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Abstract

Current state-of-the-art trackers often fail due to distractors and large
object appearance changes. In this work, we explore the use of dense
optical flow to improve tracking robustness. Our main insight is that,
because flow estimation can also have errors, we need to incorporate
an estimate of flow uncertainty for robust tracking. We present a novel
tracking framework which combines appearance and flow uncertainty
information to track objects in challenging scenarios. We experimentally
verify that our framework improves tracking robustness, leading to new
state-of-the-art results. Further, our experimental ablations shows the
importance of flow uncertainty for robust tracking.
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Chapter 1

Introduction

Instance tracking is an important task in video applications, such as autonomous

driving, sports analytics, video editing, and video surveillance. In single-object

tracking, the position of the target instance is given in the first frame of a video

sequence; tracking algorithms need to predict the position of the same instance in

each of the following frames.

Most state-of-the-art tracking methods use a convolutional neural network to

extract features from the target object and features from the scene [27, 35, 38]. These

methods use an approach of “tracking-by-one-shot-detection” [27]: a network is

trained to match the appearance between an image of the target object and an image

of the same object in the current frame.

Although this “tracking-by-one-shot-detection” approach has achieved impressive

performance, it is prone to errors due to distractors and object appearance changes.

First, if there are similar-looking objects in the video (“distractors”), tracking-by-one-

shot-detection methods often switch to a distractor object (see Figure 1.1b); common

examples include different objects of the same category or objects of similar color or

texture. Likewise, if the object changes its appearance due to object deformations,

image blur (from large camera or object motion), lighting changes, or other variations,

tracking-by-one-shot-detection methods often lose track of the target object (see

Figures 1.1a, 1.1c).

When there are distractor objects or large appearance changes, matching the

object appearance alone will likely be insufficient for robust tracking. Instead, the

1
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Figure 1.1: Three example errors that our method fixes (a): Failure case of baseline
due to large camera motion; (b): Failure case of baseline due to distractors; (c): Failure
case of baseline due to large motion of instance being tracked. In this figure, white
boxes represent ground-truth boxes, red boxes represent predictions by SiamMask [35],
green boxes show the results from our method.

tracker should make use of the tracked object’s position. By tracking the position of

the object throughout the video, the tracker can determine which object is the target

and which are the distractors.

Past trackers have typically incorporated relatively weak position information to

try to resolve these issues. For example, many methods [2, 27, 35, 38] use a position

penalty that gives a lower score to bounding boxes that are farther away from the

location of the detected object in the previous frame. However, a position penalty

that is too strong will lose track of fast moving objects or objects under large camera

motion; a position penalty that is too weak will not achieve the desired effect of

ignoring distractors or handling large object appearance changes.

To address these issues, we explore how trackers can incorporate object position

information in a more robust manner. Specifically, we use dense optical flow corre-

spondences to track the position of the target object from one frame to the next.

Dense optical flow methods jointly track the motion of the target object as well as

the distractors or other nearby objects, and can thus be used to more robustly ignore

distractor objects. Optical flow can also track objects over large appearance changes

2
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by reasoning about the position of the target object relative to the rest of the scene.

However, methods for dense optical flow can also make mistakes; incorporating

such erroneous information can cause the tracking performance to degrade. Our

main insight is that, to avoid such situations, we should use an estimate of optical

flow uncertainty [17] to reason about our confidence in the optical flow estimate.

We develop a novel probabilistic framework that estimates a tracking score for each

bounding box based on the optical flow estimates and their uncertainties. These flow

scores are combined with object appearance scores to estimate the new position of

the tracked object.

We demonstrate that our method significantly improves tracking performance,

when evaluated on the VOT 2016, 2018, and 2019 datasets, compared to the perfor-

mance of the base tracker that our method builds upon. Our method is general in

that our flow uncertainty tracking scores can be incorporated into any base tracker.

We show that our method improves tracking robustness under distractors and large

object appearance changes. Our contributions include

• A novel end-to-end differentiable method for combining segmentation and flow

uncertainty for tracking

• Experimental demonstrations that our method outperforms current state of the

art trackers

• Ablations showing the importance of each component of our method, especially

flow uncertainty, for optimal tracking performance

3
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Chapter 2

Related Work

2.1 2D Instance Tracking

Since the work of Bolme [3], correlation filter has been a popular approach for instance

tracking. The method trains a filter online and tracks the target by correlating the

filter over a search window. Significant efforts has been devoted to improve the

performance, such as by learning a multi-channel filter [9, 13], integrating multi-

resolution deep feature maps [6, 31] and mitigating boundary effects [5, 10]. Recently,

instead of learning discriminative filter online, offline learning methods, especially

siamese networks [2, 8, 12, 27, 35, 38], have considerably improved performance on

2D instance tracking by using a one-shot detection framework.

In order to track objects temporally, most trackers incorporate a position penalty

to prevent large changes in position from one frame to the next. This can be achieved

using a cosine window penalty [2, 27, 35, 38] or a Gaussian penalty [28]. Another

approach to incorporate position information more implicitly is to input a search region

cropped around the location of the tracked object in previous frame [2, 12, 27, 35, 38]

or to restrict feature correlation to a local neighborhood [8]. Many previous works

take the Bayesian approach for instance tracking, using a Kalman filter [1, 19, 36]

or particle filter [15, 18, 29] to smooth the tracker output over time. To make the

method more robust to distractors, DaSiamRPN [38] proposes a distractor-aware

module to perform incremental learning during inference time. We show that our

approach to avoiding distractors significantly outperforms these approaches.

5
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Our tracker makes use of a segmentation mask of the tracked object from the

previous frame. To obtain this mask, we use SiamMask [35], which achieves the

state-of-the-art tracking performance. We combine this mask with uncertainty-aware

optical flow to improve tracking performance in the face of distractors and large

appearance changes.

2.2 Optical Flow

Optical flow has been widely used for video analysis and processing. Traditional meth-

ods for optical flow estimation includes variational approaches [14], possibly combined

with combinatorical matching [32]. Recently, deep learning based methods [7, 16]

have obtained state-of-the-art performance for optical flow estimation. Optical flow

has been used to guide feature warping to improve performance of class-level object

detection in videos [39]. Other work [34] uses optical flow to identify temporal

connections throughout videos, and jointly updates object segmentation with flow

models. In contrast to these applications, we use optical flow to improve tracking

performance by estimating how the target object, as well as the other objects in the

scene, move over time.

2.2.1 Tracking with Optical Flow

Recently, some trackers [11, 33, 40] use optical flow estimation to improve performance

on instance tracking. FlowTrack [40] uses flow to warp features from previous frames

to improve the feature representation and tracking accuracy. The warped feature

maps are weighted by a spatial-temporal attention module; these feature maps are

then input into subsequent correlation filter layers along with feature maps of the

current frame. Other work [11] uses optical flow to obtain deep motion features, and

then fuses appearance information with deep motion features for visual tracking. For

hand-crafted features, deep image features, and deep motion features, the method

separately learns a filter by minimizing the SRDCF [4] objective and then averages

the filter responses to get final confidence scores. SINT+ [33] uses flow to remove

motion inconsistent candidates. Specifically, it uses the estimated optical flow to map

the locations of the pixels covered by the predicted box in the previous frame to the
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current frame, and remove the candidate boxes which contain less than 25% of those

pixels.

However, none of these methods use a segmentation mask or flow uncertainty for

tracking; our experiments demonstrate that both of these components are crucial

for optimal tracking performance. We develop a probabilistic framework to use flow

uncertainty for tracking.

2.2.2 Tracking with Uncertainty

There have been several recent works on estimating confidence in optical flow [17, 20,

26]. FlowNetH [17] is shown to be able to generate effective uncertainty estimates

without the need of sampling or ensembles. As far as we know, these methods have

not been used to improve performance of instance tracking. We propose a new

framework which combines flow uncertainty estimates with appearance scores from

a one-shot-detection method; we show that our method can significantly improve

tracking robustness and obtains state-of-the-art tracking results.
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Chapter 3

Background

3.1 Siamese Networks for Tracking

Our method is based on the SiamMask [35] framework, which is the state-of-the-art

method on the VOT tracking benchmarks [21, 22, 23, 24]. It consists of siamese

subnetwork for feature extraction and a region proposal subnetwork for bounding

box proposal generation. The framework scores proposals based on an appearance

matching score d, a size change penalty ps, and a position change penalty pc. The

size change penalty ps penalizes changes to the size of the bounding box of size w by

h from one frame to the next; this is defined as

ps = e(1−max( r
r′ ,

r′
r

)·max( s
s′ ,

s′
s

))·kp (3.1)

where s and s′ are the padded areas p of the proposal box and the bounding box in

the previous frame, respectively, given by

s2 = (w + p)× (h+ p) (3.2)

and r and r′ are the aspect ratios of the proposal box and the bounding box in the

previous frame, respectively. The score f for each proposal is calculated as

f = (1− kc) · ps · d+ kc · pc (3.3)

9
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where kc and kp are hyperparameters. The position penalty pc is obtained by penalizing

the position of the center of the bounding box according to one period of a cosine

function, centered at the position of the previous bounding box; the period of this

cosine penalty is determined based on the size of the previous bounding box. The

appearance matching score d is given by the output of the one-shot detection network,

which matches a template image of the target object to the scene.

SiamMask [35] first chooses a bounding box based on the proposal with the highest

score f . For the highest scoring proposal box, it then predicts a mask Ft, thresholds

it into a binary mask F̂t using threshold tseg, and outputs the minimum bounding

rectangle (MBR) of the binary mask as the final prediction of the location of the

tracked object.

10



Chapter 4

Method

We introduce a new method which improves tracking robustness under distractors

and large appearance changes. We visualize our pipeline in Figure 4.1. Our method

uses optical flow to estimate the probability of being in part of the foreground for

every pixels in a frame, which we call it a “FlowMask.” Based on this probability

mask, we assign a flow score for each proposal, which we combine with an appearance

score to obtain the final tracking output. The rest of this section explains how our

method works in detail.

4.1 Flow Mask

Our method makes use of previous work for uncertainty-aware dense optical flow

estimation [17] that computes the probability that each pixel i in frame t corresponds

to a given pixel location j in frame t− 1: p(c(Ii,t) = Ij,t−1) where c maps pixel Ii,t to

a pixel in frame t− 1. Given images It and It−1, this method predicts the probability

of each pixel being part of the foreground as a Laplace distributions, parametrized by

flow mean µ and scale b:

p(c(Ii,t) = Ij,t−1) = L(Ij,t−1 − Ii,t|µ, b) (4.1)

11
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Figure 4.1: Overall pipeline of our method: On top of SiamMask [35](showed in
orange), we add a module(showed in green) to compute flow score for each proposal
using flow uncertainty estimations and segmentation output from previous frame; our
method then combines flow scores with appearance scores to choose a bounding box
proposal.

where the Laplace distributions are defined in the standard manner as

L(u|µ, b) =
1

2b
exp

(−|u− µ|
b

)
(4.2)

For notational convenience, we are omitting the conditioning for these probabilities on

the images It and It−1. As we will show, flow uncertainty is crucial for robust tracking.

Using Eqn. 4.1, we can compute the probability that pixel Ii,t corresponds to pixel

Ij,t−1. We compute the probability that pixel Ij,t−1 belongs to the target object. To

do so, we use a segmentation-based tracking method [35] to obtain a “segmentation

mask”, which gives the probability that each pixel Ij,t−1 belongs to the foreground of

the previous bounding box (i.e. the tracked object): p(Ij,t−1 ∈ Ft−1) where Ft−1 is

the set of foreground pixels, i.e. the set of pixels in frame t− 1 that belong to the

tracked object. We combine these flow probabilities with the Segmentation Mask

probabilities to estimate the probability that a pixel Ii,t in frame t belongs to the

12
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Figure 4.2: Illustration of how flow mask is computed. The green box is the ground-
truth box; the orange boxes are proposals; αu and αv are the predicted flow mean
from frame t to frame t − 1 in u, v direction; colormap in frame t − 1 visualizes a
Laplace distribution parametrized by predicted flow mean and variance. The blue
dot represents a point Ij,t−1 that belongs to the foreground in frame t− 1.

tracked object:

p(Ii,t ∈ Ft) =
∑
j

p(c(Ii,t) = Ij,t−1) p(Ij,t−1 ∈ Ft−1) (4.3)

We compute the foreground probability for every pixel Ii,t in frame t; we refer to

the resulting set of probabilities as the “FlowMask” at frame t. This computation is

implemented in a differentiable manner, and could be used in end-to-end trainable

pipelines. This idea is further illustrated in Figure 4.2.

4.2 Flow Score

After we compute the flow mask at frame t, we can compute a flow score for each

proposal box(i,t), denote as fs(box(i,t)) by averaging the foreground probabilities for

13
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each pixel in the box:

fs(box(i,t)) =
1

Nbox(i,t)

∑
Ii,t∈box(i,t)

p(Ii,t ∈ Ft)

where Nbox(i,t) represents the total number of pixels in box(i,t). However, one discrep-

ancy in this score is that, even though box(i,t) is a rectangle, the object being tracked

may not be shaped as a rectangle, which could cause fs(box(i,t)) to be much less than

1. This variability in fs(box(i,t)) will make it difficult to combine the flow score with

the appearance score, as described in Section 4.3 below. To deal with this issue, we

first compute the number of pixels that are in the thresholded segmentation mask

F̂t−1 as NF̂t−1
. Then we compute a tflow,t by dividing NF̂t−1

by the number of pixels

in previous frame’s axis-aligned detection box box∗t−1.

tflow,t =
NF̂t−1

Nbox∗t−1

(4.4)

This results in a flow score defined as

f ′s(box(i,t)) = min
(fs(box(i,t))

tflow,t

, 1
)

(4.5)

4.3 Bounding Box Selection

Lastly we combine our flow score with the appearance score from the one-shot

detection framework to obtain a motion score for a given proposal box:

(1− kf ) · pc + kf × f ′s (4.6)

where kf is a hyperparameter, pc was described in Section 3.1, and f ′s is obtained from

Eqn. 4.5. We combine our position penalty pc from Eqn. 4.6 with the size penalty

ps and appearance matching score d in Eqn. 3.3 to obtain the total score for each

proposal box. Our entire pipeline is end-to-end differentiable, so we could backprop

through our network and learn the value for the different hyperparameters. However,

14
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since there are only three hyperparameters, we proceed as in SiamMask [35] to do a

hyperparameter searches and find the proposal box with the highest score to obtain

the tracking output and estimate a segmentation mask for this box.

15
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Results

5.1 Implementation Details

Our method uses the pretrained SiamMask [35] network to obtain the appearance

matching score d and to compute the segmentation mask. Since SiamMask [35]

reports its tracking performace on visual object tracking datasets (VOT 2016, 2018

and 2019), we also report our performance on these three datasets. In SiamMask [35],

they perform hyperparameter searches on kc ∈ [0.40, 0.43] and kp ∈ [0, 1], and we

similarly search in these ranges; we also perform a random hyperparameter search for

kf ∈ [0, 1] for Eqn. 4.6.

5.2 Quantitative Results

5.2.1 Evaluation for VOT

This section includes results on VOT2016 [21], VOT2018 [23], and VOT2019 [24].

VOT2016 consists of 60 video sequences. The VOT2017 [22] challenges replaces the

10 least challenging sequences with new ones. VOT2018 contains the same 60 video

sequences as in VOT2017. VOT2019 replaces 20% of the videos in VOT2018 with

new ones. The performance is evaluated in terms of accuracy (average overlap while

tracking successfully), robustness (failure times), and Expected Average Overlap

(EAO), which takes account of both accuracy and robustness, as is common for the

17
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VOT2016 VOT2018 VOT2019

EAO ↑ R ↓ A ↑ EAO ↑ R ↓ A ↑ EAO ↑ R ↓ A ↑

ATP [25] - - - - - - 0.394 0.291 0.650

Our Method 0.47 0.196 0.647 0.41 0.234 0.605 0.306 0.426 0.599

SiamMask [35] 0.433 0.214 0.639 0.38 0.276 0.609 0.283 0.467 0.596

UInet [25] - - - - - - 0.254 0.468 0.561

SiamMsST [25] - - - - - - 0.252 0.552 0.575

MemDTC [37] 0.297 1.310 0.5297 0.2651 1.5287 0.4909 0.252 0.552 0.575

CSRDCF [30] 0.338 0.85 0.51 - - - 0.201 0.632 0.496

Table 5.1: Results on VOT 2016, VOT2018, and VOT2019. R represents robustness
and A represents accuracy. The top three performing trackers are colored with red
and green respectively.

VOT challenges.

The results are shown in Table 5.1. We compare our method with all the other state-

of-the-art trackers that predict both a bounding box for tracking and a segmentation

mask for each frame. As can be seen, our method significantly improves over most

state-of-the-art baselines in all categories across VOT2016, 2017, and 2018. In

particular, our method builds upon [35], so the improvement should be judged

relative to this method. However, our method for incorporating flow uncertainty

into tracking is modular and can be combined with other state-of-the-art tracking

methods as well.

In terms of speed, our methods operates at 5.62 frames per second, or 178ms per

frame, including 18ms for SiamMask [35] and 60ms for the optical flow computa-

tion [17].

5.2.2 Ablations

Our method builds upon SiamMask [35] and incorporates flow uncertainty based

on the previous frame’s predicted segmentation mask to improve performance. To

further investigate the importance of different components of our method, as well as

the effectiveness of different approximations that we make, we conduct the following

ablations:

Importance of Optical Flow We first investigate the importance of using optical

flow for tracking, rather than the approach taken by several recent papers of using

18
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Flow	Mask
Without

Uncertainty
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Figure 5.1: Illustration of importance of uncertainty: One example that flow mask with
uncertainty successfully tracks the target object but flow mask without uncertainty
fails. In this figure, white boxes represent ground-truth boxes, red boxes represent
prediction by using flow mask without uncertainty, green boxes shows the prediction
using flow mask with uncertainty.
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a cosine [2, 27, 35, 38] or Gaussian penalty [28] to penalize large motions from the

previous frame. To analyze this, we note that our method for optical flow uses a

Laplacian distribution, as shown in Equations 4.1 and 4.2. Thus, to evaluate the

importance of optical flow, we replace the estimated flow distribution with a constant

Laplacian, with 0 mean µ = (0, 0) and fixed scale parameters b. This ablation is

referred to as “Ours minus Flow” (Ours - Flow) in Table 5.2. As can be seen, using a

constant Laplacian distribution (rather than optical flow) leads to no improvement

over the baseline SiamMask [35].

Importance of Optical Flow with Uncertainty For the next ablation, we probe

the importance of utilizing uncertainty estimates for optical flow in tracking. To

evaluate this, we fix the Laplacian scale parameters b to a constant. The result is

shown in Table 5.2 as “Ours - Uncertainty.” Although the result is better than our

baseline, it still has a large performance gap with our method. As a qualitative

analysis, Figure 5.1 shows one example where our method successfully tracks the

target object but Ours-Uncertainty fails due to errors in the flow estimate under large

object motion and perspective changes. This shows how the uncertainty increases

the tracking robustness.

Importance of Segmentation Mask In this ablation, we investigate the impor-

tance of using a segmentation mask for the computation of the flow mask. In our

method, we use SiamMask [35] to predict a segmentation mask for the previous frame.

We then combine the probability of being in the foreground with the flow probability,

as shown in Equation 4.3. We probe the importance of having a segmentation mask

by replacing it with a bounding box. We analyze using both an axis-aligned bounding

box (ALB) and a minimum bounding rectangle (MBR) mask (see SiamMask [35] for

details). The result is shown in Table 5.2 as “Ours - SegMask (ALB)” and “Ours -

SegMask (MBR)”. As we can see, using the minimum bounding rectangle instead

of a segmentation mask results in no improvement over the baseline. On the other

hand, using the mask obtained using axis-align box improve upon baseline but still is

not as effective as our method.

20



CHAPTER 5. RESULTS

5.2.3 SiamMask+Flow Rejection

Last, we compare to an additional baseline that also uses optical flow to improve

tracking. Following SINT+ [33], we evaluate using optical flow to filter out motion

inconsistent candidates, and try to use this “flow rejection” method to improve the

SiamMask [35]. Specifically, we use flow to warp the pixels covered by the predicted

box in the previous frame. We then remove all proposals in the current frame

that contain less than 25% of the warped pixels (this is similar to the procedure

from SINT+ [33]). We refer to this experiment as “SiamMask plus flow rejection”

(SiamMask + FlowRej) in Table 5.2. As we can see, using flow rejection does not

improve the performance compared to the baseline SiamMask [35]. This degradation

in performance, especially in robustness, is likely due to occasional errors in the

flow estimation. This supports our claim about the important of flow uncertainty

estimation for robust tracking.

VOT2018

EAO↑ Robustness↓ Accuracy↑

Ours 0.41 0.234 0.605

Ours - Flow 0.38 0.276 0.609

Ours - Uncertainty 0.383 0.262 0.610

Ours - SegMask (ALB) 0.388 0.267 0.614

Ours - SegMask (MBR) 0.372 0.253 0.593

SiamMask [35] + FlowRej 0.361 0.290 0.613

SiamMask [35] 0.38 0.276 0.609

Table 5.2: Ablation Analysis. Ours-Flow uses identity flow; Ours-Uncertainty uses
fixed variance; Ours-SegMask (ALB) replaces segmentation mask with an axis-aligned
bounding box; Ours-SegMask (MBR) replaces segmentation mask with a minimum
bounding rectangle.

5.3 Qualitative Analysis

Our method effectively improves tracking robustness under distractors and large

object appearance changes. To better illustrate the effect of our method, we analyze

our results qualitatively. In Figure 1.1, we visualize three cases where the state-

of-the-art tracker SiamMask [35] fails but our method is able to successfully keep

track of the target objects. For each case, we visualize the position penalty that
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SiamMask [35] uses, the appearance matching score (i.e appearance score) produced

by the one-shot-detection network, and the flow mask introduced in this work in

Section 4.1. Figure 1.1 shows two categories of challenging tracking scenarios:

Distractors One type of common failure case occurs when there are distractor

objects in the background that are similar in appearance or category to the object

being tracked. An example is shown in Figure 1.1(b), in which the target object runs

across another person in the background. In this case, the appearance matching score

(from the one-shot-detection network of SiamMask) is high for both people. The

position penalty is also not useful in this case due to the fast motion of the target

object. Thus, if we only rely on the appearance matching score and the position

penalty, we would track the distractor instead of the target object, as illustrated by

the red detection box (output by SiamMask).

Nevertheless, the flow mask successfully tracks the target object. Since the flow

mask is a probabilistic estimate based on the predicted segmentation mask of the

previous frame, it is able to focus precisely on the target object; additionally, because

we incorporate flow uncertainty, our method is also robust to small errors in the

estimated flow.

Large Appearance Changes Another challenging problem in tracking is large

appearance changes. In Figure 1.1(a), the image of the target object becomes blurry

under large camera motion. In this scenario, the appearance matching network

predicts similar confidence for many areas in the image. The position penalty also

fails because the position of the large change in the object position on the image due

to the fast camera motion. Similarly, in Figure 1.1(c), the position penalty is also not

effective due to the fast motion of the target object. In this case, the deformation of

the target object (a bird) also causes the appearance matching score to be uncertain,

leading to a failure from SiamMask.

However, in both cases, our proposed flow mask is still able to track the target

object. These examples illustrate that our method is robust to large appearance

changes, such as blurry images and deformations, as well as fast moving objects.
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Figure 5.2: Results breakdown on VOT 2018 for different visual attributes. We
compare the EAO under these five attributes of our method with the baseline
SiamMask [35].

5.4 Detailed Analysis on VOT2018

To better understand the effect of using our method, we perform in-depth analysis on

the VOT 2018 dataset. In the VOT 2018 dataset, each frame is manually labeled with

five visual attributes that reflect a particular challenge: (i) camera motion, (ii) motion

change, (iii) size change, (iv) illumination change, (v) occlusion. In case that a frame

doesn’t correspond to any of those five attributes, it is labeled as ”non-degraded”.

Those labels enable us to analyze the benefits of our method while focusing only on

the frames that contain a given attribute.

The results are shown in Figure 5.2, in which we compare our method to the

SiamMask [35] baseline that we build on top of. As can be seen, our method

significantly improves the tracker’s performance under camera motion, and we also

see modest improvements under size change and illumination change. Our method

performance slightly worse than SiamMask [35] under motion change and occlusion.

In Figure 5.3, we visualize one example of a failure case due to occlusion. In this

case, the target object gets occluded by another similar looking distractor. We find

that, when an occlusion occurs, the predicted segmentation mask tends to also mask

the distractor; thus it will mislead the calculation of FlowMask in the following frames.
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Figure 5.3: Illustration of a failure case due to occlusion: when there is an occlusion,
the predicted segmentation mask and flow mask tends to drift to the distractor. In
this figure, white boxes represent the ground-truth , green boxes show the prediction
from our method.

Eventually both FlowMask and the segmentation mask would have high confidence

for the distractor. Thus tracker would drift and track the distractor instead. In

SiamMask [35] baseline, it fails similarly in this case. However, since the location of

two objects don’t change too much, eventually baseline method recovers by the help

of position penalty. In our case, the use of flow mask prevent us from recovering from

a failure in this case.
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Conclusions

In this paper, we introduce a novel probabilistic framework that combines appearance

and flow uncertainty for tracking. We show that our method, when evaluated on

Visual Object Tracking datasets, significantly improves the performance of a state-of-

the-art tracker. Ablation experiments show the importance of each component of our

framework, such as the use of flow uncertainty and warping a segmentation mask.

We hope that our work can be insightful to future research on robust tracking under

distractor objects and large object appearance changes.
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Luka Čehovin Zajc, Tomas Vojir, Gustav Häger, Alan Lukežič, and Gustavo
Fernandez. The visual object tracking vot2016 challenge results. Springer, Oct
2016. 3.1, 5.2.1
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Joni-Kristian Kamarainen, Luka Čehovin Zajc, Ondrej Drbohlav, Alan Lukezic,
Amanda Berg, Abdelrahman Eldesokey, Jani Kapyla, and Gustavo Fernandez.
The seventh visual object tracking vot2019 challenge results, 2019. 3.1, 5.2.1

[25] Matej Kristan, Jiri Matas, Ales Leonardis, Michael Felsberg, Roman Pflugfelder,
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