
Learning Families of Behaviors for Legged Locomotion
using Model-Free Deep Reinforcement Learning

Raunaq Mahesh Bhirangi

CMU-RI-TR-20-40
August 2020

The Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee:
Prof. Matthew Travers
Prof. Howie Choset
Prof. David Held
Anirudh Vemula

Submitted in Partial Fulfillment of the Requirements for the
Degree of Master of Science in Robotics

© Raunaq Mahesh Bhirangi, August 2020

ii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisors, Matthew Travers and Howie
Choset, for their support and the freedom they afforded me in defining my academic
journey as a master’s student. I have covered a lot of ground in learning to be an
independent researcher, and it would not have been possible without their guidance
and unwavering belief in my ability.

I would also like to thank everybody at the Biorobotics Laboratory for creating an
environment conducive to research and intellectual discourse. In particular, I would
like to thank Benjamin Freed, Hans Kumar, Naman Gupta and Julian Whitman for
all the stimulating discussions, and for making the lab a place I looked forward to
going back to every day.

My friends and family have been encouraging and understanding throughmy journey
at CMU, and this thesis would not have been possible without their support and
patience. I would particularly like to thank Tejas Kotwal and Roshail Gerard who
have been constant sources of inspiration and motivation throughout college and
grad school, while also being constant sinks for my frustration. A big shout-out to
my housemate of the last two years, Tejas Srinivasan, for being a reliable friend and
for making our apartment a homely place to come back to after a tiring day of work.

Last but not the least, I would like to thank BJ Fecich and Peggy Martin for being
the most approachable staff members I have known at CMU, and for all that they do
behind the scenes to allow for a seamless research experience.

iii

ABSTRACT

Successful deployment of complex systems, such as articulated legged robots, re-
quire general solutions to planning and control because the high dimensional state
spaces associated with such systems make it impractical to search for a new solu-
tion each time the robot encounters a different challenge. To achieve some level of
generality, in this work, we present a framework for end to end learning of a set
of parameterized families of behaviors that can be modulated by low dimensional
sets of control parameters. We draw inspiration from Central Pattern Generators
(CPGs), which use networks of oscillators, to form expressive low-dimensional pa-
rameterizations of locomotive behaviors. We do not directly use CPGs because
their design requires significant domain knowledge and hand tuning. Instead, we
turn to model-free deep reinforcement learning (RL) which offers a framework for
learning behavioral policies by interacting with the environment, with minimal to
no domain knowledge about the robot or its environment. The results from RL are
still restrictive because they represent a single behavior whose characteristics cannot
be easily modified. Therefore, this work presents a framework that brings together
ideas from CPGs and model-free deep RL to enable expressive parameterizations
of behaviors to be learned end-to-end by interaction with the environment.

iv

TABLE OF CONTENTS

Acknowledgements . ii
Abstract . iii
Table of Contents . iv
List of Illustrations . v
List of Tables . vii
Chapter I: Introduction . 1

1.1 Overview . 1
1.2 Outline . 4

Chapter II: Background and Related Work 5
2.1 Central Pattern Generators . 5
2.2 Deep Reinforcement Learning . 8
2.3 Variational Autoencoders . 10

Chapter III: Learning Families of Behaviors 14
3.1 Model Architecture . 14
3.2 Reward Function . 17
3.3 Training the Policy Network . 18

Chapter IV: Experiments and Results . 20
4.1 Experimental details . 20
4.2 Learning policies for a range of gait frequencies 22
4.3 Learning policies with a specific gait frequency 25
4.4 Comparison with joint-space CPGs 25

Chapter V: Conclusions and Future Work 28
Bibliography . 29

v

LIST OF ILLUSTRATIONS

Number Page
1.1 The Matt-6 walking on rocks . 1
1.2 Schematic diagram of a CPG for a hexapod robot. The six circles

with connecting arrows represent the coupled oscillator systemwhich
produces reference signals, indicated by the yellow arrows flowing
into the PID controller. These signals ultimately produce motor
commands, also indicated by yellow arrows, for the hexapod robot.
The CPG controller is a closed loop system as indicated by the green
arrow going back from the robot to the system of oscillators. 2

1.3 An overview of the proposed model. A representation model maps
the robot’s state to the oscillators. A control policy then maps the
output of the oscillators to an actuator command for the robot. 3

2.1 Example mappings between CPG oscillators and the actuator space
of the robot. The joint space CPG, on the left, maps the output of
an oscillator to positions of the joints for each limb. The task space
CPG, on the right, maps the output of an oscillator to the motion of
the foot of the robots. 6

2.2 Vector field described by Eq. 2.1. Some examples trajectories of
evolution along the vector field are shown in different colors. From
any initial state, the trajectories converge to a stable limit cycle. . . . 7

2.3 Effect of varying l and U on the vector field described by Eq. 2.1.
An increase in the value of l results in a larger component of the
vector along the tangent to the limit cycle, and thus an increasing in
the angular frequency of the motion of the oscillator. An increase
in the value of U results in a larger component of the vector field
normal to the limit cycle, and thus increases forcing onto the limit
cycle. Proportionate increases in U and l do not affect the relative
magnitudes of the components of the vector field. 8

2.4 Schematic representation of the directed graphical model. Solid lines
denote the generative distribution ?\ (x, z), and dotted lines denote
the variational approximation, @q (z|x) 11

vi

2.5 Schematic representation of the directed graphicalmodel for a CVAE.
Solid lines denote the generative distribution ?\ (x, z|y), and dotted
lines denote the variational approximation, @q (z|x, y) 12

2.6 Schematic representation of the HMM directed graphical model.
Solid lines denote the generative distribution ?\ (z1:) , x1:) |y1:)), which
factorizes as

∏)
C=1 ?\ (zC |zC−1, yC)?\ (xC |zC , yC) 13

3.1 Model architecture. The representation model maps the current ob-
servation, oC , to the state, sC , in the encoded state space. The vector
field takes in the gait frequency l as input and maps sC to a predicted
state ŝC+1. The current and predicted states are then passed through
the policy to output a distribution over actions aC 15

3.2 The state distribution of a trajectory obtained by executing the policy
in the environment is modelled as a Hidden Markov Model. 16

4.1 The environments used to test the proposed algorithm 20
4.2 Observed gait angular frequencies for different values of the gait fre-

quency parameter,l, forAntBulletEnv-v0 andHalfCheetahBulletEnv-v0. 23
4.3 An example of an encoded state space trajectory through the execu-

tion of a learned policy. The dotted lines represent the limit cycles
corresponding to Eq. 3.3, while the blue lines correspond to the evo-
lution of the encoded state components along the trajectory when the
policy is executed. It can be seen that the encoded state components
remain close to the limit cycle and seem follow the vector field. . . . 24

4.4 Observed gait angular frequencies for specified values of gait fre-
quency, l, for AntBulletEnv-v0 and HalfCheetahBulletEnv-v0. 26

4.5 Relative cumulative rewards using the optimized joint space CPG as
the value of position_gain is varied, for different values of l. . . . 27

vii

LIST OF TABLES

Number Page
4.1 Hyperparameters used in the experiments 21
4.2 Hyperparameters for experiments described in Sec.4.2 22

1

C h a p t e r 1

INTRODUCTION

1.1 Overview

Figure 1.1: The Matt-6 walking on rocks

This thesis addresses the prob-
lem of generality in controlling
legged robots that have high
dimensional state spaces using
expressive low dimensional pa-
rameterized behaviors. Our
approach brings together con-
temporary ideas in deep rein-
forcement learning and expres-
sive low-dimensional parame-
terizations of behavior families
called Central Pattern Genera-
tors 1 in developing a novel model architecture that is capable of learning expressive
families of locomotive behaviors from scratch. We demonstrate the efficacy of our
approach by using it to learn families of behavior for two simulated robot environ-
ments.

Our approach is inspired by CPGs, which are often modelled as coupled systems
of oscillators and yield stable controllers for robotic systems. Fig. 1.2 shows a
schematic representation of a CPG controller for a legged robot. The system of
oscillators is mapped to the joint space of the robot, and oscillations result in a
coordinated control policy for the legged robot. A policy, based on CPGs, can adapt
to its changing environment by modulating parameters of the oscillator system, such
as the frequency, amplitude and coupling, which directly correspond to interpretable
characteristics of the robot’s motion. For instance, the oscillator frequency dictates
the robot’s gait frequency, the oscillator amplitude may be correlated with the step
height or stride length, while the coupling generally corresponds to the robot’s
footfall pattern.

1Biologically, CPGs are neural networks responsible for generating rhythmic signals that are
used in a number of biological functions like breathing, chewing and locomotion.

2

PID

controller

Feedback

Figure 1.2: Schematic diagram of a CPG for a hexapod robot. The six circles with
connecting arrows represent the coupled oscillator system which produces reference
signals, indicated by the yellow arrows flowing into the PID controller. These
signals ultimately produce motor commands, also indicated by yellow arrows, for
the hexapod robot. The CPG controller is a closed loop system as indicated by the
green arrow going back from the robot to the system of oscillators.

Despite these advantages, a major drawback of CPG-based approaches is a lack of
principled methodologies to design controllers based on them. For example, there
exists no clear choice of mapping between the system of oscillators and the actuator
space of the robot, making the design of these controllers a tedious, time-consuming
process that requires significant domain knowledge and expertise.

Some recent work [29, 19, 30] has attempted to create a general set of tools to devise
this oscillator-actuator mapping, but such tools continue to be a work in progress.
Therefore, we look beyond the CPG framework and create a novel architecture that
can learn families of behaviors that are "CPG-like". This means that we inherit the
benefits of the CPG, i.e., robot behavior can be modulated by a low dimensional
set of control parameters, while requiring minimal to no domain knowledge on the
part of the designer. Our framework retains the oscillators used by CPG models
and introduce a learned control policy that maps from the space of oscillators to the
actuator space of the robot. This policy can be modulated by the parameters of the
oscillator to result in a change in the robot’s behavior.

Our approach inherits another advantage of the CPG framework – the ability to
damp out perturbations by mapping state feedback to the oscillator [30, 17, 18]. To
incorporate feedback from the robot, we introduce a representation model that maps
from the state space of the robot to the oscillators. Fig. 1.3 shows a general outline
of the different components of the proposed architecture. We seek to formulate
this as an end-to-end learning problem to enable the different components of the

3

architecture to be learned without the domain knowledge and expertise required to
design a CPG controller.

Figure 1.3: An overview of the proposed model. A representation model maps
the robot’s state to the oscillators. A control policy then maps the output of the
oscillators to an actuator command for the robot.

In order to enable end-to-end learning of the proposed model, we use deep rein-
forcement learning (RL) as the learning framework. Model-free deep RL has been
shown to learn policies for legged locomotion for simulated robots [34, 12, 24],
making minimal to no assumptions about the robot and its environment. The en-
vironment provides the agent with rewards at each time step, which depend on the
robot’s forward progress, power usage etc. Deep RL algorithms enable the robot to
learn a policy based only on its interactions with the environment by maximizing
the cumulative sum of these rewards. This ability of model-free deep RL to en-
able end-to-end learning of behavioral policies, comes at the cost of the lack of an
expressive parameterization of the policy. The agent learns a single policy whose
characteristics cannot be easily modulated. Our proposed architecture provides a
framework that enables deep RL algorithms to learn a family of multiple behaviors,
that can be modulated by a small set of parameters once trained, in a single pass of
the algorithm.

To summarize, this thesis presents:

(a) an algorithm for learning CPG-like families of legged locomotion behaviors,
eliminating the domain knowledge and hand tuning required to design a CPG
controller.

(b) a technique that expands the capability of deep reinforcement learning to
learn a family of locomotive behaviors, instead of a single behavior, that can
be modulated by extrinsic parameters at runtime.

We demonstrate an ability to learn a family of "CPG-like" cyclical gait behaviors
in a single pass of the deep RL algorithm. The learned policy can be modulated
by a single control parameter to change the frequency of the gait executed by the
robot. We intend this work to be a proof of concept for the idea of learning a

4

CPG-like controller for legged robots. We use this architecture as a starting point
for learning a model that allows the locomotion policy to be modulated by a larger
set of parameters like coupling, swing and stance frequencies, and step height.

1.2 Outline
The rest of this thesis is organized as follows:

In chapter 2, we briefly discuss existing ideas in central pattern generator models,
deep reinforcement learning and variational inference relevant to this work. We also
review existing techniques related to this work, and distinguish our contribution.
In chapter 3, we give an overview of the proposed model, present a novel neural
network architecture, and elaborate on the methodology used in training the model.
In chapter 4, we apply this technique to a number of different legged locomotion
environments, and demonstrate the efficacy of the approach. In chapter 5, we
conclude and present directions for future work.

5

C h a p t e r 2

BACKGROUND AND RELATED WORK

We present a novel policy learning architecture that combines the flexibility of
model-free deep RL with the low-dimensional parameterizations CPGs offer. In
this chapter, we discuss CPGs in the context of legged robotics, which motivate the
presented architecture. We then move on to deep RL which provides the framework
for learning behaviors using the proposed architecture. Finally, we reviewvariational
autoencoders, which this architecture uses as a representation model.

2.1 Central Pattern Generators
CPGs in animals are biological neural circuits that produce rhythmic outputs and
are instrumental in numerous biological functions such as digestion, locomotion
and respiration in a wide variety of animals [17]. In robotics, they have gained
popularity as rhythmic pattern generators that can be used to produce cylical loco-
motive trajectories for a number of highly articulated robots. They have been used
to generate swimming gaits for lamprey and eel-like robots [3, 8], slithering gaits
for snake robots [6, 18] and walking gaits for a wide variety of legged robots [11,
30, 2].

Typically, CPGs encode trajectorieswith a small number of control parameterswhich
can be used to modulate the behavior of the robot. This reduction in dimensionality
allows control of the robot using simpler high-level control signals like gait frequency
and coupling, as opposed to controlling each degree of freedom. Additionally, CPGs
also exhibit limit cycle behavior, i.e. they produce stable periodic signals. This
means that any transients or perturbations to the nominal behavior prescribed by
the limit cycle are naturally and quickly damped out. These stability properties,
along with the reduction in dimensionality of the control problem, make CPGs an
attractive choice of controller for legged locomotion.

A major drawback of CPG-based approaches, however, is a lack of design method-
ologies for building these controllers [30]. While there has been some recent work
in developing a generic set of tools to design CPG models [19, 29], they usually
need to be handcrafted for specific robots and associated gait behaviors. In most
cases, each limb of the legged robot is associated with an oscillator [29, 17, 31]. The

6

mapping between the oscillator and the actuator space of the robot is crucial to the
performance of the controller and currently requires significant domain knowledge
and expertise to design.

Figure 2.1: Example mappings between CPG oscillators and the actuator space of
the robot. The joint space CPG, on the left, maps the output of an oscillator to
positions of the joints for each limb. The task space CPG, on the right, maps the
output of an oscillator to the motion of the foot of the robots.

Fig. 2.1 shows two examples of such mappings – a task space CPG [21] and a
joint space CPG [29, 17, 31]. In the context of legged locomotion, a task space
CPG implementation directly maps the state of each oscillator to the position of the
corresponding end-effector (foot). This allows for straightforward specification of
desired foot trajectories when designing the controller by modulating the shape of
the limit cycle [21]. The control inputs to the robot however, must be specified as a
trajectory in the joint space of the robot, which can only be obtained by solving the
inverse kinematics problem to compute leg joint angles from foot locations. This
makes it cumbersome to ensure continuity of the specified trajectory in joint space
and avoid joint limits.

A joint space CPG implementation eliminates these problems by directly mapping
the oscillator state to the joint outputs of each limb, allowing the designer to directly
prescribe joint space trajectories. But since the trajectories of the feet now result
from the (often complicated) forward kinematic transformation of the joint space
trajectories, it becomes difficult to specify desirable characteristics of the robot’s
gait such as the step height and stride length.

Furthermore, most gaits observed in legged animals consist of a stance phase, where
the foot is grounded, and a swing phasewhere the foot is in the air. Often, the duration
of the swing phase is much shorter than the duration of the stance phase [30]. While
there has been some work directed at defining mappings between oscillators and

7

the robot’s joint space that can capture such behaviors, regardless of the joint space
or task space perspective, they often result in undesirable characteristics such as
slipping feet when implemented on a robot.

Figure 2.2: Vector field described by Eq. 2.1. Some examples trajectories of
evolution along the vector field are shown in different colors. From any initial state,
the trajectories converge to a stable limit cycle.

The choice of this oscillator-actuatormapping is therefore crucial to the effectiveness
of a CPG controller. Since there are no readily available tools to effectively design
the mapping, we steer away from conventional CPGs. We present an architecture
that learns this mapping using deep neural networks while optimizing performance
on a task objective. Performance is defined in terms of a reward function which in
our case incentivizes forward progress in a given direction, while penalizing foot
slipping and hitting joint limits. This enables our approach to avoid the difficulties
in designing this mapping described above.

Inspired by the CPGs, we use a vector field containing a stable limit cycle as our
oscillator model. Drawing from [29], in this work we employ a weakly nonlinear
dynamical system that exhibits a stable, circular limit cycle as shown in Fig. 2.2.[

¤G
¤H

]
=
l

A

[
−H
G

]
+ U
A

(
A2

0 − A
2
) [
G

H

]
(2.1)

where [G, H]) is the current position of the oscillator in R2, A =
√
G2 + H2, l is the

angular frequency of oscillation along the limit cycle, A0 is the radius of the circular
limit cycle, and U corresponds to the strength of forcing towards the limit cycle. Fig.
2.3 shows the effect of varying the parameters, l and U, on the vector field.

8

Figure 2.3: Effect of varying l and U on the vector field described by Eq. 2.1.
An increase in the value of l results in a larger component of the vector along the
tangent to the limit cycle, and thus an increasing in the angular frequency of the
motion of the oscillator. An increase in the value of U results in a larger component
of the vector field normal to the limit cycle, and thus increases forcing onto the limit
cycle. Proportionate increases in U and l do not affect the relative magnitudes of
the components of the vector field.

2.2 Deep Reinforcement Learning
In recent years, deep RL has made significant progress in solving a number of
benchmark robotic simulation tasks demonstrating its applicability to continuous
control tasks [34, 24, 12]. Standard reinforcement learning problems are posed as
an agent interacting with aMarkov Decision Process described by (O,S,A, W, %, A)
[38]. At every time step C, the agent receives an observation, >C ∈ O, estimates the
state, BC ∈ S, and performs an action 0C ∈ A based on its policy, c\ (0C |BC).
The environment then provides the agent with a reward A (BC , 0C) and the agent
transitions to the next state, BC+1 according to the environment transition probability
%(BC+1 |BC , 0C). In this work, we restrict ourselves to fully observable environments,
i.e., the state, BC , can be fully determined given the observation, >C . We restrict our

9

attention to infinite-horizon tasks, i.e., tasks without a fixed time limit. The goal of
the agent is to maximize expected cumulative return,

� (\) = Ec\

[∞∑
C=0

WCA (BC , 0C)
]
, (2.2)

with respect to the parameters of the policy, \. The discount factor, W, is used to
weigh immediate rewards higher than future rewards.

A number of techniques have been developed over the years tomaximize the expected
sum of rewards described in Eq. 2.2 [12, 34, 24]. Methods that use a stochastic
estimate of the gradient of the objective with respect to the parameters of the
policy (the policy gradient) in optimizing the objective are called policy gradient
methods [38]. Actor-critic methods are a type of policy gradient methods that learn
an approximation to the policy (actor) as well as the value function (critic), in order
to estimate the policy gradient. The value of a state, BC = B, under a policy c,
denoted by Ec (BC = B), refers to the expected return when starting in a state, B at
time C, and following policy c for the rest of the episode. The value function with
respect to the policy, c, can thus be defined as,

Ec (BC = B) = Ec\

[∞∑
8=0

W8A (BC+8, 0C+8)
����� BC = B

]
(2.3)

Actor-critic methods in deep RL use deep neural networks as function approxima-
tors for the policy and the value functions [35, 34]. In this work, we use Proximal
Policy Optimization (PPO) [34], a type of actor-critic method, for policy learning.
Drawing from [26], we use partial-episode bootstrapping where the critic contin-
ues to bootstrap when episode termination occurs due to a timeout. We also use
generalized advantage estimation (GAE) [33], a technique that provides significant
improvements in sample efficiency by reducing the variance of the policy gradient
estimates at the cost of some bias.

In training our policy, we make use of intrinsic reward signals to aid learning.
Intrinsic rewards are rewards that the agent gives itself in addition to the reward
obtained from the environment. The intrinsic reward is added to the extrinsic
reward obtained from the environment at every time step, and the policy is then
trained to maximize the cumulative discounted sum of the intrinsic and extrinsic
rewards over time. Intrinsic rewards have previously been used to encourage RL

10

agents to perform actions that improve their ability to predict the consequences of
their actions [16, 25, 27]. Our model uses a similar approach to train agents to
choose actions based on predictions of the desired next state using the CPG-like
vector field embedded in the policy network. The details of this implementation are
described in Ch. 3.

Inductive biases refer to incorporating prior knowledge about the world within the
design of neural network architectures, so as to influence the space of internalmodels
considered by the machine learning system. CNNs, for instance, use translational
invariance in space as an inductive bias and have been shown to be very effective on
vision-related machine learning tasks [4]. Most model-free approaches to deep RL
learn behavioral policies for robots using generic multilayer perceptrons to represent
the policy. There has been limited work in designing neural network architectures
to add an inductive bias to the learning procedure so as to enhance certain properties
like generalizability, sample efficiency, and robustness [37, 39]. In this work, we aim
to add an inductive bias for the periodic nature of legged locomotion by embedding a
vector field similar to a CPGwithin the neural architecture which is used to represent
the controller. This enables our model to learn a family of behaviors in a single
pass of the learning algorithm, that can be effectively modulated by a small set of
parameters.

We presently restrict our scope to policies modulated by the gait frequency; we
discuss extension to other gait characteristics generally seen in CPG models, like
limb coupling and swing and stance phase durations in Ch. 5. Some recent works
[10, 1] present techniques for learning a diverse set of behaviors in a single pass of
a deep RL algorithm. The proposed model can be used in conjunction with these
methods to replace the policy networks and provide a continuous modulation of the
different learned behaviors emerging from these frameworks.

2.3 Variational Autoencoders
A number of recent works in deep RL use variational autoencoders (VAEs) to learn
a representation model for the agent’s observations [13, 14, 40]. Autoencoders
are neural network architectures that consist of two components – an encoder and
a decoder – and are used to learn latent encodings of data by minimizing error
between the input data and the reconstruction obtained by passing it sequentially
through the encoder and the decoder. VAEs reformulate the learning problem as
variational inference over a directed graphical model shown in Fig. 2.4. The

11

generative process consists of two steps: (i) The latent variable z is sampled from
a prior ?\ (z), followed by (ii) the observed variable x, which is sampled from
a conditional distribution ?\ (x|I). The prior ?\ (z) and the likelihood ?\ (x|z)
are assumed to come from a parametric family of distributions. In most cases,
the distribution parameters \ are unknown, and the posterior distribution, ?\ (z|x) is
intractable. A parameterized distribution @q (z|x) is assumed to be an approximation
to the posterior ?\ (z|x). This allows us to perform efficient inference by sharing
parameters to allow for generalization across the posterior estimates for all latent
variables [22, 28]. Approximate inference is then performed by optimizing a lower
bound on the log likelihood of the observed data, the Evidence LowerBound (ELBO)
given by,

log ?\ (x(8)) ≥ −� ! (@q (z|x(8))‖?\ (z)) + E@q (z|x(8))
[
log ?\ (x(8) |z)

]
(2.4)

z

x

θφ

Figure 2.4: Schematic representation of the directed graphical model. Solid lines
denote the generative distribution ?\ (x, z), and dotted lines denote the variational
approximation, @q (z|x)

The parameters \, q can be optimized to maximize this lower bound by stochastic
backpropagation as demonstrated by [22, 28]. In some cases, we would like the
components of the generative process to depend on additional observed random
variables. The VAE framework can be generalized to incorporate such conditioning
on another known random variable, y, to the posited generative model shown in
Fig. 2.5. The probability distributions, ?\ (x, z) and @q (z|x) are now replaced by
probability distributions conditioned on y, ?\ (x, z|y) and @q (z|x, y) respectively.
The resulting model is called a conditional VAE [36], and admits a similar lower
bound to the conditional log-likelihood of the data, given by,

log ?\ (x(8) |y) ≥ −� ! (@q (z|x(8) , y)‖?\ (z|y))

+ E@q (z|x(8) ,y)
[
log ?\ (x(8) |z, y)

]
. (2.5)

12

z

x

θφ

y

Figure 2.5: Schematic representation of the directed graphical model for a CVAE.
Solid lines denote the generative distribution ?\ (x, z|y), and dotted lines denote the
variational approximation, @q (z|x, y)

CVAEs allow for more flexibility in modelling the generative process as compared
to VAEs. The same latent variable, z, can now result in different generative dis-
tributions on the observed variable, x, depending on y. Similarly, we can have
different approximate posterior distributions on z given x, depending on the value
of y. Traditional VAEs can be seen as a special case of CVAEs where the variables
y are absent or assume a constant value for all data. In the rest of this thesis, our
methodology is described for CVAEs but can be used directly with VAEs by simply
dropping the variable y. We provide experimental results for models using VAEs as
well as CVAEs in Ch. 4.

There have been a number of recent works extending this framework to sequential
data, and learning state space models [5, 14, 20]. Here, we extend the CVAE to
a sequential generative process represented by a hidden Markov model (HMM) as
shown in Fig. 2.6. The prior in this case is a Markovian prior, ?\ (zC |zC−1, yC)
and the observed variable is sampled from a conditional distribution ?\ (xC |zC , yC)
at every time step. We choose an approximate posterior, @q (zC |xC , yC), and derive
the following lower bound on the conditional log likelihood of the observed data
following a similar procedure to [5]:

log ?\ (x(8)1:) |y
(8)
1:)) ≥

)∑
C=1

[
−� !

(
@q (zC |x(8)C , y

(8)
C)

 ?\ (zC |zC−1, y(8)C)
)

+E
@q (zC |x(8)C ,y(8)C)

[
log ?\ (x(8)C |zC , y

(8)
C)

]]
. (2.6)

There has also been some recent research on using variational autoencoders to learn
discriminable skills for robots using context variables [1, 10]. These works aim to
learn a diverse set of behaviors without an extrinsic reward function. The learned
policy represents a discrete set of distinguishable behaviors, each corresponding to

13

zt

xt

yt

zt-1

xt-1

yt-1

θφ

Figure 2.6: Schematic representation of the HMM directed graphical model. Solid
lines denote the generative distribution ?\ (z1:) , x1:) |y1:)), which factorizes as∏)
C=1 ?\ (zC |zC−1, yC)?\ (xC |zC , yC)

a region in the latent space. Our approach differs from these approaches in that we
learn a continuously parameterized family of behaviors that can be modulated by a
small set of parameters. Our proposed architecture would be compatible with the
methodology presented in these works, and would enable the diverse set of skills
learned to be individually modulated.

14

C h a p t e r 3

LEARNING FAMILIES OF BEHAVIORS

In this chapter, we present our approach for learning families of behaviors for legged
locomotion using deep reinforcement learning. Since we would like our policy to
represent a family of behaviors modulated by a small set of parameters, %, we define
our policy as c\ (aC |sC , %). We presently restrict our attention to the case where %
only consists of a single parameter, l, which will be shown to correspond to the
frequency of the gait executed by the robot. In the following sections, we outline
the deep neural network architectures along with the training procedure that helps
us achieve end-to-end learning of a policy representing a family of behaviors for
legged locomotion.

3.1 Model Architecture
We create an architecture consisting of three components: a representation model,
an encoded vector field and a policy (Fig. 3.1). The representationmodel transforms
the observation oC ∈ O, at time C, to an encoded state sC ∈ S, given the parameter
l. A vector field +l : S →)BS, parameterized by the same parameter l, maps the
encoded state sC to an encoded velocity ¤sC ∈)BS. Finally, a policy network maps
the current encoded state sC , and the next encoded state predicted by the vector field,
ŝC+1, to a probability distribution over possible actions aC . The notations for these
components are:

Representation Model: @(sC |oC , l; \&)
Encoded Vector Field: +l (¤sC |sC) (3.1)

Policy: c(aC |sC , l) = c(aC |sC , ŝC+1; \%)

The vector field is predefined and can be modulated by the parameter l. The
representation model and the policy will be trained to jointly maximize a task-
dependent cumulative reward function and the likelihood of the next encoded state
sC+1 being the same as the predicted next encoded state, ŝC+1. This will enable the
model to learn behaviors modulated by l that can achieve the task objective with
their state distribution being consistent with the prescribed vector field.

15

st+1

stot
Representation

Model

Vector
Field

Policy at

ω

q(st|ot,ω;θQ)

Vω(ṡt|st)

π(at|st,ŝt+1;θP)

Figure 3.1: Model architecture. The representation model maps the current obser-
vation, oC , to the state, sC , in the encoded state space. The vector field takes in the gait
frequency l as input and maps sC to a predicted state ŝC+1. The current and predicted
states are then passed through the policy to output a distribution over actions aC .

Representation Model

The representation model is used to map the observation space of the robot O to
the encoded state space S. As described in Sec. 2.3, we use a sequential variant
of the CVAE as described in Sec. 2.3 as the representation model. We assume
that the evolution of the state distribution under the policy can be modelled as a
hidden Markov model as shown in Fig. 3.2. We use a Markovian prior derived from
the vector field, as described in the following sections. The posterior distribution
is approximated by a probabilistic encoder @(sC |oC , l; \&), represented as a deep
neural network with parameters \& , that maps oC to a probability distribution over
sC . We are free to choose the form of the approximate posterior over the encoded
states, @(sC |oC , l), and we assume it to be a multivariate Gaussian with diagonal
covariance,

@(sC |oC , l; \&) = N(sC ; `oC ,l, f
2
oC ,lI), (3.2)

where the mean and standard deviation, `oC ,l and foC ,l, are outputs of the encoding
deep neural network. We choose the dimensionality of the encoded state space, S,
to be the same as that of the observation space, O, to minimize loss of information
since we are operating in fully observable environments.

Vector Field

One of the core ideas behind our proposed model is to learn a policy whose state
distribution evolves according to a vector field that contains a stable limit cycle.
We would like to then modify the behavior of the robot by modulating parameters
of this vector field. In order to achieve this, we first specify a desired vector field

16

s1 st-1 st sT

o1 ot-1 ot oT

Encoded state
space:

Observation
space:

Figure 3.2: The state distribution of a trajectory obtained by executing the policy in
the environment is modelled as a Hidden Markov Model.

containing a stable limit cycle, and use this to define a prior on the evolution of
the encoded state for the HMM shown in Fig. 3.2. The policy is learned so as to
perform actions that result in states dictated by the vector field. The details of how
this is achieved are explained in the following sections.

Since the representation model and the policy are parameterized by a deep neural
network, we expect our architecture to be able to learn arbitrary mappings between
the encoded state space and the robot’s actuator space. We assume that this flexibility
in function approximation offered by deep neural networks will allow us to learn
effective behaviors for any choice of a vector field that contains a stable limit
cycle. We use the vector field specified in Eq. 2.1 that is comprised of a weakly
nonlinear oscillator with a stable circular limit cycle. We rewrite it here for clarity
of presentation: [

¤G
¤H

]
=
l

A

[
−H
G

]
+ U
A

(
A2

0 − A
2
) [
G

H

]
(3.3)

The parameter, l represents the angular frequency of the oscillator’s motion around
the limit cycle. The idea is to learn a policy whose encoded state distribution evolves
according to this vector field. The limit cycle would then represent the nominal gait
behavior exhibited by the robot, and modulating the parameters of the vector field
will allow us to vary the nominal gait behavior. Therefore, l corresponds to the
angular frequency of this nominal gait behavior, and is henceforth referred to as the
gait frequency parameter.

The vector field is defined over a two-dimensional manifold and the encoded state
space will naturally have manymore dimensions than two. At this point, we chose to
group the component dimensions of the encoded state space into pairs, where each
pair is then propagated along the vector field for one time step to form ŝC+1. We could
have chosen to define a higher dimensional vector field but chose to use groups of
two-dimensional ones to keep our network architecture (and our understanding of
it) as simple as possible.

17

Policy

As previously stated, we would like the learned policy to be modulated by the
gait frequency parameter. The policy model must therefore be conditioned on the
current state as well as the gait frequency parameter, l. To achieve this, we use
the vector field which depends on l to predict the state at the next time step ŝC+1.
The current encoded state, sC , estimated by the representation model, along with the
predicted next state, ŝC+1, are input to the policy network which is represented as
a deep neural network, c(aC |sC , ŝC+1; \%), with parameters \%. The policy network
outputs a probability distribution over the action space, A, given by,

c(aC |sC , l) = N(aC ; `sC ,ŝC+1 , f
2
sC ,ŝC+1) (3.4)

where the mean and standard deviation, `sC ,ŝC+1 and fsC ,ŝC+1 , are outputs of a deep
neural network.

To summarize the operation of the architecture, the representation model serves as
a feedback model and maps the robot’s observation to the encoded state space. The
vector field uses this encoded state to predict the encoded state at the next time
step, and the policy predicts an action that would result in this predicted state. We
would like to train the architecture so that modulating the gait frequency parameter,
l, will result in a change in the observed frequency of the robot’s gait. In the
following sections, we describe the methodology that helps us achieve this while
simultaneously learning to solve the task objective.

3.2 Reward Function
Depending on the particular task objective, the agent receives an extrinsic reward
from the environment at every time step, C, which we denote by A4C . In our case,
this reward consists of a positive component corresponding to the forward progress
made by the robot, and a small negative component penalizing high actuator torques.
The extrinsic reward provides the agent with a reinforcing signal that enables it to
learn walking behaviors. In order to ensure that the policy state distribution follows
the vector field and to encourage actions that result in states consistent with the
vector field, we provide the agent with an intrinsic reward, A8C at every time step, that
penalizes the agent for departure from the vector field. More precisely, the intrinsic
reward is defined as

18

A8C = −V
BC − [

BC−1 +
∫ C

C−1
+ (Bg)dg

]2
, (3.5)

where V > 0 is a hyperparameter. For ease of implementation, we use Euler’s
method to integrate for one time step, the encoded velocity dictated by the vector
field. The total reward, AC , at every time step is given by AC = A8C + A4C .

3.3 Training the Policy Network
To enable the agent to solve the locomotive task at hand, the representation model
and the policy network are jointly trained to maximize cumulative reward over time.
Since we would like the policy to work for a range of gait frequencies, we maximize
cumulative reward over a pre-specified distribution over gait frequencies,l ∼ ?(l):

max
\% ,\&

El∼?(l)Ec\% ,@\&

[∑
C

AC

]
. (3.6)

While our architecture may be used with any policy gradient algorithm, in the ex-
periements presented here, we use Proximal Policy Optimization [34], an on-policy
actor-critic algorithm to optimize this objective. We use generalized advantage
estimation [33] to estimate the advantage values required to compute the policy
gradient.

Sincewewould like the encoded state distribution induced by the policy to follow the
specified vector field, we use the vector field to specify a prior for the representation
model. Let k be the parameters of the true distribution, ?k (s1:) , o1:) |2). We assume
a Markovian prior on the distribution of the encoded state, sC , at time C given by,

?k (sC |sC−1, l) = N
(
sC ; sC−1 +

∫ C

C−1
+l (sg)dg, f2

> I
)
, (3.7)

ŝC = sC−1 +
∫ C

C−1
+l (sg)dg

which is a diagonal Gaussian centered at the encoded state ŝC predicted by the vector
field, given the encoded state at the previous time step, sC−1, and the gait frequency
parameter, l.

19

The representation model is trained by maximizing the Evidence Lower Bound
(ELBO) over the policy state distribution. We would like the representation model
to work for different values of the gait frequency prameter, l. Therefore, we
maximize the expectation of the variational bound for theHMMdescribed in Sec. 3.1
under the pre-specified distribution ?(l). For the choice of approximate posterior,
@(sC |oC , l; \&), this maximization can be expressed as

max
\& ,k
El∼?(l)

[∑
C

E@

[
− log

@(sC |oC , l; \&)
?k (sC |sC−1, l)

+ log ?k (oC |sC , l)
]]

(3.8)

Since the true distribution parameters, k, are not known, we represent the decoding
distribution ?k (oC |sC) by a deep neural network.

The overall optimization problem can now be written as a combination of Eqs. 3.6
and 3.8,

max
\% ,\& ,k

El∼?(l)Ec\% ,@\&

∑
C

[
AC + _

[
− log

@(sC |oC , l; \&)
?k (sC |sC−1, l)

+ log ?k (oC |sC , l)
]]
,

(3.9)

where _ > 0 is a scalar used to weigh the importance of the variational loss against
the importance of the policy gradient loss.

Based on Eq. 3.9, it is evident that we are jointly optimizing the expected cumula-
tive sum of rewards and the expected variational lower bound for the representation
model along trajectories resulting from the execution of the policy. The rewards
are a combination of extrinsic and intrinsic rewards. Maximizing extrinsic rewards
results in good performance on the task objective, while maximizing intrinsic re-
wards results in actions that are consistent with the predictions of the vector field.
Further, maximizing the variational lower bound for the representation model, along
trajectories resulting from execution of the policy forces the corresponding encoding
state distributions to follow the vector field.

20

C h a p t e r 4

EXPERIMENTS AND RESULTS

In this chapter, we explore the capabilities of the presented framework through
experiments in simulation. We start off with the details of the experiments – the
simulation environments used to test our algorithms, hyperparameters used in the
experiments, and the metric used for evaluation. This is followed by two sets of
experiments – learning a family of behaviors whose gait frequency can bemodulated
by the gait frequency parameter, l, and learning individual behaviors whose gait
frequency can be pre-specified before training.

4.1 Experimental details
Environments
We demonstrate the efficacy of the presented algorithm on two continuous con-
trol environments from the Pybullet Gym Environment Suite [7], namely the
AntBulletEnv-v0, and the HalfCheetahBulletEnv-v0 shown in Fig. 4.1. The
observation from the environment consists of the height of the agent’s center of
mass (CoM) from the ground, velocity of the CoM, the orientation of the agent,
joint angles and velocities, and binary indicators for the feet being in contact with
the ground. The agent’s action space is the space of feasible motor torques for each
of its joints.

(a) AntBulletEnv-v0 (b) HalfCheetahBulletEnv-v0

Figure 4.1: The environments used to test the proposed algorithm

21

Training Details
We use Proximal Policy Optimization, PPO [34], to compute the policy gradient for
Eq. 3.6. The hyperparameters used have been listed in Tab. 4.1. Hyperparameters
specific to particular experiments have been listed in the following sections. The
encoder and decoder networks used in the representationmodel, as well as the policy
network, consist of two fully connected layers with 256 units each and tanh activation
for every non-output layer. The value network consists of two tanh-activated hidden
layers with 64 units each. We also use frameworks for vectorized environments
and normalization of rewards and observations from [23, 9]. The parameters of
the vector field described in Eq. 2.1 are set to be U = l/25 and A0 = 2.4. The
dimensionality of the encoded state space is chosen to be equal to the dimensionality
of the observation space of the robot.

Number of workers 8
Number of minibatches 32

Number of optimization epochs 10
Learning rate 5 × 10−5

PPO clip parameter 0.2
_ for GAE 0.95

Discount Factor, W 0.99
Optimizer Adam

Table 4.1: Hyperparameters used in the experiments

In the experiments described in Sec. 4.2, we consider two variants of the representa-
tion model, one with a CVAE and another with a VAE, as described in Sec. 2.3. We
refer to these as the CVAE and VAE variants respectively. In the CVAE variant, both
the encoder and the decoder must be conditioned on the gait frequency parameter,
l. We use a tanh-activated hidden layer of size two times the dimensionality of the
robot’s observation space, to process the gait frequency parameter, l. The output
of this layer is then appended to the observation, oC or the encoded state, sC , to be
input to the encoder or the decoder respectively.

Evaluation Metric
As discussed in Sec. 3.1, our model attempts to learn a policy whose encoded state
distribution evolves according to the vector field described by Eq. 3.3. The limit
cycle would thus be expected to represent the nominal gait behavior learned by the
policy, and the gait frequency parameter, l, would be expected to correspond to
the angular frequency of this nominal gait behavior. We use this correspondence

22

to evaluate the effectiveness of the presented algorithm. We define the observed
angular frequency of the gait executed by the robot using the learned policy as
2c times the average number of steps taken by the robot per second per limb.
The discrepancy between this observed angular frequency and the gait frequency
parameter l is used as the evaluation metric.

4.2 Learning policies for a range of gait frequencies
In this section, we demonstrate the legged robotic agent’s ability to learn a family
of behaviors that are modulated by the gait frequency parameter, l. In order for
the learned policy to be able to operate at different frequencies, we must specify
a probability distribution over l and minimize the expected value of the loss as
described in Sec. 3.3. We restrict the value of l to lie between 10 rad/s and 25
rad/s. We consider two discrete uniform distributions over this range: one defined
only at the upper and lower limits of the desired frequency range, and another defined
at four evenly spaced values of l over the specified range, i.e. 10 rads/s, 15 rad/s,
20 rad/s, 25 rad/s. We refer to these as the 2-value and 4-value variants respectively.
We refer to the experiment by the choice of representation model, i.e. CVAE or
VAE, followed by the number of possible l values. The hyperparameters for these
experiments are listed in Tab. 4.2.

AntBulletEnv HalfCheetahBulletEnv
CVAE VAE CVAE VAE

Number of timesteps 3e6 3.5e6 3e6 3.5e6
Intrinsic reward coef., V (Eq. 3.5) 10.0 7.5 2.5 2.5
Variational loss coef., _ (Eq. 3.9) 0.007 0.007 0.004 0.007

Table 4.2: Hyperparameters for experiments described in Sec.4.2

To test the effectiveness of the proposed method, we execute the learned policy
for a fixed length of time with different values of the gait frequency parameter,
l. Fig. 4.2 shows the observed gait angular frequencies for each of these values.
We see that the CVAE variants learn behaviors whose observe gait frequency is
close to the gait frequency parameter, l. Note that the framework is capable of
interpolating behaviors for values of the gait frequency parameter that it hasn’t been
trained for. The observed gait angular frequency is seen to more closely match
the specified gait frequency parameter, l, in the 2-value variants. This behavior
could be attributed to the additional constraints added to the policy by requiring the
learned behavior family to match the gait frequency parameter for two additional
values ofl. Experiments were also performed for ?(l) being a continuous uniform

23

(a) AntBulletEnv-v0

(b) HalfCheetahBulletEnv-v0

Figure 4.2: Observed gait angular frequencies for different values of the gait fre-
quency parameter, l, for AntBulletEnv-v0 and HalfCheetahBulletEnv-v0.

distribution, but the learned policy in this case was observed to be a single behavior,
nearly agnostic to the specified l.

It is also worth noting that the CVAE variants fare better at achieving the desired gait
frequencies than their VAE counterparts for the AntBulletEnv-v0 environment,
as is evidenced by Fig. 4.2. In the case of the HalfCheetahBulletEnv-v0
environment, the VAE variants are seen to learn a single policy that does not
depend on the specified gait frequency parameter, l. This difference between the

24

CVAE and VAE variants can be attributed to the higher level of flexibility afforded
to the representation model by conditioning on l. This conditioning allows the
same observation to map to a different encoded state depending on the value of l.
This enables the state distribution of the learned policy to vary with l. The VAE
variant on the other hand, forces the agent to visit the same set of states at different
frequencies, and is therefore only capable of learning behavior families that visit the
exact same set of states when operating at different frequencies.

In order to further validate the working of the proposed method, we visualize the
evolution of the encoded state through the execution of the policy. As described in
Sec. 3.1, the vector field is used to specify a prior on the encoded state space of the
agent, by splitting the encoded state into pairs of two, and evaluating the vector field
on each pair of components. Fig. 4.3 shows the evolution of each of these pairs
through the execution of the policy for 500 time steps.

Figure 4.3: An example of an encoded state space trajectory through the execution
of a learned policy. The dotted lines represent the limit cycles corresponding to Eq.
3.3, while the blue lines correspond to the evolution of the encoded state components
along the trajectory when the policy is executed. It can be seen that the encoded
state components remain close to the limit cycle and seem follow the vector field.

It can be seen that the trajectories in the encoded state space stay close to the limit
cycle, and seem to be obeying the vector field dictated by the prior on the state space.
This serves as validation of the fact that our method indeed works.

25

4.3 Learning policies with a specific gait frequency
We can also use this framework to learn a single behavior with a pre-specified gait
frequency. This corresponds to the special case where ?(l) is a dirac delta function.
This means that the architecture is trained for a specific value of l so as to have a
specific gait frequency. Fig. 4.4 shows the observed angular frequency of the gait
for different values of the specified gait frequency parameter, l. Since the value of
l is constant in this case, the CVAE and VAE variants of the representation model
are identical.

4.4 Comparison with joint-space CPGs
As discussed in Sec. 2.1, conventional CPG controllers generate trajectories in the
robot’s joint space which must then be tracked by a lower level controller. This
performance is extremely sensitive to the parameters of the tracking controller. We
demonstrate this sensitivity in the following experiment.

We implement a joint space CPG controller on the AntBulletEnv-v0 environment
and optimize the CPG parameters to maximize the expected cumulative extrinsic
reward over a given distribution over l, similar to Eq. 3.6. The extrinsic reward
used in our experiments contains a penalty term for the joint torque magnitude.
Since the CPG uses a PID controller to track joint positions, it uses significantly
higher torques than policies learned using the proposed architecture, and fails to
walk if the torque penalty is added. Therefore, we ignore the joint torque penalty
when optimizing the CPG parameters, and only use the forward progress component
in all our comparisons in this section.

We use the CPG formulation presented in [30]. The parameters of the vector field
are the same as the ones described in Eq. 3.3, in addition to coupling terms that
dictate the synchrony of the limbs and therefore the gait pattern. We use the trot gait
which was found to have the best performance for our choice of robot and reward
function.

For the trajectory tracking controller, we use Pybullet’s [7] POSITION_CONTROL
strategy to track the trajectory dictated by the CPG. This strategy implements
a PID controller and offers position control by optimizing position_gain *
(desired_position - current_position) at a higher frequency than that of
the CPG controller. We fix the value of the position_gain parameter, and use
an evolutionary strategy, CMA-ES [15], to optimize the expected cumulative sum
of rewards over a distribution of angular frequencies, l. We consider a discrete

26

(a) AntBulletEnv-v0

(b) HalfCheetahBulletEnv-v0

Figure 4.4: Observed gait angular frequencies for specified values of gait frequency,
l, for AntBulletEnv-v0 and HalfCheetahBulletEnv-v0.

uniform distribution over four values of angular frequency – 10 rad/s, 15 rad/s, 20
rad/s, 25 rad/s. Fig. 4.5 shows a plot of the relative cumulative reward as the
position_gain parameter, that scales the PID gains, is varied relative to the initial
value, for the different values of l.

It can be seen that the performance varies drastically as the position_gain pa-
rameter is varied. The effectiveness of the joint space CPG controller is heavily

27

Figure 4.5: Relative cumulative rewards using the optimized joint space CPG as the
value of position_gain is varied, for different values of l.

dependent on the low level trajectory tracking controller being used. Our method
avoids this problem by operating directly in the actuator space of the robot and yield-
ing torque commands for the actuators. This means that the low level controller is
integrated into the learned policy in our proposed model. Further, this allows more
power-efficient control of the robot.

28

C h a p t e r 5

CONCLUSIONS AND FUTURE WORK

In this thesis, we presented an algorithm that enables learning a policy of a family
of implicit CPG-like behaviors for legged locomotion. The learned policy can be
modulated by the desired gait frequency. We demonstrated the ability to learn such
a controller from scratch, thus eliminating the need for expert knowledge that is
crucial in designing effective CPG controllers. We also showed how the technique
could be adapted to specify a priori a desired frequency for the policy being learned.

A limitation of the current framework is that it only allows modulation of the
learned policy using gait frequency. We would like to add capabilities to modulate
the learned policy with other parameters to expand the set of behaviors that can
be represented by a policy. A defining feature of CPG-based controllers is their
modular nature and enforcing synchrony between different limbs of the robot through
coupling between oscillators associated with each limb. An extension of this work
would be learning modular policies that exploit the symmetric construction of most
legged robots and allow modulation of coupling to realize a wide variety of gait
behaviors.

Biologically, animals are seen to transition between gaits i.e. change footfall patterns,
going from statically stable gaits at low speeds to dynamically stable ones at higher
speeds. Gait transitions are generally related [32] to the absolute velocity of motion
which may not always be positively correlated with the gait frequency of the motion.
Moving forward, we would like to explore this correlation, and the ability of this
approach to admit gait transitions.

The current framework relies on an environment reward function that incentivizes
forward progress. Different formulations of the reward function to learn families
of behavior that allow for turning, modulating step heights etc., are another avenue
for future work. Additionally, we would also like to explore the application of
this architecture to models like [10] and [1] that do not rely on a reward from the
environment.

29

BIBLIOGRAPHY

[1] Joshua Achiam et al. “Variational option discovery algorithms”. In: arXiv
preprint arXiv:1807.10299 (2018).

[2] Shinya Aoi and Kazuo Tsuchiya. “Locomotion control of a biped robot using
nonlinear oscillators”. In: Autonomous robots 19.3 (2005), pp. 219–232.

[3] Paolo Arena. “A mechatronic lamprey controlled by analog circuits”. In:
Proceedings of the 9th IEEE mediterannean conference on control and au-
tomation. 2001.

[4] PeterWBattaglia et al. “Relational inductive biases, deep learning, and graph
networks”. In: arXiv preprint arXiv:1806.01261 (2018).

[5] Junyoung Chung et al. “A recurrent latent variable model for sequential data”.
In: Advances in neural information processing systems. 2015, pp. 2980–2988.

[6] Jörg Conradt and Paulina Varshavskaya. “Distributed central pattern gen-
erator control for a serpentine robot”. In: Proceedings of the International
Conference on Artificial Neural Networks (ICANN). 2003, pp. 338–341.

[7] Erwin Coumans and Yunfei Bai. PyBullet, a Python module for physics
simulation for games, robotics and machine learning. http://pybullet.
org. 2016–2019.

[8] Alessandro Crespi and Auke Jan Ijspeert. “Online optimization of swim-
ming and crawling in an amphibious snake robot”. In: IEEE Transactions on
Robotics 24.1 (2008), pp. 75–87.

[9] Prafulla Dhariwal et al.OpenAI Baselines. https://github.com/openai/
baselines. 2017.

[10] Benjamin Eysenbach et al. “Diversity is all you need: Learning skills without
a reward function”. In: arXiv preprint arXiv:1802.06070 (2018).

[11] Yasuhiro Fukuoka, Hiroshi Kimura, and Avis H Cohen. “Adaptive dynamic
walking of a quadruped robot on irregular terrain based on biological con-
cepts”. In: The International Journal of Robotics Research 22.3-4 (2003),
pp. 187–202.

[12] Tuomas Haarnoja et al. “Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor”. In: arXiv preprint
arXiv:1801.01290 (2018).

[13] Danijar Hafner et al. “Dream to control: Learning behaviors by latent imagi-
nation”. In: arXiv preprint arXiv:1912.01603 (2019).

[14] Danijar Hafner et al. “Learning latent dynamics for planning from pixels”.
In: International Conference on Machine Learning. 2019, pp. 2555–2565.

30

[15] NikolausHansen. “TheCMAevolution strategy:A tutorial”. In: arXiv preprint
arXiv:1604.00772 (2016).

[16] Rein Houthooft et al. “Variational information maximizing exploration”. In:
(2016).

[17] Auke Jan Ijspeert. “Central pattern generators for locomotion control in ani-
mals and robots: a review”. In: Neural networks 21.4 (2008), pp. 642–653.

[18] Auke Jan Ijspeert and Alessandro Crespi. “Online trajectory generation in
an amphibious snake robot using a lamprey-like central pattern generator
model”. In: Proceedings 2007 IEEE International Conference on Robotics
and Automation. IEEE. 2007, pp. 262–268.

[19] Auke Jan Ijspeert, Jun Nakanishi, and Stefan Schaal. “Movement imitation
with nonlinear dynamical systems in humanoid robots”. In: Proceedings
2002 IEEE International Conference on Robotics and Automation (Cat. No.
02CH37292). Vol. 2. IEEE. 2002, pp. 1398–1403.

[20] Maximilian Karl et al. “Deep variational bayes filters: Unsupervised learning
of state space models from raw data”. In: arXiv preprint arXiv:1605.06432
(2016).

[21] Nathan D. Kent et al. “Inferring task-space central pattern generator pa-
rameters for closed-loop control of underactuated robots”. In: 2020 IEEE
International Conference on Robotics and Automation (ICRA). IEEE. 2020.

[22] Diederik P Kingma andMaxWelling. “Auto-encoding variational bayes”. In:
arXiv preprint arXiv:1312.6114 (2013).

[23] Ilya Kostrikov. PyTorch Implementations of Reinforcement Learning Algo-
rithms. https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-
gail. 2018.

[24] Timothy P Lillicrap et al. “Continuous control with deep reinforcement learn-
ing”. In: arXiv preprint arXiv:1509.02971 (2015).

[25] Shakir Mohamed and Danilo Jimenez Rezende. “Variational information
maximisation for intrinsically motivated reinforcement learning”. In: Ad-
vances in neural information processing systems. 2015, pp. 2125–2133.

[26] Fabio Pardo et al. “Time limits in reinforcement learning”. In: International
Conference on Machine Learning. 2018, pp. 4045–4054.

[27] Deepak Pathak et al. “Curiosity-driven exploration by self-supervised pre-
diction”. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops. 2017, pp. 16–17.

[28] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. “Stochastic
backpropagation and approximate inference in deep generative models”. In:
arXiv preprint arXiv:1401.4082 (2014).

31

[29] Ludovic Righetti and Auke Jan Ijspeert. “Design methodologies for central
pattern generators: an application to crawling humanoids”. In: Proceedings
of robotics: Science and systems. CONF. 2006, pp. 191–198.

[30] Ludovic Righetti and Auke Jan Ijspeert. “Pattern generators with sensory
feedback for the control of quadruped locomotion”. In: 2008 IEEE Interna-
tional Conference on Robotics and Automation. IEEE. 2008, pp. 819–824.

[31] Guillaume Sartoretti et al. “Central pattern generator with inertial feedback
for stable locomotion and climbing in unstructured terrain”. In: 2018 IEEE
International Conference on Robotics and Automation (ICRA). IEEE. 2018,
pp. 1–5.

[32] Gregor Schöner, Wenying Y Jiang, and JA Scott Kelso. “A synergetic theory
of quadrupedal gaits and gait transitions”. In: Journal of theoretical Biology
142.3 (1990), pp. 359–391.

[33] John Schulman et al. “High-dimensional continuous control using generalized
advantage estimation”. In: arXiv preprint arXiv:1506.02438 (2015).

[34] John Schulman et al. “Proximal policy optimization algorithms”. In: arXiv
preprint arXiv:1707.06347 (2017).

[35] John Schulman et al. “Trust region policy optimization”. In: International
conference on machine learning. 2015, pp. 1889–1897.

[36] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. “Learning Structured Output
Representation using Deep Conditional Generative Models”. In: Advances
in Neural Information Processing Systems 28. Ed. by C. Cortes et al. Cur-
ran Associates, Inc., 2015, pp. 3483–3491. url: http://papers.nips.
cc/paper/5775-learning-structured-output-representation-
using-deep-conditional-generative-models.pdf.

[37] Mario Srouji, Jian Zhang, and Ruslan Salakhutdinov. “Structured control
nets for deep reinforcement learning”. In: arXiv preprint arXiv:1802.08311
(2018).

[38] Richard S Sutton and Andrew G Barto. Reinforcement learning: An intro-
duction. 2018.

[39] Ziyu Wang et al. “Dueling network architectures for deep reinforcement
learning”. In: International conference on machine learning. 2016, pp. 1995–
2003.

[40] Manuel Watter et al. “Embed to control: A locally linear latent dynamics
model for control from raw images”. In: Advances in neural information
processing systems. 2015, pp. 2746–2754.

