 615
12 40 7 2.96 8095 1669 2127 0.0024 426
15 40 7 2.87 5925 1287 2373 0.0012 187
10 50 7 2.95 7449 1477 2286 0.0018 785
12 50 7 2.95 6668 1369 2198 0.0016 604
15 50 7 2.97 4536 1166 2045 0.0006 374
10 60 7 2.97 7086 1429 2287 0.0014 850
12 60 7 2.97 5723 1332 1916 0.0009 658
15 60 7 2.96 4325 1123 2139 0.0009 379
10 40 10 2.94 10090 2138 2195 0.0036 588
12 40 10 2.96 7809 1718 1949 0.0012 414
15 40 10 2.96 5602 1354 1878 0.0006 191
10 50 10 2.96 7254 1469 2096 0.0015 870
12 50 10 2.97 6353 1392 1796 0.0011 593
15 50 10 2.96 4416 1145 1796 0.0006 378
10 60 10 2.85 6644 1410 2022 0.0014 862
12 60 10 2.96 5422 1360 1651 0.0010 665
15 60 10 2.85 4005 1112 1621 0.0004 370

ronment sees a significant instantaneous change, resulting in a spike in KL-Divergence. This

evolution is evident in Fig. 6.18, where the clustered environments are initially as easy to process

as random environments, due to the fact that most of the environment is unknown, but quickly

108

(a) Random 12.5% (b) Random 20% (c) Random 30%

(d) Cluster 12.5% (e) Cluster 20% (f) Cluster 30%

Figure 6.17: Testing environments differentiated by the percentage of dynamic cells outside of
the safety region. These percentages do not include cells that the robots are permitted to traverse.
The frequencies of change are expressed by color using the same range shown in Fig. 6.1

lose accuracy as the sudden changes begin to stack. Once the dynamics are learned, however,

these spikes become less prominent and degrade faster, resulting in a more consistent represen-

tation of the environment.

To vary the concentration of dynamics, we adjust the percentage of cells in the dynamic

region that exhibit changes. Figure 6.17 shows the set of environments with varying dynamic

concentrations that are tested in this section. As one might expect, the more cells that are dynamic

the less accurate and certain our model. This results in exacerbating the effects of clustering,

causing more significant spikes in KL-Divergence. The key trait of interest, however is that there

is a significant separation of the steady-state values, suggesting that there is a hard limit to how

well the model can be learned for a team of robots in an environment of a certain concentration

of dynamics. In future works, we will determine how to predict this limit based on environmental

conditions and available resources to determine how well an environment can be modeled.

109

(a) (b)

(c) (d)

Figure 6.18: Comparison of varying environment dynamics and distributions. To mitigate the dif-
ference in entropy and divergence values for differing maps, we divide these values by the num-
ber of cells below the safety height that are not persistently occluded and show the corresponding
entropy fraction and divergence fraction. As expected, environments with more dynamic cells
are more difficult to process than environments with less, resulting in poorer performance for
higher percentages of dynamic cells. Random environments exhibit more stable divergence than
clustered environments, given that the changes are more staggered, but performance overall is
worse in the random environments as cells are more often occluded. The cell dynamics can still
be learned with partial occlusions, but many more observations are required to learn the dynamics
accurately.

6.6 Urban Environment

To connect these results to a realistic scenario, we devised an urban environment experiencing

tidal flooding that regularly impedes motion in a portion of the covered area. These tests express

how the proposed approach performs in a scenario where dynamic cells are not clustered into

spherical groups and the cells change states over irregular periods. Figure 6.19 shows the struc-

110

(a) Front view (b) Top-down view

Figure 6.19: Urban test environment, showing the front view (a) and top-down view (b). Robots
deploy from the green square within the wire frame box (black lines) to map the environment.
The buildings serve as static obstacles both above and below the safety line (red bordering line).

ture of the urban environment, which consists of static buildings and open pathways in the form

of roads and sidewalks. The environment is represented using a 76 × 60 × 12 occupancy grid

where the lower 76 × 60 × 5 sub-grid (below the safety height) encompasses the region where

dynamics are modeled.

To express a more complex evolution of the environment topology, we expand on the previous

representation of dynamics by allowing cells to exist in one state for a longer duration than the

other. This property is expressed as the duty cycle of the cell’s state transition frequency, where

a cell mi with a duty cycle δi ∈ [0, 1] and a frequency of change fi corresponding to the period

of change Ti = 1/fi exists in the free state for (1 − δi)Ti seconds before transitioning to the

occupied state, then remains in the occupied state for δiTi seconds before transitioning back to

the free state. The updated representation differs from earlier environments as each environment

assumed a value of δi = 0.5 for all cells mi ∈ m.

The dynamics for the scenario addressed in this section are expressed in two forms, visually

represented by the vignette in Fig. 6.20, where blue cells indicate water periodically flooding

111

the top half of the map and orange cells represent people, vehicles and equipment being period-

ically moved through a region of the environment. We simplify the expression of these effects

by selecting an independent frequency, phase, and duty cycle for each cell, instead of directly

modeling the motion of objects through the environment. As shown in Fig. 6.21, the frequency

is selected as fi = 1/3600 for the entire flooded area at the top of the map, but the duty cycle

decreases in stages as the flooded area extends downwards. Setting the phase for each cell to

φi = −(1− δi)
Ti
2
,

where the phase, φi, represents the duration before cell mi begins its first cycle in the proposed

scenario, results in the staged flooding exhibited in Fig. 6.20. The region in the bottom left of the

environment, corresponding to the movement of people and resources, consists of cells whose

frequency, phase, and duty cycle are randomly chosen from the ranges fi ∈ [1/2000, 1/300],

φi ∈ [0, 1/fi], and δi ∈ [0, 1].

We evaluate the efficacy of our approach by comparing performance against the pure greedy

assignment in the proposed urban flood scenario. As shown in Fig. 6.22, the greedy approach

quickly decreases entropy and divergence early (t = [2500, 6500]) but at t = 8000 the Min-

Makespan approach exceeds the performance of the greedy approach and is better able to respond

to changes in the environment. In the Divergence Progression plot, we see the Min-Makespan

approach consistently reducing divergence faster and to lower values than the greedy approach

after each instance the environment undergoes a sudden change. Figure 6.23 shows how this is

expressed in the environment model, as the Min-Makespan approach is capable of recognizing

that the road at the top of the map is open at t = 11000 while the pure greedy approach models

the road as mostly obstructed. This result highlights the importance of modeling environment

dynamics and distributing robots appropriately, as an insufficient strategy might miss the opening

of a key passageway in a scenario where the ability to move quickly through the environment is

paramount.

112

(a) t = 10 (b) t = 500 (c) t = 1000 (d) t = 1500

(e) t = 1750 (f) t = 2000 (g) t = 2500 (h) t = 3000

Figure 6.20: Urban scenario vignette. The representative disaster scenario expresses two dif-
ferent types of dynamic clusters, expressed in the vignette through cells that are periodically
occupied by water (blue cells) and cells that are periodically occupied by people, vehicles, or
equipment (orange cells). The area at the top of the map exhibits flooding in stages, repeatedly
covering and uncovering half of the environment every hour. The area at the bottom left of the
map exhibits the randomly distributed periodicity that could be expected of rescue workers and
people in distress. The black cells surrounding the buildings represent the continuously occupied
cells the buildings intersect.

6.7 Conclusion

In this chapter, we evaluated our systems-based approach to persistently deploying a team of

robots to map a dynamic environment while accounting for each robot’s limited energy capacity.

We showed that pure greedy assignment is ill-suited to dynamic environments as the constant

growth of uncertainty promotes the continuous observation of the same dynamic clusters. The

proposed approach mitigates this issue by batch-selecting a large set of candidate waypoints that

are spread throughout the environment. As a result, the proposed approach converges 22% faster

to a steady-state with less than 60% of the entropy (model uncertainty) and 71% of the KL-

Divergence (model inaccuracy). However, the proposed approach is heavily dependent on the

appropriate selection of many parameters, which can make implementation difficult.

By evaluating the effect these parameters have on performance, though, we are able to pro-

vide the following insights to reduce this burden. First, the parameter which most directly affects

113

(a) Dynamic Heatmap (b) Duty Cycle Map

Figure 6.21: Urban environment dynamics. The heatmap (a) expresses dynamics as before,
with red signifying fast changes and blue signifying slow changes, while the duty cycle map (b)
expresses how much of each period of change a cell spends in the occupied state (an 0.8 duty
cycle means a cell spends 20% of a period free and 80% occupied). The flooded area shows a
consistent frequency of change across all stages, but exhibits a decreasing duty cycle as stages
descend from the top of the map. This representation results in the evolution of occupancy
depicted in Fig. 6.20 where the uppermost areas remain flooded (occupied) for longer than the
areas below. The cluster in the bottom left exhibits randomly distributed cell dynamics, similar
to the random environments tested in Sec. 6.5, but with randomly selected duty cycles as well.

multi-robot coordination, Nw, shows a minor improvement to performance as it is increased,

at the cost of computational complexity. This suggests that further development is warranted

in investigating the integration of more efficient, highly-coupled task assignment approaches.

Second, attempting to compute short horizons quickly provides little benefit at a relatively sig-

nificant cost. Instead, it is more prudent to compute over longer horizons, up to the limits the

robot capacities allow. Third, the objective weight which blends CSQMI and goodness-of-fit ob-

jectives appears to vary in performance over time as the environment becomes known. It would

be beneficial to incorporate dynamic parameter tuning to ensure optimal performance over all

time. Fourth, performance as a function of sensor parameters can be improved by downsam-

pling beams if there are too many to process, however the user must take care not to exclude so

114

Figure 6.22: Comparison of performance between the system-based and pure greedy approaches
in the urban flooding scenario, where the system parameters are chosen as: Nw = 6, Nr = 3,
dadv = 100s, dhor = 120s, α = 10 and the greedy distance weight is chosen as Cd = 0.5. While
the greedy approach more quickly processes the static regions, resulting in faster convergence
in the t = [2500, 6500] range, the Min-Makespan system-based approach proposed in this work
eventually reaches the same steady-state entropy. Divergence shows a similar trend, with the
Min-Makespan more quickly converging to lower values after sudden changes.

many beams that the observation cone develops gaps. Finally, we are able to show consistent

performance with convergence and steady-state values that vary over environments with differ-

ing composition and distribution of dynamics. As such, it is likely that future works will be able

to leverage this information to determine roughly how accurate and confident a model can be

developed in a given environment.

115

(a) True State (b) Min-Makespan (c) Pure Greedy

Figure 6.23: A comparison of environment models at key time frames for the Min-Makespan,
system-based approach and the pure greedy assignment approach. The top row shows the true
state of the environment (a) and the environment model from runs using the Min-Makespan
approach (b) and the pure greedy assignment approach (c) at t = 5000. The bottom row shows
these same visualizations at t = 11000. Earlier in the run, the Min-Makespan approach has a
better model of the center road area (lighter and transparent blocks, indicating free space with
high confidence) but models the dynamic regions more poorly than the greedy approach. Later,
the Min-Makespan approach can better distribute robots to the dynamic regions and recognizes
when the road at the top of the map has cleared faster than the greedy approach.

116

Chapter 7

Conclusion

The thesis objective is to perform persistent monitoring of dynamic environments using energy-

constrained, multi-robot teams. Despite the complexity of the problem, the proposed system is

able to persistently generate plans online by decoupling the per-horizon planning problem into

several stages. First, candidate waypoints are collected into a list, sorted by the utility score

presented in Chapter 4. Then a set of Nw waypoints are drawn from the top of the candidate

pool. Pair-wise paths are computed through the environment to provide the path costs for travel

between the waypoints, which are used to compute energy feasible routes through the environ-

ment. These routes extend existing plans, if possible, or create new plans that deploy the next

available robot into the environment. If there is time left in the horizon or energy left in the

active robots, a new set of Nw waypoints are selected from the candidate pool and the process

is repeated. Otherwise, the plans are executed, the model is updated, and the planner advances

to the next horizon. This process addresses the challenge of Computational Tractability when

parameters are chosen to ensure that computation time is less than dadv. Energy Feasibility is

ensured by limiting the extension of plans by the maximum flight duration L. The last challenge,

Responsiveness is fulfilled by the updated utility score, as measurements are distributed relative

to the inherent environment dynamics once the environment is well enough known, ensuring that

changes are observed soon after they occur.

117

7.1 Summary of Contributions

The main contributions of this thesis include:

• The multi-robot persistent planning system, which is capable of perpetually deploying

robots to gather information efficiently enough to build maps 1.4 times more confident

and accurate than greedy approaches. We discovered that the greedy approach, which

allocates observation actions to robots based on the CSQMI value, is poorly suited to the

HMM occupancy grid used in this work. CSQMI guarantees complete exploration if given

enough time; however, the guarantee only applies for a static environment. In a dynamic

environment, in which certainty is constantly decreasing, a robot can apply too much focus

on nearby dynamic regions to the detriment of the rest of the environment. The proposed

approach mitigates this issue by batch selecting waypoints to avoid a bias towards the top

scoring candidates. By spreading attention wide instead of deep, the dynamics model is

learned early, the growth of uncertainty degrades, and robots can focus on the more active

regions.

• An improved observation selection objective that combines CSQMI and Pearson’s χ2

test to leverage the high confidence performance of CSQMI along with the improved cov-

erage of χ2. The key innovation is that CSQMI, which is designed for static environments,

interacts poorly with an HMM-based occupancy grid. If too many measurements agree in

too short a span of time (cell appears to be in one state too often), the model can appear

to have high confidence in an incorrect model. The χ2 component mitigates this issue by

promoting more measurements in regions where observations disagree with the dynamics

model.

• A complete analysis of the system components, including computational complexity and

the influence of parameter settings on performance. From this analysis, we can conclude

that the system would benefit from higher coupling (greater Nw), but may need to rely

on suboptimal heuristics to ensure computational tractability. Additionally, the best per-

118

forming choice of selection objective weight, α, appears to vary in performance over time,

suggesting that performance could be maximized with online tuning. Finally, we see a

distinct variance in steady state performance as the density of dynamics changes. With

enough data, it might be possible to predict the steady-state performance the system could

provide based on the physical limits of the robot team and the environment conditions.

7.2 Future Work

As for future directions, there are many ways the proposed system can be improved, but four

areas in particular could benefit from further investigation. First, the choice of environment

model was made to simplify the planning problem in early stages of development, but there

are some promising modeling approaches that could better represent a complex environment

without fixing the scale or resolution. Second, the Waypoint Assignment approach we present

relies on an optimal solver to distribute waypoints; however, tighter coupling between larger sets

of waypoints might be achieved with sub-optimal, heuristic approaches that can quickly find

solutions to such complex problems. Third, the proposed approach assumes a constant number

of deployed robots over all time, which can ensure continuous operation by deploying a fixed

fraction of the available team. Instead, a more efficient approach might predict the upcoming

demand and adjust the deployment team size online to better react to particularly active phases,

or keep more robots on standby when the environment is expected to remain stable. Finally,

the range of coverage can be greatly increased by establishing multiple charging areas within

reachable flight distance of one another, assuming we are able to mitigate the resulting increase

in computational complexity for planning optimal routes. The following paragraphs provide a

bit more detail on the challenges that can be expected in pursuing these goals.

Updating the Environment Model The main limitations of occupancy grids lie in the fixed

resolution and the assumption of independence between cells. As a result, it can be difficult to

119

model environments that contain features of significantly varying scale. Octomaps are a promis-

ing option that will not require a significant change to the approach and Hierarchical Gaussian

Mixture Models provide a similar benefit without fixing the location of each unit of volume;

however, both come with two major limitations that must be resolved. First, without a fixed

volume or location, the system must have some means preserving information across time-steps

in order to encode environment dynamics. Every time a new measurement is taken, the model

must decide whether the measurement belongs to previously observed volumetric units (cells or

Gaussians within the hierarchy), or it corresponds to a new volumetric unit. Second, a utility

measure (both CSQMI and χ2, or some related measure) must be provided for this new form. A

naive approach would be to locally generate a temporary, fixed-resolution occupancy grid from

which to derive utility, but this approach would limit the benefit of a new model to a significant

degree.

Efficient Waypoint Assignment There are many heuristic approaches to task assignment that

provide fast solutions at the cost of optimality. The main challenge is determining the how much

optimality must be compromised to ensure online planning. The greedy waypoint assignment

approach presented in Sect. 5.5.1 is a naive option, but more efficient or more optimal approaches

may exist. Alternatively, one could reduce the degree of coupling or the number of waypoints

serviced each horizon and instead focus on upgrading the informative quality of trajectories

traversed between waypoints. While the Path Planning phase of the proposed system is too

deeply integrated to allow for the computation of complex, informative paths, it is possible to

revise computed paths at the end of each planning iteration to improve their informative quality.

Then, if the system is able to compute subsequent planning iterations relative to these updated

paths, the impact of waypoint choice would be reduced allowing for the planner to generate

high-utility plans with low values of Nw and/or fewer planning iterations.

120

Long-Duration Demand Management In order to efficiently distribute effort across many

planning horizons, the system must determine how many robots to deploy in each planning hori-

zon relative to the demand of the environment, where demand is a function of predicted utility

of observations in the environment. This requires a definition of demand relative to utility and

an objective function that determines team size relative to the demand. Appendix A presents an

early approach to addressing the latter problem relative to a user defined demand in the form of

desired formation flight behaviors. Future work would then look to defining demand in the pres-

ence of a probabilistic environment model and leveraging awareness of the system’s full energy

state balanced against demand to determine deployment team size at any given time. Doing so

could significantly increase performance in scenarios where the environment experiences sparse,

but regular instances of particularly high levels of activity by allowing the system to keep robots

in reserve in preparation for periods of high demand.

Multiple Charging Areas In this thesis, we assume the existence of a single charging area

from which all robots deploy. However, it may be desirable to establish multiple charging ar-

eas sparsely distributed throughout the environment to greatly increase the range that a team of

robots can cover. Given that the range of a robot is limited to half the distance traversable on a

single charge from a charging area, placing multiple charging areas within range of each other

allows each robot access to the union of all reachable distances from nearby charging areas, as

shown in Fig. 7.1. While the benefit is great, there is also a significant increase in complexity as

the planner must decide from which area to deploy and to which area to return each time a plan is

generated. Additionally, when the team size is finite the planner must appropriately manage the

distribution of robots among charging areas to ensure a timely response to unexpected changes

in the environment. As transitions between charging areas that are sufficiently far away neces-

sitate a recharging cycle before a robot can continue exploring or transition to another charging

area, redistributing robots over multiple transitions between charging areas quickly becomes pro-

hibitively time consuming. A viable planner must be able to predict the demand at each charging

121

Figure 7.1: Visual representation of multiple charging areas. A robot is only capable of traveling
a finite distance from a charging area (vtravel

L
2

for a constant travel speed vtravel and a maximum
flight time L) if it is to return to the charging area before depleting energy reserves. With multiple
charging areas, a robot can transition between areas as long as the transition can be accomplished
on a single charge. However, such transitions may require complex and time-consuming maneu-
vers as moving from one area to another may necessitate multiple transitions and recharging
cycles (as would be necessary if transitioning from charging area 1 to area 3 in the figure above).

area and ensure that robots with full energy capacity are available where and when they are

needed.

122

Appendix A

Online Energy-Constrained Adaptation

and Scheduling of Persistent Coordinated

Behavior-Based Multi-Robot Deployments

In this chapter, we present a collaborative effort with Ellen Cappo and Arjav Desai that highlights

how a persistent deployments can be planned in a manner that factors in energy considerations

over multiple planning horizons. In the proposed application, robots are tasked with performing

formation flight behaviors that are decided by a user in an online fashion. Persistence is achieved

using the trajectory refinement approach proposed in [38], which permits the planner to overwrite

behaviors with robot swapping actions as necessary. The key contribution of this work is an

approach that uses the energy state of the full robot team to determine the subset of a set of

behaviors that are feasible. We expect this approach of planning relative to the multi-robot energy

state to inform future development of the system presented in earlier chapters.

123

Vicon
Motion Capture System

Multi Robot System

Behavior generator

Behavior planner

Exchange Scheduler

Trajectory Generator Robot Controller

Object Tracker
ICP for extracting robot states from

pointclouds

pointcloud

parameterized

behavior

description

motion plans

corresponding to the

behavior description

assignment of robots

to trajectories based on

energy constraints

odometry @

100 Hz

motion plans with feasible and safe

approach and departure trajectories

robot voltages

lower level motor commands

for eachactive robot

robot

availability
Capacity
Modellerflight and

charge times

Ethernet Crazyflie radio ROS

Figure A.1: System architecture.

A.1 System Overview

The proposed planning framework for achieving long duration autonomy with a multi-robot sys-

tem subject to energy constraints can be subdivided into four components. The first two compo-

nents, the behavior generator and the behavior planner, generate behavior commands and map the

behavior commands to dynamically feasible and collision free trajectories that do not consider

limitations on energy capacity. The third component, the exchange scheduler, cuts the trajec-

tories into energy feasible subsections and assigns robots to individual trajectories. The fourth

component, the exchange trajectory generator, computes the approach and departure trajectories

for the assigned robots. These trajectories are then finely discretized into a set of position set-

points. The controller uses these position setpoints and the state-estimates of the robots received

from a motion-capture system to compute the lower level commands for each active robot. These

lower level commands are transmitted to the robots by means of a 2.5 GHz radio. This process is

illustrated in Fig. A.1, and the subsequent subsections describe each of the components in detail.

Behavior Generation We choose to use behavior commands in order to direct multi-robot

motions in an online context [56]. A behavior command,~b, is a fixed length vector containing M

124

behavior descriptors: ~b = [b1, . . . , bm],m ∈ {1, . . . ,M}. Each descriptor, bm, describes a facet

of the desired overall multi-robot ensemble motion. To give an example, descriptor categories

can include the number of robots making up a group, formation shapes for groups of robots,

speeds governing group movement, or group actions (such as moving to a target destination or

performing a repeated motion pattern, including traveling in a circle or moving side to side).

Each behavior descriptor, bm, may take a discrete number of values, and we denote Bm as the

set of values associated with the behavior descriptor bm. The total number of potential behaviors

achievable by the system is therefore the product of the cardinality of each set:

perm(~b) =
M∏
m=1

|Bm| . (A.1)

Behaviors allow a user to direct ensembles of robots without requiring the user to specifically

consider low level details of multi-robot motion planning such as potential collisions between

robots and the environment or the dynamic limits of the hardware platforms. Specifically con-

sidering the physical extents and actuator limits of a vehicle is non-trivial for a human user,

especially in an online context where commands may need to issued quickly and without prior

planning. The methodology presented in [56, 57] provides a planning system that translates user-

specified behaviors in an online context into dynamically feasible and safe motion plans which

reflect the user’s motion intent.

Estimating Energy Feasible Behaviors

Another physical constraint which we seek to abstract from the user’s consideration is a vehicle’s

battery capacity. In this section, we propose an update rule for the set of behaviors to reflect the

energy constraints of a robot team. This allows a user to specify motions for homogeneous

groupings of robots from an estimated energy-feasible subset of behaviors. The large set of

potential behaviors makes precomputing all possible behavior transitions, even at discretized

time instances, infeasible. Therefore, while the exact energy requirements of transitioning to

125

(a) Histogram of robot availabil-
ity.

(b) Robot availability as a cumu-
lative sum over time.

(c) Updated set of robot availabil-
ities after a scheduled behavior.

Figure A.2: Updating the set of energy feasible behaviors for a 30 robot team. Each robot has a
flight time of 2 minutes and a charge time of 34 minutes; 18 robots are required to perform any
persistent behavior. (a) A histogram of the current energy state of the 30 robot team, where robots
are allotted into bins based on time to full charge. (b) Energy requirements for a behavior can be
compared to the energy state of the team using the cumulative availability of the robot team over
time. The blue line shows the cumulative number of robots available with increasing time. The
red line shows how many robots are needed with time to sustain a persistent behavior requiring
a single flying robot. For reference, the yellow line shows the number of robots required for a
persistent behavior. (c) The updated availability after a persistent behavior is assigned. Here,
the blue curve does not remain above the red line, showing that there are not enough robots
remaining to perform a second persistent behavior. However, a single-robot behavior could be
performed for a maximum duration shown by the yellow line.

a behavior cannot be predetermined, the proposed methodology ensures with high probability

that the energy capacity across the number of available robots is sufficient to cover the desired

behavior trajectories.

In this work, we assume that all robots are homogeneous. This assumption allows a user to

choose a quantity of robots to direct rather than specific robots. To represent an energy feasible

behavior, we therefore create a descriptor set which combines the concepts of how many robots

may be directed and for how long.

While the actual energy expenditure of a proposed behavior trajectory will depend on the

vehicles’ states at the time the command is issued, we can approximate behavior energy usage

by reasoning in terms of proposed flight and charge times. A robot, on average, will be able to

fly for time tflight using a single battery. That battery, in turn, will recharge at a measurable rate,

126

allowing us to determine an average time to recharge, tcharge. The number of robots needed in

order to cover a single robot flight plan persistently, Np, is then a function of the ratio of charge

time to flight time (rounded up to the nearest integer, to describe that we use integer numbers of

robots and cannot use a portion of a robot).

Np = ceil
(
tcharge

tflight

)
+ 1 (A.2)

The “+1” term describes the fact that one additional vehicle beyond the capacity ratio is required

to ensure full coverage. As a simple example, consider the case where a vehicle battery takes the

same amount of time to recharge as to deplete. In this case, two robots would be needed to cover

one job persistently; while one robot performed the assigned task, the other would recharge.

Therefore we define a persistent behavior as a behavior which allows for the first robot in a set

of Np robots to have fully recharged its battery by the time the last robot has depleted its battery,

allowing a set of Np robots to fully cover a behavior plan of indefinite length.

To create a set of energy feasible behaviors, the behavior planner queries the exchange sched-

uler to learn the scheduled times at which each robot in the team is estimated to both have full

battery capacity and become available, i.e., will finish covering any previously specified plans.

Because the behavior planner treats robots as homogeneous, it does not need to keep track of

the availability of specific robots, and can simply represent all availabilities across the team as a

simple histogram, as shown in Fig. A.2a.

The series of figures in Fig. A.2 illustrates the concept of using robot availabilities to deter-

mine energy feasible behaviors, and the process of updating the set after choosing a behavior.

Fig. A.2a shows a histogram of robot availabilities, given as the time duration from query time

t1 = 0 at which a robot will become available. Robots are sorted into histogram bins of dura-

tion tflight, and illustrated is a 30 robot example, where robots have a flight time of 2 minutes

and a charging duration of 34 minutes, requiring 18 robots to perform a persistent behavior. A

persistent one-robot behavior is shown in Fig. A.2b as the cumulative robots needed over time;

127

this function is shown in comparison to the cumulative robot availabilities, as described in the

histogram of Fig. A.2a.

We define the set of energy-feasible behaviors as behaviors having combined robot-time re-

quirements which lie under the curve of cumulative robot availabilities (Figs. A.2b and A.2c).

In Fig. A.2b, the team of 30 robots will have enough energy capacity, given that robots who

expend their batteries immediately recharge, to cover a one-robot persistent behavior, as shown.

If the user chooses to direct the system to perform a behavior using a single robot which requires

tcharge or greater duration for recharging, the updated set of energy-feasible behaviors is shown in

Fig. A.2c. At time t2 (shown without loss of generality as t2 = 0), 17 robots have been assigned

persistently by the scheduler to cover the desired one-robot behavior. As shown, a second per-

sistent behavior is infeasible, as the number of unscheduled robots are fewer than Np. However,

a user could choose to specify a single-robot behavior which only lasted 28 minutes in duration,

as this behavior is fully supported by the scheduled availabilities across the robot system.

Online Capacity Estimation

In order to update the conservative estimates of the flight and charge times, we monitor voltage

signals from each robot and modify flight durations such that certain predefined voltage thresh-

olds are not crossed. Typical batteries operate nominally within a specified safe voltage band

and the profile of voltage decay at a constant current is relatively consistent. As such, we present

a simple approach to adjusting flight and charge duration based on updating these values when

voltages outside of the safe band are sensed. Fig. A.3 shows an example of the voltage profile for

four robots during flight. The white band indicates the “safe” region, where our batteries perform

nominally. During flights, where the voltage is trending downwards, the times associated with

the threshold crossings are recorded until we see a significant positive change signaling a switch

to charging. The last crossing serves to identify the end of safe flight, where any extra flight time

is considered detrimental to the system. The duration between takeoff and this safe flight end

128

time indicates the new safe flight duration that is now factored into the scheduling algorithm.

When considering charge durations, however, we consider profiles that fail to cross the upper

(blue) threshold. This indicates that a robot took off before it was finished charging. In this case,

we increase charge duration by a small amount until robots are able to charge fully before being

scheduled to take off.

We note that we operate under a homogeneous vehicle and battery assumption, and treat

all voltage measurements from all robot-battery pairings as measurements of a “system wide”

battery model. While individual vehicle-battery pairings might exhibit slightly different capacity

profiles, we choose to use a single measure of tflight and tcharge across all vehicles to simplify

calculations and to gather a greater number of data points for faster system adaptation. We

believe this is a reasonable assumption for two reasons. First, both vehicles and batteries are

homogeneous (respectively) and the flight burden is shared approximately equally among the

robot team; no one robot-battery pairing will see significantly greater use than any other, and

we therefore expect batteries across the team to degrade similarly. Second, poorly performing

vehicles and/or batteries can be repaired or replaced while the system is operating. This allows

low-performing outliers to be corrected, and vehicle-battery pairings will therefore not fall far

outside a common mean.

Exchange Scheduling Continuous operation is accomplished by scheduling robot exchanges

such that the behavior trajectories are followed as strictly as possible while ensuring that no

robot is scheduled to expend more energy than is available. This is accomplished by assigning

subsections of the behavior trajectory to robots with enough energy to perform them. To ensure

rapid response to human input behaviors, we rely on a greedy, online scheduling and assignment

algorithm to quickly generate a feasible plan. The assignment algorithm is a straightforward

application of the Hungarian algorithm [58]. Behavior trajectories are assigned to the closest

available robots, where available refers to fully charged robots or robots who are in active oper-

ation. Robots in the process of charging are not considered for assignment until they completely

129

t
flight

t
charge

Figure A.3: Three voltage traces from three different quadrotors during flight. All batteries and
robots are the same model, and have been operating over a similar lifespan. This plot shows the
voltage drop for the various batteries during each robot’s respective flight, and the rate at which
recharging occurs. The red shaded areas of the figure indicate regions of low battery voltage,
with increasingly depleted voltage shaded light to dark. The blue shaded areas of the figure
indicate regions of high, or “full” battery voltage, with increasingly charged states shaded light
to dark.

charge.

The scheduling algorithm is a recursive approach with three basic steps. First a depletion

condition is discovered when a robot is scheduled to operate for longer than its capacity allows.

The algorithm then iterates backwards in time from the full depletion time until a feasible ex-

change is found. An exchange is feasible if the departing robot is capable of reaching the target

depot before the established depletion time and the robot on the target depot is fully charged.

Once the exchange is found, dynamically feasible, collision-free trajectories for each robot are

computed. These steps are repeated until no more depletion conditions are found.

Trajectory Generation As the majority of each robot path is determined by the assigned be-

havior, only the transitions between motions need to be computed. Such transitions can occur

from charging station to behavior, behavior to charging station, or between separate behaviors.

Viable trajectories for these transitions must be continuous, smooth and collision-free. To achieve

these conditions, we rely on a specialized implementation of Batch Informed Trees (BIT∗) [59], a

130

(a) Choose initial start and tar-
get trajectory.

(b) Introduce spatio-temporal
obstacles.

(c) Populate with random sam-
ples.

(d) Some potential segments
are invalid.

(e) Find base solution with
static waypoints.

(f) Update solution with relaxed
constraints.

Figure A.4: Trajectory generation process.

sample-based motion planner, to generate a series of waypoints1. The search space is customized,

as described below, such that the resulting waypoints form a continuous, smooth piece-wise poly-

nomial.

At the basic level, the described application can be modeled by choosing a state space that in-

cludes three Euclidean dimensions and one time dimension. Obstacles are represented as spatio-

temporal regions in the state space through which an edge between nodes may not be drawn. A

representative example with one spatial dimension is shown in Fig. A.4.

This example represents a robot in flight planning a trajectory to land. In Fig. A.4a, the red

trajectory, fs(t), describes the planned robot flight path and the green trajectory, fg(t), shows the

robot landed. States within this space are expressed as a combination of spatial and temporal

components

s = {t, x, y, z}. (A.3)

World spatial boundaries can be defined by the size of the space in which the robots are operating.

The bounds on time within the context of the trajectory generation problem are defined by the
1The planner implementation itself is drawn directly from the OMPL library [60]

131

Algorithm 7 RRT
1: procedure RRT(sstart, sgoal)
2: V ← sstart
3: E ← ∅
4: T ← (V,E)
5: for i = 1, . . . , N do
6: srand ← SampleFreei
7: snearest ← Nearest(T , srand)
8: if motionValid(snearest, srand) then
9: V ← V ∪ {srand}

10: E ← E ∪ {snearest, srand}
11: end if
12: end for
13: return T
14: end procedure

start and goal states, both drawn from their respective trajectories. These are designated in the

plots by dashed lines at the start time ts and the goal time tf .

Obstacles, in the state space, are defined in both space and time. In Fig. A.4b, these are

shown as boxes in x and t. However, the obstacles we typically consider are robot bounding

volumes whose positions in space are determined piece-wise continuous polynomial splines.

This is how we avoid pre-planned behavior while computing approach and departure trajectories

for swapping robots.

Advancement through the RRT process is shown in Figs. A.4c - A.4e. For reference, the

steps of basic RRT [61] are outlined in Algorithm 7. RRT evolves by sampling the space for

valid states, matching each state to its nearest neighbor, and checking for valid motion along

edges between states. Each valid state srand, with a valid edge {srand, snearest}, is added to the list

of vertices V and edges E of the tree T . Random sampling occurs in the SampleFreei function

on line 6 as shown in Fig. A.4c. Samples are drawn from a uniform distribution within the space

and time bounds, but rejected where obstacles are defined. The start and goal nodes are states

132

constructed from the polynomial splines between which we are computing the transition

ss = {ts, fx(ts), fy(ts), fz(ts)} (A.4)

sf = {tf , fx(ts), fy(ts), fz(ts)}. (A.5)

Note that in this example, we show only one start and goal state. However, it is possible to

seed multiple start and goal states from the splines if we wish to increase the flexibility of our

approach. Each start state will act as the root of a separate tree and each will grow towards all

goals, the optimal solution attributed to the start-goal pair which produces a viable path with the

minimum path length. In practice, we define a buffer duration dbuff and a desired start ts,des, where

ts = ts,des − dbuff, and seed start states within this buffer window. The buffer also applies to the

goal states, but we take advantage of the fact that seeding more goal states doesn’t significantly

impact the computation time of RRT and sample between ts,des and tf = tf,des + dbuff.

As we sample random intermediate states, we test their connectivity to T . In line 7, the

Nearest(T , srand) function returns the nearest node in T to srand in terms of Euclidean distance.

The function motionValid(snearest, srand) from line 8 then tests the validity of this edge as shown

in Fig. A.4d. This figure describes a state where a path in T is drawn as {ss, s0, s1} and samples

are being tested for valid motion from s1. State s5 is rejected simply because it occurs earlier

on the timeline than its connecting point, s1, despite being designated as a destination state on

the edge {s1, s5}. State s4 shows motion rejected due to obstacle interference. To detect this,

the algorithm samples states at discrete times along a three-dimensional polynomial trajectory

between these two positions and rejects the motion if any of these states occur with in the spatio-

temporal region defined by the obstacle. State s3 is rejected due to higher order limits. This is

difficult to portray in the figure, but the polynomial trajectory which describes motion between

these states can be evaluated for maximum velocity and acceleration along this edge and if these

values exceed predetermined limits, the edge is rejected. State s2 shows the only valid motion

for this set of samples.

133

Fig. A.4e shows a possible solution derived from the RRT algorithm. Note that the edges

are not represented by straight lines. As we require each trajectory defined in the configuration

space to be continuously differentiable up to acceleration, the solution must be described as a

piece-wise continuous set of polynomials. Computing the polynomial requires finding a solution

to a set of equations of the form

m∑
j=0

cj
di(tj)

dti

∣∣∣∣∣
t=0,df

= li ∀j = 0, . . . ,m/2 (A.6)

wherem is the number of coefficients. The set of coefficients c0, . . . , cm are derived from solving

this set of equations at both t = 0 and t = df , where df is the difference in time between edge

states (duration of travel across the edge). Note that this computation is relatively expensive and

would have to be computed for many edges before a viable solution is found. To circumvent this,

we assume all randomly sampled states have all derivatives constrained to equal zero. Trajecto-

ries between these states can be represented by a set of polynomials that travel a unit distance

over a unit length of time if the trajectory is scaled by distance and time. The scaling formula

described below shows how the unit polynomial coefficients, cj,unit, can be transformed to match

any pair of static waypoints

cj = lp

(
1

dp

)j
cj,unit. (A.7)

The variables lp and dp here describe the length and duration of the edge between two nodes,

respectively. Edges that connect to the goal or start state will still require full computation as the

higher-order derivatives may be non-zero, however most other edges can be computed with the

simple scaling formula in (A.7).

The solution this approach provides is dynamically viable, but we arrive at a smoother tra-

jectory if we compute the polynomials from waypoints with unconstrained higher-order terms.

Richter et al. [34] suggest computing a trajectory from a string of waypoints where some, if not

all, of the higher-order derivative constraints are relaxed. As long as continuity is preserved,

134

Figure A.5: Representative example of an exchange operation. Displays evolution of swap from
the approach start time (tf,a) to the departure end time (tf,d). The approach end time and depar-
ture start time are derived through computation within a time buffer defined by tswap ± dbuff

the robot does not need to come to a full stop at each waypoint. Collision avoidance can be

assured by checking for collisions along the smoothed trajectory and adding constraints to the

higher-order terms of waypoints that occur immediately before and after a collision. As the

RRT approach described earlier found these segments to be collision-free, we can be certain that

enforcing this motion will prevent the detected collision from occurring. Resulting trajectories

appear as shown in Fig. A.4f.

Although the above process is sufficient for computing the transition between behaviors,

further consideration is required to handle the simultaneous motion of a two robot exchange.

The scheduling algorithm establishes the instance in time in which an exchange is required. The

optimal solution, which minimizes divergence from the behavior trajectory, would have both

robots arriving at the exchange position as the same time. Here, we grow trees from the swap

time tswap towards the landing time, effectively growing the approach backwards in time. This

allows us to vary the takeoff and landing time more drastically and sample the approach and

departure start states at a few key points around the swap time. The diagram in Fig. A.5 depicts

the timeline of a typical exchange operation.

Online Reintroduction In an effort to mitigate robot failure due to losses of reliable state es-

timation or outside interference, we implemented a recourse approach to plan paths that reintro-

135

(a) Simulation (b) Hardware

Figure A.6: Images of robot behaviors in simulation and in hardware. (a) A view of a simulated
100 robot team, where ten robots are instructed to fly in various groups, in different formations.
Close up images of examples of various formations are shown left. (b) The Crazyflie robot team,
showing five flying robots; robots without LEDs are exchanging places in formation, so that
robots with depleted batteries can return to charging stations. Additional images depicting robot
formations are shown on the right.

duce robots that have failed into active operation. Once a failure is detected, if there is sufficient

time remaining before the subsequent exchange or departure a robot is selected from the set of

charged and unscheduled robots to perform the remaining assigned trajectory. Then we perform

a ‘replacement’ action, which involves computing a trajectory from the charging station into the

behavior path such that it avoids collision with all active robots and conducting the robot along

that trajectory. A ‘reintroduction’ action is executed when the failed robot is corrected and added

to the set of active robots. Here, a path is computed from a launch position to its assigned charg-

ing station. Once a robot has landed on its charging station and recharged to full, it is available to

be selected for subsequent jobs. The paths for both the replacement action and the reintroduction

action are computed in the same manner as described in Sec. A.1.

A.2 Experimental Evaluation

The system proposed in this work enables a user to generate and maintain continuous motion

plans over long durations for a team of robots while accounting for robot energy (battery) lim-

itations. To evaluate our approach and system capabilities, we therefore dynamically instruct a

robot team to perform behaviors online over a multi-hour timespan (a timespan exceeding 30

136

(a) Flight and charge time are adapted as the mission
progresses. Flight time (top) converges relatively
quickly as measurements are available often and in
large quantity. Charge time (middle) changes quickly
as initial measurements are available, then converges
as the model is refined. Job count (bottom) changes
as a function of flight and charge time.

(b) Voltage data collected from 100 simu-
lated trials. Voltage levels initially exceed the
safe region, but converge as parameters are
learned.

Figure A.7: Parameter learning from simulated voltage data. Jobs are generated randomly for
three hours.

Figure A.8: Robot trajectories as a function of distance from origin. Potential active jobs listed
as R1-R10. As parameters are refined, less jobs are made active and assigned robots.

137

times any individual vehicle energy capacity). We show that the system appropriately adapts

system parameters to account for learned vehicle energy profiles, and consequently dynamically

updates the number of operating robots to adapt to and maintain a continuous level of system

operation.

We evaluate the proposed system via trials in both simulation and hardware, with both simu-

lated and hardware experiments following the experimental approach described below:

• All motion plans during all trials were generated online from a centralized server and no

trajectories are planned prior to testing. To simulate a human user who wishes to dynam-

ically instruct a team of robots in an online setting, our system randomly chooses behav-

iors for the robot team from a set of energy-viable behaviors. This set of energy-viable

behaviors is updated online based on the system’s measurement of battery capacity and

team-wide task assignment.

• The behaviors instruct robots to form formations and travel to goal locations or rotate in

formation at a location, such as might be done when performing surveillance or coverage

operations. Robots are instructed to travel at varying speeds over varying durations, form

groups of varying number, transition between formation shapes, and merge or split forma-

tions. Further description of behaviors and their generation is provided in [56], and exam-

ples of robots performing behaviors in simulation and in hardware are shown in Figs. A.6a

and A.6b.

• The system begins operation using estimated values of tflight, the average length of time

during which an individual robot has the energy capacity to remain airborne, and tcharge,

the average length of time required to recharge a battery. Based on the voltage measure-

ments of all robots observed during operation, tflight and tcharge are updated online as de-

scribed in Sect. A.1. In simulation, voltage measurements are generated from a nonlinear

battery model, maintained for each robot in the team, following the lithium-polymer bat-

tery profile used on the hardware robots (profile shown in Fig. A.3). In hardware, voltage

138

measurements are measured directly at each robot.

• The values for tflight and tcharge are used to dynamically determine Np, the number of robots

required to maintain persistent operation, as defined in (A.2).

Over the course of operation in both simulation and in hardware, we show that the system

only performs behaviors which fall within the energy capacity of the system, and adapts to main-

tain a dynamic number of persistent operations. We further show that system energy capacity

limits are respected by showing that the voltage profiles of all agents in the team fall within

stated limits as the system learns the true energy capacities of the vehicles.

In simulation, we perform ten trials using a 100 robot team, with each trial lasting three

hours, to illustrate that our method is robust, repeatedly converging to the given battery model;

capable of online, real-time performance for large numbers of robots; and capable of maintaining

persistent operation over timespans far exceeding those of an individual vehicle battery. We

verify our simulation results through one and a half hour long hardware experiment using a team

of 26 Crazyflie2 robots within a Vicon3 motion capture arena. Hardware results demonstrate that

the described approach is viable with physical systems and verifies simulation results.

Simulation Simulated missions were run in 10 separate trials with each trial operating 100

robots for three hours. The evolution of tflight, tcharge, and Np is shown in Fig. A.7a. As individual

flights end quickly and are performed often, the flight time sees significant change early. Also,

the flight time will converge quickly from high values to more conservative values as a direct

measurement of flight duration is available once the measured voltage crosses the lower voltage

bound. Charge time, however, increases quickly once measurements are available, but takes a

while to converge as the value increases by static increments each instance voltage fails to reach

the upper threshold during charging. The job count changes as a function of flight and charge

time, so we see major decreases at instances where flight or charge time see significant increase.

2https://www.bitcraze.io/crazyflie-2/
3http://www.vicon.com/

139

https://www.bitcraze.io/crazyflie-2/
http://www.vicon.com/

(a) Flight time (top), charge time (middle), and
number of persistent jobs (bottom) adaptation
mirrors simulation results.

(b) Trajectories of the robots over time. Num-
ber of persistent jobs supported drops from 3 to
2 to 1.

Figure A.9: Parameter learning from live trials. Jobs are generated randomly for over one hour.

The simulated voltage profiles in Fig. A.7b show how voltages initially cross into the unsafe

region, but steadily confine themselves to the safe region as the parameters are updated. This

effect will occur some time after the parameters are updated relative to how far ahead plans

have been generated once parameters are updated. In the current approach, previously processed

plans are not re-generated as the parameters are updated as this would be too computationally

demanding for our system.

Fig. A.8 shows how jobs are assigned to robots over the course of a trial. For the sake

of expressing activity, each job (R1-R10) is plotted as a one-dimension polynomial indicating

distance from the origin relative to time. Robot assignments are differentiated by color and show

how each job is assigned to many robots over the course of the mission. Initially many jobs are

active when the parameters are set to their ambitious initial values. As the parameters grow more

conservative, the number of active jobs dwindles until we only see 4-5 active robots at a time.

Hardware Similarly, testing was done in hardware with Crazyflie robots operating within our

Vicon motion capture arena. The robots used are outfitted with reflective beads to assist Vicon

in providing pose information and an inductive charging board to allow for passive charging,

as seen in Fig. 3.1. With the added weight, the robots are capable flight times of roughly two

140

minutes and charge times of roughly 40 minutes. Fig. A.9a shows the minimum voltage relative

to the minimum allowed voltage for the Lithium Polymer (LiPo) batteries with which the robots

are equipped. Fig. A.9b shows how a team of 26 Crazyflies was flown for one and a half hours,

and that the system correctly adapted parameters and plans to maintain persistent operation. In

particular, we note that the evolution of the live trial mirrors what was seen in simulation and, as

such, the proposed system is viable for operation for extended durations on hardware.

A.3 Conclusion

This work presented a comprehensive system capable of deploying a large team of robots for

long-duration, persistent operation. Missions of this kind are particularly suited towards inspec-

tion and exploration and require fast, responsive generation of energy-feasible plans to properly

express the user input behavior. The results generated in this work show that the system is capa-

ble of extended duration operations exceeding 1000 power cycles of constant motion. A subset

of the team was shown persistently operating through robot exchanges, with larger subsets of

the team operating at less frequent intervals. We showed extensive results in simulation that

show the reliability of the proposed system given uncertainty in the energy capacity of individual

platforms.

141

Bibliography

[1] Howie Choset and Philippe Pignon. Coverage path planning: The boustrophedon cellular

decomposition. In Alexander Zelinsky, editor, Field and Service Robotics, pages 203–209,

London, 1998. Springer London. 1

[2] Gilbert Laporte, Michel Gendreau, Jean-Yves Potvin, and Frédéric Semet. Classical and

modern heuristics for the vehicle routing problem. International Transactions in Opera-

tional Research, 7(4):285 – 300, 2000. 1, 2.3.1

[3] Roberto Baldacci, Aristide Mingozzi, and Roberto Roberti. Recent exact algorithms for

solving the vehicle routing problem under capacity and time window constraints. European

Journal of Operational Research, 218(1):1 – 6, 2012. 1

[4] Aldy Gunawan, Hoong Chuin Lau, and Pieter Vansteenwegen. Orienteering problem: A

survey of recent variants, solution approaches and applications. European Journal of Op-

erational Research, 255(2):315 – 332, 2016. 1, 5.5.4

[5] David L. Applegate, Robert E. Bixby, Vašek Chvatál, and William J. Cook. The Traveling

Salesman Problem: A Computational Study. Princeton University Press, 2006. 1

[6] Paolo Toth and Daniele Vigo, editors. The Vehicle Routing Problem. Society for Industrial

and Applied Mathematics, USA, 2001. 1, 2.3.1

[7] Jan Karel Lenstra and A. H. G. Rinnooy Kan. Complexity of vehicle routing and scheduling

problems. Networks, 11(2):221–227, 1981. 1

142

[8] Paolo Toth and Daniele Vigo. The granular tabu search and its application to the vehicle-

routing problem. INFORMS Journal on Computing, 15(4):333–346, 2003. 1, 2.3.1

[9] Mazin Abed Mohammed, Mohd Sharifuddin Ahmad, and Salama A. Mostafa. Using ge-

netic algorithm in implementing capacitated vehicle routing problem. In International Con-

ference on Computer Information Science, volume 1, pages 257–262, June 2012. 1, 2.3.1

[10] Simon T O’Callaghan and Fabio T Ramos. Gaussian process occupancy maps. The Inter-

national Journal of Robotics Research, 31(1):42–62, 2012. 1, 2.2b, 2.1

[11] Chaoqun Wang, Teng Li, Max Q.-H. Meng, and Clarence De Silva. Efficient mobile robot

exploration with gaussian markov random fields in 3d environments. In Proc. of the IEEE

Intl. Conf. on Robot. Auto., pages 5015–5021, May 2018. 1

[12] Shaojie Shen, Nathan Michael, and Vijay Kumar. Stochastic differential equation-based

exploration algorithm for autonomous indoor 3d exploration with a micro-aerial vehicle.

The International Journal of Robotics Research, 31(12):1431–1444, 2012. 1, 2.1.2

[13] Maani Ghaffari Jadidi, Jaime Valls Miro, and Gamini Dissanayake. Mutual information-

based exploration on continuous occupancy maps. In Proc. of the IEEE/RSJ Int. Conf. on

Intelli. Robots and Systs., pages 6086–6092, 2015. 1, 2.1.2

[14] Benjamin Charrow, Gregory Kahn, Sachin Patil, Sikang Liu, Kenneth Y. Goldberg, Pieter

Abbeel, Nathan Michael, and R. Vijay Kumar. Information-theoretic planning with trajec-

tory optimization for dense 3d mapping. In Robotics: Science and Systems, 2015. 1

[15] Wennie Tabib, Micah Corah, Nathan Michael, and Red Whittaker. Computationally ef-

ficient information-theoretic exploration of pits and caves. In Proc. of the IEEE/RSJ Int.

Conf. on Intelli. Robots and Systs., pages 3722–3727, Oct 2016. 1, 2.1.2

[16] Derek Mitchell and Nathan Michael. Persistent multi-robot mapping in an uncertain envi-

ronment. In Proc. of the IEEE Intl. Conf. on Robot. Auto., pages 4552–4558, May 2019.

1.2, 5.5.2

143

[17] Sebastian Thrun. Robotic Mapping: A Survey, page 1–35. Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA, 2003. 2.1

[18] Shobhit Srivastava and Nathan Michael. Approximate continuous belief distributions for

precise autonomous inspection. In IEEE Int. Sym. on Safety Security and Rescue Robotics,

pages 74–80, Oct 2016. 2.2c, 2.1

[19] Sebastian Thrun. Learning occupancy grid maps with forward sensor models. Autonomous

Robots, 15(2):111–127, Sep 2003. 2.1

[20] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine

Learning (Adaptive Computation and Machine Learning). The MIT Press, 2005. 2.1

[21] Edward Snelson and Zoubin Ghahramani. Sparse gaussian processes using pseudo-inputs.

In Y. Weiss, B. Schölkopf, and J. C. Platt, editors, Advances in Neural Information Pro-

cessing Systems 18, pages 1257–1264. MIT Press, 2006. 2.1

[22] Dirk Hähnel, Dirk Schulz, and Wolfram Burgard. Mobile robot mapping in populated

environments. Advanced Robotics, 17(7):579–597, 2003. 2.1.1

[23] Dominik Nuss, Stephan Reuter, Markus Thom, Ting Yuan, Gunther Krehl, Michael Maile,

Axel Gern, and Klaus Dietmayer. A random finite set approach for dynamic occupancy

grid maps with real-time application. The International Journal of Robotics Research, 37

(8):841–866, 2018. 2.1.1

[24] Brian Yamauchi. Frontier-based exploration using multiple robots. In Proceedings of the

Second International Conference on Autonomous Agents, AGENTS ’98, page 47–53, New

York, NY, USA, 1998. Association for Computing Machinery. 2.1.2

[25] Entropy, Relative Entropy and Mutual Information, chapter 2, pages 12–49. John Wiley &

Sons, Ltd, 2001. 2.1.2

144

[26] Brian J. Julian, Sertac Karaman, and Daniela Rus. On mutual information-based control

of range sensing robots for mapping applications. The International Journal of Robotics

Research, 33(10):1375–1392, 2014. 2.1.2

[27] Ben Charrow, Sikang Liu, Vijay Kumar, and Nathan Michael. Information-theoretic map-

ping using cauchy-schwarz quadratic mutual information. In Proc. of the IEEE Intl. Conf.

on Robot. Auto., pages 4791–4798, May 2015. 2.1.2, 3.2, 5.2.3

[28] Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische math-

ematik, 1(1):269–271, 1959. 2.2

[29] Peter Hart, Nils Nilsson, and Bertram Raphael. A formal basis for the heuristic determina-

tion of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2):

100–107, 1968. 2.2

[30] Anthony Stentz. Optimal and efficient path planning for unknown and dynamic environ-

ments. International Journal of Robotics and Automation, 10:89–100, 1993. 2.2

[31] Sven Koenig, Maxim Likhachev, and David Furcy. Lifelong planning a*. Artificial Intelli-

gence, 155(1):93 – 146, 2004. 2.2

[32] Glenn Wagner and Howie Choset. Subdimensional expansion for multirobot path planning.

Artificial Intelligence, 219:1–24, 2015. 2.2

[33] Daniel Mellinger and Vijay Kumar. Minimum snap trajectory generation and control for

quadrotors. In Proc. of the IEEE Intl. Conf. on Robot. Auto., pages 2520–2525, Shanghai,

China, May 2011. 2.2

[34] Charles Richter, Adam Bry, and Nicholas Roy. Polynomial Trajectory Planning for Ag-

gressive Quadrotor Flight in Dense Indoor Environments, pages 649–666. Springer Inter-

national Publishing, Cham, 2016. 2.2, A.1

145

[35] Sikang Liu, Nikolay Atanasov, Kartik Mohta, and Vijay Kumar. Search-based motion plan-

ning for quadrotors using linear quadratic minimum time control. In Proc. of the IEEE/RSJ

Int. Conf. on Intelli. Robots and Systs., pages 2872–2879, Sep. 2017. 2.2

[36] Arjav Desai, Matthew Collins, and Nathan Michael. Efficient kinodynamic multi-robot

replanning in known workspaces. In Proc. of the IEEE Intl. Conf. on Robot. Auto., pages

1021–1027, 2019. 2.2

[37] Jonghoe Kim, Byung Duk Song, and James R. Morrison. On the scheduling of systems of

uavs and fuel service stations for long-term mission fulfillment. J. Intell. Robotics Syst., 70

(1-4):347–359, April 2013. 2.3

[38] Derek Mitchell, Ellen A. Cappo, and Nathan Michael. Persistent robot formation flight via

online substitution. In Proc. of the IEEE/RSJ Int. Conf. on Intelli. Robots and Systs., pages

4810–4815, Daejeon, Korea, October 2016. IEEE. 2.3, 2.3b, A

[39] Gennaro Notomista, Sebastian F. Ruf, and Magnus Egerstedt. Persistification of robotic

tasks using control barrier functions. IEEE Robotics and Automation Letters, 3(2):758–

763, April 2018. 2.3

[40] Paolo Toth and Daniele Vigo. The Vehicle Routing Problem, chapter 2. Branch-And-Bound

Algorithms for the Capacitated VRP, pages 29–51. 2002. 2.3.1

[41] Jean François Cordeau, M. Gendreau, Gilbert Laporte, Jean Yves Potvin, and Frédéric

Semet. A guide to vehicle routing heuristics. Journal of the Operational Research Society,

53(5):512–522, May 2002. 2.3.1

[42] Jean-Yves Potvin and Jean-Marc Rousseau. An exchange heuristic for routeing problems

with time windows. The Journal of the Operational Research Society, 46(12):1433–1446,

1995. 2.3.1

146

[43] Derek Mitchell, Nilanjan Chakraborty, Katia Sycara, and Nathan Michael. Multi-robot

persistent coverage with stochastic task costs. In Proc. of the IEEE/RSJ Int. Conf. on Intelli.

Robots and Systs., pages 3401–3406, Hamburg, Germany, September 2015. 2.3.1

[44] Saravanan Venkatachalam, Kaarthik Sundar, and Sivakumar Rathinam. A two-stage ap-

proach for routing multiple unmanned aerial vehicles with stochastic fuel consumption.

Sensors, 18(11), 2018. 2.3.1

[45] Ethan Stump and Nathan Michael. Multi-robot persistent surveillance planning as a vehicle

routing problem. In IEEE Int. Conf. on Autom. Sci. Eng., pages 569–575, Aug 2011. 2.3.1,

3.2

[46] Derek Mitchell, Micah Corah, Nilanjan Chakraborty, Katia Sycara, and Nathan Michael.

Multi-robot long-term persistent coverage with fuel constrained robots. In Proc. of the

IEEE Intl. Conf. on Robot. Auto., pages 1093–1099, Seattle, Washington, May 2015. 2.3.1,

2.3.1

[47] Kaarthik Sundar and Sivakumar Rathinam. Algorithms for routing an unmanned aerial

vehicle in the presence of refueling depots. IEEE Trans. Autom. Sci. Eng., 11(1):287–294,

January 2014. 2.3.1

[48] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics. MIT Press,

2008. 3.2

[49] Brian Kallehauge, Jesper Larsen, and Oli B.G. Madsen. Lagrangian duality applied to the

vehicle routing problem with time windows. Computers & Operations Research, 33(5):

1464 – 1487, 2006. 3.2, 3.2, 3.2

[50] Dominique Feillet, Pierre Dejax, Michel Gendreau, and Cyrille Gueguen. An exact algo-

rithm for the elementary shortest path problem with resource constraints: Application to

some vehicle routing problems. Networks, 44(3):216–229, 2004. 3.2

147

[51] Daniel Meyer-Delius, Maximilian Beinhofer, and Wolfram Burgard. Occupancy grid mod-

els for robot mapping in changing environments. In Proceedings of the Twenty-Sixth AAAI

Conference on Artificial Intelligence, AAAI’12, pages 2024–2030. AAAI Press, 2012.

4.2.1

[52] L. R. Rabiner. A tutorial on hidden markov models and selected applications in speech

recognition. Proceedings of the IEEE, 77(2):257–286, Feb 1989. 4.2.1

[53] Gianluigi Mongillo and Sophie Deneve. Online learning with hidden markov models. Neu-

ral Comput., 20(7):1706–1716, July 2008. 4.2.1

[54] J. D. Kalbfleisch and J. F. Lawless. The analysis of panel data under a markov assumption.

Journal of the American Statistical Association, 80(392):863–871, 1985. 4.2.2

[55] John Amanatides and Andrew Woo. A Fast Voxel Traversal Algorithm for Ray Tracing. In

EG 1987-Technical Papers. Eurographics Association, 1987. 5.2.1

[56] Ellen A. Cappo, Arjav Desai, and Nathan Michael. Robust coordinated aerial deployments

for theatrical applications given online user interaction via behavior composition. Dis-

tributed Auton. Robot. Syst., November 2016. A.1, A.1, A.2

[57] Arjav Desai, Ellen A. Cappo, and Nathan Michael. Dynamically feasible and safe shape

transitions for teams of aerial robots. In Proc. of the IEEE/RSJ Int. Conf. on Intelli. Robots

and Systs., pages 5489–5494, Daejeon, Korea, October 2016. A.1

[58] Harold W. Kuhn. The hungarian method for the assignment problem. Naval Research

Logistics Quarterly, 2(1-2):83–97, 1955. A.1

[59] Jonathan D. Gammell, Siddhartha S. Srinivasa, and Timothy D. Barfoot. Batch informed

trees (bit*): Sampling-based optimal planning via the heuristically guided search of implicit

random geometric graphs. In Proc. of the IEEE Intl. Conf. on Robot. Auto., pages 3067–

3074, May 2015. A.1

148

[60] Ioan A. Şucan, Mark Moll, and Lydia E. Kavraki. The Open Motion Planning Library.

IEEE Robotics & Automation Magazine, 19(4):72–82, December 2012. http://ompl.

kavrakilab.org. 1

[61] Steven M. LaValle and Jr. James J. Kuffner. Randomized kinodynamic planning. The

International Journal of Robotics Research, 20(5):378–400, 2001. A.1

149

http://ompl.kavrakilab.org
http://ompl.kavrakilab.org

	1 Introduction
	1.1 Core Challenges
	1.2 Summary of Contributions

	2 Background
	2.1 Environment Mapping
	2.1.1 Dynamic Environments
	2.1.2 Active Perception

	2.2 Motion Planning
	2.3 Long-Duration Autonomy
	2.3.1 Capacitated Routing

	3 Persistent Multi-Robot Mapping in an Uncertain Environment
	3.1 Problem Formulation
	3.2 Methodology
	3.3 Simulation Evaluation
	3.4 Conclusion

	4 Allocating Limited Sensing Resources to Accurately Map Dynamic Environments
	4.1 Problem Definition
	4.2 Methodology
	4.2.1 HMM Occupancy Grid
	4.2.2 Observation Utility Measure

	4.3 Results
	4.3.1 Experiment Setup
	4.3.2 Comparison of Objective Functions
	4.3.3 Varying Parameters
	4.3.4 Varying Environments

	4.4 Discussion
	4.5 Conclusion

	5 Deployment Planning for Online Mapping of Dynamic Environments
	5.1 Environment Model
	5.1.1 Computational Complexity

	5.2 Sensor Model
	5.2.1 Computational Complexity
	5.2.2 Observation Utility
	5.2.3 Computational Complexity - Utility Function

	5.3 Waypoint Selection
	5.3.1 Computational Complexity

	5.4 Path Planning
	5.4.1 Trajectory Generation
	5.4.2 Computational Complexity

	5.5 Waypoint Assignment
	5.5.1 Greedy Assignment
	5.5.2 Minimum Cost VRP
	5.5.3 Min-Makespan VRP
	5.5.4 Ensuring Feasible Configurations
	5.5.5 Computational Complexity

	5.6 Conclusion

	6 Experimental Evaluation in Simulated Environments
	6.1 Setup Details
	6.2 Approach Comparison
	6.3 Parameter Evaluation
	6.4 Physical Limits
	6.5 Environment Conditions
	6.6 Urban Environment
	6.7 Conclusion

	7 Conclusion
	7.1 Summary of Contributions
	7.2 Future Work

	A Online Energy-Constrained Adaptation and Scheduling of Persistent Coordinated Behavior-Based Multi-Robot Deployments
	A.1 System Overview
	A.2 Experimental Evaluation
	A.3 Conclusion

	Bibliography

