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Abstract
Mobile robots have become an increasingly common presence in our homes and
on our roads. To move safely within these shared spaces, autonomous agents must
understand how other dynamic actors behave and how such behavior influences the
navigability of the surrounding scene. Towards this goal, we propose two data-driven
methods that learn representations from large, self-supervised corpora of data for 1)
motion planning in hazardous, dynamic environments and 2) motion forecasting in
autonomous driving settings.

The first method - active affordance learning (A2L) - advocates for a modular ap-
proach to autonomous navigation that combines learned spatial representations with
traditional geometry-based maps and classical planning algorithms. By learning to
predict a spatial affordance map (that encodes what parts of a scene are naviga-
ble) throug‘h active self-supervised experience gathering, we show that A2L is more
sample efficient, generalizable, and interpretable than existing state-of-the-art rein-
forcement learning-based (RL) approaches.

The second method - what-if motion prediction (WIMP) - proposes a recurrent
graph-based attentional approach for data-driven trajectory forecasting in autonomous
driving settings. To the best of our knowledge, this is the first approach to demon-
strate counterfactual motion forecasting based on topological queries such as map-
based goals and social contexts. We demonstrate the benefits of our proposed frame-
work on the challenging Argoverse vehicle motion forecasting dataset, outperform-
ing previous birds-eye-view (BEV) representation-based methods and setting a new
benchmark for prediction quality.
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Chapter 1

Introduction

1.1 Motivation
Mobile robots, previously confined to restricted-access industrial spaces such as research labs
and factories, have become an increasingly common presence in everyday life. Performing rou-
tine tasks such as cleaning and driving, autonomous agents now co-habit spaces once exclusively
occupied by humans, such as homes and roads.

Operating in close proximity to other dynamic actors such as cars and pedestrians, these agents
are expected to move in a predictable, interpretable, and socially compliant manner. As dynamic
actors move around the environment, the first and second-order effects of their actions may also
introduce additional constraints on agent movement. Effective autonomous agents must be able
to capture and plan with regard for these changes in navigability, so as to ensure the safety and
comfort of all those who share the surrounding environment.

In real-world settings such as autonomous driving, this is a difficult problem to solve. Agents are
charged with the task of reaching assigned goals, while simultaneously maintaining acceptable
margins of safety during navigation. Prevalent systems often tackle this problem with a combina-
tion of static map-building (using simultaneous localization and mapping (SLAM) frameworks)
and rule-based planning, relying on frequent updates and rapid re-planning to account for dy-
namic changes within the surrounding environment. Although practical, use of such reactive
systems may result in undesirable behavior (such as jerky motion) as agents respond to new
information in real-time; this negatively impacts predictability and passenger comfort.

To address this issue, agent motion planning must account for future actions likely to be taken by
nearby actors. This can be achieved by forecasting the future states of relevant actors, such that
non-conflicting ego-trajectories are generated by the planner. This can be challenging, as actor
state is only partially observable and future motion is fundamentally multi-modal. In addition,
even though a large number of actors may be present in the nearby environment, only a small
subset of the extremely large prediction space may be relevant to motion planning; this presents
challenges for computational efficiency.
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Figure 1.1: Overview of the generalized autonomy stack for mobile robots, with five distinct
modules: sensing, localization, perception, planning, and control. In this thesis, we focus pri-
marily on perception and planning, which each can be broken down further into distinct sub-
modules. Of these, we propose and demonstrate improvements for prediction and mapping,
which contribute towards the goal of safer autonomous movement.

In the context of prediction and planning, deep neural network-based frameworks [29, 43, 79]
have been shown to be particularly effective, learning generalizable representations for scene
context that are optimized end-to-end with task-specific losses. Although data hungry, the prolif-
eration of large-scale autonomous vehicle testing [11, 15] and emergence of realistic simulation
environments [64, 77] have provided opportunities to obtain labelled data at minimal supervision
cost. This motivates a data-driven approach for motion prediction and motion planning - where
large-scale collections of data are leveraged to learn representations that capture the dynamic,
geometric, semantic, and social attributes of scene context.

1.2 Scope and Approach
In this thesis, we focus on two important and closely-related components of the mobile robot
autonomy stack (Fig. 1.1) - motion planning and motion prediction . Approaching each of these
tasks from a data-driven, learning-first perspective, we incorporate structured inductive biases
to augment existing approaches with learned spatio(temporal) representations that capture com-
plexities within real-world, multi-actor shared spaces (such as homes and streets). Conditioning
on both the static scene context and observed actions of other scene participants, these repre-
sentations are designed to explicitly incorporate the dynamic, geometric, semantic, and social
constraints that shape how mobile robots can and should move within our shared spaces. We
propose two methods that incorporate such learned representations, targeted at 1) safe motion
planning within hazardous, dynamic environments and 2) multi-modal actor motion forecasting
for autonomous driving. Empirically, we demonstrate that such learning-based methods are gen-
eralizable, performant, and indeed practical for deployment on real-world autonomous systems.

The first method - active affordance learning (A2L) - advocates for a modular approach to au-
tonomous navigation that combines learned spatial representations with traditional geometry-
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based maps and classical planning algorithms. By learning to predict a spatial affordance map
(that encodes what parts of a scene are navigable) through active self-supervised experience gath-
ering, we show that A2L is more sample efficient, generalizable, and interpretable than existing
state-of-the-art reinforcement learning-based (RL) approaches. Evaluating in simulation, we
also show that learned affordance maps can be used to augment traditional approaches for both
autonomous exploration and navigation, providing significant improvements in performance.

The second method - what-if motion prediction (WIMP) - proposes a recurrent graph-based atten-
tional approach for data-driven vehicle trajectory forecasting in autonomous driving settings. In
contrast to recent state-of-the-art learning-based architectures that generate predictions without
regard to the autonomous vehicle’s (AV’s) intended motion plan, WIMP features interpretable
geometric (actor-lane) and social (actor-actor) relationships that support injection of counter-
factual geometric goals and social contexts. By designing our approach to efficiently support
counterfactual reasoning, we frame prediction as one key component of the combined motion
prediction-planning loop; this provides additional contextual information, which can be used
to generate more relevant predictions. Empirically, we show that our model can produce di-
verse, multi-modal trajectories conditioned on hypothetical or “what-if" road lane connectivity
and multi-actor interactions. We also demonstrate that such an approach could be used in the
planning loop to reason about unobserved causes or unlikely futures that are directly relevant to
the AV’s intended route.

1.3 Contributions and Organization
As highlighted in Section 1.2, this thesis addresses two main topics relating to safe autonomous
movement, focusing on motion planning and motion prediction. In Chapter 2, we propose an
active affordance learning-based approach for autonomous navigation within dynamic and haz-
ardous environments. Concisely, our primary contributions are as follows:

• We design an agent that learns to predict a spatial affordance map, which encodes what
parts of a scene are navigable, using active self-supervised experience gathering.

• We show how learned affordance maps can be combined with classical geometry-based
motion planning to avoid dynamic actors and semantic hazards within the environment.

• We empirically demonstrate that affordance-augmented navigation outperforms state-of-
the-art RL-based models in hazardous environments, while providing significant advan-
tages in generalizability, interpretability, and sample efficiency.

In Chapter 3, we present the what-if motion predictor, a graph-based attentional approach for ve-
hicle trajectory forecasting that integrates tightly with motion planning for autonomous vehicles.
In this setting, our primary contributions are as follows:

• We propose a recurrent, graph-based, attentional framework for trajectory forecasting that
features interpretable geometric and social relationships.

• To our best knowledge, we are the first to demonstrate counterfactual motion forecasting
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based on topological queries such as map-based goals and social contexts.

• We empirically show that the WIMP framework out-performs all previous published ap-
proaches on the challenging Argoverse vehicle motion forecasting dataset.

Finally, Chapter 4 summarizes the contributions of this thesis and sets direction for how affor-
dance learning and trajectory forecasting can be extended and combined in future work. We
anticipate that further research in this direction will lead to significant improvements in the per-
formance of real-world autonomous navigation system within multi-actor spaces.

4



Chapter 2

Learning to Move with Affordance Maps

2.1 Motivation
The ability to explore and navigate within a physical space is a fundamental requirement for
virtually any mobile autonomous agent, from household robotic vacuums to autonomous vehi-
cles. Traditional approaches for navigation and exploration rely on simultaneous localization
and mapping (SLAM) methods to recover scene geometry, producing an explicit geometric map
as output. Such maps can be used in conjunction with classic geometric motion planners for
exploration and navigation (such as those based on graph search).

However, geometric maps fail to capture dynamic objects within an environment, such as hu-
mans, vehicles, or even other autonomous agents. In fact, such dynamic obstacles are inten-
tionally treated as outliers to be ignored when learning a geometric map. However, autonomous
agents must follow a navigation policy that avoids collisions with dynamic obstacles to ensure
safe operation. Moreover, real-world environments also offer a unique set of affordances and
semantic constraints specific to each agent: a human-sized agent might fit through a particu-
lar door, but a car-sized agent may not; similarly, a bicycle lane may be geometrically free of
obstacles, but access is restricted to most agents. Such semantic and behavioral constraints are
challenging to encode with classic SLAM.

One promising alternative is end-to-end reinforcement learning (RL) of a policy for exploration
and navigation. Such approaches have the potential to jointly learn an exploration/navigation
planner together with an internal representation that captures both geometric, semantic, and dy-
namic constraints. However, such techniques suffer from well-known challenges common to RL
such as high sample complexity (because reward signals tend to be sparse), difficulty in general-
ization to novel environments (due to overfitting), and lack of interpretability.

We advocate a hybrid approach that combines the best of both worlds. Rather than end-to-
end learning of both a spatial representation and exploration policy, we apply learning only “as
needed". Specifically, we employ off-the-shelf planners, but augment the classic geometric map
with a spatial affordance map that encodes where the agent can safely move. Crucially, the
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affordance map is learned through self-supervised interaction with the environment. For exam-
ple, our agent can discover that spatial regions with wet-looking floors are non-navigable and
that spatial regions that recently contained human-like visual signatures should be avoided with
a large margin of safety. Evaluating on an exploration-based task, we demonstrate that affor-
dance map-based approaches are far more sample-efficient, generalizable, and interpretable than
current RL-based methods.

Even though we believe our problem formulation to be rather practical and common, evaluation
is challenging in both the physical world and virtual simulators. It it notoriously difficult to
evaluate real-world autonomous agents over a large and diverse set of environments. Moreover,
many realistic simulators for navigation and exploration assume a static environment [63, 74,
77]. We opt for first-person game-based simulators that populate virtual worlds with dynamic
actors. Specifically, we evaluate exploration and navigation policies in VizDoom [76], a popular
platform for RL research. We demonstrate that affordance maps, when combined with classic
planners, dramatically outperform traditional geometric methods by 60% and state-of-the-art RL
approaches by 70% in the exploration task. Additionally, we demonstrate that by combining
active learning and affordance maps with geometry, navigation performance improves by up to
55% in the presence of hazards. However, a significant gap still remains between human and
autonomous performance, indicating the difficulty of these tasks even in the relatively simple
setting of a simulated world.

2.2 Related Work

Navigation in Classical Robotics. Navigation has classically been framed as a geometry prob-
lem decomposed into two parts: mapping and path planning. Inputs from cameras and sensors
such as LiDARs are used to estimate a geometric representation of the world through SLAM
(or structure from motion) techniques [10, 71]. This geometric representation is used to derive
a map of traversability, encoding the likelihood of collision with any of the inferred geometry.
Such a map of traversability can be used with path planning algorithms [12, 37, 42] to compute
collision-free paths to desired goal locations. Navigation applications can be built upon these
two primitives. For example, exploration of novel environments can be undertaken by sampling
point goals in currently unknown space, planning paths to these point goals, and incrementally
building a map using the sensor measurements along the way (also known as frontier-based ex-
ploration [78]). Such an approach for exploration has proven to be highly effective, besting even
recent RL-based techniques in static environments [17], while relying on classical planning [27].

Semantics and Learning for Navigation. Taking a purely geometric approach to navigation is
very effective when the underlying problem is indeed geometric, such as when the environment is
static or when traversability is determined entirely by geometry. However, an entirely geometric
treatment can be sub-optimal in situations where semantic information can provide additional
cues for navigation (such as emergency exit signs). These considerations have motivated study
on semantic SLAM [41], that seeks to associate semantics with maps [8, 49], speed up map
building through active search [44], or factor out dynamic objects [6].
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In a similar vein, a number of recent works also investigate the use of learning to solve navi-
gation tasks in an end-to-end manner [26, 30, 52, 66, 82], built upon the theory that an agent
can automatically learn about semantic regularities by directly interacting with the environment.
Semantics have also been used as intermediate representations to transfer between simulation
and the real world [53]. While such use of learning is promising, experiments in past work have
focused only on semantics associated with static maps. Instead, we investigate the role of se-
mantics in dynamic environments, and in scenarios where the notion of affordance goes beyond
simple geometric occupancy.

Another recent approach [51] introduces a method of learning generalized spatial representa-
tions for both exploration and navigation, employing an attention-based generative model to
reconstruct geometric observations. Planning for navigation occurs in belief space, in contrast to
the metric cost maps (incorporating both semantics and geometry) used in our work.

Hybrid Navigation Policies. While learning-based methods leverage semantic cues, training
such policies can be sample inefficient. This has motivated the pursuit of hybrid policy archi-
tectures that combine learning with geometric reasoning [7, 30] or known robot dynamic mod-
els [4, 36, 53]. Our work also presents a hybrid approach, but investigates fusion of a learned
mapper with analytic path planning.

Self-Supervised Learning. Recent work in robotics has sought to employ self-supervised learn-
ing [56] as an alternative to end-to-end reward-based learning. [32] and [9] employ passive
cross-modal self-supervision to learn navigability (from stereo to monocular images, and from
LiDAR to monocular images, respectively). In contrast, we learn through active interaction
with the environment. Thus, our work is most similar to that of [28], though we learn dense
traversibility predictions for long range path-planning, rather than short-range predictions for
collision avoidance.

Navigation in Dynamic Environments. Finally, a number of other works develop specialized
techniques for navigation in dynamic environments, by building explicit models for other agents’
dynamics [16, 40, 54]. In contrast, by generalizing our definition of traversability beyond geom-
etry alone, we can automatically capture the dynamics of other agents implicitly and jointly with
other environmental features.

2.3 Approach
Our goal is to build an agent that can efficiently explore and navigate within novel environments
populated with other dynamic actors, while respecting the semantic constraints of the environ-
ment. The scenario we consider is a mobile agent capable of executing basic movement macro-
actions. The agent is equipped with a RGBD camera and some form of proprioceptive feedback
indicating well-being (e.g bump sensor, wheel slip, game damage). We assume that the agent is
localized using noisy odometry and that depth sensing is also imperfect and noisy. At test time,
the agent is initialized within a novel environment containing an unknown number of dynamic
and environmental hazards. Furthermore, we assume that the exact dimensions of the agent and
nature of affordances provided by entities within the environment are not initially known.
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Figure 2.1: Overview of our proposed architecture for navigation. RGBD inputs xt are used to
predict affordance maps ŷt and transformed into egocentric navigability mapsMt that incorporate
both geometric and semantic information. In the example shown,Mt is labelled as non-navigable
in regions near the monster. A running estimate of the current position at each time step is
maintained and used to update a global, allocentric map of navigability Gt that enables safe and
efficient planning.

We propose a modular approach to tackle this problem, adopting a classical pipeline of map
building and path planning. Figure 2.1 shows an overview of this pipeline, which builds a navi-
gability map using both geometric and semantic information, as opposed to traditional methods
that rely on geometry alone. Our main contribution, shown in Figure 2.2, is a method for predict-
ing which parts of a scene are navigable by actively leveraging the feedback sensor to generate
partially-labeled training examples. We then use the labeled samples to train a model which pre-
dicts a per-pixel affordance map from the agent’s viewpoint. At evaluation time, the outputs from
the learned module are combined with geometric information from the depth sensor to build ego-
centric and allocentric representations that capture both semantic and geometric constraints. The
fused representations can then be used for exploration/navigation by employing traditional path
planning techniques, enabling safe movement even within dynamic and hazardous environments.

2.3.1 Navigability Module
Given a scene representation x captured by a RGBD camera, our goal is to train a module π that
labels each pixel with a binary affordance value, describing whether the corresponding position
is a valid space for the agent to occupy and forming a segmentation map of “navigability" y. We
can encode this understanding of the environment by training an image segmentation model in
a supervised fashion. However, training such a model requires a set of labeled training images
D = [(x1, y1), ...(xn, yn)] where each pixel is annotated for navigability. Traditionally, obtaining
such a set of labels has required dense annotation by an oracle [18], at a cost that scales linearly
with the amount of data labeled. These properties have generally limited applications to domains
captured by large segmentation datasets [46, 81] that have been curated using hundreds of hours
of human annotation time. We address this problem by employing a self-supervised approach to
generate partially labeled examples ỹ, in place of oracle annotation.
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Figure 2.2: Overview of self-supervised labeling for navigability training pairs (x̃, ỹ). The agent
performs a series of walks along random or planned trajectories within the environment. Af-
fordance information collected from each walk is back-projected onto pixel-level labels in the
agent’s POV from previous time steps. Sampling over a variety of maps allows for the collection
of a visually and semantically diverse set of examples D̃ that can be used to train a navigability
module π. This figure illustrates the generation of a negative example, with the agent contacting
a dynamic hazard.

Self-Supervision. We generate labeled affordance data in a self-supervised manner through
continuous interactive exploration by the agent; this algorithm makes use of RGBD observations
x, readings from a feedback sensor s, and a history of actions at executed over time. In each
episode, the agent is initialized at a random location and orientation within a training environ-
ment. The agent selects a nearby point and attempts to navigate towards it. Labeled training
data is generated based on whether or not the agent is able to reach this point: every location
that the agent successfully traverses during its attempt is marked as navigable, while undesirable
locations (e.g. bumping into obstacles, loss of traction, loss in health, getting stuck) are marked
as non-navigable. These locations in world space are then back-projected into previous image
frames using estimated camera intrinsics, in order to obtain partial segmentation labels (exam-
ples of which are visualized in Figure 2.3). Pixels for which there are no positive or negative
labels are marked as unknown. A more detailed discussion about the real-world applicability of
this approach can be found in Section 2.5.2.

Dense Labels. Backprojection of affordance labels produces a dense set of pixelwise labels for
observations at past time steps. Importantly, even without spatio-temporal inputs, this enables the
training of models which incorporate safety margins to account for motion, as the future position
of dynamic actors is encoded within labelled views from the past (discussed further in Section
2.5.1). In contrast, most RL-based methods return only a single sparse scalar reward, which often
leads to sample inefficient learning, potentially requiring millions of sampling episodes [82].
Furthermore, our generated labels ỹ are human interpretable, forming a mid-level representation
that improves interpretability of actions undertaken by the agent.

Navigability Segmentation. The collected samples D̃ are used to train a segmentation network
such as UNet [60], allowing for generalization of sampled knowledge to novel scenarios. A
masked loss function Lmask = K � LBCE(ŷ, y) based on binary cross-entropy is employed to
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Figure 2.3: Examples of samples labeled through back-projection (navigable area labeled in
green, non-navigable in yellow, and unknown in purple). The first three examples show negative
examples, labeled by damage from monster, impediment of movement by barrel, and damage
taken from environmental hazard respectively. The fourth illustrates successful traversal between
monsters and the fifth shows an example collected along a minimum cost path as part of an active
learning loop.

ensure that only labeled, non-unknown points K within each example contribute to the loss.

As labeled samples ỹ are generated by painting all pixels within a radius of a specified point
in the simulated world as either navigable or non-navigable, we are more “certain" that pixels
close by in world space share the same semantic constraints than those farther away. To ensure
stability of training, we express this belief in the loss by weighting each pixel’s contribution by its
inverse Euclidean distance to the closest such point in world space. Given enough training data,
the navigability module is capable of generating segmentation maps that closely approximate
ground truth navigability, even in previously unseen environments (shown in Figure 2.4).

Active Trajectory Sampling. In order to further improve sample efficiency, we can employ
model uncertainty to actively plan paths during sampling episodes so as to maximize label en-
tropy along traversed trajectories. Intuitively, many semantically interesting artifacts (such as
environmental hazards) are rare, making it difficult to learn a visual signature. In these cases,
sampling can be made more efficient by intentionally seeking out such artifacts. This can be
achieved by first collecting a small number (n) of samples using random walks and training a
seed segmentation model. Using the seed model, we then predict an affordance map ŷ during the
first step of each subsequent episode and use it to construct a cost map for planning, with values
inversely proportional to the prediction uncertainty (defined as the entropy of the predicted soft-
max distribution over class labels) at each position. Planning and following a minimal-cost path
in this space is equivalent to maximization of label entropy, as the agent will attempt to interact
most with highly uncertain areas. Once an additional n samples have been actively collected
using this strategy, the model is retrained using a mixture of all samples collected so far, and
the sample/train loop can be repeated again. We find that active learning further increases our
sample efficiency, requiring fewer sampling episodes to learn visual signatures for hazards and
dynamic actors (example shown in Figure 2.3 rightmost).

2.3.2 Map Construction
While some hazards can only be identified using semantic information, geometry provides an
effective and reliable means to identify navigability around large, static, obstacles such as walls.
To capture both types of constraints, we augment our predicted semantic maps with additional
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Figure 2.4: Examples of affordance maps ŷ predicted by the navigability module, showing ac-
curate localization of semantic constraints within the scene. (Left) contains dynamic hazards in
the form of monsters and (Right) contains areas of geometry-affordance mismatch, in the form
of barrels shorter than sensor height.

geometric information when constructing the projected navigability cost maps M and G used
for planning. As the agent moves around the environment, observed depth images are used
to construct local, egocentric occupancy maps at each time step, incorporating only geometric
information. By reading depth values from the center scanline of the depth image, projecting
into the XY-plane, and marking the corresponding cells as non-navigable, a map of geometric
obstacles MG

t can be obtained. As the exact dimensions and locomotion capabilities of the agent
are unknown, only depth values returned by the center scanline are known to be obstacles with
certainty.

Map Fusion. Given a pixel-wise affordance map ŷt obtained from the navigability module and
a local, egocentric geometric map MG

t , the two inputs can be combined using a fusion module
F (ŷt,M

G
t ) to form a single local navigation cost map Mt that incorporates both semantic and

geometric information. To do so, the segmentation map ŷt is first projected into the 2D plane
using estimated camera intrinsics, forming an egocentric navigability map MS

t . Cells marked as
obstacles by MG

t are also marked as impassable within Mt, with remaining cells in free space
assigned cost values inversely proportional to the confidence of navigability provided by ŷt.
Finally, Mt is used to update a global, allocentric map Gt of navigability at the end of each time
step.

2.3.3 Planning

Given the global navigability map, path planning can be tackled using classical algorithms such
as A*, as all required semantic and geometric information is encoded within the map itself.
Additionally, since bothMt andGt are updated at every time step, dynamic hazards are treated as
any other obstacle and can be avoided successfully as long as paths are re-planned at sufficiently
high frequency. Our work is agnostic to the choice of planning algorithm and our semantic maps
can also be employed with more sophisticated planners, though for simplicity we evaluate using
A*.
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2.4 Experiments

We perform our evaluation in simulation using VizDoom, as it allows for procedural generation
of large, complex 3D maps that contain a variety of dynamic actors and semantic constraints
in the form environmental hazards. Although prior work [62] on navigation has also relied
on VizDoom, evaluation has been restricted to a small set of hand designed maps without any
dynamic actors or semantic constraints. We evaluate the effectiveness of incorporating learned
affordance maps to tackle two difficult tasks: novel environment exploration and goal-directed
navigation.

2.4.1 Experimental Setup

We conduct our experiments within procedurally-generated VizDoom maps created by the Oblige
[2] level generator, which enables construction of training and test maps containing unique, com-
plex, and visually diverse environments. Each generated map is large, containing a variety of
dynamic hazards (such as monsters) and environmental hazards (such as lava pools), in addition
to static obstacles (such as barrels) and areas where a geometry-affordance mismatch exists (such
as ledges lower than sensor height, but beyond the movement capabilities of the agent). We gen-
erate a collection of 60 training and 15 test maps and further categorize the 15 test maps as either
hazard-dense or hazard-sparse, based on concentration of hazards within the initial exploration
area.

Observation and Action Space. We assume that the agent’s RGBD camera returns a regular
RGB image with a 60◦ field of view and an approximately-correct depth image that records the
2D Euclidean distance of each pixel from the camera in the XY plane (due to the 2.5D nature
of the Doom rendering engine). The feedback sensor returns a scalar value corresponding to the
magnitude of damage received by the agent while executing the previous action (some hazards
are more dangerous than others). The action space is limited to three motion primitives: move
forward, turn left, and turn right; only one action can be executed at each time step. Localization
is imperfect and achieved through odometry from noisy measurements, with approximately 2%
error.

Environments. Each test map used to evaluate exploration performance is extremely large,
containing sequences of irregularly shaped rooms connected by narrow hallways and openings.
As it would require upwards of 10,000 time steps even for a skilled human to explore any of
these environments, most of the space covered by the evaluated approaches is contained within
the initial rooms next to the start point. As such, to clearly illustrate the challenges posed by
semantic constraints, we choose to further categorize the test maps as either hazard-sparse or
hazard-dense, based on the likelihood of encountering navigability-restricting hazards within the
initial exploration area. Figure 2.5 shows a top-down visualization of the difference in hazard
concentration between the two test subsets.

12



Figure 2.5: Top-down visualizations of initial exploration areas in hazard-sparse (Left) and
hazard-dense (Right) test environments. Agent start position is marked in green, with envi-
ronmental hazards marked in yellow, and initial locations of dynamic hazards marked in purple.
Hazard-dense environments present a significant challenge for autonomous exploration, contain-
ing a high concentration of navigability restricting areas that must be avoided successfully.

2.4.2 Sample-Efficient Exploration using Affordance Maps
We quantitatively evaluate exploration performance by measuring the total amount of space ob-
served within a particular environment over time, approximated by the total surface area of the
constructed global map. Each episode of evaluation terminates after 2000 time steps or after
receiving a total of 100 damage during exploration, whichever occurs first. Agents receive 4
damage per time step when coming into contact with dynamic hazards and 20 damage for envi-
ronmental hazards.

Baselines We compare our proposed approach against several competitive baselines that range
from classical geometry-based approaches to recent RL-based methods. Next, we explain each
of these exploration baselines in detail:

1. Random. In order to show that both geometry and learning-based approaches set a competitive
baseline and perform well above the bar set by random exploration, we evaluate a policy that
selects between each of the available actions with uniform probability at each time step.

2. Frontier-Based Exploration. As a classical, non-learning baseline, we compare against a vari-
ant of frontier-based exploration [25, 78]. This approach relies purely on geometry, updating
a global map Gt at every step using the projected scanline observation MG

t from the current
POV. A close-by goal from within the current “frontier region" is selected and a path towards
it is re-planned (using A*) every 10 steps as the map is updated. Once the selected goal has
been reached or the goal is determined to no longer be reachable, the process is repeated with
a newly-selected goal. Although dynamic actors can be localized using geometry alone, they
are treated as static obstacles in the cost map, relying on frequent re-planning for collision
avoidance.

3. RL-Based Exploration. We also compare against a state-of-the-art deep RL-based approach
[17] for exploration that is trained using PPO [65] and incorporates both geometric and
learned representations. We implement an augmented variant of the method proposed by
[17], adding an additional depth map xDt to the 3 original inputs: the current RGB observa-
tion xRGBt , a small-scale egocentric crop of Gt, and a large-scale egocentric crop of Gt. To
ensure a fair comparison, we evaluate this approach using hyper-parameters identical to those

13



Figure 2.6: Comparison of exploration performance across all evaluated approaches in (Left)
hazard-dense and (Right) hazard-sparse environments, plotted as a function of area observed
over time. Both plots report mean performance measured over 5 test episodes; RL results are
reported using the best model obtained over 3 randomly-initialized training runs, the shaded area
indicates the range of measured values across all test episodes.

proposed by the original authors, maintaining a global map where each grid cell represents
an 8 × 8 game unit area in the VizDoom world. We also introduce a new penalty term used
to scale the reward by amount of damage taken in each step (set to 0.02), which encourages
the agent to avoid hazardous regions of the map. We report the mean performance obtained
by the best model from each of 3 training runs (2M samples each), with access to the full 60
map training set.

4. Human. To demonstrate that all autonomous approaches for exploration still have significant
room for improvement, we asked human volunteers to explore a sequence of novel environ-
ments using a near-identical experimental setup. For ease of use, we adopt a standard Doom
control scheme, allowing participants to execute actions for rotation and forward movement
concurrently. This provides a slight edge in locomotion compared to other approaches.

Affordance-Augmented Frontier Exploration. To evaluate the efficacy of our proposed rep-
resentation, we augment the frontier-based approach with semantic navigability maps obtained
from affordance predictions; all other components (including goal selection and path planning)
are shared with the baseline. We collect approximately 100k total samples across the 60 train-
ing maps in a self-supervised manner and train the navigability module for 50 epochs using the
collected dataset; a ResNet-18-based [34] UNet [60] architecture is employed for segmentation.
Episodic sample goals are selected randomly from within the initial visible area and simple path
planning is employed, with the agent always taking a straight line directly towards the goal.
Back-projection is performed using game damage as a feedback mechanism, with the size of
negative labels corresponding to the magnitude of damage received. At test time, we use esti-
mated camera intrinsics to project output from the navigability module into the 2D plane.

Inside hazard-sparse environments (Figure 2.6 left), agents generally don’t encounter hazards
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Figure 2.7: Comparison of thresholded global maps constructed by frontier exploration using
geometry (Left) and affordance-based (Right) representations in the same environment. In this
setting, semantic representations help the agent take less damage over time, allowing for more
area to be explored during each episode.

within the first 2000 time steps, placing increased emphasis on goal selection over hazard avoid-
ance. In this setting, augmenting the frontier-based approach with affordance maps does not
provide significant improvements, as in the absence of semantic hazards, the two methods are
functionally equivalent. In line with previous work [17], the PPO-based RL approach also fails
to beat the frontier baseline, likely due to the heavy emphasis placed on exploration policy. With-
out taking a high-level representation of the global map as input, it is difficult for a RL-based
approach to plan over long time horizons, causing the agent to potentially re-visit areas it has
already seen before. Finally, we note that humans are much better at both goal selection and
hazard avoidance, managing to explore upwards of 3× more area than the closest autonomous
approach.

Successful exploration in hazard-dense environments (Figure 2.6 right) necessitates the ability
to identify affordance-restricting hazards, as well as the ability to plan paths that safely navigate
around them. In this setting, augmenting the frontier-based approach with affordance maps in-
creases performance by approximately 60%, which is more than 2/3 of the difference between
frontier and the random baseline (constructed global maps are compared in Figure 2.7). Qual-
itatively, we observe that agents using learned affordance maps plan paths that leave a wide
margin of safety around observed hazards and spend far less time stuck in areas of geometry-
affordance mismatch. Through self-supervised sampling, the navigability module also learns
about agent-specific locomotion capabilities, predicting when low ceilings and tall steps may
restrict movement. Although RL-based exploration out-performs the frontier baseline in this
scenario by learning that proximity to hazards is detrimental to reward maximization, a lack of
long term planning still hinders overall exploration performance.

Sample Efficiency. In order to understand the effect of training set size on learned exploration,
we measure exploration performance with different amounts of collected samples in the hazard-
dense setting, shown in Figure 2.8. After collecting as few as 5000 training samples, the nav-
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Figure 2.8: Comparison of final exploration coverage achieved by affordance-augmented frontier
exploration, trained using varying amounts of self-supervised training data. Plotted lines report
mean performance measured over 5 test episodes, while shaded areas indicate the range of values
observed during evaluation.

igability module learns to recognize dynamic hazards, allowing for paths to be planned with a
margin of safety. As the number of samples collected increases, exploration performance im-
proves as well. However, as one might expect, the relative gain provided by each additional
example decreases after a point. Qualitatively, we observe that 10,000 samples provides suf-
ficient diversity to enable accurate localization of common dynamic hazards, while additional
examples beyond this point help to improve detection of less commonly observed environmental
hazards and accuracy near hazard boundaries. Notably, even after training on 20 times as many
samples, RL-based exploration still fails to outperform our approach in this setting, illustrating a
clear advantage in sample efficiency.

2.4.3 Goal-Directed Navigation using Active Affordance Map Learning

In order to further demonstrate the applicability and efficacy of affordance-based representations,
we set up a series of 15 navigation trials, one for each map in the test set. Within each trial, the
agent begins at a fixed start point and is tasked with navigating to an end goal (specified in relative
coordinates) in under 1000 time steps, while minimizing the amount of damage taken along
the way. Each trial is designed to be difficult, with numerous hazards and obstacles separating
the start and end points, presenting a challenge even for skilled humans; none of the human
participants were able to complete all 15 trials successfully without taking any damage.
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Geometry-Based Navigation Baseline

We implement a classical geometry-based navigation baseline using a modified variant of the
planning and locomotion modules employed for frontier-based exploration. Global navigability
maps used for planning are constructed by averaging values obtained from local maps over multi-
ple time steps, allowing for increased temporal stability and robustness to sensor and localization
noise. A simple A*-based algorithm is then employed for planning, treating the value of each
cell in the global navigability map as the cost of traversing through a particular location in the
environment.

In this setup, dynamic actors are treated as static obstacles within the cost map, an assumption
that holds true as long as re-planning is invoked at a sufficiently high frequency. In order to
evaluate the effect of re-planning frequency on navigation performance, we also evaluate a vari-
ant of the baseline approach that re-plans at 10× the frequency (every step instead of every 10
steps) and observe that this results in a small improvement in navigation trial success rate, largely
attributed to the reduction in latency required to respond to environmental dynamics.

Qualitatively, we observe that most failures in the baseline occur when the agent attempts to path
through an obstacle lower than sensor height, causing the agent to become stuck as it continually
tries to path through a cell registered as free space in the geometric map. The second most
common scenario that leads to degraded performance is failure to avoid dynamic hazards, causing
agents to collide with monsters as they attempt to follow a nearby path to the goal.

Affordance-Augmented Navigation

In the evaluated setting, we show that by adding semantic information obtained from affordance
maps, it is possible to improve navigation performance significantly, even when employing sim-
ple geometry-based approaches that plan using A*. By introducing a navigability module trained
on 100k collected samples to generate cost maps for planning, we observe a 45% improvement in
overall navigation success rate, with improvements of 25% observed even when using a model
trained on a dataset just one fifth the size. Even when the re-planning frequency is increased
10-fold, such that observed dynamic hazards can be treated as static obstacles more accurately,
the baseline still fails to beat the affordance-augmented variant.

Additionally, we compare against results obtained by a PPO-based RL model, which is trained
similarly to its counterpart discussed in Section 2.4.2. In order to reduce the difficulty of planning
over long time horizons, we provide the model with a sequence of waypoints (extracted from the
best-performing human trajectory) as an additional input, which are used as local intermediate
goals that converge towards a faraway global goal. However, we observe that even with this
augmented set of inputs, the RL-based approach still fails to beat any of the affordance-based
methods, echoing results observed in the exploration experiments.

We also explore how active learning can be used to further improve the efficiency of self-
supervised learning, by evaluating two additional models trained on samples collected from
actively-planned trajectories. We show that using just 40% of the data, models employing active
data collection outperform those trained using random samples alone. At the 100k total sample
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Figure 2.9: Comparison of navigation performance across all evaluated approaches, plotted as a
function of success rate vs. maximum amount of damage permitted per trial (mean results over
5 test runs reported).

mark, we observe that actively sampled models out-perform their randomly sampled counterparts
by more than 10%. The procedure we follow is to first train a seed model using 20k random sam-
ples, before collecting an additional 20k samples actively and re-training on the combined dataset
to obtain an improved model. We repeat the active sample/train loop for 3 additional iterations,
building a dataset with a total size of 100k samples.

Results obtained by the affordance-augmented navigation agent, along with comparisons to the
baseline, are summarized in Figure 2.9; examples of actively-planned trajectories are shown in
Figure 2.10. Qualitatively, we observe that active trajectory sampling significantly improves tem-
poral stability and prediction accuracy along hazard and obstacle boundaries (shown in Figure
2.11). These properties enable more efficient path planning, allowing the agent to move safely
with tighter margins around identified hazards.

2.5 Discussion
In this chapter, we have described a learnable approach for exploration and navigation within
novel environments. Like RL-based policies, our approach learns to exploit semantic, dynamic,
and even behavioural properties of the novel environment when navigating (which are difficult to
capture using geometry alone). But unlike traditional RL, our approach is made sample-efficient
and interpretable by way of a spatial affordance map, a novel representation that is interactively-
trained so as to be useful for navigation with off-the-shelf planners.

In the remainder of this section, we 1) discuss how active affordance learning implicitly captures
dynamic behavior without temporal actor tracking and 2) explain how our proposed approach can
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Figure 2.10: Examples of actively-planned trajectories that maximize label entropy along sam-
pled locations. (Left) shows predicted affordances, (Middle) shows the projected confidence
map, and (Right) shows the cost map used to plan the optimal path.

Figure 2.11: Comparison of affordance maps generated by models trained using datasets con-
taining (a) 20k random samples, (b) 20k random samples + 40k active samples, (c) 20k random
samples + 80k active samples, and (d) 100k random samples. Employing active learning allows
models to effectively identify and localize regions containing rare environmental hazards, a feat
that is difficult to achieve using random samples alone.

be applied in real-world robotics settings, where the cost associated with naive “trial and error”
approaches may be unacceptably high. Finally, we provide guidance on reproducibility and ex-
tensibility, releasing an open-source implementation of the active affordance learning framework
as described in this chapter.
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2.5.1 Capturing Dynamic Behavior
In order to better understand how dynamic behavior is captured using our affordance-labeling
approach, we pose a scenario where a dynamic actor moves from point A to point B, and collides
with the agent at point B. In this scenario, all observations of point B (including those collected
pre-collision) will be labelled as hazardous, potentially mapping to an image region near the
dynamic actor rather than the actor itself. We will next describe one approach for explicitly
modeling such moving obstacles, and then justify why our current approach implicitly captures
such dynamics.

Explicit Approach. In principle, our self-supervised labeling system can be modified to replace
naive back-projection with an explicit image-based tracker (keeping all other components fixed).
Essentially, labeled patches can be tracked backwards from the final timestep at which they are
identified as hazardous (since those prior visual observations are available at sample time) to
obtain their precise image coordinates when backprojecting to prior timesteps.

Implicit Approach. Even without image-based tracking, our pipeline implicitly learns to gener-
ate larger safety margins for visual signatures that have been associated with dynamic behavior.
Essentially, our system learns to avoid regions that are spatially close to dynamic actors (as seen
in Figure 2.12). Such notions of semantic-specific safety margins (e.g., autonomous systems
should use larger safety margins for pedestrians vs. roadside trash cans) are typically hand-coded
in current systems, but these emerge naturally from our learning-based approach. As we found
success with an implicit encoding of dynamics, we did not experiment with explicit encodings,
but this would certainly make for interesting future work.

2.5.2 Real-World Applicability
During the sampling stage of our proposed method, we employ a “trial and error”-style approach
(similar to RL-based methods) that could lead to potentially hazardous situations in real-world
robotics settings if deployed in certain configurations. However, we argue that this is not an
unreasonable way of collecting data and that there exist both common and practical solutions for
risk mitigation that have already been widely deployed in the real-world.

Framing the current state of self-driving research within the context of our work, we can view all
autonomous vehicles today as being within the “sampling” stage of a long-term active learning
loop that ultimately aims to enable L4 autonomy. Almost every one of these vehicles on public
roads today is equipped with one, if not multiple safety operators who are responsible for disen-
gaging autonomy and “taking over” when the system fails to operate within defined bounds for
safety and comfort. Moreover, each of these “takeover” scenarios is logged and used to improve
the underlying models in future iterations of this learning loop [23]. Indeed, in this scenario, the
safety operator serves the purpose of the “feedback sensor” and can ultimately be removed at
“test time”, once the autonomous driving model has been deemed safe.

In less safety critical scenarios, such as closed course or small-scale testing, the role of the
safety driver could be replaced with some form of high-frequency, high-resolution sensing such
as multiple short-range LIDARs. These feedback sensors can be used to help the robot avoid
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Figure 2.12: Examples of learned margins for visual signatures associated with dynamic actors.
From left to right: the first image shows a RGB view of the scene, the second image shows
predicted affordances ŷ overlaid on top of the RGB view, the third image shows the projected
confidence map, and the last image shows the cost map used to plan the optimal path. From the
first example, it can be seen that regions that are spatially close to dynamic actors are associated
with higher traversal costs in the final cost map, akin to a “margin of safety". The second example
shows that static hazards/obstacles such as barrels are not associated with substantial affordance
margins.

collisions during the initial stages of active training, stopping the agent and providing labels
whenever an undesirable state is entered. Importantly, since data from these expensive sensors
is not directly used as an input by the model, they can be removed once a satisfactory model has
been trained; production-spec robots are free to employ low-cost sensing without the need for
high-cost feedback sensors.

Additionally, there exist many scenarios in which feedback sensors can help label examples
without the need to experience catastrophic failures such as high-speed collisions. One example
is the discrepancy between wheel speed sensor values, which can be used to detect loss of traction
on a wheeled robot when travelling over rough or slippery surfaces. By collecting observation-
label pairs, we could then learn affordance maps to help such a robot navigate over the smoothest
terrain.

Finally, we would like to emphasize that in scenarios where it is difficult to obtain oracle-labelled
data and “trial and error” approaches are employed by necessity, we have shown that our pro-
posed approach is many times more sample efficient that previous PPO-based reinforcement
learning approaches for mobile robotics [17] (which also suffer from the same types of prob-
lems). If collecting a sample is costly due to the burden of operational hazards, we argue that a
reduction in the number of samples required translates to an improvement in overall safety.
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2.5.3 Reproducibility and Extensibility
The active affordance learning (A2L) framework, as proposed in this chapter, contains a large
number of moving parts and tunable hyper-parameters that can significantly impact navigation
performance. In order to facilitate future research and ensure that experiments are reproducible,
we have released an open-source implementation1 of A2L. To facilitate ease of evaluation, we
also include the full VizDoom dataset, model hyper-parameters, as well as trained models.

1A2L implementation accessible from: https://github.com/wqi/A2L
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Chapter 3

What-If Motion Prediction for
Autonomous Driving

3.1 Motivation
Forecasting or predicting the future states of other actors in complex social scenes is a central
challenge in the development of autonomous vehicles (AVs). This is a particularly difficult task
because actor futures are multi-modal and depend on other actors, road structures, and even the
AV’s intended motion plan. The emergence of large-scale AV testing, together with the public
release of driving datasets and maps [11, 15, 38, 68], has stimulated promising recent work on
data-driven feedforward approaches [3, 14, 19, 24, 57, 70] designed to address these challenges.

Representations. Most approaches embed both social and map information within a birds-eye-
view (BEV) rasterized image, allowing learned models (typically a combination of CNNs and
RNNs) to predict trajectories from extracted features. Although convenient, there are some draw-
backs to rasterization: 1) the resulting models tend to require a large number of parameters [29]
and 2) some facets of the problem are best represented in coordinate spaces that are not con-
ducive to rasterization. For example, while the physics of vehicle motion are generally modeled
in Euclidean space, lane-following behaviors and map-based interactions are easier to represent
in curvilinear coordinates of the road network [15]. Similarly, social interactions between N
actors can be captured naturally in a topological graph representation with N nodes; notable re-
cent methods VectorNet [29] and SAMMP [50] take such an approach, representing individual
objects as nodes that may attend to one another.

Explainability. While the strong benchmark performance of feedforward models is encourag-
ing, safety critical applications may require top-down feedback and causal explainability. For
example, because the space of all potential futures in real-world urban driving settings is quite
large, real-time planning may require the ability for a planner to interactively probe the fore-
caster, exploring only those futures that are relevant for planning (see Fig.3.1a). Approaches that
require re-generation or re-processing of the scene context in order to explore alternate futures
may be too inefficient for real-time planning.
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Figure 3.1: While many feasible futures may exist for a given actor, only a small subset may be
relevant to the AV’s planner. In (a), neither of the dominant predicted modes (solid red) interact
with the AV’s intended trajectory (solid grey). Instead, the planner only needs to consider an
illegal left turn across traffic (dashed red). (b) depicts a partial set of lane segments within the
scene; illegal maneuvers such as following segment b can either be mapped or hallucinated. A
centerline (centered polyline) associated with a lane segment is shown in segment f (dashed
black). The planner can utilize the directed lane graph (c) to identify lanes which may interact
with its intended route. Black arrows denote directed edges, while thick grey undirected edges
denote conflicting lanes. Such networks are readily available in open street map APIs [33] and
the recently-released Argoverse [15] dataset.

Our Approach. In this chapter, we develop a RNN-based approach for context-aware multi-
modal behavior forecasting. Our approach does not require rasterized input and includes both a
road-network attention module and a dynamic interaction graph to capture interpretable geomet-
ric and social relationships. In contrast to existing graph-based approaches [29, 50], we structure
our model to efficiently support counterfactual reasoning. The social context of individual agents
can be manipulated in order to condition upon additional hypothetical (unobserved) actors or to
ablate specific social influences (Fig. 3.5). We make intimate use of the road network, generating
topological goals in the form of lane polylines that are constructed from the underlying directed
graph of lane segments (Fig. 3.1c). Importantly, rather than encoding the full local map struc-
ture, we explicitly condition forecasts upon individual topological goals. This allows the planner
to reason about and query for relevant trajectories (e.g. "reforecast that actor’s motion given the
left turn intersecting my path"). To our knowledge, we are the first to demonstrate counterfactual
forecasts based on such topological queries.

3.2 Related Work
State-of-the-art models for multi-agent motion forecasting borrow heavily from both the natu-
ral language (sequence models) and computer vision (feature learning) communities. Although
an extensive body of relevant work exists, the seq2seq [69] and ResNet [34] architectures are
of particular theoretical and practical importance. Our work is most related to methods that
forecast from intermediate representations such as tracking output [50], although a significant
body of work that operates directly on sensor input also exists [13, 47]; we do not explore such
approaches in-depth.
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Motion Forecasting. Until recently, motion forecasting research has primarily focused on pedes-
trian trajectories, either in the context of first-person activity recognition [39], sports [80], or
multi-actor surveillance [59]. Social-LSTM [1] introduced social pooling within a RNN encoder-
decoder architecture, providing a template to address varying numbers of actors and permutation
problems caused by social input. Extensions such as SoPhie [61] have leveraged features ex-
tracted from the physical environment, attention mechanisms, and adversarial training. DESIRE
[43] proposed a scene-context fusion layer that aggregates interactions between agents and the
scene context.

Conditional Forecasting. Recent work has also investigated forecasting models conditioned on
intent: [14, 55] condition the agent’s forecast on a predefined set of anchor trajectories, while
[21, 22] treat forecasting as a classification problem, first predicting a high level maneuver before
conditioning predictions on that maneuver. Other methods, such as [70], predict a conditional
probability density over the trajectories of other actors given a hypothetical rollout of the focal
agent. Our work is most related to PRECOG [58], which demonstrates that conditioning on an
actor’s goal alters the future states of other actors within the scene (similar to polyline condi-
tioning). Our approach, however, requires no rasterized input and can efficiently alter the social
context as well.

Rasterization. Popular methods for AV forecasting [3, 24] have employed complex rasterized
representations of scene context, constructing BEV images of the surrounding environment by
combining trajectory histories with rich semantic information (lanes, speed limits, traffic light
states, etc.) from maps. Although some of these methods [20, 24, 55] generate all predicted
states simultaneously, others [3, 14, 15, 43, 50, 70] employ a recurrent decoder to predict states
sequentially; [35] experiments with both approaches. More recently, there has been interest
towards rasterization-free approaches for capturing scene context; [50] uses multi-head attention
to encode interactions between social actors. We adopt a similar approach, attending over lane
polylines from the map, in addition to the social graph.

Graph Neural Networks. Graph neural networks and graph convolution have emerged in re-
sponse to problems that cannot be easily represented by matrices of pixels or simple vectors.
Architectures vary widely in response to diverse underlying problems and we refer the reader
to [75] and [5] for a comprehensive review. Our work is built upon graph attention networks
(GATs), introduced in [73]. VectorNet [29] is a closely related method, which proposes a deep
graphical model over individual road components and agent histories (represented as sets of vec-
tors), claiming a 70% reduction in model size compared to rasterized counterparts. Our work
features similar advantages in parameter efficiency, but represents lane polylines as ordered se-
quences of points. Additionally, VectorNet conditions over the entire local neighborhood (e.g.
left turn lane, right turn lane, neighboring lanes etc.) and is consequently not structured for
counterfactual reasoning over specific map elements (e.g. right turn lane). Finally, VectorNet
employs a deterministic decoder limited to a single trajectory. In contrast, our approach employs
a multi-modal decoder capable of generating diverse predictions.
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Figure 3.2: Overview of the data flow within the WIMP encoder-decoder architecture (left) and
polyline attention module (right). Input trajectories and reference polylines are first used to
compute per-actor embeddings; social context is then incorporated via graph attention. Finally, a
set of predictions is generated using a map-aware decoder that attends to relevant regions of the
polyline via soft-attention.

3.3 Method
Our proposed architecture, the what-if motion predictor (WIMP), addresses the task of motion
forecasting by learning a continuous-space discrete-time system with N interacting actors. Let
xnt ∈ R2 denote the n-th actor’s planar (x, y) coordinates at time t and Xt

.
=
{
x1
t ,x

2
t , . . . ,x

N
t

}
denote the joint state of all N actors. Let X

.
= {X1,X2, . . . ,Xt} denote the joint observable

history up until time t and Xn = {Xn
1 ,X

n
2 , . . . ,X

n
t } represent the entire observable history for

actor n. Analogously, let Y
.
= {Yt+1,Yt+2, . . . ,Yt+T} denote the joint state of all actors for

future time-steps t+ 1 to t+ T . Let Yt,Y
n, and ynt be defined accordingly.

Road Network Representation via Polylines. Popular approaches for motion forecasting often
rely on rasterized representations to provide contextual information about scene and road geom-
etry [3, 24, 70]. Instead, we represent a valid path through the road network (directed graph
of lane segments) using the concatenated center polylines of each road segment. Conditioning
on polyline-based inputs has several advantages over its rasterized counterpart: i) it provides a
strong, evidence-based prior for accurate predictions, ii) it allows for interpretable model be-
haviour analysis and enables counterfactual predictions that condition on hypothetical “what-if"
polylines (see Section 3.4.3), and iii) it leads to more memory efficient models that do not require
image-processing components.

We represent the reference polyline that guides actor n as a set of P discrete points Cn =
{cn1 , cn2 , . . . , cnP}, where cni ∈ R2; the collective set of such polylines for all actors is denoted
by C =

{
C1,C2, . . . ,CN

}
. Polyline Cn is obtained by searching the road network along

the direction of motion for the highest similarity lane segment to Xn (additional details pro-
vided in Section 3.3.6). The final objective is to effectively model the conditional distribution
Pr(Y|X,C); though it is possible to model the aforementioned distribution in a joint fashion, it
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is often intractable and computationally inefficient for large N . Similar to [50, 70], we employ
a RNN-based architecture to sequentially model Pr(Y|X,C). Specifically, we assume that the
following factorization holds:

Pr(Y|X,C) =
t+T∏
δ=t+1

Pr(Yδ|Yt+1, . . . ,Yδ−1,X,C) =
t+T∏
δ=t+1

N∏
n=1

Pr(ynδ |Yt+1, . . . ,Yδ−1,X,C
n)

(3.1)

It should be noted that even though Eq. 3.1 factorizes as a product of conditionals over individual
actors conditioned on individual polylines, global information regarding other actors and poly-
lines is implicitly encapsulated via the history X and previous predictions {Yt+1, . . . ,Yδ−1}. To
capture this distribution, we propose a novel recurrent, graph-based, attentional approach. As
shown in Fig. 3.2, the WIMP architecture has three key components: i) a graph-based encoder
that captures scene context and higher-order social interactions, ii) a decoder that generates di-
verse, multi-modal predictions, and iii) a novel polyline attention mechanism that selects relevant
regions of the road network to condition on. Next, we will describe each of these components in
detail.

3.3.1 Historical Context via Recurrence

hnt = Φenc

(
xnt , s

n
t ,h

n
t−1
)
, snt = Φpoly

(
Cn,xnt ,h

n
t−1
)

(3.2)

Each actor’s contextual history htn is captured via a shared recurrent encoder Φenc. Similar to
[70], we also employ a point-of-view transformation Γ(Xn) to normalize each actor’s history to
a reference frame by translation and rotation such that the +x-axis aligns with a focal agent F ’s
heading (such as the AV) and xF1 = (0, 0).

3.3.2 Geometric Context via Polyline Attention
As described in Eq. 3.2, each actor n attends to segments of their reference polyline Cn through
the learned function Φpoly. Intuitively, drivers pay attention to areas of the road network that they
are currently close to, as well as future goal locations that they plan to reach. Φpoly operational-
izes this intuition by predicting, for each actor n and timestep t, a current and goal index along
its polyline:

ant = arg min
p

{
d
(
cnp ,x

n
t

)}
, bnt = arg min

p

{
d
(
cnp ,Φf

(
xnt ,h

n
t−1,∆

))}
(3.3)

where d(·) is a distance metric and Φf is a learned function that hallucinates a coarse waypoint
∆ time-steps in the future. It should be noted that Φf doesn’t make use of any polyline infor-
mation and predicts the waypoint solely based on kinematic history; training is conducted in a
self-supervised manner using ground-truth future trajectories as labels. The vectorized attention-
weighted representation snt for the segment C̄n

t between current and goal indices can then be
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obtained as follows (where Q,V,K are learned transformation matrices, similar to those em-
ployed in [50]):

Φpoly(C
n,xnt ,h

n
t−1) =

∑
r∈[ant ,bnt ]

υntrVcnr , υntr = softmax
r

(
Qhnt−1 �Kcnr

)
(3.4)

3.3.3 Social Context via Graph Attention
As Φenc runs independently over all actors, the hidden representation obtained after t time-steps
hnt for a particular actor n is oblivious to other dynamic participants in the scene. One possible
solution is to provide xit;∀i 6= n as an input to Eq. 3.2, but this is computationally inefficient
and memory intensive. Instead of capturing social interactions in the planar coordinate space,
we leverage the ability of Φenc to generate rich latent hidden representations hnt for a particular
actor n. Inspired by [73], we employ a graph attention module Φgat that operates over these
representations as follows:

h̄nt = σ

hnt +
1

D

D∑
d=1

∑
j∈N\n

αdnjW
dhjt

 , αdnj = softmax
j

(
ad �

[
Wdhnt ,W

dhjt
])

(3.5)

where D is a hyperparameter denoting the number of attention heads, [·, ·] is the concatenation
operation, � is the inner product, and Wd, ad are learned parameters. Note that there is a
subtle difference between Eq. 3.5 and the architecture proposed in [73], wherein, for each agent
n, we focus on learning a residual change to its socially-unaware hidden representation hnt .
Intuitively, this can be thought of as an actor initially having a socially-agnostic estimate of its
future trajectory, with Φenc learning a residual change to incorporate information from other
actors within the scene.

3.3.4 Decoding
Following Eq. 3.1, WIMP aims to learn the conditional distribution Pr(ynδ |Yt+1, . . . ,Yδ−1,X,C

n)
for each actor n. To achieve this goal, we employ a LSTM-based decoder Φdec that: i) generates
diverse and multi-modal predictions, and ii) conditions each prediction on a reference polyline
Cn. Particularly, for a future time-step δ, we can obtain ynδ as follows:

ynδ+1 = Φpred (onδ ) , onδ , h̄
n
δ = Φdec

(
Yδ, s̄

n
δ , h̄

n
δ−1
)
, s̄nδ = Φpoly

(
Cn,ynδ , h̄

n
δ−1
)

(3.6)

where Φpred is a learned prediction function and Φpoly is a polyline-attention module as described
in Section 3.3.2. We note that the implementation of Φpred is architecturally agnostic; for exam-
ple, Φpred could be a bivariate Gaussian as in [70], or a mixture of Gaussians as in [50]. For
datasets like Argoverse [15] that only evaluate predictions for a single focal actor F , decoder
input Yδ might only contain predictions for a single actor yFδ . However, even in this scenario,
WIMP is still able to model social interactions via embeddings h̄nt obtained from the graph-based
encoder.
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Figure 3.3: Visualizing the map lane polyline attention weights generated during decoding. In the
scenario depicted in (a), the focal actor’s history is shown in yellow and its ground-truth future
in red. The red circle highlights the true state 3s into the future. The solid green line denotes
a predicted trajectory with a black chevron marking the t = +3s state. The dashed green line
shows the reference polyline. Grey cars/circles illustrate the current positions of on/off roadway
actors. In (b, c, d), opacity corresponds to the magnitude of social attention. The subset of
the polyline selected by the polyline attention module is shown in solid blue, and the attention
weights on points (black circles) within that segment are shown via an ellipse (for predictions at
t = +0s,+1s,+2s respectively). WIMP learns to attend smoothly to upcoming points along the
reference polyline.

3.3.5 Learning
WIMP is trained on collections of triplets containing: historical trajectories, ground-truth future
trajectories, and map-based road context {(X,Y,C)}. Following standard forecasting bench-
marks, we only predict the future trajectory for a single focal agent in each training example,
denoted as YF .

Winner-Takes-All: To encourage diversity and multi-modality in the set of predicted trajecto-
ries, we learn a mixture of M different predictors. Diversity is encouraged through a “multiple
choice" [31] or “winner-takes-all" loss that explicitly assigns each training example to a particu-
lar mixture:

loss = min
m∈{1...M}

||ŶF
m −YF || (3.7)

where ŶF
m is the focal trajectory predicted by the mth mixture. Having experimented with var-

ious distance functions, we found the L1 norm between trajectories to perform well. We also
experimented with multi-agent prediction of future trajectories for all actors, but did not observe
improved performance. We posit that this may be due to the large numbers of parked actors
present in urban driving scenarios, which may require different representations or larger capacity
forecasting models.

Optimization: By keeping track of the arg min m index for each training example, WTA loss
naturally clusters training examples into M sets. Previous work has shown that directly opti-
mizing this loss can lead to poor results because (a) it is difficult to optimize stochastically with
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mini-batch SGD, as the optimization is sensitive to initialization and (b) each mixture can be
prone to overfitting, as it is trained with less data. One proposed solution is “evolving WTA"
(EWTA) [48], where the single minimum minm is replaced with the M ′ lowest-cost mixtures.
Initializing with M ′ = M , examples are initially associated with all M clusters, encouraging
every mixture to generate identical predictions. Over time, as M ′ is annealed to 1 (resulting
in standard WTA loss), iterative specialization of each mixture ensures that each of the final
mixtures has been “pre-trained" with the full dataset.

Mixture Ranking: The above produces M different predicted trajectories, which can be fed
directly into multi-output forecasting benchmarks that require methods to return M predictions.
To repurpose these outputs for single-prediction evaluations, we rank each mixture’s accuracy on
a validation set.

3.3.6 Polyline Selection
To obtain relevant reference trajectories from the underlying vector map, we employ a heuristic-
based polyline proposal module based on code released in the Argoverse API [15]. Using either
the observed (0-2s) history of the focal actor (during evaluation) or the full (0-5s) ground truth
trajectory (during training), we query the proposal module for a ranked list of candidate polylines
sorted by similarity to the reference trajectory. These candidate polylines are obtained through
the following procedure:

1. Find Candidate Lanes: We first search the map lane graph to find the set of all lanes
containing nodes that are located within a 2.5m distance from the last point of the query
trajectory. If no lanes are found, we iteratively expand the search radius by a factor of 2
until at least one candidate lane is identified.

2. Construct Candidate Polylines: For each candidate lane node returned in the above set,
we construct corresponding polylines by recursively traversing the lane graph through suc-
cessor and predecessor nodes, stopping once a distance threshold has been reached in both
directions. In our implementation, we set this distance threshold to be 2× the total length
of the query trajectory. We then connect the traversed nodes with directed edges (from
earliest predecessor to latest successor), forming a polyline composed of individual points.
To show how candidate polylines Lc are constructed from candidate lane node A:

Enumerated Successors: {(A->B->C), (A->D->E)}
Enumerated Predecessors: {(F->G->A), (H->I->A)}

Constructed Lane Polylines:
L1 : F->G->A->B->C
L2 : H->I->A->B->C
L3 : F->G->A->D->E
L4 : H->I->A->D->E
Lc: {L1, L2, L3, L4}

3. Remove Overlapping Polylines: Next, we filter the set of candidate polylines constructed
in the previous step by removing polylines that overlap significantly with other candidates.
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4. Sort By Point-in-Polygon Score: We then sort the filtered set of candidate polylines by
point-in-polyline (PIP) score, defined as the number of query trajectory points that lie
within the polygon formed by lane regions corresponding to each polyline. If there are
n points in the query trajectory, the PIP score is bounded to the range [0, n]. To give a
concrete example, if n = 20 and PIP scores for candidate polylines Lc are {L1: 15, L2:
10, L3: 5, L4: 20}, the sorted list of candidate polylines will be returned in the order
Lpip = [L4, L1, L2, L3].

5. Sort By Polyline-Trajectory Alignment: We also sort the filtered set of candidate lines
by a polyline-trajectory alignment-based score. To compute this score, the query trajectory
is first mapped to the 2D polyline-based curvilinear coordinate system (as defined in Argo-
verse), wherein axes are defined to be tangential and perpendicular to a reference polyline.
We define the alignment score to be the maximum tangential distance reached along the
query trajectory (better alignment results in longer distances travelled along the reference
polyline). To give a concrete example, if the maximum tangential distance for each of
the candidate polylines is {L1: 10 , L2: 25, L3: 2, L4: 20}, the sorted list of candidate
polylines will be returned in the order La = [L2, L4, L1, L3].

6. Selecting Polylines: We sort candidate polylines using two different methods of scoring
because examining PIP score in isolation can sometimes be misleading. For example, a
car moving slowly across an intersection could result in high PIP scores being assigned
to polylines obtained from lanes with orthogonal directions of travel. Using the polyline-
trajectory alignment score alone can also result in similar confusion. For example, a nearby
protected turn lane that is parallel to the query trajectory’s direction of travel may be as-
signed a high alignment score, even if the polyline represents a semantically different
future.

For this reason, it is important to rank polyline proposals using a combination of both
metrics. In our implementation, we employ a heuristic-based selection process, wherein
the polylines are drawn from the top of Lpip and La in alternating order. To give a concrete
example, in the scenario we have posed above, querying for the best 2 polylines would
return L = [L4, L2] (where L4 is the best PIP polyline and L2 is the best-aligned polyline).

7. Using Proposed Polylines: During training, we query for and use only the top-ranked
polyline proposal from each set. However, at inference time, it is possible to trade off
prediction diversity and accuracy by controlling the the number of polyline proposals and
predictions generated per polyline (e.g. 6 predictions conditioned on 1 polyline vs. 1
prediction conditioned on each of 6 polylines).

3.4 Experiments
We demonstrate the effectiveness of WIMP at generating accurate, interpretable, and control-
lable trajectory predictions for roadway actors. We first show that the scene attention encoder is
capable of capturing the complex contextual, semantic, and social relationships that are present
in real-world urban driving scenarios. These learned scene embeddings can be combined with
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multi-modal decoders to generate a diverse set of plausible future trajectories. We then perform a
series of counterfactual reasoning-based experiments to demonstrate how the distribution of pre-
dicted modes is influenced by scene context. The implementation details and hyperparameters
are provided in Section 3.5.2.

3.4.1 Experimental Setup
Datasets. We conduct our experiments using the Argoverse [15] motion forecasting dataset, a
large scale vehicle trajectory dataset containing more than 300,000 curated scenarios extracted
from vehicle logs in urban driving scenarios. Given a 2 second trajectory history as input, the
goal is to predict the future motion of a particular focal agent over the next 3 seconds (sampled
at ≈ 100 ms intervals). In addition to the focal agent history, location histories of nearby (social)
actors are also provided. Importantly, Argoverse includes a semantic vector map composed of
lane-based polylines.

Although the Argoverse dataset provides a high volume of interesting data for both training and
evaluation, the focal trajectories are not particularly diverse in terms of directional variation, with
more than 80% of scenarios featuring straight line trajectories over the full 5 second window. In
order to evaluate how WIMP performs in the presence of uncertainty, we also extract a small
subset (≈350 examples) of particularly challenging scenarios that are characterized by blind
turns (defined as examples where the observed 2-sec. trajectory is straight, but the ground truth
future 3-sec. trajectory contains a turn and/or lane change). Even for recent state-of-the-art
methods, the blind turn (BT) subset presents a significant challenge, as generation of high-quality
predictions necessitates the incorporation of both social and semantic information to resolve
uncertainty.

In addition to Argoverse, we also evaluate using the NuScenes prediction dataset, which contains
a similar collection of approximately 40,000 scenarios that were extracted from 1,000 curated
scenes. These scenarios were collected within two distinct regions on different continents, featur-
ing trajectories from both left-hand and right-hand drive locales. Due to the geographic diversity
of data and more significant representation of complex scenarios such as turns and intersections,
NuScenes presents a more challenging prediction task than the base Argoverse dataset.

Metrics. To evaluate prediction quality, we make use of widely adopted forecasting metrics:
minimum average displacement error (ADE) and minimum final displacement error (FDE) [15],
evaluated for both single (K = 1) and multi-modal (K = 6) prediction scenarios. To capture
prediction performance in more challenging scenarios, we also adopt the miss rate (MR) metric:
the fraction of scenarios with FDE > 2m.

3.4.2 Argoverse Motion Forecasting
Quantitative Results. We compare WIMP to several recent state-of-the art (SOTA) methods:
SAMMP [50] (best self-attention-based model, joint-winner of the 2019 Argoverse Forecasting
Challenge), UULM-MRM (best rasterization-based model, joint-winner of the 2019 Argoverse
Forecasting Challenge), and VectorNet [29] (a recent polyline-based model). Evaluating on the
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Argoverse challenge test set (results summarized in Table 3.1), we show that each of these meth-
ods is highly competitive, performing far above the bar set by K-NN and LSTM based baselines.
We further show that WIMP-based models are able to out-perform all existing published methods
in both single and multi-modal prediction-based metrics.

MODEL MR(K=6) FDE(K=6) ADE(K=6) FDE(K=1) ADE(K=1)

SAMMP [50] 0.19 1.55 0.95 4.08 1.81
UULM-MRM 0.22 1.55 0.96 4.32 1.97
NN + MAP(PRUNE) [15] 0.52 3.19 1.68 7.62 3.38
LSTM + MAP(PRIOR) [15] 0.67 4.19 2.08 6.45 2.92
VECTORNET[29] - - - 4.01 1.81

WIMP (M = 1) - - - 3.89 1.78
WIMP (M = 6) 0.17 1.42 0.90 4.03 1.82

Table 3.1: Motion forecasting performance evaluated on the Argoverse test set, with MR and
minimum FDE/ADE reported for both single (K = 1) and multi-modal (K = 6) prediction
scenarios.

Evaluation in Challenging Scenarios. As the overall Argoverse dataset is biased towards sim-
ple straight line trajectories, we also evaluate prediction performance on the BT subset (results
summarized in Table 3.2), which consists primarily of challenging blind turn scenarios. In this
setting, we show that WIMP out-performs non-map-based approaches (such as SAMMP) by a
much larger margin than across the full dataset, as polyline and social graph-based attention al-
lows the model to resolve and account for uncertainty even in complex scenarios with multiple
feasible future trajectories. In such scenarios, models employing polyline-based coordinate sys-
tems, such as LSTM + Map (Prior) from [15]), also perform surprisingly well, as the prediction
space is strongly conditioned on map information, trading overall performance for better turn pre-
diction results. We note that WIMP is significantly less impacted by this bias-variance trade-off,
delivering top performance in both BT and general settings. We also demonstrate that prediction
accuracy improves with reference polyline quality. By employing an oracle to select the optimal
polyline in hindsight (after observing the future), we observe significant improvements, indicat-
ing that WIMP can take advantage of “what-if" polylines provided by such oracles. We analyze
this further in the next section.

Ablation Study In order to demonstrate how each component of the WIMP architecture con-
tributes to overall prediction performance, we perform an ablation study and summarize the
results in Table 3.3. We obtain best results when the model is provided with both map and social
context, while coupled to a L1-based EWTA loss [48]. We also experiment with alternative loss
formulations: replacing EWTA loss with negative log likelihood (NLL) significantly degrades
performance, while standard L1 loss provides impressive (K = 1) performance but cannot be
adapted to make multiple predictions.

NuScenes Motion Forecasting. To evaluate the generalizability of our proposed prediction ar-
chitecture, we also compare WIMP to several recent learning-based methods and a physics-based
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MODEL MR(K=6) FDE(K=6) ADE(K=6)

SAMMP 0.67 4.91 2.38
NN + MAP (PRUNE) 0.61 5.11 3.93
LSTM + MAP (PRIOR) 0.51 2.64 3.01

WIMP 0.49 3.52 1.62
WIMP (ORACLE) 0.33 2.46 1.30

Table 3.2: Motion forecasting performance evaluated on the Argoverse BT validation set. As
the selected data is inherently multi-modal, we only report metrics for (K = 6) predictions.
SAMMP results were obtained from our implementation of [50], using hyper-parameters shared
with WIMP.

CONTEXT LOSS MR(K=6) FDE(K=6) ADE(K=6) FDE(K=1) ADE(K=1)

MAP + SOCIAL EWTA 0.12 1.14 0.75 3.19 1.45
MAP + SOCIAL L1 - - - 3.01 1.40

MAP + SOCIAL NLL 0.23 1.61 1.07 6.37 1.41
SOCIAL EWTA 0.16 1.39 0.86 5.05 1.61
MAP EWTA 0.16 1.38 0.85 3.80 1.69
NONE EWTA 0.23 1.70 0.95 5.86 1.87

Table 3.3: Ablation studies for WIMP with different input configurations and training objectives.
Quantitative results reported for K = 1 and K = 6 metrics on the Argoverse validation set.

baseline on the NuScenes prediction dataset; results are summarized in Table 3.4. Without any
hyper-parameter tuning or changes to model architecture (compared to the model evaluated on
Argoverse), WIMP achieves state-of-the-art results in both single (K = 1) and multi-modal
(K = 5, 10) prediction scenarios, out-performing all previous methods in both miss rate and
displacement error. WIMP delivers especially strong results on NuScenes due to the high pro-
portion of intersection and turn-based scenarios, which are difficult to solve without integration
of both map and social context.

3.4.3 Counterfactual Validation

Our proposed approach to conditional forecasting readily supports investigations of hypothetical
or unlikely scenarios (counterfactuals). This capability can be readily used by a planner to al-
locate computation to only relevant futures, or to reason about social influences from occluded
regions of the road network. Importantly, these counterfactual queries can also be used to inves-
tigate and evaluate models beyond distance-based metrics. Sensible predictions conditioned on
extreme contextual input indicates that our model has learned a powerful causal representation
of driving behavior and is likely to generalize well (see Figs. 3.4 and 3.5).
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MODEL MR(K=10) ADE(K=10) MR(K=5) ADE(K=5) FDE(K=1)

LISA 0.46 1.24 0.59 1.81 8.57
TRAJECTRON++[? ] 0.57 1.51 0.70 1.88 9.52
CXX 0.60 1.29 0.69 1.63 8.86
COVERNET[55] 0.64 1.92 0.76 2.62 11.36
PHYSICS ORACLE[55] 0.88 3.70 0.88 3.70 9.09

WIMP 0.43 1.11 0.55 1.84 8.49

Table 3.4: Motion forecasting performance evaluated on the NuScenes validation set, with MR
and minimum FDE/ADE reported for (K = 1), (K = 5), and (K = 10) prediction scenarios.
Metrics are computed using the reference implementation provided with the NuScenes devkit.

Figure 3.4: Visualizations of two prediction scenarios that condition on (a) heuristically-selected
polylines (see Section 3.3.6 for details) and corresponding (b) counterfactual reference polylines.
When making diverse predictions, WIMP learns to generate some trajectories independent of the
conditioning polyline (see the straight through predictions in (a)). Additionally, if the reference
polyline is semantically or geometrically incompatible with the observed scene history (as in
(2b) where the counterfactual polyline intersects other actors), the model learns to ignore the
map input, relying only on social and historical context. Visualization style follows Fig. 3.3.

3.4.4 Qualitative Results
As trajectory prediction is a fundamentally three-dimensional task that requires integration of
information across space and time, it can be difficult to capture temporal context using static 2D
images alone. To address this issue, we provide dynamic visualizations 1 (following the style of
Fig. 3) for each of the BEV scenarios shown in the main text (Figs. 3-5).

We also include additional dynamic visualizations from prediction scenarios that capture a broad
range of interesting events: acceleration, braking, full stops, fast driving, exiting driveways, lane
changes, left turns, right turns, wide turns, and use of protected turn lanes. These examples
are intended to demonstrate that WIMP not only generates predictions that are accurate and
diverse, but also generalizes to a wide variety of geographic and semantic settings. Finally,
we include a short explanatory video that demonstrates multi-modal prediction in a right turn

1WIMP dynamic visualizations accessible from: https://bit.ly/WIMP_dynamic

35

https://bit.ly/WIMP_dynamic


Figure 3.5: Visualizations of two scenarios that condition on (a) ground-truth scene context and
(b) counterfactual social contexts (best viewed with magnification). Counterfactual actors are
highlighted with a grey circle. In (1b), we inject a stopped vehicle just beyond the intersection,
blocking the ground-truth right turn. Given the focal agent’s history and velocity, this makes a
right turn extremely unlikely, and that mode vanishes. In (2b) we replace the the leading actor in
(2a) with a stopped vehicle. As expected, this causes the model to predict trajectories containing
aggressive deceleration. The final velocity (vf ) of a representative trajectory is 3.3m/s in the
counterfactual setting, compared with 10.3m/s in the original scene. Visualization style follows
Fig. 3.3.

scenario, showing how each of the components in WIMP contributes to the final output.

3.5 Discussion
In this chapter, we proposed a recurrent graph-based attentional framework with interpretable
geometric and social relationships that supports injection of counterfactual contextual states.
Leveraging information from historical, social, and geometric sources, WIMP facilitates joint
multi-modal prediction of future states over an arbitrary number of actors within a scene, out-
performing all previous methods on the Argoverse forecasting dataset. In the remainder of this
section, we 1) discuss how WIMP predictions can be used as part of a feedback loop to update and
improve maps and 2) explain the specific implementation details used within our experiments.

3.5.1 Improving Maps via Prediction
Planning and forecasting in AVs are tightly coupled to semantic map data that is collected, pro-
cessed, and annotated offline. By examining for repeated and significant disagreement between
heuristically chosen lane polylines and accurate forecasted trajectories, we can automatically
identify map locations where the proposed lane polylines fail to capture the dominant modes of
traffic behavior (shown in Fig. 3.6).

This ancilary benefit of explicit path-conditioning could serve as an important feedback mech-
anism for generation and maintenance of safe and current maps. Without updates, maps can
quickly become outdated in urban environments, as active construction and development mod-
ifies the road network and induces change in traffic patterns. One such way that map updates
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Figure 3.6: BEV visualizations of three different intersections where accurate predictions based
on polyline proposals from the vector map disagree with the observed mode of traffic behavior.
Visualization style follows Fig. 3.

could be performed in an online setting is to assign a weighted prior for each map polyline, with
value inversely proportional to the rate of disagreement between conditioned predictions and the
corresponding polyline. These polyline weights can then be used as an input to a heuristic or
learning-based polyline proposal module to enable dynamic selection of high-quality reference
trajectories. As variables within the environment change (e.g. construction, weather, potholes),
priors can be automatically updated to capture the updated distribution of driver behavior.

3.5.2 Reproducibility and Extensibility
Although we demonstrate the WIMP forecasting framework using a vehicle trajectory prediction
task in an autonomous driving setting, the architecture is designed such that concrete implemen-
tations of learned components and transformations are abstracted away. This improves general-
ization, as a variety of prediction tasks can be supported with just a few tweaks to model con-
figuration. To improve reproducibility, we share the specific implementation details (including
hyper-parameters for training and model configuration) for the model used in our experiments.

Normalization. Prior to all other operations, every collection of points specified in global Argo-
verse world coordinates (input trajectories, reference polylines, etc.) within each scenario is first
transformed to a local coordinate space that is normalized with respect to focal agent F . This
is implemented using an affine transformation A, such that the positive X-axis becomes aligned
with the focal agent’s heading (defined as the angle between xF1 and xF20) and xF1 = (0, 0)

Polyline Attention. Both the encoder Φenc and decoder Φdec make use of polyline attention
module Φpoly to capture priors provided by the map. However, weights are not shared between
the two polyline attention modules. This is largely a consequence of Φdec only predicting a
trajectory for the focal agent F (owing to the task formulated by the Argoverse [15] dataset),
whereas Φenc takes observed trajectories from all actors as input. Φpoly is implemented as a 4-
layer LSTM, where the hidden state is a 4× 512 dimensional vector. The distance metric d(·) in
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Eq. 3.4 is the L2-norm. The transformations Q,K,V defined in Eq. 3.3 are learned matrices of
size 512 × 512 and are used in the same manner as [50, 72]. We use a dropout [67] rate of 0.5
during training, which is applied over the first three layers.

Encoder. The shared recurrent encoder Φenc used to capture each actor’s location history is
implemented as a 4-layer LSTM with a 512-dimensional hidden state. We use a dropout rate of
0.5 during training, which is applied over the first three layers.

Graph Attention. The graph attention module Φgat takes as input the final hidden state htn, for
each actor n. Following Eq. 3.5, we set the number of attention heads D to 4, and the learned
parameters Wd and ad are of sizes 2048× 512 and 1024× 1 respectively.

Decoder. The decoder Φdec is configured identically to the encoder Φenc, wherein we use a 4-
layer LSTM with a 512-dimensional hidden state. Following Eq. 3.6, Φpred is a linear layer that
transforms the 512-dimensional output onδ of Φdec into a 2-dimensional prediction.

Training. For training on the Argoverse dataset, we use the ADAM optimizer with stochastic
mini-batches containing 100 scenarios each; no weight decay is employed, but gradients are
clipped to a maximum magnitude of 1.0. The learning rate is initialized to a value of 0.0001 and
annealed by a factor of 2 every 30 epochs. We couple the optimizer to an EWTA-based loss (as
described in Section 3.5), the value of M ′ is intialized to 6 and annealed by 1 every 10 epochs
until M ′ = 1 at epoch 50. Validation metrics are computed after every 3 training epochs and
training is terminated once validation metrics have failed to improve for 30 epochs in a row. Each
model requires approximately 100 epochs to train on average, taking about 28 hours of compute
time on an AWS “p3.8xlarge" instance equipped with 4x V100 GPUs.

Evaluation. As predictions are generated in the normalized local coordinate space, they are first
transformed back to the global world space using an inverse affine transformation A−1 before
evaluation. The minimum final displacement error (minFDE) metric is computed by taking the
minimum of L2 distances between the end points of each of the k predicted trajectories and
the ground truth future; minimum average displacement error (minADE) is then obtained by
computing the average L2 distance corresponding to the predicted trajectory with lowest end
point error. Finally, we compute the miss rate, which measures the proportion of scenarios where
minFDE exceeds a threshold value (set at 2m in the Argoverse Forecasting Challenge).

Code. In order to facilitate future research and ensure that experiments are reproducible, we
have released an open-source implementation2 of WIMP, along with data processing utilities, all
hyper-parameters, and trained models.

2WIMP implementation accessible from: https://github.com/wqi/WIMP
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Chapter 4

Conclusion

4.1 Contributions
In this thesis, we addressed some of the key challenges faced by mobile robots operating in
real-world, multi-actor, shared environments such as homes and roads. Focusing on motion
planning and motion prediction - two important and closely-related components of the mobile
robot autonomy stack, we exploited structured inductive biases to design frameworks for scene
representation learning. Specifically, we leveraged large, self-supervised corpora of data to learn
representations that enable goal-directed navigation within novel, unmapped environments and
multi-modal vehicle motion forecasting in autonomous driving settings. Evaluating in simula-
tion and on large-scale real-world datasets, we empirically show that use of such representations
advances the state-of-the-art in these tasks, providing several possible avenues towards the de-
ployment of safer autonomous agents.

In Chapter 2, we described a learnable approach for exploration and navigation within novel
environments. Like RL-based policies, our approach learns to exploit semantic, dynamic, and
even behavioural properties of the novel environment when navigating (which are difficult to
capture using geometry alone). But unlike traditional RL, our approach is made sample-efficient
and interpretable by way of a spatial affordance map, a novel representation that is interactively-
trained so as to be useful for navigation with off-the-shelf planners. Evaluating in simulation,
we show that such representations enable autonomous agents to move within hazardous, dy-
namic environments with significantly improved safety and efficiency over existing classical and
learning-based methods.

In Chapter 3, we proposed a recurrent graph-based attentional forecasting framework with in-
terpretable geometric and social relationships. Leveraging information from historical, social,
and geometric sources, WIMP facilitates joint multi-modal prediction of future states over an
arbitrary number of actors within a scene. By supporting the injection of counterfactual con-
textual states, we enable motion planners to pose what-if questions about actor behavior using
topological queries such as map-based goals and social contexts. Evaluating on the large-scale
Argoverse vehicle trajectory dataset, we show that WIMP provides provides significant improve-

39



ments in prediction accuracy, while offering unique advantages for motion planning.

4.2 Future Work
In the A2L system, we choose to encode geometric, dynamic, and semantic information relevant
to motion planning within a single spatial affordance-based representation. Though conceptu-
ally simple, we believe that affordance maps open up further avenues for research and could help
close the gap between human and autonomous navigation performance. For example, the dynam-
ics of moving obstacles are currently captured only in an implicit fashion. A natural extension
is to make this explicit, either in the form of a dynamic map or navigability module that makes
use of spatio-temporal input for better affordance prediction. Another possible extension could
be to combine back-projection with image-based tracking to improve the accuracy and precision
of self-supervised labelling (as discussed in Section 2.5.1).

In the WIMP framework, we generate per-actor candidate polylines from the road network using
similarity-based heuristics that match against the previously observed trajectory. However, such
a selection process has the potential to fail in scenarios such as lane changes and merges, where
an actor may transition between road lanes. In future work, this issue could be addressed by ex-
tending the polyline selection procedure with an end-to-end trainable solution that is less brittle,
enabling the model to automatically select candidate polylines based on observed scene context.
This procedure could potentially operate over the lane graph directly, learning when nodes in
different lanes should be joined to form a transitional polyline.

Alternative directions for future research could explore applications of WIMP beyond autonomous
driving, perhaps for prediction of pedestrian trajectories or human actions. The recent release of
the Forking Paths dataset [45] presents particularly exciting opportunities for such research, as it
provides the first publicly-released collection of true multi-future prediction scenarios. Using a
realistic 3D simulator, the authors re-create scenarios based on real-world trajectory data and ask
human annotators to control pedestrian actors with different latent goals. Employing a prediction
architecture that explicitly conditions on semantic goals, such as WIMP, could be of particular
value in such an environment.

Another exciting direction for future work exists at the intersection of affordance learning and
trajectory prediction. By replacing the static affordance maps employed in A2L with a proba-
bilistic, spatio-temporal representation that encodes a best-guess prediction of future navigability,
it is possible to create an interpretable representation that explicitly captures the multi-modality
of future states. Coupling such a representation with classical planning could enable autonomous
agents to reach their goals more efficiently in the presence of nearby dynamic actors, while re-
specting social norms and maintaining appropriate margins of safety. Another avenue of research
could be to explore actor or object-based representations for such information, which could be
employed with WIMP-like encoders to capture scene context for jointly learned planners.
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