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Abstract
Multi-robot applications frequently seek to employ human operators to direct robot

actions online because fully automated planners struggle to encode human expertise or
handle the extenuating circumstances that occur during real world operations. How-
ever, it is extremely challenging for a human to direct multi-robot teams, especially
online, i.e., in real-time. From entertainment to defense, applications can require de-
tailed inter-robot coordination direction which can be difficult for an operator to spec-
ify. Finding motion plans that then meet user intent is complicated by the need to
operate in cluttered environments while absolving the human operator from having to
consider physical constraints of the system such as dynamic feasibility or safety.

Existing multi-robot policy specification and planning methods have difficulty pro-
viding all the required capabilities to enable high-speed, online, human-directed multi-
agent motion generation in cluttered environments. While reaction based or local
control methods have been widely used for multi-robot applications due to their fast
computation times, these methods can fail to produce coordinated responses or safety
guarantees. In contrast, optimization methods and search approaches are frequently
used to coordinate actions across robots and generate high quality motion plans. Un-
fortunately, the large number of inherent decision variables, especially as frequently
incurred when considering numerous obstacles, often means these methods require
computation times in excess of online operation limits.

In this thesis, we enable a search based methodology to find safe and feasible multi-
robot trajectories at fast time scales even in highly cluttered environments by leverag-
ing a group-based representation of multi-robot actions and offline acquired data. Our
approach generalizes across environments and enables an operator to coordinate multi-
robot motions online for applications requiring high-frequency plan generation such as
required by joystick control. We show results for two human-commanded multi-robot
applications: theatrical performance and urban reconnaissance. Both applications re-
quire a multi-robot planner to resolve differences between operator input and feasi-
bility requirements given the current state of the system, and generate dynamically
feasible and safe trajectories for all agents within time and computation constraints.

This thesis establishes an online multi-robot planning and control system for the
specification of multi-robot behaviors, and we demonstrate the feasibility of the ap-
proach using a multi-quadrotor system, controlling up to 30 physical robots online in
the context of the theatric application. We then address assumptions made under the
theatric context to meet the high-frequency planning and cluttered environment con-
text of the urban reconnaissance application, and present a generalized formulation of
multi-robot behaviors and leverage examples of multi-agent actions from real world
data sets to inform an online search policy. We demonstrate that the generalized rep-
resentation coupled with the proposed data-based search heuristic enables high-speed
multi-robot coordination in cluttered environments, providing needed capabilities to
enable multi-robot solutions for complex real world applications.
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Chapter 1

Introduction

Planning motions online for multi-robot teams in response to human operator input is a challeng-

ing but sought after capability. From transporting objects [5] to performing escort missions [7] and

sensor coverage [21, 25], numerous diverse applications seek to employ multi-agent teams. Com-

pelling examples include applications as disparate as entertainment and defense, where companies

and academic groups across nations have invested significant resources into developing methods

to perform multi-robot coordination. In entertainment, hundreds to thousands of quadrotors were

employed in coordinated light shows and viewed by millions of people for high impact events

including the 2017 Super Bowl in Houston, TX USA [40], the 2017 New Year’s celebration in

Guangzhou, China [30], and the 2018 Winter Olympics in PyeongChang, Korea [39]. In the field

of defense, large scale international competitions are held to foster development of multi-agent

urban reconnaissance and search and rescue capabilities. These competitions include the 2010

MAGIC (Multi Autonomous Ground Robotic International Challenge) event, sponsored by United

States and Australian government agencies [8, 38] and offering 1.6 million dollars in collective
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(a) Quadrotor light show at
the PyeongChang 2018 Winter
Olympics [39]. Photo credit: Intel
Corporation.

(b) The team of ground robots
used for reconnaissance in the
MAGIC 2010 event by the Univer-
sity of Michigan competition win-
ners [65]. Photo credit: Australian
Government Defense Science and
Technology Organisation [8].

(c) Visual user interface from [33]
corresponding to a multi-robot sim-
ulation environment used in the
2016 competition of RoboCup Res-
cue Simulation League. Image
is taken from the 2016 champion
team paper [33].

Figure 1.0.1: Multi-robot examples in entertainment (Fig. 1.0.1a), reconnaissance (Fig. 1.0.1b), and search and rescue
(Fig. 1.0.1c).

prize money, and the long running RoboCup Rescue, held annually since 2000 with multi-robot

simulation competitions added in 2006 [42, 68, 74]. However, the challenges in encoding human

expert knowledge into an autonomous artificial intelligence and the complications of handling un-

expected operating circumstances in real world environments leads many applications to leverage

human operator input to direct team actions. In entertainment, quadrotor theatrical performances

have sought to use human performers to direct aerial choreography [15, 54]. In the aforemen-

tioned examples of the RoboCup Rescue and MAGIC 2010 competitions, methodologies focus on

incorporating human operators for disaster relief [13] and reconnaissance [65], respectively.

While human input can enable operation in these difficult scenarios, operator directed, multi-

robot motion planning still faces a number of significant challenges. With respect to enabling

online human direction, an operator’s intent for a group of agents must be translated to individual

agent actions while minimizing cognitive load on the user, even when detailed coordination de-

scriptions or a frequent rate of interaction is required. Similarly, an operator should not be required
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to consider vehicle dynamic limitations or potential collisions. Operator intent for the group must

be mapped to dynamically feasible and collision free plans for every member of the robot team,

and the difficulty of motion planning is increased by the need to coordinate motions between group

members. The complexity of path planning and likelihood of collisions is increased in highly clut-

tered environments, where modeling free space can be nontrivial. Operator commands are issued

while a system is operating, requiring high speed re-planning with respect to the robots’ current

states. And while we view the operator as expert, humans may still specify erroneous input, giv-

ing instructions that prove to be infeasible. The online nature of this application places further

restrictions on the timing and computational limits of any potential methodology.

The current state of art for multi-robot motion planning is varied and well developed, but lack-

ing with respect to online coordinated policy specification and rapid planning methods for teams in

highly cluttered environments. Across human–multi-agent interfacing approaches, methods trade

off instruction complexity with input frequency. Applications that require detailed coordination

between agents face the challenge of specifying all the required degrees of freedom without a cor-

respondingly high cognitive burden, to allow a human to easily command the system online. When

high interaction rates are required, it is inevitable that commands scale down in complexity, and so

planning systems must determine how to map a low degree of freedom input to the high-degree of

freedom, multi-robot system. Motion planning methods for multi-agent systems fall into several

broad approach classes. Optimization methods produce high quality plans but are generally time

intensive due to the number of decision variables considered. Search based methods likewise face

challenges with the large search spaces inherent to coordinating actions between agents. Highly
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decentralized or local control and planning approaches, in contrast, scale well with large num-

bers of agents and their low computation requirements yield fast online responses. However, the

very nature of these approaches–that the majority of decision making is handled at an individual

level–means that approaches in this class face challenges with coordinating plans between agents

or keeping a cohesive “group” identity, as well as challenges guaranteeing plan safety (dynamic

and collision constraints). The wide range of approaches, however, allows us to build on existing

methods and enable operation in the respective multi-agent domains of theatrics and reconnais-

sance.

This thesis considers two application domains requiring human-directed, multi-robot planning:

that of a theatrical application, and that of a reconnaissance scenario. The theatrical application re-

quires detailed inter-agent coordination, planning for multiple multi-robot groups, and takes place

in an open environment with commands from the user occurring on the order of tens of seconds.

In the reconnaissance application, a user inputs low-degree of freedom input at high-frequency, via

joystick command, necessitating that the planning system determine coordination between agents.

This application further considers the motion of a single group of agents (without group splitting

or merging) in a highly cluttered environment.

The two applications have numerous similarities: both require the system to interpret user com-

mands into dynamically feasible trajectories, sparing the user from thinking about environmental

or inter-robot collision constraints, reconciling the physical state of the system with the desired

plans at the time the command is given. This allows for similar system approaches, shown in

the parallel system diagrams of Fig. 1.0.2. However, the requirements for high-frequency interac-
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tion, need to coordinate member inter-actions without direct user specification, and operation in

cluttered environments makes the reconnaissance application more challenging than the theatrical

application.

Therefore, this thesis first presents a multi-robot system for theatrical specification and then

shows how the assumptions made for a specific class of multi-robot behaviors which give highly

detailed instruction for coordination between agents, commands on the orders of seconds, and

operation in an open environment are broadened to a multi-robot behavior representation and plan-

Figure 1.0.2: Two system pipelines used in this thesis. Both allow human user online input for the control of a multi-
robot team.
Top line The top pipeline shows a GUI (graphical user interface) where a user can specify parameters, sent to the
interpreter to define a desired group behavior. The planner resolves differences between the actual system state and
the desired behavior to output dynamically feasible and collision free trajectories for all robots in the group. The pa-
rameterized input allows a user to specify detailed coordinated motions online, and is used in a theatrical application
where behaviors are specified by a user with a frequency on the order of tens of seconds. Dynamic feasibility reso-
lution via polynomial trajectory interpolation and time scaling works well for the open environments of the theatrical
application.
Bottom line The bottom pipeline illustrates how a user may drive a group of robots using a joystick interface. Here,
the commands from the operator only specify velocity and heading, and do not describe motions between agents. The
user’s input is mapped to a motion primitive describing the flight path for the center of the group, and the planner
resolves all questions of coordination and collision avoidance between agents and the environment. Joystick input
allows for high-frequency user-team interaction at the cost of detailed motion specification. The planning approach
leverages offline data to inform search and mitigate the challenge of searching a large action space to rapidly find
feasible actions online that allow a team to navigate highly cluttered environments.
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ning approach that generalizes across applications, responds to high-frequency commands without

inter-agent coordination instruction, and operates in highly cluttered environments to enable hu-

man control of a multi-robot group for urban reconnaissance applications.

This thesis address the challenges of online multi-robot planning in highly cluttered environ-

ments through the development and validation of a general model and data-driven search approach.

Our contributions, and an overview of document structure, is as follows:

• Chapter 3 This chapter describes a methodology for inputting multi-agent motion objec-
tives within the context of a theatrical application, and a motion planning system for generat-
ing dynamically safe trajectories resolving differences between operator input and feasibility
requirements. This chapter highlights both the challenges and online planning requirements
for multi-robot systems, and the limitations of current approaches.

• Chapter 4 We look at extending the approach shown in Chapter 3 by considering an alter-
nate representation for multi-robot behaviors and planning for groups of robots using search.
This method allows us to consider environments with obstacles and provides a framework
for incorporating experience, which leads to improved search times and solutions.

• Chapter 5 We show that discrete search over multi-robot actions provides a method for
composing behaviors online, and that actions can be provided by data sources, treated here as
demonstrations provided by a user. Using datasets provided from the theatrical application
of Chapter 3, we show that we can re-create the theatrical behaviors generated through the
specialized system with this more general representation and that we can now operate rapidly
in highly cluttered environments.

• Chapter 6 The final chapter focuses on further analysis of the methodology of Chapter 5.
Rather than specifically focusing on replicating the specialized capabilities, we use multiple
data sources to inform the search heuristic policy, and analyze the methodology to charac-
terize performance over variations in numbers of robots, action resolution and search size
set, and performance over environment variations. We conclude by comparing the proposed
method to two alternate approaches from the literature for a user-directed application in a
urban reconnaissance scenario.
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Chapter 2

Background and Related Work

A broad summary of human-directed multi-robot system design is to create a system that (1) ac-

cepts human user instruction, (2) translates instruction to planning goals and constraints, and (3)

finds trajectories that satisfy feasibility requirements. This thesis addresses all three of these re-

quirements for general multi-robot system design as well as the additional challenges required by

the two specific multi-robot applications of a theatrical performance and reconnaissance. This

section therefore discusses approaches in the literature that relate to these topics. We begin with

discussing the challenges and existing approaches for specifying human intent for multi-robot sys-

tems (Sect. 2.1). We then discuss approaches for multi-robot planning and trajectory generation

(Sect. 2.2). This is a large area of research with many approaches, and we structure our discus-

sion around local or reactive approaches sSec:ReactiveMethods, optimization based approaches

sSec:OptMethods, and search methods sSec:SearchMethods.

Key to our approach is that a user does not command robots individually but addresses robots

in teams or groups. In the following discussion of related works, we therefore focus where possible
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on group or formation based methods rather than on the related multi-robot problems of routing or

scheduling.

2.1 Interpreting human intent for multi-robot systems

For robots to move in response to a user’s intent, a robot system must be able to extract and process

motion or task-level information from operator input. The determination of motion requirements

from human input is still an active research effort in single-robot domains as well as the emerging

field of human–swarm or human–multi-robot interaction. However, the body of literature studying

the related questions of what strategy is best used by a human operator to communicate intent to

groups of robots, and through what interface methodologies, has grown rapidly in recent years

with advances in multi-robot technologies [45]. Human operator input for multi-robot systems has

been formulated as:

• selection or tele-operation of leaders in leader-follower formulations through GUI [9], haptic
[72, 73], gesture [76], and joystick [90] control;

• using a human operator to perform the function of a “switch" to trigger behavior modes in a
hybrid-control formulation through GUI [11, 50] or speech and facial recognition [63];

• allowing the operator to control swarm behaviors such as flocking by performing simulated
environment modificati-on—mimicking biologically inspired control methods—through man-
aging artificial attraction or repulsion fields in simulation [44], via drawing interfaces [35],
or gesture and “demonstration" through motion-mimicking [3].

These different approaches are all answers to the same question: what combination of interface

and input methodology best maps the reduced dimensionality of a user’s input (a word, gesture,

or button-click) to the high dimensional, application- and platform-dependent state-space of multi-
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robot trajectory generation?

2.2 Multi-robot planning and trajectory generation

2.2.1 Reactive methods

Swarm approaches, or local control methods for individual agents that yield global behavior, are

frequently used in computation limited applications. We include in this discussion highly decen-

tralized approaches as frequently employed by reactive control methods, for example, the wide

range of approaches stemming from velocity obstacle control methods introduced in [82, 83].

The low computation requirements of these approaches lend themselves well to high frequency

interaction applications such as ours, and numerous methods of allowing a human user to direct

swarm motion have been pursued [45]. However, local control methods make coordinating the

group as a whole highly challenging, a problem generally exacerbated in high clutter environments.

Even examples that do seek to encode group behavior at a local level [36] can lead to deadlock

between agents and may not provide collision guarantees. Group cohesion and motion guarantees

with respect to velocity based control methods have been addressed by integrating motion plan-

ning with higher level planning approaches for multi-agent systems in open environments [2], with

multiple aerial robots [4], and small numbers of obstacles [5]. However, these approaches employ

optimization based methods to resolve constraints, the time and computation limits of which may

be prohibitive for our application as previously discussed. We therefore do not consider local con-

trol strategies in this work, although these methods could potentially augment the motion planning
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portion of the approach.

2.2.2 Optimization methods

Optimization methods that plan trajectories for groups of quadrotors [20, 58, 67] offer numer-

ous advantages. These methods most often generate polynomial time trajectories with respect to

collision and dynamic constraints, yielding assured safe plans over the trajectory horizon. These

methods further produce optimal solutions which minimize (or maximize) a desired cost function,

and costs of interest may include energy [18] or formation parameters [5]. However, optimiza-

tion approaches are highly time intensive and generally infeasible for applications requiring rapid

online re-planning. Optimization complexity increases with the number of decision variables, so

approaches which consider individual robots in a coupled fashion become intractable with larger

numbers of robots or obstacles [20, 58]. More recently, approaches have sought to limit the num-

ber of decision variables by optimizing parameters representing the group of agents subject to

linear constraints representing only the local environment [5]; while this has been shown to work

in online planning scenarios, the environment representation can be limiting in highly cluttered

scenarios and optimizing formation parameters can still be time intensive, making it problematic

for high-frequency interaction. While a full optimization problem for all robots is intractable in

our operating context, we are able to incorporate optimal motion planning methods for polyno-

mial trajectories [57, 66] within our constraints, and we leverage these methods to generate safe

continuous plans from the discrete output of our search approach.
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2.2.3 Search methods

Search approaches are frequently used when the number of decision factors in a problem is large.

Graph representation coupled with the use of heuristics or other informed selection strategies allow

search approaches to tractably refine large decision spaces [77]. With respect to the graph repre-

sentation (i.e., the chosen discretization or representation), some search methods are also optimal

(the path minimizes a cost function) and/or complete (will return a solution or conclude no solu-

tion exists in finite time) [85]. Finally, planning dynamic motions based on search solutions has an

increased probability (or in some approaches, guarantee) of success [28]. However, coordinating

actions between agents during search can be computationally challenging. Planning in the joint

configuration space of agents is exponential in the number of agents, making search with even a

limited set of individual actions for each robot potentially intractable with the required number of

agents or over longer search horizons; search approaches which plan for agents individually must

still resolve inter-agent conflicts [81, 85]. Additionally, edge checks can be expensive depending

on the constraints considered, for example, when requiring collision or motion planning compu-

tation [14]. Finally, it can be difficult to generate good heuristics to inform search [31, 89]. We

employ a search based approach to make tractable the large number of options inherent to coordi-

nating a team of robots in complex environments, and discuss our approach for mitigating search

complexity and time considerations in the following sections.

Search in multi-robot applications has frequently been used with respect to routing problems,

where no formation or group requirements are considered, and goal and destinations across robots

are often widely spaced through the environment. They do not generally require coordination in
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the same ways that team-based constraints do. For example, only needing to consider planning

with respect to other robots when geometrically conflicting [81, 85]. While routing approaches

can potentially be used for group planning problems, as both problems seek to move a set of robots

to a set of goals, the consideration for maintaining some notion of a collective generates both

different constraints and abstractions. In the following discussion of search approaches as applied

to the problem we consider in this work, we attempt to focus on search with respect to formation

planning where possible, but mention several general multi-robot planning approaches as examples

of methods for combating various problems common to general multi-robot applications.

As discussed, one of the largest challenges in multi-robot search is combating the large search

space formed by considering options across robots. Sample based approaches seek to combat

the large space of multi-robot actions (or configurations) by growing a search tree online, biasing

sampling towards perceived high value areas. Monte Carlo methods have shown success in high

branching search spaces where little domain information is available, and so have been evaluated

for multi-agent planning problems [31, 89] where results indicate that the incorporation of heuristic

can greatly improve results. In sample based approaches such as Multi Agent RRT* (MA-RRT*)

[14, 41], edge formation may be non-trivial, as samples are taken in the state configuration space

and can only be connected to the graph if the sample is judged reachable from some current con-

figuration in the graph. And as with other search methods, incorporation of an informed sample

strategy was shown to dramatically effect search performance.

Approaches such as [28] address the problem of finding motion plans based on solutions re-

turned purely from searching a geometric space by searching a sequence of two graphs that con-
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sider collision and higher order time derivatives for an agent, respectively. This approach specif-

ically considers the application of rapid online plan generation and successfully finds plans for

teams of ten to twenty robots in cluttered workspaces within a time frame of one to two seconds.

However, the approach plans for each robot independently following a prioritized ordering strategy

and does not consider the joint space of motions for the entire team.

Many multi-agent planning approaches seek to reduce the dimensionality of the decision space

by grouping planning elements. For example, approaches such as [6] and [52] consider group-

ing agent actions as macro-actions in order to coordinate between agents, although the problem

type, applications, and time scales in these works are not appropriate for our purposes. The most

common abstraction however is the consideration of multiple agents as a group or team, so that

decisions may be made for some single team representation. Search specific planning methods

that consider a team or group formulation include methods such as [62], which augments the fun-

damental Dijkstra path finding algorithm with a split or merge decision variable to divide agent

groups to sub-groups to route around obstacles. However this decision process is computationally

intensive, scales with number of robots, and is too slow for online use. Approaches such as [77]

consider explicitly switching leadership designation among a prespecfied number of robots in a

larger group. This approach requires heuristics based on formation shape and pre-specification

of the number of leaders for use in a use MHA* search formulation to route formations of robots

around obstacles. This approach reported favorable average search times on the order of one to two

seconds for twenty robots, which is promising although slightly time intensive for a high-frequency

command requirement, although the need for formation-based heuristics and search scaling with
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the number of chosen leaders is less appealing.

To allow a user to rapidly interact with a robot team with a high degree of control yet corre-

spondingly low cognitive burden, we employ two separate input methodologies to meet application-

specific requirements. Chapter 3 describes a parameter-based mapping approach for easy human

specification of complex coordination policies, while Chapter 5 describes the use of joy-stick se-

lected motion primitives [87, 88] extended to group direction. These approaches trade off com-

mand information content for decreased specification time, additionally increasing the burden on

the system planner with the demand for fast coordination with little input in the reconnaissance

application.

Existing multi-robot policy specification and planning methods have difficulty providing all

the required capabilities to meet this increased burden, especially in complex environments. The

computational simplicity that makes reaction or swarm approaches fast is a liability for applications

that require coordinated responses and safety guarantees. Planning approaches which consider

robot actions in relation to each other can produce the safe and coordinated motions we require,

but are in general too slow for online application requirements.

Due to the numbers of robots considered in our application, along with the desire for safety

assurances and ability to safely coordinate motions between agents, we pursue a centralized plan-

ning approach that makes decisions over groups of agents for computational tractability coupled

with polynomial trajectory interpolation for rapid generation of dynamically feasible plans. Cen-

tralized interpretation of parameter based commands is suited for the open environment of the

theatric application, but we generalize this approach to a search based method over discrete group-
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level actions for the reconnaissance application. We leverage prior data to enable online search

within application time limits, allowing tractable, informed operation in the large search space of

multi-robot actions. The following chapters present our system for online human-directed multi-

robot control, establishing the value of the proposed methodology with respect to the patterned

coordination of multi-robot theatrics and rapid group movement through the cluttered scenarios of

multi-robot reconnaissance.
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Chapter 3

A system for online behavior specification

and execution

In this chapter we define the concept of multi-robot behaviors and develop a system to create

dynamically feasible behavior trajectories online in response to user input. Objectives are defined

by an expert user and we work in an obstacle free environment with multiple groups of robots.

We allow a human user or high level planner to direct overall system objectives. Objectives

are specified during runtime without any prior knowledge of command ordering or timing and are

translated by a centralized planner into behaviors, dynamically feasible trajectories for groups of

robots. We present a parameterized input system for defining objectives online, where parame-

ters are carefully chosen to both be easily understood by humans–easing user specification under

the time constraints of online operation–and directly translatable into system-understood require-

ments. Our approach yields a large yet tractable input space for online behavior specification. Our
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approach is fully able to plan for splitting and merging of robot groups as well as the concurrent

control of multiple groups, and we present evaluation results for validation and verification of the

approach.

The methodology presented is a general approach which might be used across multi-robot

applications. However, we choose to specifically look at directing multi-robot behaviors in the

context of a theatrical application. Multi-robot theatrics is a multi-million1,2 dollar industry in its

own right, and can additionally be viewed as a “stepping stone" application from which to explore

future work in multi-robot behavior planning. Theatrical applications allow us to prove operation

in the relatively straight forward domain of operation in known, non-cluttered and static environ-

ments (we extend to operation in cluttered and dynamic environments in Part II). Further, theatrical

applications are directly interested in objectives governing robot motions. This can be thought of

as a good base case, because many other multi-robot applications might use motion objectives to

pursue other metrics of interest. For example, an exploration application might compose motion

behaviors to meet an information-based objective. We leave the composition of motion behaviors

to meet objectives in other metrics, or specifying objectives using other methods or parameters, to

future work.

We therefore present the methodology here in Part I as motivated by use for a theatrical ap-

plication, and we show hardware results for a user-directed, multi-robot performance. All work

described in this section has been completed, and supports the material proposed in Part II. We

begin by defining multi-robot behaviors in Sect. 3.2 and describe interpreting behaviors to dynam-

1https://skytango.com/interest-growing-in-drones-for-entertainment-shows/
2https://skytango.com/market-value-of-drone-applications-in-media-

entertainment-industry-valued-at-over-8-bn-dollars-says-pwc/
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Figure 3.1.1: An overview of the proposed system. User-issued input in the form of descriptors is collected by an
“Interpreter." Descriptors, organized into behaviors, are output to the trajectory generation subsystem. The proposed
multi-robot trajectories exemplifying the user-requested behavior are then checked against the current system state to
determine validity. After passing this check, the proposed trajectories are verified for dynamic feasibility. In the event
that the proposed behaviors do not meet feasibility or safety constraints, an online search refines trajectories to satisfy
safety and feasibility limits.

ically feasible trajectories in Sect. 3.3. We evaluate the methodology in Sect. 3.4.

3.1 System Design

We require a system formulation that can respond to requests in real-time (low latency) with cor-

responding behaviors that are time-optimal while preserving feasibility and safety.

To meet these requirements, we therefore propose a centralized planning architecture in order

to coordinate intra-group robot trajectories to ensure that group-level motion plans reflect the per-

former’s theatric intent. A centralized planning methodology additionally ensures that all proposed

motion plans across all multi-robot teams are collision free in order to maintain performer safety

and audience trust in the performance. Motion plan design builds on prior work in multi-robot tra-

jectory generation [79, 80] in order to determine optimal shape assignments and ensemble motion

specifications for user-specified groups of robots. To transition robots in a time optimal manner

between desired plans, optimal trajectories are generated by solving an unconstrained quadratic

program [66], and trajectory timing refined through online search [37, 66]; the differentially flat
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quadrotor model [19] is used to ensure dynamic feasibility given actuator constraints. This pro-

posed formulation seeks to balance low computation times with near-optimal trajectory generation

for teams of robots [27].

To enable human–multi-robot interactive theatric performance, we propose a full system that

provides a methodology for inputing theatric intent online and translating performer input into

dynamically feasible and safe motion plans for teams of robots. We propose a formation-based

approach to enable specification of robot team motion in a manner that seeks to reduce the user

interaction burden by avoiding individual robot motion specifications. The performer specifies

motion descriptors such as formation shape, flight mannerisms, or destination, and the system

composes these descriptors into dynamically feasible and safe behaviors. These behaviors then

undergo validation and verification checks and if necessary, are modified to meet collision and

actuator constraints. The resulting trajectories are distributed to the robot team.

A block diagram of the proposed system, showing user input, behavior generation, validation,

and verification and mitigation components is outlined in Fig. 3.1.1. In this section, we step through

each block pictured in Fig. 3.1.1 and describe our approach to specifying user intent (Sect. 3.2);

generating multi-robot behaviors based on user input (Sect. 3.3); validating and verifying (Sect.

3.3.1) behaviors; and mitigating infeasible behaviors by modifying intra-group transitions (Sect.

3.3.2).
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Figure 3.2.1: Representative be-
havior descriptors, bi, and descrip-
tor sets, Bi, with associated rep-
resentative values. Descriptor sets
are grouped in the table to show
the contribution of a descriptor to-
wards an element of the multi-robot
trajectory formulation. For exam-
ple, the “heading" descriptor di-
rectly specifies the group trajectory
component S(t)ψ as indicated by
the column label.

3.2 Input Parameterization

While we do not define a formal grammar, specifying theatric intent is similar to answering the

questions of “who," “what," “where," “when," and “how." The user specifies descriptors, bi, that

describe which robots a performer intends to direct, what action the robots should take, the target

destination, and any characteristic flight mannerisms that the robots should exhibit. Descriptors

are composed into an m-length vector called a behavior, b̄. Each behavior descriptor, bi, may take

a discrete number of values, and Fig. 3.2.1 highlights several behavior descriptors and potential

value assignments. Denoting Bi as the set of values associated with the behavior descriptor bi, the

total number of potential behaviors achievable by the system is:

perm(b̄) =
m

∏
i=1

(
Ki

∑
k=1

|Bi|!
k!(|Bi|− k)!

)
. (3.2.1)

Equation 3.2.1 describes the fact that the total number of potential behaviors achievable by the

system is the product of the total number of descriptor combinations across descriptor sets. The

total number of descriptor combinations possible for a given descriptor set Bi is given by the
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summation in Eq. 3.2.1, formulated as the sum of binomial coefficients for set Bi. If only a single

descriptor may be chosen from a descriptor set, Ki = 1. If a combination of descriptors may be

chosen (for example, if choosing k robots from the total number of possible robots), Ki may equal

up to |Bi|.

As a collection of descriptors drawn from each respective set, a motion behavior contains all

the requisite information for defining multi-robot trajectories. This section details each descriptor

category and explains how descriptors contribute information to the trajectory formulation, such

as trajectory duration, endpoint constraints, and motion characteristics.

Behavior duration: The starting time of a behavior, ts, is the time at which the system receives

the command from the user.3 The “time" descriptor specifies the duration of a behavior, giving

ending time t f , the specified timing duration from start time ts.

Formation specification: We describe a formation of robots by specifying each robot’s state in

a local reference frame [27], which we call the shape frame. The positions and headings of each

robot in a local reference frame as a function of time t are s(t) = [x(t), y(t), z(t), ψ(t)]T, s ∈

R3×SO(2), with a vector S(t) containing all of the positions in the local reference frame of the n

robots in the formation: S(t) = [s1(t), . . . , sn(t)]. The shape descriptor specifies desired starting

positions, sxyz(ts), in the shape frame [27] and the heading descriptor specifies sψ(t) for each

vehicle. A vehicle’s heading is defined relative to its current frame or oriented toward a target in

the inertial frame (a theatrical maneuver called “spotting").

3In practice, ts is set to a value slightly ahead of the instruction receipt time to account for planning computation
time, allowing robots to transition between trajectories without discontinuities.
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Vehicle motions are defined by both the manner and action descriptors.

Manner: The manner descriptor is similar to an adjective in language, giving more information

about the flight characteristics that each robot should display during the behavior. Two charac-

teristics of interest to the story are “drunk" and “nervous" mannerisms, which a robot performs

by moving along a wobbly course of motion, with slower, larger motions for “drunk" and faster,

smaller motions for “nervous." We represent these motions as bounded polynomial trajectories

generated through randomly chosen keypoints obeying timing and distance constraints. Trajectory

sxyz
n (t) for robot n is a spline fit through k keypoints in x, y, and z [66] so that dti j, the time between

each pair of consecutive waypoints i and j, is bounded (dtmin≤ dti j ≤ dtmax) and the sum of all dt’s

equals the full time span: ∑
i=k−1
i=0, j=i+1 dti j = t f − ts. The position of each keypoint for the nth robot

lies within a ball of radius δ centered around the robot’s starting position, sxyz
n (ts) ∈Bδ (s

xyz
n (ts)).

The bounding values dtmin, dtmax, and δ are defined on a per-mannerism basis. The “fixed" manner-

ism denotes regular flight such that the vehicles hold their positions in the local frame throughout

the behavior.

All mannerisms, s(t), must remain within specified limits ensured through appropriate choice

of bounding values dtmin, dtmax, and δ :

sxyz
n (t) ∈Bδ (sxyz

n (ts)), (3.2.2)

|ṡxyz
n (t)| ≤ vlim, (3.2.3)

|s̈xyz
n (t)| ≤ alim . (3.2.4)
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Further, the inter-robot clearance distance, d, must be respected at all times, so that for all combi-

nations of robots in b̄:

|sxyz
i (t)− sxyz

j (t)| ≥ d, ∀i, j ∈ b̄ . (3.2.5)

In general, we choose to only allow a user to specify a single mannerism descriptor. However,

for appropriate choice of bounding values dtmin, dtmax, and δ , the combinations of mannerisms

s(t) = s1(t)⊕·· ·⊕ s j(t) will obey the constraints stated in (3.2.2) – (3.2.5), where ⊕ describes a

polynomial fit through all keypoints generated for each mannerism si. The vehicles can therefore

be “nervous drunks" if required, and the length of the mannerism descriptor set is permitted to be

greater than one.

Action: The action descriptor specifies the motion of the entire formation. Combined with the

goal descriptor, we can design a trajectory that moves the local formation reference frame through

the inertial frame. The state of each robot is defined in the inertial frame at time t by the vector x(t),

containing position coordinates and heading of the vehicle: x(t) = [x(t), y(t), z(t), ψ(t)]T, x ∈

R3× SO(2). The state of an n vehicle system is given by x̄(t) = [x1(t), . . . , xn(t)]. We design

smooth trajectories for each state-space dimension via time parameterized polynomials up to an

appropriate order to ensure smoothness in the trajectories and their derivatives and satisfy dynamic

properties of the vehicle control model.

The position of the origin of the local frame with respect to the inertial frame at time t is C(t) =

[x(t), y(t), z(t)]T, C(t)∈R3. We denote R(t)∈ SO(3) as the time varying rotation computed from
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the Euler rotations around the inertial x, y, and z axes, R(t) = Rz(t)Ry(t)Rx(t). To describe a

smoothly varying, differentiable rotation, Euler angles are defined as polynomial trajectories [55].

Actions such as “circle-target" or “turn-in-place" specify formation rotations, while periodic

actions (“forward-rev," “side-side," and “up-down") define trajectories along the specified axis

through waypoints centered about the target location. All actions are composable with all goals

and timing specifications to yield valid polynomial trajectories for C(t) and R(t).

Trajectory initial location: The starting state of a trajectory governing the motion of a formation

of robots is established based on the current states of the robots at the time the instruction is

specified. Upon instruction receipt, the local coordinate frame in which the formation shape is

defined is established with an identity rotation and located at the mean of the specified robots’

current positions and with higher order terms equal to the mean of the robots’ higher order states,

leading to the definition of states, C(ts) and R(ts).

Trajectory ending location: The ending states, C(t f ) and R(t f ), are specified by the “goal" and

“action" parameters. Goals are defined as (x, y, z) locations in the inertial frame and actions specify

motion primitives in relation to those locations.

3.3 Multi-robot Behaviors and Trajectory Planning

Behaviors specify all the information required to generate polynomial trajectories for each robot

in a formation. As previously described in Sect. 3.2, the descriptors forming a behavior, taken in

conjunction with the states of the specified robots at the time the behavior instruction is issued,
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Figure 3.2.2: An illustrated
overview of behavior composition,
validation, verification, and re-
finement. Subfigure (a) shows the
composition of robot motions in a
local shape reference frame with
an inertial motion and rotation,
illustrating Eq. 3.3.1. Subfigure (b)
shows validation of the proposed
behavior, depicted with respect to
the current robot states. Subfigures
(c) and (d) show verification
given the current robot states and
refined behaviors with dynamically
feasible transitions, respectively.

inform first, the desired start, goal, and any intermediate desired states in the local formation frame

(as described by the shape, heading, and manner descriptors); second, the desired start, goal, and

any intermediate desired states in the global reference frame (as described by the action and goal

descriptors); and third, the desired duration of the behavior. In each respective reference frame,

local and global, trajectories may be generated between the desired specified states as polynomial

functions of time, enforcing smoothness and continuity constraints to an appropriate order based

on the robot dynamic model, using common optimal trajectory generation methods [58, 66]. Tra-

jectories for robots in a behavior, γγγ(t), are formed by composing the local shape-frame trajectories,

S(t), with the trajectories describing the motion of the shape frame through the inertial frame, C(t)
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and R(t), as:

γγγn(t) =

C(t)+R(t)sxyz
n (t)

sψ
n (t)

 , (3.3.1)

where sn(t) is one of the n local robot trajectories as specified in S(t), and the superscripts xyz

and ψ denote those respective elements of the local state vector. A pictorial representation of an

example behavior is shown in Fig. 3.2.2a.

There are primarily two reasons why a behavior may be invalid in an online setting. First, the

current vehicle states may lead to a specified behavior colliding with flight volume boundaries.

Second, a user may impose state-transition rules that limit descriptor combinations.

We validate a behavior by first confirming that the descriptors, given the system state, do not

result in rule-set violations. An allowable specification is defined as {C0(t),R0(t),S0(t)} given the

current system state and the descriptor specifications and represents the proposed desired behavior.

For example, as shown in Fig. 3.2.2(b), the convex hull of the behavior is confirmed to remain

within the flight volume and is marked as valid.

3.3.1 Verification and Mitigation

Given a valid desired behavior, we verify that the behavior is realizable by checking the following

conditions (in order).

1. The current states of the robots specified by the behavior are sufficiently close to the starting
states defined by the desired behavior, i.e., x̄(ts)' x̄0(ts).

2. The proposed trajectory accelerations are within the specified limit, | ¨̄γγγ (t)| ≤ alim.
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3. The n robots in the behavior maintain an inter-robot spacing greater than or equal to the
minimum clearance distance, |γγγ i(t)−γγγ j(t)| ≥ d, for i, j ∈ [1, . . . , n].

If any condition fails, we immediately proceed to design refined trajectories to mitigate the failure,

leading to a dynamically feasible, inter-robot collision-free behavior that remains within the arena

volume. We employ the methodology described in [27] in order to mitigate these conditions, and

summarize this approach with respect to our application in the following section.

3.3.2 Behavior transitions

A proposed theatric behavior constructed from user input, as described in Sect. 3.2- 3.3, may not

meet the three conditions specified at the beginning of this section. We therefore detail a trajectory

refinement technique to transition robots from their current states at the time an instruction is

issued to the proposed behavior formed as presented in Sect. 3.3. An illustration of this process

is shown in Fig. 3.2.2, where the robot’s current states (colored circles) are shown next to the

proposed behavior (shown in gray dashed lines), and the solid lines indicate transition trajectories

that enable the robots to transition from their current states to the proposed behavior trajectories.

We formulate the transition between behaviors as a goal assignment problem. The methodol-

ogy builds on techniques related to time optimal trajectory generation and feasibility verification

with respect to kinodynamic constraints as well as prior work in the areas of multi-robot formation

control. We generate optimal trajectories by solving an unconstrained quadratic program to yield

an initial trajectory assuming a conservative time-scale [66]. The trajectory time-scale is further

refined through application of the bisection method to find candidate end times [37, 66] that en-

sure dynamic feasibility given actuator constraints and the differentially flat quadrotor model [19].
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(a) A behavior transition problem,
shown in the inertial frame, W. Yel-
low circles are the robots’ current
states; black arrows from the dashed
white circles to the gray circles rep-
resent the proposed behavior trajec-
tories, moving robots from left to
right in a line formation.

(b) Optimal assignment of robots
from their current positions (yellow)
to the desired line formation, goal
positions (gray) in the local shape
reference frame, S. The red arrows
show the transition trajectories mov-
ing robots from their starting posi-
tions to their assigned goal locations.

(c) Transition trajectories (red) in
the inertial frame, W. The red ar-
rows depict the same transition tra-
jectory designed in the shape frame
performed over different candidate
transition times.

Figure 3.3.1: Overview of the behavior transition process. Figure (a) shows the proposed behavior transition relative to
the robots current states; (b) shows the assignment process in the local shape frame; (c) shows how different proposed
time scalings for the transition trajectories affect the overall inertial transition trajectories.

The proposed formulation seeks to balance low computation times with near-optimal trajectory

generation for teams of robots. We also ensure inter-robot collision avoidance by leveraging robot

prioritization and trajectory time-scaling to avoid collisions given conflicting trajectories [80].

Optimal assignment: To transition robots from their current states to a proposed behavior, in-

dividual robots are first assigned to specific formation positions. We assume that robots are ho-

mogeneous and interchangeable with no specific preference to goal locations within a formation

and require that the region defined by the convex hull of source and goal locations is obstacle free.

Additionally, robot start and goal positions must be located d, a predefined minimum safe distance,

apart.

Assignment is performed in the local shape reference frame (as depicted in Fig. 3.3.1) and
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seeks to minimize the associated traversal time costs. The optimal assignment is computed based

on methods detailed in our prior work [80] and seeks to minimize the p-norm of the costs incurred

by the team in order to reach the goal configuration,

φ
∗ argmin

φ

=

(
∑

i∈IN

||P(si,gφi)||
p

) 1
p

, (3.3.2)

where IN is the index set of the robots in the group and si and gφi correspond to the initial and

optimally assigned goal configurations of the ith robot, respectively. In this work, we choose to

minimize the total distance traveled by the robots and thus let p = 2. The optimal assignment is

computed via the Hungarian algorithm with O(N3) computational complexity [47].

Given the start and goal assignments, we can then use a conservative time duration dtt to

compute transition trajectories St(t) in the local shape frame for the time period from ts to tt =

ts +dtt .

Feasible trajectory generation: The proposed transition trajectories St(t) are combined with

proposed behavior trajectory components C0(t) and R0(t) over the transition time period ts to tt

per (3.3.1) to yield individual robot trajectories to be executed by the team of robots in order to

transition between shapes. However, prior to transmitting the desired trajectory to each robot, we

ensure that each trajectory does not require motions that exceed platform actuator constraints. To

this end, we compute the maximum mass normalized thrusts required by each trajectory γγγn based

on the model [19] and scale the shape transition trajectory duration, dtt , accordingly so as to ensure

feasibility for all systems.
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Alternatively, we note that for visual appeal it is preferable that the robots rapidly transition be-

tween shapes. Therefore, if the resulting transition trajectories are overly conservative, we pursue

a minimum transition time to enable rapid and feasible shape transitions:

minimize: tt (3.3.3)

subject to: −Tmax ≤ γ̈γγ(t)≤ Tmax , (3.3.4)

with t ∈ [ts, tt ], Tmax as the maximum allowable mass normalized thrust, and

γ̈γγ(t) = C̈(t)+ R̈(t)s(t)+2Ṙ(t)ṡ(t)+R(t)s̈(t) . (3.3.5)

We solve this minimization problem online via a bisection line search [24], computing the cor-

responding acceleration time-scale for each candidate time, tts, and update the trajectory duration

upon termination (tt ← tts).

Online search for minimal-time transitions: Given a minimum time transition for all robots,

we perform a safety check to ensure that all trajectories preserve a minimum separation distance

between robots. If a minimum separation distance is not preserved, prioritization and time-scaling

techniques [80] are applied according to an assigned ordering derived from the robot start and goal

positions with respect to the shape specification.

Given the prioritization order, each robot trajectory is checked for collisions against trajectories

of higher priority robots. In the event that a collision occurs between robots, the trajectory of the
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Figure 3.3.2: Plots showing cov-
erage over representative behavior
descriptor combinations. Behav-
iors are validated across varying
numbers of robots, with instruc-
tions issued at randomly chosen
time intervals. Success indicates
that the descriptor combination
produces a valid behavior and the
system is able to interpret, refine,
and transform the behavior into a
dynamically feasible, collision-free
trajectory. Top plot: Arcs describe
transition success rates between be-
haviors, where blue and red cor-
respond to success and failure, re-
spectively. Bottom plot: Behav-
ior validation count. These figures
were generated from 48,000 online
issued behaviors in simulation, as
discussed in Sect. 3.4.1.

lower prioritized robot is assigned a small, positive time offset to avoid collision with the robot of

higher priority. This process is repeated iteratively until no collisions exist between the given robot

and all higher priority robots. This prioritization results in collision free trajectories for all robots

in the formation relative to the minimum transition time of the highest priority robot.

3.3.3 Offline verification

System verification is the process of analyzing a system for desired properties, to give evidence that

the system meets the desired requirements. One approach to system verification is through formal

methods, mathematically based techniques used to reason about systems and their performance

[23, 32, 46]. State of art formal methods for multi-robot applications include approaches such

as those based on Linear Temporal Logic [26, 70] or satisfiability modulo theory [71]. These

approaches, however, have drawbacks which limit their use for our application. Approaches [26,
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(a) A graphical user interface with
simulated robots and descriptors as
menu items.

(b) A graphical user interface for de-
scriptor specification.

(c) A performer commands two
quadrotors via gestured descriptors.

Figure 3.3.3: Interface examples used to convey user-specified descriptors to the multi-robot system. The GUI (a)
allows a user to click on simulated robots and select behavior descriptors from organized menus. The GUI (b) shows
categorized descriptors as depicted in Fig. 3.2.1. Alternatively, a performer can command robots using gestured
descriptors, as shown in (c). In (c), a motion capture system tracks reflective markers on the performer, and this
motion data is passed to a gesture recognition system to identify gestured descriptors that are sequentially combined
to specify a behavior.

70, 71] cite computation times roughly on the order of minutes for problems using two or more

robots, which is not conducive to online use or responsive interaction with a human user. While

[71] presents relaxations which can be used to compute sub-optimal trajectories at faster time scales

(problems for ten to twenty robots can be solved on the order of 1-2.5 minutes), these timescales

and the use of discretized motion primitives and sub-optimal trajectories still present drawbacks

within the context of our application, where we seek to follow time-optimal trajectories for visual

appeal.

In the event that formal verification is not viable, statistical verification through model checking

and offline simulation is commonly performed to give quantitative insight into system performance

[23, 32, 49]. We therefore choose to leverage offline simulation using a high fidelity dynamic

simulation environment, simulating all vehicle dynamics including motor response times, across a

large number of trials to verify all descriptor combinations assuming a discretization of the state-

space of the system that approximately covers all possible starting and ending states within the

flight volume. We depict the results of these offline trials in Fig. 3.3.2 and detail both the number
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of times a descriptor combination is tested and the number of successful behavior transitions. A

behavior transition is considered successful if:

1. The descriptor combination forms a valid {C,R,S} tuple, meaning the code implementation
is error-free;

2. The descriptor combination does not violate a user specified rule; and

3. A dynamically feasible, inter-robot collision-free trajectory is generated from the specified
behavior input.

The resulting transition table is employed online to assist in performing fast online validation.

Behaviors with intermediate success rates frequently fail due to instruction timing. Therefore, we

may choose to use this validation table as a conservative heuristic, and rather than check every

online instruction, reject behavior transitions with success rates below a cutoff value.

3.4 Evaluation and Results

3.4.1 Evaluation: Robustness and coverage

We evaluate the proposed approach through both simulation and hardware experiments. This sec-

tion shows the robustness and coverage of the proposed planner through extensive dynamic simu-

lation, issuing approximately 48,000 randomly generated behaviors. We show that all plans obey

safety and feasibility constraints, and we illustrate timing effects as the system scales between 1

and 10 robots.

We perform evaluation in a high fidelity dynamic simulation environment, simulating all ve-

hicle dynamics including motor response times, to show the robustness of our approach and the

associated coverage over the space of behaviors. All behavior instructions were issued at random
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times during the course of currently executing behaviors. This required the system to generate

dynamically feasible and safe transition trajectories given the (randomly chosen) current system

state, or recognize that the transition given the current system state was infeasible. Figure 3.3.2, as

described in Sect. 3.3.3, shows the coverage results over 48,000 randomly issued behaviors. This

plot reports the number of times a behavior is generated as well as the success rate of the behavior

transition.

Figure 3.4.1 shows that the planner always generates dynamically feasible and safe plans

for valid behavior transitions. All motion plan accelerations remain below the specified limit

(Fig. 3.4.1a), and all plans maintain safe inter-robot clearances (Fig. 3.4.1b). We further report

the scaling properties of the methodology with increasing numbers of robots in Fig. 3.4.1c, show-

ing how portions of the approach scale, as percentages of total computation time, with increasing

numbers of robots. While the computation time required by a centralized approach will increase

as behaviors are planned for additional numbers of robots, the presented methodology is well able

to handle the numbers of robots required by the theatric presentation even when run as an unopti-

mized MATLAB implementation.

3.4.2 Evaluation: Hardware Experiments

We verify simulation results through hardware experiments, using the CrazyFlie4 platform and

software framework [64].

Full evaluation over all simulated behaviors is not feasible in hardware. We therefore verify

simulation results by running 100 random behavior transitions in hardware on 10 quadrotors. Each

4https://www.bitcraze.io/crazyflie-2/
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(a) Dynamic feasibility: Histogram
of acceleration measurements, taken
every 0.1 seconds, of the accelera-
tion required by the generated trajec-
tories for all robots over 48,000 on-
line issued instructions. All acceler-
ations are below the specified accel-
eration limit.

(b) Safety: Histogram of robot-robot
distance measurements, taken ev-
ery 0.1 seconds, across all robots
over 48,000 online issued instruc-
tions. All inter-robot clearance dis-
tances are above the specified safety
threshold.

(c) Timing characterization of vari-
ous stages of the planning strategy
and scaling properties given increas-
ing robot numbers.

Figure 3.4.1: Dynamic feasibility, inter-robot clearance distance, and timing properties collected over 48,000 online-
issued behavior instructions in simulation. Each online issued instruction for a behavior required the computation and
execution of a dynamically feasible transition.

(a) Dynamic feasibility: Histogram
of acceleration measurements, taken
every 0.1 seconds, of the measured
acceleration exhibited by 10 quadro-
tors over 100 online issued instruc-
tions. All accelerations are below
the specified acceleration limit.

(b) Safety: Histogram of measured
robot-robot distances, taken every
0.1 seconds, across 10 quadrotors re-
sponding to 100 online issued in-
structions. All inter-robot clear-
ance distances are above the speci-
fied safety threshold.

(c) Image of 10 quadrotors flying in
formation during a sequence of 100
online-issued behaviors.

Figure 3.4.2: Dynamic feasibility (a) and inter-robot clearance distances (b) measured over the course of 100 online-
issued behavior instructions (each requiring the computation and execution of a dynamically feasible transition) to 10
quadrotors flying in a motion capture arena (c).

individual behavior was performed for a random amount of time typically lasting from between 30

seconds to one minute in length, before a currently executing behavior was interrupted with a new

behavior instruction. The Crazyflie platforms were used to validate the methodology because due

36



(a) Two groups of quadrotors (green
and red) merge to form a circular
formation of fifteen quadrotors.

(b) A group of 5 quadrotors (green)
leave a circle formation and move to
a new location as a triangle forma-
tion.

(c) A further group of 5 quadro-
tors (blue) split from their previous
group and merge to form a line for-
mation.

Figure 3.4.3: Online behavior execution for multi-group shape formation for a fifteen quadrotor ensemble.

to their small size, a team of ten vehicles was able to execute multi-group behaviors in a limited

motion capture volume. We note that the flight time of the Crazyflie robot platforms, however,

was between only four and six minutes given the energy drain of the LEDs on the batteries and the

aggressiveness of chosen behaviors. To validate 100 behavior transitions over a 10-robot team, we

therefore flew the team in over ten trials, performing over 100 battery changes across all vehicles,

for a total in-air flight time of approximately one hour.

Finally, we perform a sequence of behaviors designed to highlight system features including

group splitting, merging, and complex formation changes using 15 quadrotors.

A photo of all ten quadrotors in formation, performing a representative behavior from the trials,

is shown in Fig. 3.4.2c. Figures 3.4.2a and 3.4.2b present the accelerations and minimum clearance

distances exhibited by all quadrotors over the full flight time composed of all trials. These hard-

ware results verify the simulation experiments. We observe that the reported vehicle accelerations

remained under our planning acceleration limit, and all clearance distances between vehicles re-

mained within the stated limits. Hardware experimental data are consistent with simulation results
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Figure 3.4.4: Photos from a theatric performance. Clockwise, from top left: User practicing gesture-based input;
two groups forming lines; one quadrotor performing a solo; red team transitions across from the blue team; bottom
row: two groups of three quadrotors in triangle formations circle each other by performing a rotation maneuver as a
formation of six.

and confirm our dynamic simulation trials.

While the 100 behavior transition results reported in Figs. 3.4.2a and 3.4.2b were randomly

chosen to cover the behavior input space, a final demonstration of planner capability via system

performance was performed using fifteen quadrotor platforms. For this performance, a set of com-

plex behaviors was chosen which included splitting and merging of groups and performing peri-

odic maneuvers with varied flight formations. These instructions were issued online to the fifteen

robot fleet to demonstrate the scalability of the approach and highlight the system’s performance

abilities. This performance is shown in an accompanying video, available online.5

Additionally, timelapsed images of representative multi-group merging and splitting chore-

ographies performed by the 15-robot team is shown in Fig. 3.4.3. We additionally show images

from a user-directed theatric performance (Fig. 3.4.4), where a performer employed the described

system to direct varying numbers of robots in a three act narrative.

5http://www.andrew.cmu.edu/user/ecappo/AURO17.mp4
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Chapter 4

Formation planning with experience

In this work, we present a Monte Carlo Tree Search (MCTS) formulation to find sequences of

collision-free, multi-robot formations online. While using discrete search for formation planning

might at first appear intractable for online use or suboptimal due to the discrete restriction of so-

lution options, we show that search can actually offer advantages over continuous optimization

formulations and that the presented formulation of MCTS can yield fast, low cost solutions for

online execution, offsetting the disadvantage of combinatoric search over discrete space. This

paper shows the performance of the proposed methodology compared to existing optimization ap-

proaches in an illustrative environment and, using a full tree search over all possible formation

options as a baseline, we show that we can choose search parameters to achieve fast online perfor-

mance within a defined epsilon of optimal; leverage offline training to improve online performance;

and transfer a trained graph across environments.
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4.1 Introduction

Multi-robot planning algorithms often plan tasks for groups of robots acting in concert, for either

the computational convenience of subdividing large teams of agents and/or because coordinating

motions among a collection of robots naturally fits the task structure of the application. Group

planning is found across a wide range of multi-robot applications. Examples include carrying

objects [5], performing escort missions [7] or sensor coverage [21, 25], and depicting characters or

figures in entertainment applications [1, 15, 16]. Coordinating groups of robots is often formulated

through spatial constraints: robots are directed to form specific geometric shapes or obey inter-

robot distance constraints, and these spatially specified groupings are commonly called formations.

The problem of determining robot formations and moving formations through an environment is

formation planning [53, 61].

Planning for formations of robots to avoid collisions between both obstacles and robots can

be challenging because computational complexity scales with the number of agents and planning

time is limited for applications which require online updates. Planning to move formations of

robots through an environment becomes more difficult with increased numbers of obstacles or

geometrically complex free space because robots may not be able to reach or maintain the desired

shape.

In this work, we are specifically interested in planning for formations of robots in complex and

cluttered environments. We approach the problem with the assumption that a high level planner

or human operator has specified a desired formation and goal destination for a group of robots.

We therefore wish to determine how to modify a formation to meet environment constraints while
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remaining as close as possible to the desired behavior. This may be stated as an optimization

problem: what formation at any given point along a planned path best minimizes a cost function

between the candidate formation and the desired formation, subject to environmental constraints?

This optimization formulation is how state of art methods approach the formation planning

problem. The approach of [5] formulates a sequential convex optimization over parameters gov-

erning formation design. The approach minimizes a cost metric in terms of formation translation,

rotation, and scale and uses the surfaces of obstacle-free regions defined as convex polytopes to

constrain the formation to the defined free space. While continuous optimization methods have

generally been regarded as computationally complex, the authors show that the presented formu-

lation finds solutions over a local time horizon fast enough for online use.

However, restricting formations to lie within polytopes can limit solutions by excluding obstacle-

free space outside the polytopes regions, and finding obstacle-free polytopes, even locally, can be

computationally expensive. These drawbacks become more noticeable in geometrically complex

environments: larger polytopes may neglect to capture regions of free space left between objects,

or conversely, a greater number of smaller polytopes may be required to more accurately represent

complicated free space geometry.

In this work, we consider the practicality of using discrete search as a viable method for online

formation planning. While limiting solutions to a pre-specified set of discrete options and the

combinatoric nature of the search space are obvious drawbacks to the approach, we show that these

limitations may be overcome by leveraging experience to learn the value of search sequences, and

that the proposed methodology offers several advantages over existing approaches: solutions are
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not limited to polygonal bounding volumes, the method is able to provide higher resolution with

respect to the environment for the same amount of computation time compared to optimization

approaches, and our formulation is able to specifically consider transition cost between formations

in the cost of the solution.

The contribution of this paper is the formulation and input of domain knowledge to a learning

based search formulation—specifically Monte Carlo Tree Search (MCTS)—to yield a tractable

methodology for online multi-robot formation planning. Our results demonstrate that a sample-

limited MCTS implementation is able to leverage experience to improve performance, and that

performance holds across environments. These two findings demonstrate the applicability of the

proposed approach for online use: a large search tree may be trained offline and used online across

varying environments with specified sample limits to find solutions within calculated performance

bounds.

4.2 Formation Planning, an Example

We first present an example scenario to introduce relevant concepts and elaborate on facets of

formation planning that motivate a search-based methodology. In our example, a square formation

of robots travels through a non-smooth corridor, shown in two dimensions in Fig. 4.1.1a. The

environment is represented as a voxelized occupancy grid. Non-smooth corridors are chosen as

a common environment of interest, such as when considering cars, dumpsters, or signs bordering

buildings in urban streets. Applications which require operation in these environments, such as

exploration, reconnaissance, and survey or inspection tasks, often involve observation of objects
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(a) Nominal path for a desired square formation, in col-
lision.

(b) Obstacle-free polygons used in Fig. 4.1.1d.

(c) Our approach: formations found using search. (d) Formations found by [5].

Figure 4.1.1: These four figures illustrate two example solutions for the same formation planning problem. Fig. 4.1.1a
shows the desired path for a square formation colliding with the environment. Fig. 4.1.1d shows the output of [5] that
depends upon convex decompositions of the free space (Fig. 4.1.1b); Fig. 4.1.1c shows a solution found using our
approach, searching a discrete set of pre-specified formation choices.

or surfaces, necessitating planning paths in close proximity to environment features.

Figure 4.1.1a shows a square formation (blue) moving left to right through a corridor, colliding

at several places with the environment. We consider two approaches: (1) The sequence of forma-

tions returned from an optimization-based approach [5] (orange, Fig. 4.1.1d) relies on free space

defined as convex polygons (green, Fig. 4.1.1b); (2) Our proposed approach of search, Fig. 4.1.1c,

shows a sequence of formations (orange) composed from a set of discrete shapes.

Two drawbacks of [5] are apparent in this example, stemming from minimizing a greedy cost

based on local, polygonal-bounded free space. First, the solution is limited to space defined by the

convex polygons, whereas search is able to better utilize free space, shown at timesteps 11, 18, and
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20 of Fig. 4.1.1c. Second, the transition cost between formations across time is not considered,

so there can be large differences between consecutive time steps, especially when solutions fall

within different polygons (see timesteps 8 and 26 in Fig. 4.1.1d).

While deferring a mathematical description of cost to Sect. 4.3.4, we examine this idea of

similarity–or dissimilarity–between two formations by considering the average displacement of a

robot in a candidate formation from its specified position in a reference formation. Figures 4.2.1a–

Fig. 4.2.1b show displacement measures for the solutions examined in this example.

Continuous optimization can, as expected, provide non-colliding formations that minimally

displace robots from their desired positions at a single timestep and are of lower cost than dis-

crete options (Fig. 4.2.1a, timesteps 12-17). However, because the approach moves a formation

into polygonal-bounded freespace, it can also move robots away from their original desired po-

sitions.When combined with a measure of cost associating with transitioning between formations

at successive timesteps, the greedy minimization performed by the optimization methodology can

(a) Combined cost: sum of average robot displacements
at a timestep and between timesteps.

(b) Methodology timing characteristics. (Search timing
is shown spanning the covered timesteps.)

Figure 4.2.1: We calculate the cost of a formation by considering the average distance a robot is displaced relative to
a reference formation. Fig. 4.2.1a shows the calculated cost for a formation at timestep t as the sum of two quantities:
the direct cost (between the solution formation at t and the desired formation at t), and the transition cost (between the
solution formation at t and the previous solution formation at t− 1). Fig. 4.2.1b shows timing characteristics of the
two approaches, implemented in MATLAB.
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be seen to provide far higher cost solutions than a search strategy (even over discrete options) that

considers the cost of transitioning between formations. This is most noticeable at timesteps 9,

19-27, and 32-34 of Fig. 4.2.1a.

When searching a finite, discrete set of options, B, the number of possible solutions for a

sequence of timesteps, D, is BD. Evaluating a large number of solutions may be costly depending

on the chosen evaluation method, but by restricting the solution space to a finite set over a chosen

horizon, it is feasible to reason over multiple timesteps during a single application of the method.

For the same computation time, discrete search can therefore provide a solution with D times the

resolution of the optimization approach, which requires application at every timestep. Conversely,

search can provided the same resolution solution roughly D times faster. Fig. 4.2.1b shows timing

characteristics for MATLAB implementations of the methods considered in this example.

Non-exclusion of free space, reasoning over multiple timesteps, and the resolution-to-time

tradeoff motivate the use of search over discrete, pre-specified formation options as a potential

planning approach. While uninformed search over a large set of options is impractical for online

use, methods such as Monte Carlo Tree Search (MCTS) have proven highly successful in problems

with large branching factors [12, 75]. By storing information about previously tested sequences,

MCTS makes use of experience to inform its selection policy, allowing it to find better cost so-

lutions with successive rollouts. This learning aspect means that the formulation of MCTS we

propose in this work is able to balance a large, combinatoric search space with online operating

requirements.

In this work, we propose a formulation of MCTS for formation planning. In Sect. 4.3, we de-
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scribe our chosen search set, cost function, and how these are used in MCTS. In Sect. 4.4, we show

simulation results to explore and quantify aspects of the questions we raise here, including analyz-

ing the relationship between the size of a search set and search performance. The experiments in

Sect. 4.4 show that a sample-limited MCTS implementation is able to improve performance with

increased experience and that the performance of a search tree holds across environments, mean-

ing that experience accumulated in one environment may be reused in a new environment. These

results allow the use of a limited search budget to achieve fast online search within calculated

performance bounds.

4.3 Proposed Methodology

We propose a formulation of Monte Carlo Tree Search (MCTS) that makes use of previous ex-

perience to perform formation planning for multi-robot formations. Our approach first defines a

set of discrete shape transforms which modify a formation of robots by a combination of rotation,

scaling, and shearing operations on a single base shape for the nominal path (Fig. 4.1.1a). We then

employ MCTS to find a series of shape transforms that minimize a cost metric based on the de-

sired formation at a timestep and the cost of changing formations between timesteps. This section

describes the mathematical background, problem setup, and search details of the approach.

4.3.1 Robots, Formations, and Behaviors

A common description of multi-robot behaviors—position and time references for a group of

robots that meet a specified action or command reference—involves specifying relationships for a
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group, formation, or shape of robots with respect to a local reference frame and then controlling

this local frame with respect to a global reference [15, 16, 78, 91]. We choose to use this representa-

tion because of its wide applicability to general multi-robot tasks, such as moving groups of robots

to desired destinations in chosen formations over specified time durations, including incorporating

desired motion characteristics [15].

For each robot in a group of N robots, i ∈I = {1, . . . , n} ⊂ N, a robot’s position is denoted

by x̄ i = [x,y,z]T, x̄ ∈ R3. A formation of robots is a group of robots having a shape, S, with each

robot in the group having a position s̄ = [sx,sy,sz]
T, s̄ ∈ R3 in a local reference frame, S. A shape

of N robots, each with time varying positions within the shape, s̄ i
t , is described by a vector of their

respective positions: St = [s̄ 1
t , . . . , s̄ n

t ].

Using the behavior description of [15, 16] with discrete notation, the local reference frame S

is related to the world frame, W, by a time varying rotation matrix Rt , R ∈ SO(3), and position

offset, Ct ∈R3. The position of a robot in the world frame can be found by composing the motion

of the shape frame S relative to the world frame as described by C and R, such that x i
t = Ct +Rt s̄ i

t .

A multi-robot behavior is then the specified positions of a shape of robots over time t ∈ {1,T} as:

γ̄t = Ct +RtSt . (4.3.1)

4.3.2 Environment and Collision Checking

We choose to use a voxel-based environment representation, letting O ⊂ R3 be the set of static

obstacles (occupied voxel cells) in environment E. If P(γ̄t) is the set of voxels occupied by robots
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for formation (γ̄t), then those robots are in collision if P(γ̄t)∩O 6= {}.

4.3.3 Definition of Shape Transforms

The behaviors described by Eqn. (4.3.1) relate a potentially time varying formation of robots to the

world frame using a time varying rotation reference. We additionally define a behavior representa-

tion that groups the time varying elements of a formation and its inertial relationship into a single

term as:

γ̄t
′ = Ct +AtS0, (4.3.2)

where A∈R3×3 represents an affine transform, a more general representation that includes rotation

as well as scale and shear, and S0 represents a nominal formation. This definition allows us to view

behaviors as local, shape-transforming modifications made to a nominal formation that defines

a fixed relationship between robots, and assists us in formulating our search approach for non-

colliding formations. Upon finding a behavior γ̄t specified by a high level planner or human user,

as in [15, 16], to be in collision, we propose to find the closest non-colliding behavior γ̄ ′t , where

P(γ̄ ′t)∩O = {} for all t ∈ {1,T}, by searching over a set of shape transforms.

A shape transform, A ∈ R3×3, is then defined as a 12-parameter affine transform which modi-

fies a formation of robots by a combination of rotation R∈ SO(3), scaling Sc∈R3×3, and shearing
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operations Sh ∈ R3×3.

A = [Sc][Sh][R] (4.3.3)

Sc =


scx 0 0

0 scy 0

0 0 scz

 (4.3.4)

Sh =


1 shy

x shz
x

shx
y 1 shz

y

shx
z shy

z 1

 (4.3.5)

R = Rz(ψ)Ry(θ)Rx(φ) (4.3.6)

For chosen scaling (scx,scy,scz), shearing (shy
x,shz

x,shx
y,shz

y,shx
z ,shy

z), and rotation (φ ,θ ,ψ) pa-

rameters, we create a set of affine transforms, A . Each parameter may take a range of values (for

example, scaling parameter scx may be drawn from a set of values, scx ∈Ksc) and so the cardinality

of A is the combinatorial product of the sizes of each parameter set: |A |= ∏
12
i=1 |Ki|.

While reflections are also included in the space of affine transforms, we omit reflections from

the set of allowable shape transforms. Reflecting a formation between timesteps is undesirable

because either robots must travel greater distances to their assigned positions and risk inter-robot

collision, or reassignment must occur to switch robots to alternate destinations in the formation to

avoid wasted motion and inter-robot collision.
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Figure 4.3.1: Average displacement across robots between two formations.

4.3.4 Cost Function

In order to determine if a formation evaluated during search is “close" to the formation specified by

a desired behavior, we require an evaluation metric quantifying a notion of displacement between

two formations. Given a colliding formation, we would like to minimize the distance each robot

must travel to assume a non-colliding formation. Therefore, we define a cost metric based on the

average distance between robot assignments between two formations.

A formation is a collection of robot positions, as described in 4.3.1: S = [s̄1 . . . s̄n], s̄i = [x,y,z]T.

Given two formations, X = [x̄1 . . . x̄n] and Y = [ȳ1 . . . ȳn], we described the average displacement

over all robots in the formation by:

d(X,Y) =
1
n

n

∑
i=1
‖x̄i− ȳi‖2, (4.3.7)

where ‖ · ‖2 is the l2, or Euclidean, norm. This is also illustrated in Fig. 4.3.1.
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To define the cost of a candidate shape transform as part of a solution sequence, we consider

the displacement of robots between the formation formed by the candidate shape transform and

two other formations: the formation specified by the desired behavior at time t, and the candidate

formation at time t− 1. The final cost of a formation at timestep t formed by a candidate shape

transform is then the sum of terms:

cost(AtS0) = d(AtS0,RtSt)+d(AtS0,At−1S0). (4.3.8)

To evaluate a sequence of transforms, as required over multiple colliding timesteps, Ā =

[A1, . . . , AT ], the total cost is the sum of the costs incurred over the sequence: all direct costs

between the desired behavior and the candidate formations at equivalent timesteps, and the cost of

transitioning between each formation in the proposed solution sequence:

cost(ĀS0) =
T

∑
t=1

d(AtS0,RtSt)+
T

∑
t=2

d(AtS0,At−1S0). (4.3.9)

4.3.5 Optimization Problem

We then state the problem of finding non-colliding behavior γ̄ ′t as the problem of finding a sequence

of transforms, Ā = [A1, . . . , AT ], which minimizes the deviation of γ̄t from γ̄ ′t for t ∈ 1,T while
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remaining collision free:

A∗ = argmin
A∗∈A

cost(γ̄t(C,R,S)− γ̄
′
t(C,A∗,S0)) (4.3.10)

s.t. P
(
γ̄
′
t(C,A∗,S0)

)
∩O = 0 for t ∈ 1,T (4.3.11)

4.3.6 Search graph formulation

As previously stated, we propose to find A∗ through search. We formulate the search graph as

a directed tree structure, G = {V,E}, to represent ordered sequences of shape transforms where

each vertex v ∈V represents a shape transform A from the search set A and directed edges e ∈ E

indicate the ordering of transforms. The branching factor of the tree is then |A |.

4.3.7 MCTS formulation

A meaningful discretization of affine transforms results in a large search space with a high branch-

ing factor. We choose to employ Monte Carlo Tree Search (MCTS) [12] given this problem setup,

as MCTS allows us to build a graph online, balancing exploration of new nodes with exploiting

previous solutions, and performs well in similar search scenarios [75]. The four established com-

ponents of MCTS are selection, evaluation, simulation, and back propagation. Our implementation

takes the following form:

1. Shape transform selection: We select nodes, representing shape transforms, from the tree
according to the UCT (Upper Confidence Bound for Trees) algorithm [12] to balance explo-
ration and exploitation. That algorithm is restated below as:
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UCTj = X̄ j +2Cp

√
2lnn

n j
, (4.3.12)

where X̄ j is the average value of node j; n j is the number of simulations which have been
played through node j; and n is the number of simulations played through the parent of node
j. The value Cp is a constant, Cp =

1√
2

[12, 43]. Our rollout policy is random selection.

In our formulation, we set the value of a node, X̄ j, as the ratio of the number of times that the
node has been found to be the minimum cost, collision-free solution divided by the number
of times the node has been sampled.

2. Sequence evaluation: Sequence evaluation is the computation of cost according to Eqn. (4.3.9).

3. Sequence simulation: In our problem formulation, “simulating play," equates to evaluate
the performance of the sampled sequence of shape transforms in context, i.e., with respect
to the environment. This equates to calculating γ̄ ′t = Ct + ĀS0 over time horizon t ∈ {1,T}
and collision checking γ̄ ′t with the environment.

4. Back propagation: Cost and sample count information are updated for all nodes in the
sampled sequence.

5. Final selection: Sampling, evaluation, simulation, and back propagation are performed for a
budgeted number of samples (equivalent to a fixed search time), and the lowest cost sequence
of transforms is returned after the sample budget has been reached.

We note two additional items which we found greatly enhance search performance. First,

because actions are transformations of a nominal fixed shape, we can pre-compute collision checks

at each step along the path for each AS0 where A ∈ A . This reduces collision checks to only a

simple lookup during search, and, further, we remove the actions that are in collision from the set

of available actions at each time step.

Second, MCTS using UCTs may select the same actions multiple times in sequence, partic-

ularly when the search horizon is relatively short. We found in practice that the technique of

updating sample count across children to reflect multiple plays through a sequence with a known
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score reduced repeated visitation of fully explored sequences and greatly improved performance.

4.4 Experiments and Analysis

To evaluate the performance of the proposed approach, we perform experiments in simulation. The

following experiments in Sects. 4.4.1 and 4.4.2 show that a sample-limited MCTS implementation

is able to improve performance with increased experience and that the performance of a search

tree holds across environments, meaning that experience accumulated in one environment may be

reused in a new environment.

Experimental setup

To evaluate search performance, we perform searches in simulation through randomly generated

environments. Desired behaviors through the environment are generated using random destination

selection. A formation of robots is initialized at a random starting point with a randomly chosen

destination. The desired behavior is the motion formation along the shortest path between the start

and end waypoints, and the final waypoint becomes the starting waypoint for the next behavior.

An example of a desired behavior in a test environment is shown in Fig. 4.4.1.

As all waypoints are randomly chosen, a behavior will encounter a random number of colli-

sions with the environment. Therefore, we look at the overall cost of a solution for a behavior

as an average cost incurred over all collisions. An example of this was shown in Fig. 4.2.1a; the

individual cost of every non-colliding transform is shown plotted in the figure, and the average

cost of the solution sequence is reported in the figure legend. Mathematically, the average cost is
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Figure 4.4.1: This figure shows a representative experimental scenario, showing a randomly generated environment
and obstacles (purple). A solution sequence of formations (orange) is shown for a desired square formation moving
between randomly chosen start and goal locations.

found by dividing the cost of a sequence (given in Eqn. (4.3.9)) by the number of elements in the

sequence: mean(cost(ĀS0)) = cost(ĀS0)/T .

Error metrics

While we are interested in understanding how the proposed search formulation performs, i.e. the

cost of a solution, it is more informative to understand how the cost of a solution found through

search compares to the lowest cost we could expect to achieve given the chosen search set, e.g.,

the cost of the optimal solution composed of shape transforms from the search set, A . While

MCTS is complete in the limit, meaning it is guaranteed to find the optimal solution or conclude

that no solution exists given sufficient samples to expand a full search tree, MCTS may not find
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Figure 4.4.2: This plot shows the performance of search given different sample limits. For the same set of randomly
generated paths, search is run with three different sample limits.

the optimal solution when the search time or number of search iterations is constrained.

The optimal solution for the discrete problem formulation can be found by performing a com-

plete search over the entire tree of search options. Performing a full breadth and depth search (FBD

search) is infeasible for online use, and is provided solely for solution quality comparison. The

performance difference between a solution found through MCTS and solution determine though

FBD search is therefore given as,

ε =
1
T

(
cost(ĀS0))MCTS− cost(ĀS0))FBD

)
. (4.4.1)

We include the 1
T term, forming ε as an arithmetic average, in order to compare average error across

trials experiencing different numbers of collisions. Eqn. 4.4.1 is then used to report performance

in all experiments discussed in Sects. 4.4.1 and 4.4.2, Figs. 4.4.2 and 4.5.1.
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4.4.1 Method performance characteristics

To show that the proposed approach is able to find solutions and improve performance with in-

creased experience, we show performance characteristics of the methodology for 5 different sets

of 1000 random behaviors, through a randomly generated environment, in Fig. 4.4.2. The three

curves shown in Fig. 4.4.2 show the performance of the methodology for three different sample

budgets. The individual lines represent the mean performance over 5 trials, each of 1000 ran-

domly generated behaviors; the shaded area shows the max and minimum range of values. All

three curves decrease with the number of trials experienced, showing that the method, regardless

of sample budget, improves solution cost with time. Looking across the three examples, it is clear

that sample budget contributes to the learning rate; greater numbers of samples during search allow

the method to explore more paths through the search tree, evaluating greater numbers of solutions.

The sample budget for each trial is shown (legend of Fig. 4.4.2) as a percentage, Nsample = L(BD),

where BD are the possible number of leaf nodes. The value of total possible number of leaf nodes

is chosen as a reference value to give a sense of scale to a sample budget.

4.4.2 Transfer across environments

Fig. 4.5.1 shows how the performance of a search tree generalizes across environments. A search

tree, trained in one environment, is transferred to a new randomly generated environment. Both

environments share the same voxelization parameters, meaning that voxel cell size is the same in

both environments. The same search set and sample budget is used across all searches.

The yellow plot in Fig. 4.5.1 shows the performance of a search tree in Environment 1 over
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Figure 4.5.1: The yellow curve shows the performance of a search tree trained on “Environment 1" and transferred to
“Environment 2." Environments 1 and 2 are shown in overlaid on the plot, for reference. Note: Environment 2 is twice
as large as Environment 1, to show an example of differences between environments and evaluate a trained search over
longer paths with greater numbers of obstacles.

1000 trials, where the search tree is initialized with Trial 1. The search tree is then used to find

solutions for 1000 randomly generated behaviors in a new scenario, Environment 2. As shown, the

performance of the search tree remains constant between the two environments.

4.5 Discussion and Conclusion

Experiments performed in Sects. 4.4.1 and 4.4.2 illustrate the two necessary capabilities to use

the proposed approach online: 1) We have verified that formation sequences (i.e., shape transform

sequences) can be valued based on experience and that this experience improves performance,

even allowing a limited sample budget to achieve equivalent performance to higher sample (and

therefore more time consuming) search; 2) For a given environment discretization, a trained search

tree holds performance across different environments.

58



These two attributes show that a search tree can be trained offline to achieve a desired perfor-

mance threshold and that the method will perform comparably online across changing operating

scenarios. Given application requirements, the results show that an operator or system designer

can evaluate offline performance in representative environments for a given search set resolution

and choose a search budget to achieve a desired level of performance.

Drawbacks to this method are that this approach requires offline training and that separate

search trees must be trained for different nominal formations, S0, different search sets, A , and

for different resolutions of an environment voxel grid. However, this is comparable to approaches

which compute motion primitive libraries for individual agents; we have, in effect, proposed a

motion primitive library for multi-robot formations which leverages a trained selector to enable

fast online use.

While we have only considered static environments, the finding that a trained search tree de-

pends on environment discretization rather than the environment itself suggests that we may be

able to represent dynamic obstacles as static obstacles over a forward time horizon and use the

proposed method directly for dynamic obstacle avoidance. Likewise, the described approach is

formulated to account for a time varying desired behavior reference, such as those described in

[15, 16]. The ability of the methodology to provide high-resolution solutions is promising for

being able to represent time varying behaviors with good fidelity, and we are interested in under-

standing how the proposed search methodology extends given the increased state space introduced

by a non-static reference.
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Chapter 5

Multi-robot planning via action search

The preceding chapter described human-instructed, online multi-robot planning in the specific

context of a performer-directed theatric application. Advantages to the described methodology are

that complex and specific instructions detailing desired inter-robot coordination can be issued by a

human user within the application time constraints. However, the need for the enumeration of spe-

cific classes of desired behavior attributes, the time required to specify coordination requirements,

and the restriction of operating in an open environment restrict the usability of the approach when

looking at operating in different environments or for alternate applications.

In this chapter, we show that the previously described approach can be thought of as a specific

instantiation of a general formulation of multi-robot behaviors. We present notation for describing

multi-robot actions, and a general framework that shows that sequences of these actions can be

composed online to form feasible and safe multi-robot behaviors. We then show that this approach

is able to replicate performance of the specific methodology.

In this chapter, we begin by giving further context to the problem and presenting a brief
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overview of our approach (Section 5.1). Notation and problem formulation are introduced in

Sect. 5.2, and Sect. 5.3 introduces how data, as demonstrations of desired user actions, may be

given as time-series of positions and incorporated into the desired notation framework. Our formu-

lation for composing actions is a search framework, described in Sect. 5.4. To quantify how a solu-

tion returned from search represents the user-input (demonstration data), Sect. 5.5 describes several

evaluation metrics. We then evaluate the performance of the methodology in simulation (Sect. 5.6)

by showing performance in various cluttered environments and for different sized groups of robots.

5.1 Approach Overview

In considering the problem of planning coordinated motions online for a group of robots, there

are challenges associated with not just planning kinodynamically feasible and collision free mo-

tions despite environment complexity, but also with specifying coordination polices for groups of

robots. When the coordination goal is well understood or clearly expressed by quantifiable met-

rics, optimization approaches or rule-based policies are commonly used to plan team motions.

For example, the common task of maintaining agents in formation is often formulated in terms

of minimizing deviation to a desired formation, and can be solved via a constrained optimization

employing sequential convex programming [5], using a vector field policy to avoid obstacles but

maintain formation [91], or time-based polynomial trajectory planning over a receding horizon in

order to maintain distance and bearing specifications between agents [78]. The coordination policy

of these approaches (in this example, “minimize deviation from a desired reference”) is specified

by human understanding of the problem domain.
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Figure 5.1.1: Example of
coordinated motions between
robots in a formation being
performed in a complex envi-
ronment. The robot motions
were selected during online
search based on user-provided
demonstration data. Robots are
shown at sampled times, t1, t2,
and t3, along a set of trajectories
generated through keyframes
returned via the proposed search
methodology. The robots tran-
sition from a triangle formation
to a line formation in order to
avoid collision with an obstacle
(represented by the orange
voxels).

However, some applications can require coordination policies that are difficult to express via

optimizable metrics, or which do not have a clear best policy. In these cases, demonstrated

solutions—if available—may be used to inform planning policies. In the example of team sports

such as soccer where it may be unclear how players should perform defense, [48] uses video

demonstration of human players to learn agent roles. In [51], no decentralized controller is avail-

able for the posed particle assignment problem, and so a centralized planning formulation is used

as a demonstration to train decentralized policies for a multi-robot team.

We seek to plan coordinated motions reflecting user preferences for a team of robots in com-

plex and cluttered environments without having to explicitly express user objectives through a

rule-based methodology. The methodology described in the preceding chapter (Chapter 3) of this

thesis allows a user to specify time-varying formation objectives online via parameterized input

and create dynamically feasible and collision free multi-robot plans in the form of time-based
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polynomial trajectories in non-cluttered environments. However, directly finding dynamically fea-

sible and non-colliding trajectories for the desired user input in cluttered environments is difficult

to solve under online time constraints.

We propose to use plans reflecting user specified multi-robot coordination preferences gener-

ated in an open environment via [15, 16] to inform online plan generation in cluttered and complex

environments. The contribution of this approach is that it allows a system to reproduce user-

preferred coordination strategies in non-demonstrated scenarios (the transfer of actions from open

to cluttered environments), as well as perform coordinated multi-robot motions without requiring

the direct specification of a rule-based objective function or direct online user-input.

A conceptual overview of the proposed approach is visually depicted in Fig. 5.1.2, and portions

of this work are additionally covered in our publication [17]. Our approach is divided into Offline

and Online portions. We formulate multi-robot planning as a Markov Decision Process, where

robots transition between states via actions, and introduce notation to describe a discrete represen-

tation of multi-robot states and actions (Sect. 5.2). Our approach looks at multi-robot motion data

given as time series of robot positions. Sect. 5.3 describes the representation of a time series as

multi-robot state-action tuples, and the creation of a search set composed of actions observed from

datasets.

Sect. 5.4 describes the online navigation of a group of robots through a cluttered environment.

Finding a sequence of actions that allows the robot group to navigate the desired path–input via

joystick from a user–can be formulated as search over a tree of possible actions. To minimize

edge expansions for fast search online, we evaluate a best-first search approach. We again leverage
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Figure 5.1.2: This figure illustrates an overview of the approach. Block (a) shows an offline demonstration of a group
of robots changing formation from a line to a polygon. Block (b) illustrates the demonstration, sampled at uniform time
discretizations, represented as actions performed by the formation, described as rotations and shape transformations.
These actions are stored in an action set, A . Block (c) shows a group of robots in a cluttered environment, executing
actions from action set A to transition from polygon to line to navigate between obstacles.

the provided datasets of multi-robot actions to guide search, and propose the use of a simple,

probability-based heuristic for action selection.

Sect. 5.6 evaluates the proposed approach with a series of experiments showing method perfor-

mance in terms of computation time and solution quality when the approach is employed in varying

simulated environments. We evaluate scaling with action resolution, number of robots, and envi-

ronment and group representation. We also compare to existing approaches in a representative

example environment.

5.2 Notation and problem formulation

This section introduces notation and problem formulation. In the following descriptions, indexing

elements are given as superscripts, while time elements are written as subscripts. For example, the

state x of robot i at time t is written as xi
t .
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5.2.1 Robot, formation, and obstacle notation

The state of an individual robot, s, with respect to a local, formation reference frame S is given by

its position, s = [x,y,z]T ∈ R3. The state of a group of n robots is a vector containing the states of

the member robots, S = [s1, . . . , sn] ∈ R3×n. A valid formation, or shape S, is one in which no

robots are in collision with each other: i.e., a minimum separation distance, dr, is required between

all robots in a formation: ‖ si−s j ‖2 ≥ dr ∀
(
si,s j)∈ S, and ‖ · ‖2 describes the Euclidean distance

or l2-norm.

Similar to state in the group reference frame, we define the state of a robot in world frame

W as x = [x,y,z]T,x ∈ R3, and the state of a group of n robots as X = [x1, . . . , xn], X ∈ R3×n.

The formation reference frame, S, is related to W by a positional offset, C ∈ R3, and a rotation,

R∈ SO(3), so that state s of a robot in frame S is expressed in frame W as x =C+Rs, and likewise

for a formation of robots, X =C+RS.

We use a voxel-based environment representation, letting O ⊂ R3 be the set of static obstacles

(occupied voxel cells). However, the methodology described in this work holds for any chosen

environment or obstacle representation, for example, defining obstacles O as a point set of observed

surface data or collection of convex polygons, etc. We define P(Xt) as the set of voxels occupied

by the convex polytope defined by robot poses X at time t. A formation of robots is collision free

if the set of voxels covered by the formation does not intersect the obstacle set, i.e., the intersection

of the two sets is the empty set: P (X)∩O = {}.
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5.2.2 MDP over states and actions

We formulate planning for a group of robots as a Markov decision process (MDP), where our state

at time t is the tuple st = {Ct ,Rt ,St}, an action at time t is the tuple at = {ct ,Ωt ,At}, and the

transition function T () gives T (st+1| at ,st) by:

Ct+1 =Ct + ct (5.2.1)

Rt+1 = ΩtRt (5.2.2)

St+1 = AtSt . (5.2.3)

In the above set of equations, ct ∈ R3 describes a translation in W in x, y, and z; At ∈ R3×3

describes a linear transformation of the n robot formation, St ∈ R3×n; and Ωt ∈ SO(3) describes

an incremental rotation that takes Rt to Rt+1. We let T () be deterministic, transitioning st to st+1

given at with probability 1.

The problem definition is as follows: given the current system state st at time t, we seek to

complete a path specification given only as components c and Ω of an action with the most ap-

propriate shape space transform A to form the complete action tuple: at = {ct ,Ωt ,At} to take the

system to the desired (and feasible) state at the next time step, st+1. This may be stated as:

At = argmax
At∈A

Reward(At) (5.2.4)

s.t. P (Xt+1)∩O = {} (5.2.5)

‖ si− s j ‖2 ≥ dr ∀
(
si,s j) ∈ St+1, si 6= s j. (5.2.6)
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Reward(At) is a reward function in terms of At , the linear transform describing the transition of St

to St+1, drawn from a set A of demonstrated transforms. We discuss the specifics concerning the

generation of set A and details of reward calculation Reward(At) to Sects. 5.3 and 5.4, respectively.

5.3 Demonstration data as {s,a} tuples

To select a shape transform At as in Eqn. (5.2.4) in line with user expectations, we require a demon-

stration of user-directed robot motions represented as a series of state-action tuples. Here, we gen-

erate demonstrations using the methodology of [15, 16], which takes detailed user input to produce

dynamically feasible, time-based polynomial trajectories for all robots. We therefore sample the

demonstration at a chosen, uniform time discretization to create a time-series of robot states. The

dynamic feasibility of the demonstration trajectories means that (1) no states contain robot-robot

collisions, and (2) sampling at a fixed time resolution provides actions within a bounded set, as the

demonstration trajectories generated by [15, 16] respect the provided actuator limits of the physical

robot platform.

We begin with a demonstration of the form X1:T in W for all robots in a group, where Xt

has been sampled at t = {1, . . . , T}, and ti+1 = ti + dt. Given two sequential poses, Xt and

Xt+1, and the knowledge of either St or Rt , we can decompose Xt and Xt+1 to MDP states st and

st+1 and the action at which transitions st to st+1. This is a Procrustes problem [34], where we

seek a transformation that maps robots from Xt to Xt+1, such that transformation Y minimizes

‖ Y Xt−Xt−1 ‖.
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5.3.1 Position and translation components of states and actions

We equate the position component of state, C, to the geometric mean of robot positions: X̄. Given

position components Ct = X̄t and Ct+1 = X̄t+1 at neighboring time steps, translation term ct is

found by subtracting the geometric mean of the robot group at time t from t +1, a rearrangement

of Eqn. (5.2.2): ct =Ct+1−Ct .

5.3.2 Rotation component, Ωt , of action at

Knowledge of the position component lets us group the remaining state components, Rt and St ,

together as Pt :

Pt = RtSt (5.3.1)

= Xt−Ct (5.3.2)

Pt+1 = Rt+1St+1 (5.3.3)

= Xt+1−Ct+1 (5.3.4)

Given Pt and Pt+1, the rotation matrix Ωt is the solution to the orthogonal Procrustes problem

[34] : Ω = argminΩ

‖ ΩPt −Pt+1 ‖F subject to ΩTΩ = ΩΩT = I with det(Ω) = 1, where ‖ · ‖F denotes the Frobenius

norm.

This problem is equivalent to finding the nearest special orthogonal matrix1 to a given matrix

1An orthogonal matrix is a square matrix whose columns and rows are orthogonal unit vectors, i.e., RTR=RRT = I;
a special orthogonal matrix is an orthogonal matrix whose determinant equals 1, det(R) = 1.
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M = Pt+1PT
t . To find Ωt , singular value decomposition is used to write:

Pt+1PT
t =UΣV T (5.3.5)

Ωt =UΣ
′V T (5.3.6)

where Σ′ is a modified Σ with the smallest singular value replaced by sign(det(UV T)), i.e. +1 or

-1, and the other singular values replaced by 1, so that the determinant of Ω is guaranteed to be

positive [29].

5.3.3 Discussion of R0 and S0

Poses Pt and Pt+1 are known from Eqns. (5.3.1) - (5.3.4), and we would like to decompose this

information into four state components, Rt , St , Rt+1, St+1. We have so far expressed only one

constraint: that Rt evolves to Rt+1 via pure rotation. This allows us to express Rt+1 fully in terms

of Rt via Ωt (Eqn. (5.3.6)) exactly as in Eqn. (5.2.3). We therefore have two knowns, Pt and Pt+1,

and three unknowns, Rt , St , and St+1, and so require one additional piece of information which

may be provided by the knowledge of either the starting shape, S0, or the starting orientation, R0.

The demonstration may be assumed to begin with R0 equal to identity, or alternatively, S0 may be

defined via knowledge of the user’s desired shape or by matching the observed positions of the

robots at t = 0 to a library of desired formations.
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5.3.4 Rotation and shape components of state

Without loss of generality, we use poses Pt=0 and Pt=1 to clarify the explanation of determining

state rotation and shape components.

We first examine the case where R0 has been specified. Given R0, Eqn. (5.3.1) may be directly

solved for St=0:

St=0 = RT
0 P0, (5.3.7)

and the evolution of Rt=0 by Ωt=0 (Eqn. (5.3.6)) gives Rt=1, yielding St=1:

St=1 = RT
1 P1. (5.3.8)

If S0 has been specified, R0 may be found similarly as to Eqn. (5.3.6), as:

P0ST
0 =UΣV T (5.3.9)

R0 =UΣ
′V T, (5.3.10)

and the solution of St=0 and St=1 proceeds as in Eqns. (5.3.7) and (5.3.8).

While we have used poses at t = 0 and t = 1 for explanation, it should be clear that knowledge

of R or S at any time t enables the calculation of all components of state at t +1. States at all times

may therefore be calculated sequentially from knowledge state st=0.
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5.3.5 Shape transform At

The final component of action at undefined is transform At . This is, again, a Procrustes problem,

although here unrestricted to a rotation matrix and so may be solved through the least squares

minimization given by [34] (additionally as noted in the example implementation of [22]):

At = St+1ST
t (StST

t )
−1. (5.3.11)

Due to the described extraction of rotation matrix Ωt from Pt , Pt+1, transform At may be inter-

preted as scaling and shearing elements, where scale may be given along the x, y, and z dimensions

and with the off-diagonal components describing shearing as:


sxx 0 0

0 syy 0

0 0 szz

 ,


1 sxy sxz

syx 1 syz

szx szy 1

 . (5.3.12)

We make no assumptions about the uniformity of scaling, meaning that sxx 6= syy 6= szz, nor symme-

try of shearing, i.e., sxy 6= syx, etc, reiterating that A ∈ R3×3 or equivalently A ∈ R9 for the values

{sxx, syy, szz, sxy syx, sxz szx, syz szy}.

Transforms At observed from demonstration X1:T may be discretized (for example, casting all

values to a desired resolution, dA) so that actions can be recognized as discrete and unique. A set

of possible actions, A used in Eqn. (5.2.4), may then be formed of all unique actions from the

demonstration.
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Algorithm 1: Best First Search [69] formulated for our application.

1 returns TreePath or failure
2 root←− node with formation start state and zero reward
3 frontier←− root // queue ordered by cumulative reward
4 explored←− {} // empty list
5 while i < limit do
6 if Empty(frontier) then return failure
7 node←− Pop(frontier) // highest cumulative reward
8 explored←− node
9 if CollisionFree(node) then

10 if node.depth == T then return TreePath(root,node)
11 Children←− Expand(node)
12 CumulativeReward(Children)
13 frontier←− Insert(Children\ (explored∪ frontier))
14 end
15 end

5.4 Online action search

This section describes the formulation of action selection as a tree search among possible actions,

and the introduction of a simple reward measure for estimating user-preferred actions.

5.4.1 MDP as tree search

The process of selecting and evaluating the possible actions from a given state may be formulated

as search over a directed graph, specifically a tree, where nodes represent states and edges represent

actions. A node stores state s = {C,R,S} and collision information with respect to obstacle set O .

Each edge represents a single action, A ∈A .

The root node is initialized at the start position in the world, Ct=0, with the starting rotation,

Rt=0, and formation state, St=0. At each node, a maximum of |A | possible decisions can be made

(i.e., a node has a maximum of |A | possible children), where |A | is the size of action set A .

Child node state is found by applying the transition function (Eqns (5.2.1)-(5.2.3)). Therefore
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children share action components ct and Ωt , resulting in shared state components Ct+1, Rt+1, but

have different shape transforms At and so different shapes St+1. Every child node is checked for

collisions with the environment as well as for collisions between robots, and nodes in collision are

marked as inadmissible.

In order to find actions quickly to meet online planning time requirements, we propose a Best

First Search (BFS) approach [69] to determine a sequence of shape transforms, A1:T , for a user

input {c1:T ,Ω1:T}. BFS for our application is summarized in Alg. 1. Search may be terminated

under three conditions: (1) when the end of the horizon is reached, t = T ; (2) the frontier list

(Algorithm 1) is empty, meaning all non-colliding nodes have been explored; (3) we have reached

a maximum number of node expansions, capped so as to limit online planning time.

5.4.2 Selection policy

We suggest that the reward of a node representing transform At be based on the probability of

seeing At as part of a string of actions from the demonstration. We express this by defining a

window around time step t using two parameters, m and h, where m defines the number of actions

prior to, and h defines the number of actions following, At .

Reward(At) =
1

1+ ε
p(At:t+h|At−m:t−1)+ t. (5.4.1)

Given many nodes with similar or equal reward, we prefer to expand nodes that move closer to the

end of the path. As search depth is correlated with time step t, we therefore add t to the reward

based on p(At).
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The discount factor of 1
1+ε

, where ε is any positive number, is a constant term and so does not

change the relative reward value between child nodes. This term ensures that the probability of

any action p(At) is scaled to be less than one: as p(At) is a probability, it will always lie within

the bounds of 0≤ p(At)≤ 1, meaning that 0≤ 1
1+ε

p(At)< 1. This reward structure simply means

that this instantiation of Best First Search is effectively equivalent to Depth First Search, but with

a ranked order among nodes at a given depth. This ranking allows us to choose the best node to

expand, rather than randomly choosing an edge to expand or collision checking all children to find

only non-colliding choices (Alg. 1).

5.5 Evaluation Metrics

This section describes three measurable attributes that allow us to evaluate a search solution, a

string of shape transforms over a time horizon T , A1:T , with respect to a demonstration. The

solution is a string (a finite sequence of symbols chosen from an alphabet, a finite set of symbols),

where each symbol is a unique transform, Ai ∈ A , and the size of the alphabet is the chirality of

set A , |A |.

Longest Common Substring (LCS) One measure for determining the extent to which a solu-

tion exactly matches (a portion of) the demonstration can be expressed by the Longest Common

Substring (LCS). Given two strings F and G, of lengths LF and LG respectively, the LCS is the

longest string which is a substring of both F and G.

We additionally look at two possible metrics for scoring the “distance” of a solution from the
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demonstration.

Minimum Demonstrated Hamming Distance (MDHD) Edit distance describes the number of

operations required to transform one string to another. The Hamming distance between two strings

of equal length (we denote this as dH(·, ·)) is the number of positions at which the corresponding

symbols differ [86], and in our application, gives a measure of how well the solution could have

done (ignoring the feasibility requirements which constrained solution choice) to exactly replicate

a portion of the demonstration.

The Hamming distance can only be computed between strings of equal length. For a demon-

stration string F of length LF , and a solution string G with length LG, there will be (LF −LG +1)

possible LG-length substrings from the demonstration. We denote the Minimum Demonstrated

Hamming Distance2 (MDHD) between the query string, G, and the set of substrings, f i with

length L f = LG, drawn from the demonstration string, F , as:

f i ⊆ F, L f = LG (5.5.1)

f ∗ = argmin
f i⊆F

dH( f i,G) (5.5.2)

MDHD = dH( f ∗,G). (5.5.3)

Minimum Demonstrated JSD (MDJSD) While it ignores action ordering, we can also view a

demonstration and a solution as two probability distributions over actions. A common metric for

2Our defined “Minimum Demonstrated Hamming Distance,” identifying the minimum distance of a query string to
a string set, is unrelated to “minimum Hamming distance” as defined in the literature, the smallest Hamming distance
between all possible pairs of strings in a set [86].
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measuring the similarity between two probability distributions is the Jensen–Shannon divergence

(JSD), also known as the information radius or total divergence to the average [56]. The JSD is a

symmetrized and smoothed version of the Kullback–Leibler divergence. We let F be the string of

demonstration data and G the solution, and we use fi, gi, to denote the observed frequencies of Ai

from the demonstration and the solution strings. The Kullback–Leibler divergence between strings

F and G is then KLD(F ||G) = ∑
|A |
i=1 fi log2

(
fi
gi

)
, and the JSD is given as:

F = { fi, . . . , fM}, G = {gi, . . . , gM} (5.5.4)

M =
1
2
(F +G) (5.5.5)

JSD(F ||G) =
1
2

KLD(F ||G)+
1
2

KLD(F ||G), (5.5.6)

Comparing a solution to an entire demonstration is uninformative when LF � LG; we do not

expect the solution to well represent an entire demonstration, but we would hope that the solution

well represents some portion of the demonstration. Therefore, as in our calculation of the MDHD

(Eqns. (5.5.2)–(5.5.3)), we calculate JSD with respect to the set of all LG-length substrings of the

demonstration to find a Minimum Demonstrated Jenson-Shannon divergence (MDJSD):

f i ⊆ F, L f = LG (5.5.7)

f ∗ = argmin
f i⊆F

JSD( f i||G) (5.5.8)

MDJS = JSD( f ∗||G). (5.5.9)
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5.6 Evaluation

In this section we evaluate the proposed search approach using the metrics proposed in Sect. 5.5

over several environments of varying complexity, and additionally examine the dynamic feasibility

of trajectories interpolated through the discrete states returned from search.

Our methodology returns plans in the form of a non-colliding sequence of goal states (posi-

tions) for the robot group. To use the proposed approach with real robots, we require dynamically

feasible plans trackable by a hardware platform. Some approaches use independent robot con-

trollers to directly navigate to the goal destinations output from formation planning [5]; although

this approach would also work for our problem formulation, we prefer to evaluate the dynamic

feasibility of our plans by using the states returned from search as keyframes in a polynomial tra-

jectory formulation. This allows us to quickly evaluate the dynamic feasibility and safety of the

entire plan quickly online.

In the following experiments, we use the method of [66] to fit time-based polynomial trajecto-

ries to the discrete states returned from search. We evaluate plans for use with a quadrotor system

requiring trajectories that are smooth and continuous up to the acceleration limits of the platform,

and results are shown in Fig. 5.6.3. For each trial, robots are randomly placed in the environment

and asked to follow a randomly-generated, set-length path.

Table 5.6.1 shows the solution metrics evaluating the discrete solution returned from search

(Sect. 5.5). We evaluated several values of m and h to describe the length of the windowed history

used in Eqn. 5.4.1, and found that using a small window of past actions performed best in terms of

solution quality and computation time; we therefore show results for trials conducted with search
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a b

c d
Figure 5.6.1: These four images show representative examples of coordinated actions performed by a formation of
robots during search evaluation.

parameters m = 1 and h = 0.

The results in Table 5.6.1 illustrate that the proposed methodology is able to return solutions

that exactly reflect portions of the demonstration even in mildly cluttered environments, as shown

in Line 1. As environments become increasingly cluttered, we see that as expected, solutions are

forced to deviate in greater degrees from any portion of the demonstration, and that there are a

greater number of failure cases where a formation cannot fit along an intended path. However,

even in the most cluttered environment, approximately 80% of the solution sequence reflects a

portion of the demonstration (the LCS of Line 5 is approximately 80% of the action sequence

length).

We additionally show results for the same environments represented at alternate voxel resolu-

tions. We anticipated that searching a coarser resolution would perform faster, and we do see that

in general, coarser representations show slightly lower search times and graph sizes. However, the
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Average
LCS

Average
MDHD

Average
MDJSD

Average
search

time [s]

Average
graph size

[nodes]

Failed
trials

1. Env: low, res: fine 19.000 0.000 0.000 2.196 1157.818 3
2. Env: low, res: coarse 17.227 1.545 0.044 2.184 1124.455 3
3. Env: med, res: fine 18.619 0.381 0.012 2.096 1140.286 4
4. Env: med, res: coarse 17.095 1.476 0.041 2.180 1103.476 4
5. Env: high, res: fine 15.579 2.947 0.079 2.060 1052.895 6
6. Env: high, res: coarse 11.263 6.684 0.196 1.998 1081.368 6

Table 5.6.1: Performance over varying environments. Action sequence length = 19, |A | = 92, dA = .01, dt = .25,
m = 1, h = 0. Environments “low”, “med”, and “high” are shown in Figs. 5.6.2a, 5.6.2b, 5.6.2c. The voxel resolution
of “coarse” is set to 0.25m, and “fine” is set to 0.125m. We report the average values over 25 trials at each environment
and voxel resolution.

performance differences in search time and graph size with respect to voxel resolution are minor,

showing that the method maintains performance over higher-fidelity environment representations.

This is beneficial in avoiding the decreasing solution quality incurred by coarser voxelization; with

coarser representations, fewer solutions are found due to the reduced available free space.

Search times reported in Table 5.6.1 are reported as the (average) total search time to find ac-

tions along the entire specified path (including all collision checks). Trajectories generated from

the discrete states returned from search roughly span a time duration on the order of sample resolu-

tion, dt, multiplied by the number of actions in the solution sequence. The search time required is

therefore sufficiently less than the travel time of the robots that the methodology can safely evaluate

and generate trajectories for online use. We further note that our implementation was performed

in MATLAB, and that transitioning to alternate programming languages or libraries will decrease

search time.

80



(a) “Low” clutter, ≈24% occupied (b) “Medium” clutter, ≈28% occupied (c) “High” clutter, ≈32% occupied

Figure 5.6.2: Environments of varying complexity used in evaluation. Environment labels of “low, med, high” corre-
sponding to Subfigures (a), (b), and (c), respectively, correspond to Table 5.6.1. Environments span 10m× 10m× 3m
in height, and are shown here with a voxel resolution of 0.125m.

5.7 Concluding remarks

The proposed approach contributes the capability to coordinate multi-robot formation planning

guided by demonstration, allowing us to reflect user preferences or instructions that are not easily

input during online operation. This affords us the ability to coordinate actions with respect to a

wider variety or more unstructured representation of user preferences–as represented by the distri-

Figure 5.6.3: Trajectory characteristics showing dynamic feasibility: tests employ robots of radius 0.1 m, and accel-
eration and jerk limits of 5 m/s2, and 40 m/s3, respectively.
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bution of actions in a demonstration–rather than being restricted to minimizing a rule-specified ob-

jective function. Simulation results validate that the proposed method is able to find high-resolution

solutions over an extended time horizon within a computation budget that allows for online opera-

tion, even in complex and cluttered environments. Further, solutions with this approach represent

the user-provided demonstration data, showing that the methodology is capable of recreating the

specialized behaviors shown by the system of Chapter 3.
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Chapter 6

Data-driven search for joystick-directed

reconnaissance

The previous chapter described a general representation of multi-robot states and actions, showing

that actions can be composed online using a search methodology. With a selection policy based on

action probability as observed from a data distribution, this methodology allows for the recreation

of preferred motion sequences even in the presence of obstacles. In this chapter, we analyze the

performance of the action-based search approach in the context of joystick-directed motion through

highly cluttered environments as might be encountered in urban reconnaissance. In this evaluation,

we are not seeking to specifically recreate specialized behaviors as previously analyzed. Rather,

we leverage data from multiple sources to narrow down the set of possible actions from the space

of all possible actions and provide information for online selection.

This chapter focuses on analyzing the methodology of Chapter 5 in greater depth, including a
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discussion of method attributes, experiments in simulation analyzing the impact of varying method

parameters to characterize performance, and a comparison study with respect to two other chosen

approaches for online multi-robot group control in a reconnaissance scenario. Section 6.1 provides

a introductory discussion, while Sect. 6.2 discusses method attributes including complexity and

completeness. We then perform a series of experiments in simulation (Sect. 6.3) varying method

parameters including numbers of robots, action discretization and search set size, and environment

to show that the method is general and characterize parameter performance.

6.1 Introductory discussion

We seek to enable a human operator to direct a group of five to twenty aerial robots (quadrotors)

at high speed through highly cluttered environments. This capability is of interest in applications

such as reconnaissance, where we consider the scenario of an operator using a joystick to drive

a group of robots rapidly through a building, entering via a restricted opening such as a window,

steering the robot group between rooms and floors, and out of the building to the next target. In

this application, we value fast, partial coverage over slow and thorough mapping; high frequency,

simple interaction between the operator and the group over long range detailed plans; the freedom

for an operator to ignore the collision and dynamic requirements of the robots; and the ability to

operate rapidly in complex and cluttered environments. To support these desired capabilities, we

therefore require a low-latency, high-frequency human interface of correspondingly low cognitive

complexity for online instruction, and the ability to (re-)plan online at high speeds, generating safe

(dynamically feasible and collision free) plans for all members of the robot group.
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Our problem is motivated by the complex conditions inherent to operating 10-20 robots in

highly cluttered and restricted areas in an application requiring human operator expertise via high-

frequency interaction. Existing approaches for multi-robot control alone are insufficient to handle

the sum of these conditions and requirements, but we can build on existing methods to operate in

our chosen problem area. For a high rate of interaction and control, we state that for our application

we are specifically interested in driving a group of robots using a joystick interface. Joystick

interfaces provide simple input at high frequency, and have been shown to work for human control

of a multi-robot group [91]. This approach allows an operator to provide high frequency input

to a quadrotor team and uses a vector field based methodology to avoid collisions with objects

and other robots. Vector field methods, however, can experience problems when there are many

local minima, which happens with increasing frequency as the numbers of agents and obstacles

increase. While we therefore propose an alternate motion planning strategy, we adopt a similar

interface convention to [91] with additional considerations learned from single-quadrotor joystick

teleoperation [87, 88].

With respect to motion planning for multi-robot teams, existing methods generally divide into

optimization based and search based approaches. Optimization methods that plan trajectories for

groups of quadrotors [20, 58, 67] offer numerous advantages. These methods most often generate

polynomial time trajectories with respect to collision and dynamic constraints, yielding assured

safe plans over the trajectory horizon. These methods further produce optimal solutions which

minimize (or maximize) a desired cost function, and costs of interest may include energy [18]

or formation parameters [5]. However, optimization approaches are highly time intensive and
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generally infeasible for applications requiring rapid online re-planning. Optimization complexity

increases with the number of decision variables, so approaches which consider individual robots

in a coupled fashion become intractable with larger numbers of robots or obstacles [20, 58]. More

recently, approaches have sought to limit the number of decision variables by optimizing param-

eters representing the group of agents subject to linear constraints representing only the local en-

vironment [5]; while this has been shown to work in online planning scenarios, the environment

representation can be limiting in highly cluttered scenarios and optimizing formation parameters

can still be time intensive, making it problematic for high-frequency interaction. While a full opti-

mization problem for all robots is intractable in our operating context, we are able to incorporate

optimal motion planning methods for polynomial trajectories [57, 66] within our constraints, and

we leverage these methods to generate safe continuous plans from the discrete output of our search

approach.

Search approaches are frequently used when the number of decision factors in a problem is

large. Graph representation coupled with the use of heuristics or other informed selection strategies

allow search approaches to tractably refine large decision spaces [77]. With respect to the graph

representation (i.e., a chosen discretization for discrete methods, or with respect to chosen param-

eters), some search methods are also optimal (the path minimizes a cost function) and/or complete

(will return a solution or conclude no solution exists in finite time) [85]. Finally, planning dynamic

motions based on search solutions has an increased probability (or in some approaches, guarantee)

of success [28]. However, coordinating actions between agents during search can be computation-

ally challenging. Planning in the joint configuration space of agents is exponential in the number
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of agents, making search with even a limited set of individual actions for each robot potentially

intractable with the required number of agents or over longer search horizons; search approaches

which plan for agents individually must still resolve inter-agent conflicts [81, 85]. Additionally,

edge checks can be expensive depending on the constraints considered, for example, when requir-

ing collision or motion planning computation [14]. Finally, it can be difficult to generate good

heuristics to inform search [31, 89]. We employ a search based approach to make tractable the

large number of options inherent to coordinating a team of robots in complex environments, and

discuss our approach for mitigating search complexity and time considerations in the following

sections.

Swarm approaches, or local control methods for individual agents that give rise to global behav-

ior, are frequently used in computation limited applications because it is often more computation-

ally tractable to allow agents to make independent decisions rather than coordinate across agents.

We also include in this discussion highly decentralized approaches as frequently employed by reac-

tive control methods, for example, the wide range of approaches stemming from velocity obstacle

control methods introduced in [82, 83]. The low computation requirements of these approaches

lend themselves well to high frequency interaction applications such as ours, and numerous meth-

ods of allowing a human user to direct swarm motion have been pursued [45]. However, local

control methods make coordinating the group as a whole highly challenging, a problem generally

exacerbated in high clutter environments. Even examples that do seek to encode group behavior at

a local level [36] can lead to deadlock between agents and may not provide collision guarantees.

Group cohesion and motion guarantees with respect to velocity based control methods have been
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addressed by integrating motion planning with higher level planning approaches for multi-agent

systems in open environments [2], with multiple aerial robots [4], and small numbers of obstacles

[5]. However, these approaches employ optimization based methods to resolve constraints, the

time and computation limits of which may be prohibitive for our application as previously dis-

cussed. We therefore do not consider local control strategies in this work, although these methods

could potentially augment the motion planning portion of the approach.

Due to the numbers of robots considered in our application (group sizes of five to twenty

robots), coupled with the desire for safety assurances and ability to coordinate motions between

agents, we pursue a centralized, discrete planning approach coupled with polynomial trajectory in-

terpolation for rapid generation of dynamically feasible and safe plans. To allow a user to rapidly

interact with a robot team with a high degree of control yet correspondingly low cognitive burden,

we employ a joystick interface, mapping joystick input to a desired motion for the robot team us-

ing a motion primitive strategy, building on the works of [87, 88, 91]. To find paths that maintain

coordination between agents despite clutter, we evaluate a simple Best First Search [69] approach

over a selected set of coordinated multi-robot actions. These actions are learned from datasets

of real-world multi-agent examples, and are composed online using an informed heuristic about

action value. We show that continuous, dynamically feasible plans can be generated from the

discrete output of the planner [57, 66]. Our contribution is the formulation of a generalized repre-

sentation of group actions which allows us to compose actions across multi-agent implementation

examples and the online composition strategy. This work establishes the value of the proposed

approach with respect to the application of online multi-robot teleoperation, and serves as a base-
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line for comparison against further studies, such as the evaluation of alternate search methods or

heuristics.

Our decision to employ a search-based methodology faces the aforementioned limitations in-

herent to multi-robot search, which we seek to mitigate through our approach as follows. We

propose to search over a set of actions that describe the motion of a group of robots as a team, or

collective. (In order to allow a user to continuously direct all robots in the group, the robots are

always considered part of the same collective; we do not allow the group to split.) A collective

action representation allows us to search over a set of coordinated actions between agents using

a lower dimension representation than the full space of joint actions formed by considering the

exponential combination of every individual agents’ actions. We propose to use a discrete rather

than continuous representation of group actions to create a finite set of possible search options.

Although abstracting actions using a group-based representation creates a smaller search space

than the joint space of all robot actions, a naive representation at any meaningful discretization

still results in a very high number of actions.

We propose to (1) balance the tradeoff between action resolution and computational tractabil-

ity, and (2) determine a heuristic policy for guiding search, by leveraging data from real-world

multi-agent examples. For a desired action fidelity, i.e. discretization, a uniform sampling over the

space of actions forms a large set without additional information indicating the potential value of

any action. Using data taken from wide-ranging real-world multi-agent motions including: bio-

logical examples such as flocks of birds or human crowd data; engineered actions such as rigid

pattern following in multi-agent theatrical applications; and reactive motion data exhibited by
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swarm multi-robot applications, we can represent agent motions as group actions at our chosen

discretization and form our search set from these observed actions. Datasets additionally provide

information we can use to estimate the relative value of an action. For example, frequently ob-

served actions may be hypothesized to be of higher value compared to less frequently performed

actions. We may additionally estimate value by examining action sequences, as individual actions

may have a much higher probability of having been performed based on previous actions. We

therefore evaluate action sequences observed from data and use probabilistic measures of action

occurrence as a heuristic to guide search.

6.2 Methodology Attributes

Our approach is characterized by our choice to search over discrete actions for groups of agents.

We realize two benefits from the decision to model actions at the group level with respect to the

numbers of agents considered. One, actions at the group level allows graceful scaling with respect

to search time as the numbers of agents increase. While search does does need to ensure that

actions produce no collisions between agents, this check can be performed after a check between

the group and the environment. This reduces the number of inter-robot collision checks needed,

so we scale at less than the exponential growth rate expected for inter-agent collision checking for

larger team sizes. Additionally, the group-based action model means that actions are applicable

across group sizes. Actions are therefore general with respect to the number of agents in the group,

and the action set may be applied to groups of any numbers of agents.

A further advantage to the proposed approach is that it works in highly complex environments.
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The method can find solutions in the presence of complex obstacle configurations, i.e., in areas

where free space is non-convex, because the method makes no assumptions about or exclusions

of available space. While we operate without assumptions about environment configuration, this

approach means that the method transfers across environments, making it a general approach that

can be used across operating scenarios.

Due to the chosen discrete nature of the action representation, we can provide guarantees with

respect to search completeness and safety. However, the conditions required to yield guarantees

may be restrictive during actual operating scenarios and so in practice, it is more desirable to relax

bounds in order to eliminate computation steps and act quickly. However, all final solutions are

represented as time-parameterized motion plans and are safety checked for feasibility and collision,

and so we can ensure that no robot will ever start a plan without knowing if it is safe.

Disadvantages to the method are that search space is large and edge checks can be expensive.

However, we can overcome these disadvantages by leveraging prior data to first, refine the space

of search actions and second, by using heuristics to bias search selection, minimizing edge expan-

sions. Despite the limits of the approach, our analysis shows that this methodology performs better

then state of art approaches and in practice allows operation in previously untenable scenarios. The

following subsections discuss method completeness, complexity, optimality, and safety guarantees

in greater depth.
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6.2.1 Method Completeness and Complexity

The structure of our chosen selection heuristic, i.e. reward function (Eqn. (5.4.1)), during search

means that our search approach performs equivalently to a Depth First Search approach. Depth

First search is complete when it is done in finite spaces and a list of explored nodes is kept (as is

performed in our approach, see Alg. 1), so that explored nodes are never re-added to the frontier

[69]. The method will expand nodes in the graph until a solution is found and will not re-add

an explored node, therefore creating no infinite loops; the method will therefore terminate when

a solution is found or, by exploring every node in the graph, conclude no solution exists. A toy

example illustrating method completeness is shown in Fig. 6.2.1, where the algorithm is forced to

expand every node in the graph to find the solution.

For a breadth b and search depth d, the time complexity of the method is therefore O(bd) in

time and O(bd) space; by performing lazy edge expansion (collision checking only the chosen

node to expand, rather than collision checking all child nodes to determine which are feasible),

however, it is possible in the best case for the method to also realize O(bd) time.

Therefore, although potentially large, because we have chosen a finite discrete formulation and

a complete search method, the search method is complete with respect to the enumerated search

set of actions: we will return a solution as a sequence of discrete actions or conclude in finite time

that no sequence of actions from the enumerated search set exists.
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6.2.2 Optimality

For a problem definition that only considers finding an admissible (collision free) path from the

root node to any leaf node, all leaf nodes are equivalent, and all edge costs are uniform, and

so by this definition any path from root to leaf is therefore optimal and minimum cost. For any

other cost consideration, optimal search methods could be considered because the discrete problem

enumeration is finite.

However, our proposed search heuristic does not explicitly consider commonly desired solution

qualities such as smoothness, energy, or trajectory time. Because search actions are taken from

dynamically feasible examples, and because action reward is based on action ordering and so

solutions generally replicate demonstrated action sequences (Chapter 5), the method implicitly

captures some notions of desired solution traits such as smoothness, energy, or trajectory time.

But trajectories generated through keyframe sequences found via search are not guaranteed to

be optimal with respect to these commonly desired trajectory characteristics because we do not

explicitly evaluate the true cost of a path with respect to these metrics during search.

We have chosen to use a Best First Search approach. Our described selection metric effectively

ranks all child nodes from a given parent, and evaluates each child in order of highest reward until

finding a non-colliding child. The algorithm therefore explores all child nodes from a parent before

backtracking (if no child is collision free). This means that the algorithm is not guaranteed to return

the most likely string of actions overall, but rather, prioritizes deeper nodes in the tree, to push

towards leaf nodes as quickly as possible. This can mean that we can encounter situations where

search explores actions that have not been frequently seen given preceding actions, forcing more
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Figure 6.2.1: Toy search example illustrating completeness.

uninformed exploration. Alternative selection heuristics that downweight node depth, or exclude

it entirely, could in contrast backtrack earlier in search to evaluate sequences that play out from

an earlier option in the tree. This could potentially find more likely action sequences over longer

horizons or avoid expensive evaluation in little explored areas. In this work, however, we evaluate

the proposed selection metric in order to gain a baseline understanding of method performance and

defer the evaluation of different search approaches and selection heuristics to future work.
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6.2.3 Solution Safety

This section describes solution and safety guarantees of the proposed method provides.

We cannot guarantee a solution exists because we search a parameterized and discrete space.

First, user input is parameterized, as the user selects motion primitives from a library [87, 88],

which therefore excludes possible solution space. We also then choose to search at discrete way-

points along the user-selected motion primitive. Second, we find keyframes by searching over a

discrete, linear, finite set of actions. This chosen parameterization excludes possible motions be-

tween agents, restricting motions to fall within an affine definition. Third, collision checking at all

levels prioritizes safety at the extent of solution space.

We collision check the user’s path input using some minimum bounding volume. A reasonable

bounding volume in practice may exclude solutions. The safest, but overly-optimistic, estimate

could be to consider a single robot volume along the user-specified path. Obviously however, all

robots cannot collapse to the volume of a single agent, so this admits only solutions which might

collapse the formation to one-robot diameter in some dimension such as a line or plane, leaving

search to collision check against actual obstacle locations. The search method doesn’t incorporate

environment information except for edge checks, so, while a potential solution may exist to the

1-robot swept volume boundary, and the search would then find it given time to expand the whole

graph, the method is unlikely to do so in a practical amount of time. A better minimum volume

is a ball known to at-minimum fit all robots closely packed, as multiple scaling actions from the

search set can fit robots inside such a volume.

During search, we estimate robot and group shapes using convex polytope models, so while
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it may be small, there is excluded space due to overestimating a robot shape because of planar

bounding volumes and convex group representations.

Guarantees with respect to the feasibility of continuous polynomial solutions fit through the

discrete search solution: If we ensure the discrete search meets conditions of CAPT [81], we can

guarantee a continuous trajectory solution for every robot that is dynamically feasible and collision

free.

1. We consider states Xt to be at rest, with zero-valued higher order dynamic terms.

2. The edge between states Xt and Xt+1 is collision free if the convex hull containing Xt , Xt+1

contains no obstacles.

3. The distance between each robot’s start and goal locations is greater than δ , ||xt+1−xt ||> δ ,
where δ is a function of the robots’ radii as stated in [81].

These three conditions mean that if we cannot fit a polynomial through the discrete goal points as

keyframes, a dynamically feasible and collision free solution for all robots is guaranteed to exist

because every instance of successive keyframes can be solved through an application of the CAPT

problem [81].

In practice however, the above three conditions produce non-desirable solutions. The at-rest

assumptions produce trajectories that are not aligned with motions desirable to joy-stick control,

while convex-hull free-space checks increase search time and undesirably limit solution space.

In all of our results, we therefore evaluate a methodology which checks only for collisions at

keyframes during search.

Despite relaxation of bounding volume limits during search, we perform computation-timed

feasibility and collision checks on all polynomials generated through any keyframes returned from

search. We therefore guarantee that any polynomial trajectory returned is dynamically feasible
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and collision free, and in the case of failure, robots will never start a non-safe trajectory. We can

therefore guarantee safety but not the existence of a solution.

6.3 Evaluation

In this section, we evaluate the proposed approach with respect to computation and solution at-

tributes. We are interested in determining the feasibility of incorporating prior data into search

through a probabilistic selection policy; relative method scaling characteristics associated with

elements including numbers of robots, action fidelity, and environments; and the utility of the pro-

posed methodology for a reconnaissance scenario, especially in comparison to existing approaches.

We begin with a brief look at the diversity of the actions learned from the varying sources of data,

then discuss methodology scaling and solution quality as factors of varying parameters.

6.3.1 Data attributes

As discussed in Sect. 5.3, we create actions from the trajectories or position time series of multi-

agent group datasets. In Chapter 5 we used demonstrations, or datasets, from our previous multi-

robot theatric system. In this chapter we broaden the considered actions beyond the engineered

actions of rigid pattern following from the theatric application to include biological multi-agent

examples as well as actions exhibited by reactive multi-robot methodologies. The datasets used

therefore represent multi-robot swarm actions [84], flocking data (from pigeons) [59, 60], and

chosen formation patterns [15, 16].

An example of an action sequence, and corresponding action distribution, from a dataset time-

97



series of agent positions is shown in Figs. 6.3.1a and 6.3.1b. Fig. 6.3.1c gives an idea of how

actions, and more clearly, action sequences, differ across the different data sources. To measure

the similarity–or conversely, the divergence–between two distributions we use the Jensen-Shannon

divergence metric [56], where a measure of 0 means distributions are identical (i.e., do not diverge

at all) and a measure of 1 means the distributions share no similar elements (completely diverge).

The figures give a qualitative example of what a demonstration looks like in terms of uniquely

identified actions. We see that earlier actions are reused, and that not just actions but action se-

quences may be repeated. Holding a given action discretization common across datasets, we see

(a) An example action sequence.
The data set is processed sequen-
tially; each action, At , relating
agent positions at t + 1 to t, is dis-
cretized here by dA = .25. The x-
axis shows the sequential progres-
sion of time, and the y-axis shows
the label given to each newly en-
countered unique action. We see
that a group of agents tends to
re-use actions, and as time pro-
gresses, new actions are seen less
frequently. In this example, 99
unique actions are seen over a
course of over 4500 datapoints.

(b) This figure shows the frequency
distribution of actions from the
action sequence in 6.3.1a. The
normalized frequency (y-axis) is
shown for each unique action in the
99 action set (x-axis). A large por-
tion of the distribution corresponds
to the identity transform, i.e., main-
taining a static formation. The in-
set figure shows a magnified view
of the action distribution, neglect-
ing the identity transform.

(c) The top figure shows the
correspondence of actions across
datasets. The bottom figure
shows the divergence between
datasets when we consider actions
in sequence–here, we consider
sequences of 10 actions long. As
expected, the top figure shows
that while some actions are
unique to different applications,
many actions are common across
multi-agent groups. What is
clearly different between datasets
is how actions were ordered to
allow agents to flock or perform
theatrics, etc.

Figure 6.3.1: Figs. 6.3.1a and 6.3.1b are examples of an action sequence and distribution from a dataset. Fig. 6.3.1c
shows how actions differ across datasets, and that differences between datasets is more clearly evident when consider-
ing action ordering.
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that actions might be repeated between datasets but that data sets begin to differ significantly when

viewed in terms of sequences of actions.

6.3.2 Solution attributes

To characterize the proposed approach, including both the utility of the search policy and the qual-

ity of trajectories interpolated through the discrete output of search, we quantify several metrics as

defined in Table. 6.3.1.

As mentioned in Sec. 6.2.3, we cannot guarantee the existence of a solution, but we do enforce

that the method returns a solution or a notice of failure in finite time and that no robot will perform

an unsafe trajectory. Therefore, we note that we impose a time limit with respect to search over

actions, and we mark any trial as failing if:

1. search fails to find a solution within the specified time limit;

2. trajectories interpolated through the discrete search solution cause inter-robot collisions;

3. trajectories interpolated through the discrete search solution cause robot-obstacle collisions.

Therefore, metrics reported include method success and search time.

For every trial where search returns a discrete action sequence, a trajectory is interpolated for

each robot in the group through the resulting position sequences. Evaluating every robot’s trajec-

tory at a finely discretized time resolution, we show that every trajectory for every robot is collision

free by reporting the smallest experienced clearance distance between any two robots and similarly,

the smallest experienced clearance between any robot in the group and any obstacle. Likewise with

respect to dynamic feasibility, we report the maximum values of velocity, acceleration, and jerk

experienced by any robot in the group.
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Notation Units Definition
method success boolean feasible solution found
search time seconds [s] time to find a discrete solution action sequence
Group trajectory feasibility metrics:
∆rrobot

min meters [m] minimum clearance between any two robots
∆robstacle

min meters [m] minimum clearance between any robot and obstacle
vmax m/s maximum velocity of any robot
amax m/s2 maximum acceleration of any robot
jmax m/s3 maximum jerk of any robot
Group trajectory quality metrics:
dmax meters [m] maximum distance traveled by any robot
tmax seconds [s] maximum time required by any robot
Ẽmax m/s2 maximum energy† required by any robot

† Energy is proportional to required thrust over the course of a trajectory. To calculate Ẽ, we neglect mass, and
sum the net acceleration required over an entire trajectory: Ẽ = ∑

T
t=1 ||at −at−1||.

Table 6.3.1: This table describes metrics quantifying both the discrete search process and the dynamically feasible
trajectories interpolated through the search solution.

Finally, we also report metrics of distance traveled, energy required, and total travel time for

the resulting trajectories. While we do not explicitly seek to optimize these criteria during search,

these qualities reflect desirable motion attributes that have a dependency on action choice. Given

trajectories for every robot in a group, we therefore report the greatest distance, the largest amount

of required energy, and the longest time required by any robot across the group.

6.3.3 Experimental setup

In order to evaluate the proposed approach, we run large numbers of trials through randomly

generated cluttered environments. In every trial, robots are randomly placed in the environment

and are directed to follow a randomly selected motion primitive. Each motion primitive is sampled

at ten evenly spaced waypoints, meaning that we perform search over a horizon of ten steps, i.e.,
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to a tree search depth of ten. Environmental collision checking during search is performed by

checking the convex hull formed by the robot group against environment obstacles.

In all trials across all experiments, parameters used to determine solution feasibility–search

time limit and robot physical parameters (radius and higher order dynamic limits)–are kept con-

stant. Parameters specific to any individual experiment are described in their respective sections,

with a detailed explanation of random environment characterization given in Sect. 6.3.7.

In the following sections, we seek to establish first, the validity of the method: that biasing

action selection based on prior data is advantageous to motion planning (Sect. 6.3.4). Follow-

ing this, we examine in more detail how the methodology generalizes generalizes across action

discretization, number of robots, and environment (Sects. 6.3.5-6.3.7, respectively) by evaluating

method performance as respective parameters are varied. We conclude by examining method per-

formance relative to two existing approaches for group-based multi-robot control in an example

reconnaissance scenario (Sect. 6.3.8).

6.3.4 Validity of biased action selection

We do not focus on what operating scenario, application, or model generates the data from which

we construct multi-robot actions. We simply leverage the existence of such data to provide infor-

mation as to what actions, over the entire space of possible actions, have a more likely probability

of being feasible. We additionally benefit from the fact that we take actions from dynamically

proven examples. Biasing search to examine sequential actions then expresses our belief that se-

quential actions will, despite their reuse with respect to a new state, similarly hold feasible and
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method
success [%]

average
search time

average
∆rrobot

min

average
∆robstacle

min

average
vmax

average
amax

average
jmax

average
dmax

average
Ẽmax

average
tmax

randomSelect 84.60 0.38 0.29 0.45 1.61 3.19 17.39 6.42 36.25 10.80
biasSelect 90.10 0.44 0.31 0.49 1.35 2.93 14.58 4.94 34.58 9.44

Table 6.3.2: This table reports the average values of metrics defined in Table 6.3.1 over 1000 trials for each search
method. A group of five robots and 999 actions represented at a discretization of 0.40 were used for both methods.
Values typeset in bold show the better value for an indicated category (i.e., lower values where minimization preferred
(time, energy, etc.), greater values where maximization preferred (clearances)). (When not specified, metric units are
given in Table 6.3.1.)

yield solutions with similar properties (minimizing unneeded energy, distance, or time, for exam-

ple). While it is likely that additional benefit could be derived from a more informed linking of

provided data and operational reuse, such as using expert demonstrations for exploration specifi-

cally in a new exploration scenario, we defer this to future work.

This section therefore examines our approach’s fundamental assumption that it is valuable

to bias search on action sequence probabilities generated from dynamically feasible examples,

even when we do not specifically account for the model that generated the action distribution. To

evaluate the validity of the proposed methodology, we evaluate search success and time, as well as

the resulting interpolated trajectories formed through the discrete solutions returned from search,

using a set of 999 actions. We compare against a performance baseline where search selection

assumes all actions are equally likely and so must randomly select actions as no prior information

is provided to bias selection. Then, we leverage data taken from [15, 16, 59, 60, 84] (Sect. 6.3.1)

to inform selection.

For each method, random selection versus biased action selection, we run 1000 trials. Each

method is evaluated over the same set of randomly chosen start states and correspondingly random

chosen motion primitives through the same environment. We record the metrics discussed in Ta-

ble 6.3.1, Sect. 6.3.2, for every trial and report summaries of these values in both Table 6.3.2 and
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Fig. 6.3.2.

In Table 6.3.2, we summarize the results of all trials for each method by reporting the average

values over all 1000 trials. This shows that despite a small increase in search time, biasing action

selection as described in Chapter 5, Sect. 5.4.2 leads to a higher success ratio and overall higher

quality trajectories—trajectories interpolated though actions selected based on provided data are on

average shorter, smoother, require less energy, take less time, and robots maintain further spacing

(a) Inter-robot clearances (b) Robot-obstacle clearances

(c) Robot velocities (d) Robot accelerations (e) Robot jerks

(f) Trajectory lengths (g) Required energy (h) Required time

Figure 6.3.2: These figures report measurement histograms associated with all individual robot trajectories over all
trials for the evaluated random and biased selection heuristics. In Figs. 6.3.2a-6.3.2e, multiple measurements taken
over every robot trajectory show that all trajectories meet all feasibility requirements: all inter-robot and robot-obstacle
clearances are above the defined limits (Figs. 6.3.2a-6.3.2b), and all dynamic trajectory terms are below the defined
limits (Figs. 6.3.2c-6.3.2e). Figs. 6.3.2f-6.3.2h report the single value for every individual robot’s trajectory with
respect to total distance traveled, energy required, and travel time.
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from each other and obstacles.

Figure 6.3.2 reports the distribution of individual measurements taken over all trials for both

methods. Reported as histograms of measurements, we can see that the distributions for clearance

distances for biased search are shifted to the right, showing that over all trials, robots experience

greater clearances compared to random selection (Figs. 6.3.2a=6.3.2b). We also see that the distri-

butions for biased search with respect to overall trajectory length is shifted left (Fig. 6.3.2f), show-

ing that all trajectories are on average shorter–i.e., individual robots are not made to travel through

many extraneous motions as the group follows the selected motion primitive. This shorter trajec-

tory distance results in shorter travel times (Fig. 6.3.2h), despite similar velocities and accelerations

(Figs. 6.3.2c-6.3.2d); likewise, this results in less overall energy usage on average (Fig. 6.3.2g).

These results demonstrate that biasing selection to follow previously demonstrated, dynam-

ically feasible action sequences can lead to overall better-quality motions in terms of time and

energy as well as more frequently finding valid solutions.

6.3.5 Generalizing with action resolution

We wish to characterize the relationship between action resolution, dA, search set size, |A |, and the

quality of the trajectories interpolated through the resulting solutions. These factors are dependent

on each other, and evaluating the performance of various parameter combinations may give a

system designer insight into how large a search set or fine an action fidelity an application can

afford when choosing between online run time and desired solution attributes.

To evaluate tradeoff in action discretization and search set size we evaluated a single data set at
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a constant sample time. We then represented actions from the data set over a range of discretization

values, dA. The size of the discretization affects the overall number of unique actions we realize

from the dataset. Finer discretizations allow us to represent more actions, and the relationship is

shown in the top subplot of Fig. 6.3.3a.

To evaluate the differences in performance between the actions sets, we performed search over

the same 1000 paths through the same environment for the same group of robots, varying only the

action discretization (and corresponding size of the action set).

Broadly, the results support our expectations. Finer resolution actions have a higher success

rate, as they provide more options to find solutions that avoid obstacles without creating inter-robot

collisions (success rate is shown in the top subplot of Fig. 6.3.3a). However, larger numbers of ac-

tions in the search set increases search time, as the search methodology evaluates the probabilities

of all actions at every node. Holding other values of search constant (such as planning horizon),

this only results in a linear increase in time O(n), as shown in the bottom subplot of Fig. 6.3.3a.

We hypothesize that having access to finer resolution actions should result in higher quality

trajectories. For example, finer resolution action sequences should allow for smoother motions, or

paths that do not need to widely deflect to avoid obstacles. Although the data is noisy, the trends

shown in the plots of Fig. 6.3.3b support this hypothesis. Figure 6.3.3b reports data for all trials

that were successful across all dA values. This allows us to compare the different solutions over

the same paths. Although the average values do not have a steep slope across dA values, values for

distance and time trend as expected. What is most supportive of the relationship between action

fidelity and quality, however, is that the variability of the trajectory metrics increases as action
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discretization increases–this is especially noticeable on the top four subplots of Fig. 6.3.3b.

Looking at the subplots of Fig. 6.3.3b in more detail, we first look at the top row, reporting

for each trial the maximum distance traveled by any robot and the maximum time required (top

row, left and right subplots, respectively). The distance plot makes clear that the robots travel

increasing distance with coarser actions, and that more coarsely discretized action sets have greater

variability–greater likelihood of traveling greater distance. This means that to obey the imposed

dynamic limits of the robots, trajectories require longer time spans to cover the increasing distance.

(a) The top subplot shows the relationship between ac-
tion resolution and search set size, as well as the correla-
tion with search success. The bottom subplot shows the
distribution of search times for each trial performed at
each resolution.

(b) This figure reports the statistical distribution of re-
sults for different quality metrics for the trjactories inter-
polated through search solutions at different action reso-
lutions.

Figure 6.3.3: These figures report the statistical distribution of search performance and trajectory quality over varying
search sets, corresponding to increasing action discretization. In Fig. 6.3.3b, the tops and bottoms of each box are
the 25th and 75th percentiles of the samples, respectively. The distances between the tops and bottoms are the inter-
quartile ranges. The line in the middle of each box is the sample median. If the median is not centered in the box,
it shows sample skewness. Note: Action set size, |A |, in Fig. 6.3.3a decreases moving to the right along the x-axis.
This is done to align with the plots in Fig. 6.3.3b, where trials are shown ordered by corresponding (increasing) action
resolution, dA.
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When interpolating trajectories through search results, we base an initial estimate for a trajectory

time span on the planning horizon along the desired motion primitive and discretization used in

creating the action. If the initial time estimate proves to require higher order terms that violate the

robot limits, we increment the estimated time span by a set value and re-interpolate. This approach

is reflected in the time distributions shown. At a dA of 0.15, all trajectories are feasible within

the initial time estimate. At the next two action discretizations, trajectories require a greater time

increment, but the samples are skewed below the median at dA = 0.25, and above the median at

dA = 0.35. A far larger time increment is needed then for trajectories calculated using a dA value

of 0.45.

Moving to examine the middle row of subplots in Fig. 6.3.3b, we can see that the increased

distance at coarser discretizations results in wide variability in experienced jerk. Interestingly,

because of our stepped time-incrementation approach to quickly resolving dynamic feasibility, the

average trend line has a slight negative slope because extra time was effectively provided for those

trajectories which did not need the full step value. The variability in required energy for robots to

cover trajectories likewise increases directly with coarser action resolution.

Velocity and acceleration are shown in the bottom row of subplots in Fig. 6.3.3b. Here we ac-

tually see decreasing average values with increasing action discretization, but this is not counter to

our hypothesis. This downwards trend is a result of high jerk values forcing increased time scaling

to realize dynamic feasibility, to the degree that velocities and accelerations actually decrease to

realize dynamically feasible jerks.

107



6.3.6 Scaling with group size

Evaluating an action’s feasibility during search requires two types of collision checks: a check to

ensure that the group of robots is collision-free with respect to the environment, and a check to

ensure that no robot collides with another robot. These two collision checks use different robot

and group geometry representations, and scale at different orders with the number of robots (group

size).

Individual robots are modeled as spheres, and performing inter-robot collision checking scales

at O(n2). With respect to the environment, voxel grid representations as we use in this work are

generally fast to query. However, this carries greater risk that interpolated trajectories through the

resulting positions can lead to the intersections with occupied voxels that might exist between the

discrete solution states, requiring increased need for trajectory time-scaling to approach straight-

line paths.

Collision checking a geometrical representation of the entire robot group reduces this risk at

the expense of some loss of solution space. Using a spherical model over the group as we did

for individual robots yields fast collision calculation but is overly conservative and can greatly

decrease the solution space. We therefore perform all group-environment collision checks in this

work by computing a convex hull around the robot group, as we find through experience that this

balances collision checking time with a reasonably solution success rate.

Fig. 6.3.4a shows plots illustrating the time scaling of varying group-geometry representations

in collision checking, with Fig. 6.3.4b showing associated average search success. Fig. 6.3.4c

shows the respective portions of search time shared by inter-robot and group collision checks.
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(a) Group collision, method timing (b) Group collision, method success (c) Search breakdown timing

Figure 6.3.4: Fig. 6.3.4a and Fig, 6.3.4b show average timing and success values, respectively, for group collision
checking methods scaling with numbers of robots. Fig. 6.3.4c shows the respective average timing values broken down
for collision checking in search, using a convex group representation for group-environment collision checks, scaling
with number of robots.

Group-environment and inter-robot collision checks can be performed serially at each edge-

check during tree search and an edge marked as infeasible as soon as the first check returns false.

Due to the different scaling orders of the respective collision checks with respect to the number of

robots, the quicker, group-based check can be performed first to minimize the number of calls to

the more time-consuming inter-robot collision calculation. While there is no way to avoid at least

one instance of inter-robot collision checking per action selected, the group collision check can

be used to avoid the worst case exponential performance we would see if we required inter-robot

collision checking with every edge check.

6.3.7 Generalizing with environment complexity

Highly cluttered environments frequently invalidate action options due to collision. In this sec-

tion, we evaluate how the degree of environment clutter and environment resolution affect search

(Fig. 5.6.2).

To tractably generate parameter-defined highly cluttered random environments, we describe

randomly generated 2.5D environments–i.e., environments experience variation in x and y dimen-
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sions, but are extended to form columns in the z dimension. Obstacles are randomly generated and

randomly shaped: they are defined in the (x,y) plane to have non-smooth boundaries (to within the

specified voxel resolution) and are not restricted to convex shapes.

We define two parameters to describe obstacle configurations / environment: we specify voxel

grid resolution, vres, and obstacle spacing, dref
obs. The number of obstacles, obstacle dimensions, or

percent of occupied voxels are not strictly controlled. We do ensure, however, that all obstacles are

(a) (b)

(c) (d) (e) (f)

Figure 6.3.5: Top-down illustration showing environment parameters (Fig. 6.3.5a) with associated 3D view
(Fig. 6.3.5b). Figures 6.3.5c-6.3.5f highlight commonly described environment features.
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separated by dobs to within the voxel resolution: dobs = dref
obs± vres. An example of these defined

parameters in relationship to an environment is shown in Fig. 6.3.5a, and the 3D view of the same

environment in Fig. 6.3.5b.

We choose this generation approach because it effectively allows the random generation of

typically tested environment features such as open areas, corridors, bottle necks, and concave

obstacle examples, with randomly patterned obstacle “texture” such as rough or smooth edges

(again, to within the specified voxel resolution). Example environments are shown in Figs. 6.3.5c-

6.3.5e.

We use a group of 5 robots, with all robots having a radius, r, of 0.1m and randomly placed

(a) Trial statistics over environment variations. (b) Mean search time over environment variations.

Figure 6.3.6: Fig. 6.3.6a shows the statistical distribution of trial results for all environments at each parameter
combination. That search performs similarly across environments generated with the same parameters is more clearly
shown in Fig. 6.3.6b, where the mean search times across all trials, per map, are shown on the same axes. Search times
clearly cluster based on obstacle spacing and voxel resolution.
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within a ball with a radius of 1m, Br = 1m. Therefore, we test voxel resolutions ranging from

0.1m to 0.3m, vres = [r,3r], and obstacle spacings ranging from 1m to 2m, dref
obs = [Br,2Br]. The

group is then directed to follow randomly placed motion primitives which are collision checked

against the environment using a small offset. An example is shown in Fig. 6.3.5a.

We generate ten random environments for every specified obstacle spacing parameter, dref
obs.

Each environment is then represented at every voxel resolution, vres. We run one hundred trials

over every environment. The selected paths (the randomly placed and chosen motion primitives)

are kept consistent across environments of different voxel resolutions. I.e., for Map A generated

with obstacles spaced at dref
obs = 1m, the set of paths which we ask the robots to navigate is consistent

across Map A represented at voxel resolutions vres = {0.1m,0.2m,0.3m}. This allows us to see

how search time scales for the same desired paths at different voxel resolutions.

The statistical distributions of all trials for each map are shown in Fig. 6.3.6a. Figure 6.3.6b,

however, puts search performance across environments in perspective by plotting the mean search

time across trials for each environment on the same axes. Figure 6.3.6b shows that search results

clearly cluster based on voxel resolution and obstacle spacing. We can understand this as voxel

resolution and obstacles spacing effectively representing the “difficulty” of an environment, and

as we would expect, search time increases as free space decreases—whether free space is truly

decreasing, as in cases where obstacles are spaced closer together, or in cases where obstacles are

conservatively represented as with coarser voxelizations. As in 5.6, we can see that we do not need

to perform a tradeoff with environment fidelity in an attempt to reduce collision checking time;

rather, it is better to operate with voxel resolutions that allow robots to take advantage of available
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free space.

6.3.8 Method comparison

Fig. 6.3.7 shows a scenario environment, where a group of quadrotors is driven by an operator

through a cluttered obstacle field. While the view is shown top down, the environment is modeled

in 3D. The desired group flight path, as directed by an operator selecting motion primitives via

joystick, is shown in blue. We use this scenario to evaluate the performance of the proposed

method in comparison to existing multi-robot motion planning methods.

The method of [90, 91] enables a human user to teleoperate formations of quadrotors online

using joystick control and is therefore the most direct comparison work to our application. In this

work, multiple vector fields are used to control (1) quadrotor deviation from a formation specifi-

cation, (2) inter-quadrotor collision avoidance, and (3) quadrotor collision avoidance with respect

to obstacles. The advantage to designing vector fields is that controls are effectively precomputed

across an environment, making online execution very fast, and the method was demonstrated to

work across scaling numbers of quadrotors as well as in the presence of low numbers of obstacles.

However, the vector field methodology of [90, 91] does not perform well in the highly cluttered

environments we consider in our application. It is highly difficult to balance parameters across for-

mation, inter-robot, and robot-obstacle fields: if repulsion parameters are too strong, robots remain

safe but are unable to enter narrow bottle necks or confined areas, and cannot effectively reach the

goal. If repulsion parameters are lowered, robots risk collision with environment features.

The method of [5] presents an optimization based approach for controlling a formation of
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method
success [%]

average
search time

average
∆rrobot

min

average
∆robstacle

min

average
vmax

average
amax

average
jmax

average
dmax

average
Ẽmax

average
tmax

Formation
Velocity Fields [91] 0.00 1.55 0.15 0.00 0.73 2.10 21.66 1.14 12.22 5.99

Formation
Optimization [5] 80.00 5.14 0.14 0.05 0.82 2.44 24.52 1.15 21.71 5.40

Data Leveraged
Action Search (ours) 100.00 0.62 0.14 0.13 0.71 2.28 20.32 1.83 26.50 6.30

Table 6.3.3: This table reports the average values of metrics defined in Table 6.3.1 for two comparison formation-
planning approaches and our proposed approach for the example scenario shown in Fig. 6.3.7. (When not specified,
metric units are given in Table 6.3.1.) In this example, small robots with a radius of 0.05m were used.

(a) Strong obstacle field illustration (b) Convex free space polygons (c) Action search over time

(d) Weak obstacle field solutions (e) Optimal formation trajectories (f) Action search trajectories

Figure 6.3.7: Approach comparisons for a group of seven robots with column-based obstacles to allow easy visual
illustration; obstacles extend in the z-direction. Subfigures are arranged vertically per method. Figs. (a) and (d)
(left column) show respective examples of the vector fields approach, where strong obstacle fields preclude passage
through a gap while weak obstacle fields do not avoid robot-obstacle collisions (collisions are shown in red, Fig. (d)).
Figs. (b) and (e) (middle column) show the formation optimization approach. Fig. (b) shows selected convex regions of
free space used to constrain the optimization. These regions can be too constrained to allow a formation to fit between
obstacles, as is the case for the red polytope. In Fig. (e), a straight line (colliding, shown in red) trajectory was carried
out to move the formation across the gap to continue evaluating the approach along the desired path. Figs. (c) and
(f) (right column) show our action-based search approach. While the trajectories are not as smooth as those of the
comparison approaches, the method performs the fastest and avoids all obstacles and inter-robot collisions.
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robots online. This approach adapts parameters governing formation scale, rotation, and transla-

tion (rather than optimizing parameters on an individual robot basis), and performs optimization

calculations in a receding horizon formulation along the desired path. These concepts of reducing

optimization parameters by controlling a group-based representation and operating over a local

horizon enable the methodology to work withing the within online time constraints for the appli-

cation of [5] and parallel our approach’s decisions to operate on group-level actions over a local

planning horizon. The methodology of [5] was also able to operate in environments with obstacles,

by first calculating a convex representation of free space over the local horizon and then using this

convex bounding volume to provide linear constraints to the optimization calculation to ensure

that the robot formation remains within the calculated free space. This receding horizon approach

fits well with a joystick selected, motion-primitive based input model, but free space calculation

can be challenging in highly cluttered environments and the tradeoff between calculation time and

horizon length mean that solution fidelity is poor given similar calculation times to our method.

We evaluate the vector field based methodology of [90, 91], the optimization approach of [5],

and our own data-based action search for a group of seven robots for two scenarios. In Fig. 6.3.7

and corresponding table Tab. 6.3.3, we show a short example where robots follow five user-

selected motion primitives through a 2.5D environment, where obstacles extend as columns in

the z-dimension. This scenario is useful because it clearly shows failure modes of the competing

methods and allows easy top-down illustration of the results. In Figs. 6.3.8-6.3.9 and corresponding

table Tab. 6.3.4, we show a longer example where robots follow 25 user-selected motion primitives

through a full 3D environment. This example shows that out data-based action search approach
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method
success [%]

average
search time

average
∆rrobot

min

average
∆robstacle

min

average
vmax

average
amax

average
jmax

average
dmax

average
Ẽmax

average
tmax

Formation
Velocity Fields [91] 48.00 0.85 0.23 0.06 0.42 1.95 33.71 0.78 14.07 3.80

Formation
Optimization [5] 100.00 6.17 0.14 0.08 0.46 1.82 26.80 0.80 15.17 4.01

Data Leveraged
Action Search (ours) 100.00 0.44 0.13 0.18 0.93 2.64 22.89 2.11 26.10 6.53

Table 6.3.4: This table reports the average values of metrics defined in Table 6.3.1 for two comparison formation-
planning approaches and our proposed approach for the example scenario shown in Fig. 6.3.7. (When not specified,
metric units are given in Table 6.3.1.) In this example, small robots with a radius of 0.05m were used.

fully works in 3D and outperforms comparison approaches in this cluttered 3D scenario.

We note that in order to give a best effort comparison between methods and avoid collisions

during evaluation, it was necessary for a user to select different motion primitives in order to direct

the robot group when using the formation optimization approach [5] (shown in Fig. 6.3.8). (We

were not able to find parameters that avoided all collisions in the vector fields approach.) While the

action search method keeps the center of the robot group on the user-selected path, the optimization

approach allows the robot formation to translate within the local free-space polytope. Under this

approach, the robot group therefore frequently strays from where the user has directed the group to

go, necessitating the user select different primitives to guide the group back to the desired direction.

(a) (b) (c)

Figure 6.3.8: User-selected motion primitives traversing x, y, and z in a 3D environment. Fig. (a) shows the primitives
in 3D from an oblique angle; Fig. (b) shows the same primitives using a top-down view; Fig. (c) shows that dif-
ferent primitives were required between the action search experiment (shown in red) and the formation optimization
experiment (shown in blue) in order to navigate the groups through the environment without obstacle collision.
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(a) Vector fields examples (b) Optimal formation examples (c) Action search examples

(d) Vector field trajectories (e) Optimal formation trajectories (f) Action search trajectories

(g) Vector field trajectories (h) Optimal formation trajectories (i) Action search trajectories

Figure 6.3.9: Approach comparisons for a group of seven robots following directed motion primitives traversing x,
y, and z in a 3D environment. Subfigures are arranged vertically per method. The top row, Figs. (a)-(c), show
snap-shots of the robot for each method, respectively, at various points along the directed path. The middle row,
Figs. (d)-(f), show all robot trajectories for each respective method from an oblique viewing angle; the bottom row,
Figs. (g)-(i) show the same trajectories from a top-down perspective. Any trajectory portions in red denote collisions.

At the end of following a selected path, motion primitives are therefore re-applied from the center

of the group. This is why in Fig. 6.3.8c the blue motion primitives are not always connected to
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their preceding selected primitives; the group ended with the group center some distance away

from the desired goal location. This is in contrast to the red motion primitives selected during our

action search approach.

As in the 2.5D scenario (Tab. 6.3.3), the table of results from this experiment (Tab. 6.3.4) shows

that our method is faster than the comparison methods and collision free.

6.4 Concluding Remarks

Plan computation in state of the art methods for multi-robot coordination, such as the vector field

and formation optimization approaches examined in this chapter, depend on obstacle representa-

tion. Robot plans are calculated based on static fields surrounding obstacles in [90, 91], while [5]

limits plans to remain within convex calculations of free space between obstacles. While consider-

ing obstacles in these methods works well in sparsely cluttered environments, these representations

limit solution space in cluttered environments.

In contrast, our approach does not make assumptions about obstacles or available free space

before computing plans. Our approach minimizes the loss of potential solution space by directly

evaluating action options against the environment, and this enables us to operate in the highly clut-

tered and unstructured environments we anticipate in reconnaissance applications at an improved

solution rate over state of art methods.

However, incorporating environment features into search policies is a significant opportunity

for future work. We anticipate that being able to more intelligently search for non-colliding ac-

tions during planning would greatly improve search speed and solution quality. Even without
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considering action selection based on local obstacles or environment features however, this section

shows that the proposed approach enables faster operation with higher success rates than current

approaches in previously untenable environments.
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Chapter 7

Conclusion

This thesis addresses the problem of planning coordinated motions online for multi-robot teams

in response to human operator input in two representative applications: (1) a theatrical production

and (2) a reconnaissance scenario. These complex applications highlight the requirements and

challenges associated with the online multi-robot planning problem. Across all applications, the

objective is to translate user provided input into dynamically feasible and collision free trajectories

for all robots in the team. The challenges associated with this objective broadly cover interpreting

operator intent, mapping user input to feasible and safe trajectories for every agent of the team,

and operating within online constraints. Specifically, all plans must account for the state of the

system at the time the command is given within budgeted time and computation limits. When

addressing application specific requirements, we examine constraints imposed by both the need for

highly detailed user input, as requested by group behaviors in the theatric application, and under-

defined user input scenarios, as when operating in response to joystick-selected motion primitives.

To enable high-speed operation in the reconnaissance application, we additionally consider the
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challenge of planning multi-robot motions considering highly cluttered environments.

7.1 Contribution Summary

In this thesis, we address these challenges through the development of a descriptor-based param-

eterization approach for users to specify multi-robot behaviors in the context of a theatric ap-

plication. This system contributes a methodology for the online specification of detailed multi-

robot behaviors, and enables the performance of human-directed theatric productions for multiple

quadrotors (Chapter 3).

We contribute a formalization of multi-robot behaviors as action sequences that enables prior

experience (Chapter 4) and offline data (Chapter 5) to be incorporated into a search framework

for online action selection. The online composition of actions via a search approach allows for

operation in environments with obstacles. We demonstrate that the generalized representation of

multi-robot actions coupled with a data-driven search heuristic recreates the specialized multi-

robot behaviors used in the theatric application of Chapter 3. This illustrates that the descriptor-

based input system is a subset of the generalized behavior formulation. Chapter 6 contributes

characterization analysis of the approach, with comparison to existing state-of-the-art methods

with respect to the specific example of a reconnaissance application.
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7.2 Opportunities for Future Work

Our approach proposes a group-based representation for multi-robot actions and searches over a

discrete set of these actions to create a feasible action sequence over a planning horizon. While

the affine parameterization and discretization decisions constrain the space of multi-robot actions,

searching over all possible actions is intractable given online time constraints. Our contributions

show that the challenges of a large search space can be mitigated by leveraging prior data. This

contributed methodology provides a framework that enables future lines of research to further

multi-robot planning capabilities, based upon the ability of the method to incorporate data to bias

solutions to reflect desired attributes. Three methods of influencing solution choice might include,

• direct evaluation of desired solution metrics during action selection;

• evaluating heuristics to reflect action value with respect to the environment;

• incorporating adaptive weighting to reflect changing user intent;

and are discussed below.

Incorporating quality metrics into search With respect to leveraging prior data, we evaluated a

simple probability-based heuristic given action-sequence frequency. This heuristic biases solutions

towards replicating demonstrated action sequences, and so solutions implicitly reflect attributes of

the dataset. In Chapter 5, we showed this in the context of replicating theatric behaviors generated

via the methodology of Chapter 3, demonstrating that motions performed via biased action search

replicated the rotations and shape changes from provided demonstrations. However, to explicitly

achieve solutions with desired qualities such as minimal travel time, energy, or jerk, future work
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may examine approaches for incorporating an evaluation of such solution qualities during search

selection.

Context-based action selection A probability-based heuristic was chosen as a reasonable metric

upon which to inform online search, showing that offline data could be incorporated to yield an

improved search response. However, an important line of future research is to examine alternate

search heuristics. By incorporating context into search–the relationship of actions with respect

to both environment and user intent–we can expect to improve action selection, leading to more

quickly finding higher quality solutions.

Selection heuristics based on relevant features have shown improved success in large search

domains such as [12, 75]. These methods approach search in the context of games such as Chess

and Go, which have a large but defined state space in terms of board state. Chosen features, or the

entire board state itself, can be valued for evaluating action selection. For example, the approach

of [75] takes board state as input to a neural net and learns the value of a board state, i.e. trains the

neural net serving as the selection policy, over thousands of game plays.

Unlike in game play, in motion planning it is potentially infeasible to use the entire “board

state,” or complete environment-agent(s) representation, as features. This is due to first, the dif-

ficulty of enumerating such a space, and second, collecting sufficient information about such a

large representation to sufficiently guide search. Future work remains to incorporate environment

context into search, potentially via biasing action selection based on local environment features.

Informing a prediction of how actions may lead to collision with local obstacle geometry will result

in expanding fewer colliding actions during search, leading to more rapid exploration through the
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search tree. Therefore, determining relevant environment features is a beneficial avenue of future

research to speed online computation, and similar search-based approaches for single-robot motion

planning showed a large improvement in search time when learning heuristic search weights on

designer-specified features [10].

While incorporating environment context may prove highly valuable for faster search through

intelligent collision avoidance, we also consider the quality of solutions with respect to user intent.

Operator intent may change during use; for example, a user may want to perform a series of tasks,

and so intent with respect to preferred actions could shift between tasks. Other examples include

cases where a user may change their intent based on learned information during operation, or in

response to changing mission operatives. The provided methodology shows action selection based

on prior data, but does not provide a means to change action biases during the course of opera-

tion. A future line of research might evaluate strategies for incorporating operational context into

action selection, such as through a switching model over different action distributions or through

an adaptive weighting mechanism. Enabling search to incorporate specific models of user intent

may facilitate system-user interaction and improve the overall efficacy of the approach in finding

application or task specific inter-robot coordination policies during online operation.

Context inference Enabling context-based solution generation can be thought of as a forward,

context-driven approach. However, the framework discussed in this thesis also provides a model

for thinking about context recognition. In Chapter 4, we discussed learning selection weights for

search trees. A search tree with learned weights therefore acts as a record of, or model for, an

environment considered in conjunction with user intent.
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The capability to recognize the context under which the system is operating could provide the

feedback mechanism to move towards robust autonomy. For example, we envision an operating

scenario where a planning system is able to discern that a given distribution of actions is not pro-

viding good solutions, and based on that performance, recognize what context—and by extension,

associated action distribution—might be better applicable.

The abilities to recognize what actions might be best employed and to adapt when a plan

fails are currently provided by human operators, and the need for these capabilities is a motivating

factor in requiring human direction of multi-robot systems. Providing a robotic system with similar

abilities can allow a system to better learn from and assist an operator, yielding a more efficient

and capable system. The methodology provided by this thesis enables us to better interact with and

employ multi-robot systems for present use, and provides a foundation for further development

to assist human–multi-robot interaction and move towards autonomous planning for multi-robot

systems in real world applications.
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