
Search-Based Planning with Extend
Operator

Allen Cheng

CMU-RI-TR-20-35
August 2020

The Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Maxim Likhachev, Chair

Jean Oh
Dhruv Saxena

Submitted in partial fulfillment of the requirements for the degree of Master of
Science in Robotics.

Copyright c© 2020 Allen Cheng



i



Abstract

Sampling-based approaches are often favored in robotics for high-dimensional motion plan-
ning for their fast coverage of the search space. However, at best they offer asymptotic guar-
antees on completeness and solution quality, and returned paths are typically unpredictable
due to their inherent stochasticity. By reasoning through the state space in a procedural
fashion, heuristic search-based planners offer high-quality solutions with strong theoretical
guarantees but struggle with high dimensionality. In complex domains that demand larger
branching factors, this exhaustive behavior can result in considerably longer planning times,
known as the “curse of dimensionality.” The key factor to fast planning times by sampling-
based approaches can largely be attributed to the extend operator, which greedily grows the
search tree without regard for the problem’s complexity. In this work, we exploit this obser-
vation and introduce an extend operator in heuristic search to enable considerable speedups
in practice. We explore how this operator directly addresses many difficulties of bidirectional
heuristic search and how it naturally extends to the multi-tree setting. We validate our sim-
ple approach on high-dimensional manipulation tasks, demonstrating significantly reduced
search effort when compared against both search- and sampling-based algorithms. While
doing so, we maintain theoretical guarantees on suboptimality and completeness.
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Chapter 1

Introduction

1.1 Motivation

Motion planning is a fundamental problem in robotics to enable collision-free navigation in
an environment. Non-optimization-based approaches can be generally categorized as either
sampling-based or search-based. Each of the two methodologies has their own advantages
and drawbacks.

Search-based methods systematically explore a dense representation of the state space. In
doing so, they are able to guarantee completeness for the given resolution and provide
suboptimality bounds for the costs of returned paths. By being able to explicitly optimize
solutions for criteria such as path length, clearance to obstacles, or smoothness, search-based
approaches are an attractive option for robotic motion planning.

Sampling-based approaches capture the connectivity of the configuration space by sampling
it. Random exploration allows for fast planning times, even in complex, high-dimensional
spaces where search-based methods especially fall short. At the same time, however, such
a strategy only allows for asymptotic guarantees at best for completeness and solution
quality.

The rise of high-dimensional robots tasked with real-time planning in complex environ-
ments demands fast motion planning algorithms that leverage the strengths of both these
classes.

1.2 Proposed Approach

Motivated by this need, our work brings the extend operator, a key mechanism of sampling-
based approaches, to heuristic search. The extend operator enables fast coverage of the
search space and inter-tree connection. In this work, we consider how it can be exploited
to connect search frontiers in multi-directional settings for fast, high-dimensional motion
planning, while retaining theoretical properties core to heuristic search.

This thesis makes the following contributions:

• Introduction of the extend operator to the context of heuristic search, both for bidi-
rectional and multi-directional settings

• Theoretical analysis of the proposed approach to maintain bounds on suboptimality
and completeness

• Experimental evaluations of planning in high-dimensional motion planning domains,
such as single-arm planning and mobile manipulation
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1.3 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 defines the single-query motion
planning problem and provides a brief introduction to popular heuristic search algorithms
A* and Weighted A*. Chapter 3 presents how the extend operator can be applied to bidi-
rectional heuristic search as a greedy connect heuristic to connect search fronts in the spirit
of RRT-Connect. We provide theoretical guarantees and their proofs for using extensions in
bidirectional WA* (without re-expansions), which are also applicable to other A* variants.
Borrowing again from sampling-based approaches, we explore the multi-tree extension for
heuristic search in Chapter 4, where we try to split the search space further. Chapter 5
summarizes the contributions of this thesis and discusses directions for future work.
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Chapter 2

Background

In this chapter, we formally define the single-query motion planning problem and provide
necessary background information.

2.1 Problem Definition

This work focuses on single-query planning problems, where we wish to find a valid sequence
of actions that transforms an initial configuration to a goal configuration in a goal set. Let
Sfree denote the free state space. G(Sfree, E) represents the directed search graph. Edges E
consist of transitions between state configurations, where these transitional costs serve as
the edge costs. For a given initial configuration sstart ∈ Sfree and goal set Sgoal ⊆ Sfree, the
problem at hand is to solve for a feasible path π = {s0, s1, . . . , sk} such that,

s0 = sstart

sk ∈ Sgoal

s ∈ Sfree ∀ s ∈ π
(si, si+1) ∈ E ∀ (si, si+1) ∈ π

The redundancy allows for a set of states to satisfy the goal constraint. However, for
multi-directional planners that may conduct search in the opposite direction, an explicit
sgoal ∈ Sgoal is used.

2.2 A* Search

A* [1] is one of the most widely used graph search algorithms and can be applied to solve
the planning problem of finding a minimum cost path from sstart to sgoal. Search-based
approaches require discretization of the free space Sfree and instead consider S ⊆ Sfree for
construction of the search graph G(S,E). An edge connects a pair of states and a cost
function c(s, s′) denotes the edge cost between states s and s′. If no such edge exists,
c(s, s′) =∞. The path found by A* will have the minimum sum of the edge costs. For each
state s ∈ S, three values are maintained: the cost to reach the state from the initial state,
g(s); the estimated cost-to-go, h(s); and the estimated cost of a path from sstart to sgoal
that contains s, f(s). The priority of a state is determined as f(s) = g(s) + h(s) (line 1,
Alg. 1). The g-values of all states are initialized to ∞, and the algorithm begins by setting
g(sstart) = 0 and placing it in the Open list (lines 4-8, Alg. 1). The Open list is a minimum
priority queue ordered by f(s) and contains frontier states that have been discovered but
not yet expanded. On each iteration of the main loop, A* selects state smin with minimum
priority from Open for expansion (line 10, Alg. 1). Successor function Succ finds the set
of reachable successors for a given state such that Succ(smin) = {s′ ∈ S|c(s, s′) 6= ∞}. A
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check is made to see if the g-value for successor state s′ can be decreased (line 15, Alg. 1). If
so, s′ is either inserted into Open or has its Priority value updated if it has already been
inserted (line 17, Alg. 1). Search either terminates when the sgoal is selected for expansion
on line 11, Alg. 1 or from exhaustion on line 9, Alg. 1.

The heuristic serves as a guide during search, and planning performance greatly depends
on how informative it is. Many theoretical properties of A* are also determined by the
choice of heuristic. If h(s) never overestimates the path cost to the goal, then it is admis-
sible. This, coupled with the ordering of Open, ensures that expanded states are the most
promising states discovered thus far during search. A* terminates when expanding the goal
state, ensuring there are no other vertex that leads through a cheaper path. A heuristic
is consistent if the triangle inequality is satisfied, h(s) ≤ c(s, s′) + h(s′) for state s and its
arbitrary successor s′, and h(sgoal) = 0. Consistency guarantees admissibility.

Planning can also proceed in the reverse direction from sgoal to sstart. This strategy is known
as Backwards A*. In this setting, an explicit goal state sgoal ∈ Sgoal is used.

Algorithm 1 A* Algorithm

1: procedure Priority(s)
2: return g(s) + h(s)

3: procedure main
4: for s ∈ S do
5: g(s)←∞
6: Open← ∅
7: g(sstart)← 0
8: Insert sstart into Open with Priority(sstart)
9: while not Open.Empty() do

10: smin ← Open.Top()
11: if smin = sgoal then
12: return ExtractPath(sgoal)

13: Remove smin from Open
14: for s′ ∈ Succ(smin) do
15: if g(s′) > g(s) + c(s, s′) then
16: g(s′)← g(s) + c(s, s′)
17: Insert/Update s into Open with Priority(s)

18: return null
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2.3 Weighted A*

A simple but effective extension to A* is Weighted A* (WA*) [2]. The original priority
function is adapted to be f(s) = g(s) + ωh(s), where ω ≥ 1 is used as an inflation factor.
Increasing ω biases the search to follow the guidance of the heuristic more strongly. While
the introduction of ω also makes the heuristic term inadmissible, Likhachev et al. have
shown that found solutions in this setting are bounded suboptimal, meaning the found path
cost is no more than ω times the optimal solution cost [3]. A Closed list is introduced here
to track states that have been expanded by search so they are not again re-expanded.

5



Chapter 3

Bidirectional Heuristic Search with

Extend Operator for Motion Planning

This chapter formalizes the extend operator to a bidirectional heuristic search framework,
proves its theoretical properties, and demonstrates speedups in approach in high-dimensional
motion planning experiments. This chapter is adapted from our earlier work [4]. Compared
to the previous version, the algorithm presented here bears several modifications: the priority
function is changed to that of WA* to maintain consistency; a generalized bidirectional
stopping condition is used, terminating the search according to the least-cost path discovered
thus far; and re-expansions of states closed by the opposite search are prohibited (and will
terminate the main search).

3.1 Introduction

While planning, the majority of effort is often spent near the start and goal configurations,
with a large amount of free space in between. Consider the manipulation problem of pick-
and-place in cluttered environments for a high degree-of-freedom (DoF) robotic arm, a
challenge commonly faced in industrial settings. Successful grasping often requires tight and
minimal tolerances due to clutter around the start and goal configurations. This demands
a large amount of search effort around the start and goal region, but the majority of the
intermediate path is typically collision-free. Naive search-based planners require procedural
reasoning over the possible arm configurations when planning through this free space to
maintain optimality guarantees.

Nicholson first proposed bidirectional search as two separate searches initialized from both
the start and goal [5]. In theory, these planners can exponentially reduce the number of
expanded states, making them an attractive class of algorithms. It is well known that
informative heuristics significantly improve search efficiency for unidirectional search, so
using them for both searches in a bidirectional algorithm is an intuitive extension. In
practice, however, informed bidirectional search can end up expending significantly more
effort in the case of missing frontiers or in time spent proving optimality of a found solution.
This problem is exacerbated in high-dimensional state spaces, which are commonly found
in robotic motion planning problems. Bidirectional sampling-based approaches on the other
hand, such as the RRT-Connect algorithm [6], offer fast planning performance and scale well
with high-dimensionality but at the cost of deterministic theoretical guarantees on solution
quality and completeness.

In our work, we present a simple but effective extension that aims to overcome the known
shortcomings of bidirectional heuristic search with the use of an extend operator. The
operator was originally proposed as a greedy heuristic for connecting forward and backward
searches in bidirectional sampling-based planners. Motivated by the example described
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earlier, we adopt this operator in the heuristic search setting to efficiently reason through
free space in high DoF motion planning. By incorporating the extend operator, we maintain
consistency and deterministic bounds on the suboptimality of found solutions, for a given
resolution of action and state space.

3.2 Related Work

3.2.1 Bidirectional Planning Algorithms

The RRT-Connect algorithm [6] first introduced the extend function in the context of mo-
tion planning without kinodynamic constraints. The sampling-based planner dynamically
constructs two rapidly-exploring random trees (RRTs) [7] from the start and goal configu-
rations. It attempts to connect both trees using an extend operator. This operator takes a
single, fixed-size step towards the nearest neighbor in the opposite tree. A Connect func-
tion repeatedly executes Extend until a node in the opposite tree is reached or an obstacle
blocks any further extension attempts. The greedy nature of RRT-Connect leads to fast per-
formance, and its sampling behavior allows it to translate well to high-dimensional motion
planning problems. However, the algorithm has no guarantees on optimality or bounded
suboptimality, and solution quality can vary greatly. Recent work [8, 9] has attempted to
address this by adopting the local rewiring procedure from RRT* [10], but these approaches
can only guarantee asymptotic optimality.

Pohl first explored the combination of bidirectional and heuristic search with the classical
front-to-back bidirectional heuristic search algorithm BHPA [11]. However, the theoretical
benefits were never consistently reflected in experiments. It was later noted that the frontiers
for forward and backward search often missed or crossed through each other in practice [12].
This observation, considered to be crux of bidirectional heuristic search, motivated Cham-
peaux and Sint to develop the Bidirectional Heuristic Front-to-Front Algorithm (BHFFA)
[13]. BHFFA achieves reduced expansions compared to BHPA at the cost of having to
exhaustively compute a front-to-front distance for entire frontiers. For high-dimensional
motion planning, this is prohibitively expensive.

Recent research has focused on ensuring the two search efforts “meet in the middle” through
the use of a unique priority function [14]. However, this property has no clear relevance to
the context of complex motion planning, where frontier intersection may not always be in
the middle.

The recently introduced A*-Connect algorithm [15] leverages a Multi-Heuristic A* (MHA*)
[16] framework to guide search bidirectionally towards both the opposite root and frontier
in parallel. MHA* provides structure for enabling the use of multiple inadmissible heuristic
functions, while still providing guarantees on completeness and bounds on suboptimality
via a consistent anchor heuristic. MHA* maintains separate priority queues containing the
frontier states for each heuristic for each search. Specifically, A*-Connect runs two Improved
MHA* searches [17]. For each, the consistent anchor heuristic serves as a front-to-back es-
timate. Additional heuristics, referred to as connect heuristics, are used to estimate the
front-to-front cost to the opposite frontier. However, instead of exhaustively computing
the front-to-front heuristic between all pairs of states in the frontier of the opposite search,
A*-Connect computes the connect heuristic for selected pivot states. Pivot states are the
last expanded states of the opposite search for each heuristic, and serve as an estimate for
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the “most promising” state for frontier connection. Effectively, the connect heuristic is a
fast-to-compute estimate of the cost to the opposite frontier. A*-Connect produces bounded
suboptimal solutions by addressing the issue of crossing frontiers in an efficient, structured
manner. Our proposed algorithm similarly uses front-to-end heuristics for structured bidi-
rectional search, but instead of an additional connect heuristic to guide front-to-front search,
an extend operator is used to greedily extend to the opposite tree.

3.2.2 Tree Extension

The extend operator responsible for connecting pairs of states has been widely explored
in robotic motion planning. The extend operator’s job is two-fold: it must select a state
as a local goal using a distance metric and perform the extension itself. For bidirectional
sampling-based methods, nearest-neighbors (NN) are selected as extension targets. For
problems with kinematic or kinodynamic constraints, the extension must solve a two-point
boundary value problem (BVP). Lavalle proposes motion primitives that describe a pre-
defined set of discretized control actions [18], but this does not fully solve the BVP. Prior
research has offered solutions that include the use of optimal controllers [19] and splines [20].
Since we use the same nearest-neighbors extend operator in our approach, these methodolo-
gies and adaptations to various domains can be easily adopted into our algorithm.

Cohen et al. use adaptive motion primitives that are generated on the fly during search
[21]. In the pick-and-place scenario we introduced previously, they are used to connect the
search frontier to the goal configuration. The goal may be underdefined vis-á-vis degrees-of-
freedom of the robot and thus may differ from the dimensionality of the search space. For
example, we may specify a 6 DoF goal pose in SE(3) while planning for a 7 DoF robot arm.
The redundant joint allows for a set of states that satisfy the goal constraint. An analytical
inverse kinematics (IK) solver is used to generate a valid state when the search is sufficiently
close to the goal. A dynamically constructed motion primitive is used to reach the goal state.
For the robotic arm, this translates into a linearly interpolated path to the generated, valid
goal state for the target pose. The use of adaptive motion primitives is shown to improve
search efficiency while preserving the planner’s theoretical guarantees. The extend operator
can be viewed as an adaptive motion primitive to connect more generally to any state in
the opposite frontier.

3.3 Approach Overview

3.3.1 Notation and Assumptions

We assume the planning problem can be formulated as a graph search problem, where S
refers to the finite set of states for the planning domain. The start and goal states are
denoted as sstart and sgoal, respectively. The cost function c(s, s′) denotes the cost of the
edge between states s and s′. If no such edge exists, c(s, s′) =∞. We further assume that
c(s, s′) ≥ 0 ∀ s, s′ pairs. Let g(s) denote the current best path cost from sstart to s. The
successor function, Succ(s) := {s′ ∈ S|c(s, s′) 6=∞}, denotes the set of reachable successors
for state s. The optimal path between s and s′ has cost c∗(s, s′). The optimal path from
sstart to s has cost g∗(s).

The heuristic for state s is denoted as h(s) and is used to estimate the best path cost from
s to sgoal. h(s) is considered admissible if it never overestimates the path cost to sgoal; that
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is, h(s) ≤ c∗(s, sgoal) ∀ s ∈ S. h(s) is considered consistent if it satisfies h(sgoal) = 0 and
h(s) ≤ h(s′) + c(s, s′) ∀ s, s′, where s′ ∈ Succ(s), s ∈ S, and s 6= sgoal. Open denotes a
priority queue typically ordered with priority f(s) = g(s) + h(s), or f(s) = g(s) + ωh(s)
given an inflation factor ω ≥ 1. This is used to store frontier states, and Closed denotes
states that have been expanded. We assume Open has function MinKey() that returns the
minimum priority value among contained states. Similarly, function Top() returns the state
corresponding to this value. If the queue is Empty(), MinKey() returns ∞.

We use dir and dir to indicate the current and opposite search directions, respectively. If
s 6∈ (Opendir∪Closeddir), gdir(s) =∞. An extension function, NewState(s, sNN, s

′) (line
7, Alg. 2), takes in search state s and the nearest neighbor in the opposite tree sNN. It
greedily moves from s towards sNN by taking a step of ε-distance (or smaller if the distance
from s to sNN is smaller) and is successful if resulting state s′ is reachable and collision-
free.

3.3.2 Algorithm

At a high level, our algorithm runs two A*-like searches from both start and goal con-
figurations, while using an extend operator to guide front-to-front connection. We choose
to analyze our strategy using weighted A* (WA*) [2] to run the forward and backward
searches. In effect, an inflation factor ω ≥ 1 is used to bias the front-to-back heuristic.
Since our approach is bidirectional, we initialize separate Open and Closed sets for each
search direction. sstart is initialized as the start configuration for the forward search, and
the goal configuration for the backward search. sgoal follows in a complementary manner.
We also maintain the cost of the least-cost path from sstart to sgoal throughout search, as
paths might be found quickly but have not yet been shown to be within suboptimal bounds.
The cost of this path is denoted as u and is initialized to ∞ at the start of search (line 20,
Alg. 3). The main loop iteratively runs WA* where Connect (line 20, Alg. 2) is called
after every expansion. The checks on line 9, Alg. 3 and line 21, Alg. 2 ensure that the
considered states for expansion and connection, respectively, have not been closed by the
opposite search. If connection is successful, the connecting state in the opposite frontier is
added to the current Open list. After each iteration, the search direction is swapped (line
35, Alg. 3). Search stops when u satisfies the bidirectional TerminationCriterion (line
1, Alg. 3). This occurs when the cost of the best path found so far is less than or equal to
the estimated costs from either search direction (line 2, Alg. 3). At this point, the search
terminates, and the solution path is reconstructed by recursively tracing the parents of the
connecting state in both directions.

3.3.3 Extend Operator

The connection process, depicted in Fig. 3.1, is a slightly modified version of the one
used in RRT-Connect and can be viewed as a greedy front-to-front heuristic to address the
problem of missing frontiers. Given a state and the current search direction, Connect
first selects the nearest neighbor sNN in the opposite search tree using a domain-dependent
distance function, 4 (line 4, Alg. 2). It then attempts to connect to the chosen state
by repeatedly applying Extend until either sNN is reached or no further extensions are
possible. Feasible extension states from NewState are treated similarly to successor states
in A* expansion and added to Opendir with Priority if s′ is not in Closeddir. The
algorithm can vary depending on the chosen frequency at which valid intermediate states

9



Figure 3.1: An illustration of the extend operator. On expansion, smin takes ε-size step to
successor states s′ towards the nearest-neighbor state sNN. If a connection is made sNN has
the root-to-state cost for forward and backward search, as shown with blue and red edges,
respectively.

s′ are added to the Open list. In the context of heuristic search, intermediate states added
from extend iterations may not lie on the discretized graph induced by the Succ function.
For this reason, we focus on the variation that does not add these intermediate successors,
effectively requiring that ExtendStatus = Reached before adding to Opendir on line 17
in Alg. 2.

10



Algorithm 2 Extend Operator

1: procedure Priority(s,dir)
2: return gdir(s) + ω · hdir(s)
3: procedure NearestNeighbor(scur,dir)
4: return arg min

s∈Opendir ∪Closeddir

4(s, scur)

5: procedure Extend(s, sNN,dir)
6: ExtendStatus← Trapped
7: if NewState(s, sNN, s

′) then
8: if s′ = sNN then
9: ExtendStatus← Reached

10: else
11: ExtendStatus← Advanced
12: if s′ 6∈ Opendir ∪Closeddir then
13: gdir(s

′)←∞
14: if gdir(s

′) > gdir(s) + c(s, s′) then
15: gdir(s

′)← gdir(s) + c(s, s′)
16: if s′ 6∈ Closeddir then
17: Insert/Update s′ in Opendir with Priority(s′,dir)

18: UpdateLeastCostPath(s′,dir)

19: return ExtendStatus
20: procedure Connect(s,dir)
21: if s 6∈ Closeddir then
22: sNN ← NearestNeighbor(s,dir)
23: repeat
24: ExtendStatus← Extend(s, sNN,dir)
25: until not ExtendStatus = Advanced

11



Algorithm 3 Bidirectional WA* with Extend Operator

1: procedure TerminationCriterion(u)
2: return u ≤ max

(
Opendir.MinKey(),Opendir.MinKey()

)
3: procedure UpdateLeastCostPath(s,dir)
4: if gdir(s) + gdir(s) < u then
5: u← gdir(s) + gdir(s)
6: sc ← s

7: procedure Expand(s,dir)
8: Remove s from Opendir

9: if s 6∈ Closeddir then
10: Closeddir ← Closeddir ∪ {s}
11: for s′ ∈ Succdir(s) do
12: if s′ 6∈ Opendir ∪Closeddir then
13: gdir(s

′)←∞
14: if gdir(s

′) > gdir(s) + c(s, s′) then
15: gdir(s

′)← gdir(s) + c(s, s′)
16: if s′ 6∈ Closeddir then
17: Insert/Update s′ in Opendir with Priority(s′,dir)

18: UpdateLeastCostPath(s′,dir)

19: procedure main()
20: u←∞
21: sc ← ∅
22: Openf ← ∅,Openb ← ∅
23: Closedf ← ∅,Closedb ← ∅
24: gf(sstart)← 0, gf(sgoal)←∞
25: gb(sstart)←∞, gb(sgoal)← 0
26: Insert sstart into Openf with Priority(sstart, f)
27: Insert sgoal into Openb with Priority(sgoal,b)
28: dir← f
29: while not Opendir.Empty() do
30: smin ← Opendir.Top()
31: if TerminationCriterion(u) then
32: return ExtractPath(sc)

33: Expand(smin,dir)
34: Connect(smin,dir)
35: dir← dir
36: return null
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3.3.4 Theoretical Properties

The following theoretical guarantees hold for bidirectional heuristic search using any A*
variant for forward and backward search and maintain any unidirectional invariants. For
the analysis of this section, we consider the case of using WA* (without re-expansions)
and follow its proofs [3]. For the full proofs of Theorems 1 and 2, please refer to the
Appendix.

Theorem 1. On expansion for any search dir and state s = arg min
v∈Opendir

Priority(v,dir), it

holds that gdir(s) ≤ ωg∗dir(s).

Proof. (Sketch) The proof for this theorem follows closely to the proof in WA* without
re-expansions [3]. The main difference is the introduction of a Connect operator, which
allows for additional successors to be added into Opendir. These states may then contribute
to the least-cost path to s, but the check on line 14, Alg. 2 ensures gdir-values for these
states are only lowered. Thus, the path cost to s will never increase as a result of adding
these additional successor states from Connect.

Lemma 1. Suppose state s is selected for expansion and connection at line 30, Alg. 3. If
s ∈ Closeddir, the main search terminates.

Proof. State s is added into Opendir with Priority(s,dir) = gdir(s) +ωhdir(s) either from
expansion or extension on line 17, Alg. 3 or line 17, Alg. 2, respectively. In the following
line for both cases, u is updated such that gdir(s) + gdir(s) serves as the finite upper bound
and can only further decrease from the check on line 4, Alg. 3. Since s ∈ Closeddir, it
follows that gdir(s) ≤ ωg∗dir(s) from Theorem 1. Thus, u ≤ gdir(s) + ωg∗

dir
(s). Rewriting the

TerminationCriterion, we have,

u ≤ max
(
gdir(s) + ωhdir(s),Opendir.MinKey()

)
The stopping condition has a lower-bound cost of gdir(s) + ωhdir(s), where u ≤ gdir(s) +
ωg∗

dir
(s) ≤ gdir(s) + ωhdir(s) as h is admissible. The TerminationCriterion is always

satisfied, terminating the main search when expanding any state s that has been closed by
the opposite search.

Theorem 2. On expansion for any search dir and state s = arg min
u∈Opendir

Priority(u,dir), it

holds that Priority(s,dir) ≤ ωg∗dir(sgoal).

Proof. (Sketch) We assume g∗dir(sgoal) < ∞; otherwise the theorem trivially holds. Let G̃
denote the subgraph of the original planning graph G where extensions between nodes of
opposite search efforts are not allowed. We will first prove this theorem holds in this setting
and use the result to generalize to G.

The proof for this theorem over G̃ follows Theorem 2 in [16]. The difference in this setting
is that bidirectional searching prevents the current search from expanding a state closed by
the opposite search by Lemma 1, in addition to the goal state.

For G, where extensions are possible, additional successor states from Connect may be
included in a least-cost path to the current search’s respective goal, accounted for in Theorem
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1. Now, the least-cost path can be comprised of subpaths corresponding to search efforts
from each direction. It may be possible that one search expands all states in its subpath,
while the connecting state has yet to be realized by the opposite search. This case, however,
reduces to planning over G̃.

Theorem 3 (Bounded suboptimality). When the main search exits, the returned solution
(if one exists) has a cost which is at most ω-suboptimal, or g(sgoal) ≤ ωg∗(sgoal).

Proof. The main search terminates when the criterion is met (line 31, Alg. 3) or when an
Open list is exhausted (line 29, Alg. 3).

In the case that the stopping condition is satisfied, let u denote the cost of the least-cost
path such that TerminationCriterion(u) is satisfied. Let sc be the associated shared
common state for this path such that u = gdir(sc) + gdir(sc) = g(sgoal). From Theorem
2, the minimum Priority values in each Open queue never exceed ωg∗(sgoal). The main
search only terminates when u = g(sgoal) ≤ max(ωg∗(sgoal), ωg

∗(sgoal)) ≤ g∗(sgoal), proving
the theorem for finite-cost solutions.

Theorem 4 (Bounded re-expansions). No state is ever re-expanded.

Proof. When a state is expanded in a given search direction dir, it is added to Closeddir

(line 9, Alg. 3). It is never added back to Opendir for re-expansions from the checks on
line 16, Alg. 2 and line 16, Alg. 3. This guarantees that search dir will never re-expand
a state previously expanded by itself. By Lemma 1, search dir will also never re-expand a
state expanded by opposite search dir.

Theorem 5 (Completeness). The main search terminates and returns a solution if a path
from sstart to sgoal exists in the original finite, planning graph G.

Proof. No vertices or edges are removed from the original graph G. They are only added
during the extension steps. Search is conducted via two A*-like planners, which guarantees
completeness in the unidirectional setting. Even in the case of non-intersecting searches, if
there is a solution path, a search is guaranteed to find it.

14



3.4 Evaluation

3.4.1 Experimental Setup

We compare our approach to search-based and sampling-based planners in the context of
high-dimensional, single-arm manipulation. All experiments use a simulated model of a PR2
robot’s 7 DoF arm. Each test involves generating collision-free trajectories to a specified
goal. Start configurations are randomly generated such that the end-effector positions lie
above the cluttered table top. Similarly, goal configurations are generated with the con-
straint that their end-effector positions are within a feasible region in the shelf. The setup,
presented in Fig. 3.2, reproduces manipulation tasks that are common in industrial settings,
where the majority of search effort is spent near start and goal regions with large amounts
of free space in between. In the presence of high clutter all throughout the workspace, the
search less likely is able to utilize the extend operator, leading to performance degrada-
tion.

Since any graph search algorithm may be used in our framework, we choose to run our algo-
rithm, weighted A* without re-expansions, bidirectionally with an extend operator (WA*-
Extend). We evaluate WA*-Extend’s performance against unidirectional WA*, A*-Connect,
BHPAw [22], RRT-Connect, and RRT*. These include unidirectional, bidirectional, search-
based, and sampling-based planners.

Heuristics

For high-dimensional planning, it is well known that solutions to simplified, lower-dimensional
problems can be used as informative heuristics for the original problem [23]. In the context of
single-arm planning, a 6 DoF goal constraint describes the desired end-effector position and
orientation in SE(3). The solution to the relaxed problem that only considers the goal posi-
tion (x, y, z) ∈ R3 performs well as a proxy heuristic for the full-dimensional representation.
Cohen et al. discretize the environment using 3D voxels and find the shortest feasible path
to the simplified goal using breadth-first search, referred to as hBFS [24]. In practice, this
heuristic proves to outperform other commonly used estimates such as heuc, the Euclidean
distance between states, when applied to obstacles in cluttered workspaces.

Motion Primitives

Motion primitives are used to encode kinematic constraints of a robot and ensure that a
valid transition between adjacent states exists. In search-based planning, the robot’s action
space is discretized to control the branching factor of search. For the 7 DoF arm, we use a
base set of 14 static motion primitives, corresponding to moving each joint by a small, fixed
amount in both directions.

Extend Operator

The extend operator used in this experimental setup selects the nearest-neighbor state sNN

in joint space and attempts a direct extension using a linearly interpolated path. For all our
experiments, the bidirectional search we implement executes the extend operator until either
a connection to sNN is made, or until the extension is trapped due to an obstacle, unable to
go any farther. Another option would be to directly interpolate between end-effector poses,
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Figure 3.2: Visualization of WA*-Extend for the single-arm planning domain. The found
trajectory is colored to denote the different regions of search. Green and blue denote the
forward and backward search, respectively, and gray highlights the connection between
frontiers. Pink spheres are goal states used in consistency tests.

similar to the approach of Cohen et al. for adaptive snapping to goal configuration [21].
However, this method calls for repeatedly computing inverse kinematics solutions, which
can be computationally costly.

Implementation Details

Since our strategy requires extensions to the opposite frontier, we use the k-d tree library
nanoflann [25] to dynamically add states and perform efficient NN queries. We also assume
an undirected search graph and perform extensions relative to the current search direction. If
the graph were directed, extensions from the backwards search would have to be computed
in the reverse direction. The search-based planners in our tests use an inflation factor
ω = 100. hBFS serves as the front-to-back, anchoring heuristic for A*-Connect as well as the
main informative heuristics for remaining heuristic search-based planners. For the connect
heuristic, we use the fast-to-compute heuc, as Islam suggests [15]. For bidirectional planners,
we swap directions after expanding 10 times [15], but we attempt to connect frontiers on each
iteration of WA*-Extend. Our baseline sampling-based planners, RRT-Connect and RRT*,
use implementations provided by the Open Motion Planning Library (OMPL) [26]. RRT*
is conditioned to terminate after the first valid solution is found. Search-based approaches
and RRT* use the distance traveled in joint space as their cost function. We post-process
all solutions using existing OMPL implementations to simplify and smooth paths.

3.4.2 Experimental Results

Table 3.1 compares our approach against a suite of planners. We consider 100 different
planning problems with randomly generated start and goal pairs such that all planners find
a solution for them given a large timeout. We then say a planner failed if that solution took
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Figure 3.3: A comparison of the WA*-Extend state expansions (left) and post-processed
solution costs (right) against A*-Connect for a single run.

longer than 120 seconds to find. Table 3.1 presents the averaged results of trials that were
successfully completed across all planners.

Table 3.1: Performance for Single-Arm Motion Planning with Original Algorithm

WA*-Extend WA* A*-Connect BHPA RRT-Connect RRT*
Success (%) 99 58 100 98 100 98

State Expansions 2027.24 119284.95 21364.71 43638.84 - -
Solution Cost (rad) 14.43 11.17 11.59 12.77 22.49 16.55
Total Plan Time (s) 3.47 31.58 6.44 17.51 0.09 7.09

Post Processing Time (ms) 6.95 7.97 6.63 6.07 5.54 4.44
Processed Solution Cost (rad) 11.68 9.59 9.04 10.88 12.89 10.41

Comparison with Search-Based Planners

Bidirectional variants are faster at finding solutions compared to unidirectional WA* for
the high DoF planning problems we consider. Compared to the other search-based plan-
ners, our approach has the largest averaged solution cost but outperforms its search-based
counterparts in terms of speed and reduced state expansions. In Fig. 3.3, we compare our
approach to A*-Connect, which is more competitive compared to the other bidirectional
heuristic search, BHPAw. The left plot shows how WA*-Extend commonly expands 100
to 1000 times fewer states than A*-Connect on each run. The right plot illustrates that
comparable solution cost is achieved after post-processing. Ultimately, this highlights the
extend operator’s effectiveness in efficiently connecting frontiers. In our example domain,
this translates to interpolated paths in free regions as shown in Fig. 3.2, where the backward
search is able to extend to the opposite frontier after planning out of the constrained cubby
region near the goal configuration.

Comparison with Sampling-Based Planners

As observed in Table 3.1, RRT-Connect attains the fastest planning time. WA*-Extend is
the second fastest and about twice as fast on average compared to RRT*. Without post-
processing, solutions from sampling-based planners, especially RRT-Connect, are of poorer
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Table 3.2: Evaluating Solution Consistency over Single Problem

WA*-Extend WA* A*-Connect BHPAw RRT-Connect RRT*
µc 12.79 8.81 9.30 15.92 27.43 12.71
σc - - - - 8.06 2.11

Table 3.3: Evaluating Solution Consistency over Similar Problems

WA*-Extend RRT-Connect RRT*
µc 14.21 26.92 14.41
σc 3.11 15.06 5.91

quality. In highly cluttered environments, post-processing methods might not always be
able to converge to optimal solutions.

We also consider solution consistency, the notion that similar problems ideally result in
similar solutions. To compare consistency across planners, we borrow the distance metric
used by Cohen et al. [21], defined as the ratio between the unprocessed solution path length
and Euclidean distance between start and goal end-effector poses,

dc =
|πplanner|

dist(xee, start, xee, goal)

For the first set of tests, we execute 50 runs for each planner with the same start and
goal configuration each time. The mean and standard deviation for this consistency metric,
µc and σc, are recorded in Table 3.2. Due to their deterministic behavior, search-based
planners do not see variation for the same problem query. On the other hand, solutions
from sampling-based planners, especially RRT-Connect, exhibit high variability for the same
test.

We repeat the experiment but for similar problem queries. The start is fixed and the 27 goal
configurations have corresponding end-effector positions that lie on equidistant points on a
10-cm cube, visualized as pink spheres in Fig. 3.2. Each problem is run once, and results are
reported in Table 3.3. We observe that WA*-Extend has much lower variability compared
to sampling-based solutions. Inconsistent solutions are undesirable in applications that
require high repeatability such as automated manufacturing or predictability when working
collaboratively with humans. Grounded in a search-based framework, our approach manages
to find consistent solutions.

Comparison with Original Version

Table 3.4 compares the performance of the original version of WA*-Extend presented in
[4] to the modified one presented here. These tests are a result of 40 runs, conducted in
a similar but more complex environment using the same timeout critera. The reported
results are averaged across commonly passed tests. The modified version, which uses a
more flexible termination condition, attains faster planning times and reduced expansions.
Pre- and post-processed solution costs are very comparable. The modified algorithm also
achieves a success rate of 100%, compared to the orginal version’s 90%. From these results,
it is clear the changes in the modified version yield considerable improvements.
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Table 3.4: Performance Comparison using Modified Version

Original Modified
Success (%) 90 100

State Expansions 43684 40351
Solution Cost (rad) 11.53 11.56
Total Plan Time (s) 9.454 8.097

Post Processing Time (ms) 6.3221 6.0449
Processed Solution Cost (rad) 11.02 11.11

3.5 Summary

This chapter presents a simple extension to bidirectional heuristic search that enables fast
and bounded suboptimal solutions. Bidirectional heuristic search faces the trade-off between
ensuring intersecting frontiers and maintaining competitive planning efficiency. Our strat-
egy capitalizes on large free space in high DoF motion planning to connect frontiers using
an extend operator popular in sampling-based planners. By running WA* bidirectionally
with an informative front-to-end heuristic, we maintain deterministic, theoretical guarantees
that sampling-based planners lack. We also provide consistent solution paths as a result
of using deterministic, search-based methods. Our simulated experiments show that our
approach achieves significantly faster search efficiency compared with other heuristic-based
strategies.
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Chapter 4

Multi-Tree Heuristic Search

In this chapter, we extend the bidirectional framework established in the previous section to
the multi-tree setting in order to further split the search space. We will detail the algorithm,
provide additional optimizations, and evaluate our approach for mobile manipulation in a
challenging environment.

4.1 Introduction

The past few decades have seen much research into the practicality of bidirectional ap-
proaches in search-based planning. Pohl first related frontiers to passing missiles that never
intersect [11]. Kaindl and Kainz instead claimed that the majority of search time is spent
proving that a found bidirectional solution is optimal [27]. Barker and Korf refuted this
claim with results showing that optimal solutions are often found late in search [28]. In
Chapter 3, we show how bidirectional heuristic search can be effective when search com-
plexity is focused at the start and goal regions. Unfortunately, this assumption is unrealistic
in many robotic domains. Fig. 4.1. highlights the limits of this assumption, displaying ex-
ample results from bidirectional search-based approaches for the 3 DoF navigation domain
and 10 DoF mobile manipulation domain. In the navigation example, individual search ef-
forts fail to meet due to the cluttered environments and kinematic limitations of the extend
operator in this domain. In the full-body mobile manipulation scenario, backward Dijkstra
searches over a 2D grid serve as heuristics. They guide each search direction towards the
narrow walkway formed by the kitchen island and the right wall, but this area is infeasible
due to the open cabinet door. The uninformed heuristics will lead to exhaustive exploration
of this region and significant increases in planning times.

These scenarios result in low connectivity between search fronts. To combat similar prob-
lems, sampling-based strategies have employed multi-directional search where numerous dis-
jointed trees are grown simultaneously. Growing multiple RRTs has proven to be effective in
highly constrained environments where local exploration may be stalled [29]. Accordingly,
we propose a multi-tree framework for search-based planning to enable a similar kind of
robustness in challenging scenarios.

4.2 Related Work

4.2.1 Multi-Tree Search

Search-based planning methods primarily employ simultaneous search from multiple roots
to split the original problem into smaller, short-range searches that can be solved in par-
allel. PBA* [30] augments bidirectional search by selecting additional search roots termed
X-nodes. Two additional A* instances are conducted for each X-node, which search to the
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(a) (b)

Figure 4.1: (a) An example where bi-frontal search efforts (blue) fail to meet in (x, y, θ)
planning. (b) Backwards Dijkstra heuristic guides both searches to a walkway that is too
narrow for the mobile robot. The color gradient visualizes costs of this heuristic considering
the green configuration as the goal (where blue indicates smaller values than green).

original start and goal states. Ideally, these roots would lie near or on the optimal path
between the start and goal states for potentially exponential reductions in each search’s
efforts. This process is naturally parallelized and a solution is returned when a valid path
is first found, considering all search spaces. Variants to PBA* have enhanced the two main
components driving the algorithm’s efficiency: the identification [31] and encouragement of
intersections [32] between search spaces and the selection of X-nodes [33]. Unlike PBA*
and its variants, our method is nonparallel in implementation but guarantees bounded sub-
optimal solutions. Though our approach exploits bidirectionalism in a similar fashion as
PBA*, we leverage the bidirectional framework with the extensions presented in Chapter 3
to establish fast connections between searches with theoretical guarantees.

The use of multiple trees to enable broader exploration in sampling-based search has been
the subject of extensive research. Some approaches construct a roadmap of RRTs that is
maintained between queries and incrementally updated to handle multi-query and dynamic
scenarios [34–36]. However, our work is most similar to single-query approaches such as
those presented by [37–39], which grow additional RRTs rooted in key regions in the con-
figuration space. These works vary in fundamental multi-tree design decisions, like how
additional search roots are selected, when connections between searches are made, and how
such connections are made. [37] dynamically grows local trees from samples that failed to
connect to a global tree and uses a fixed parameter to control the growth of these local trees.
On the other hand, [38] and [39] use a specialized bridge test to identify a fixed number
of roots located in narrow passage regions. The latter also uses an online meta-algorithm
to schedule the order in which searches are expanded. Our proposed method draws on the
higher-level design choices made by these works, but we incorporate additional enhance-
ments to the base algorithm, including a more informed sampling method for additional
search starts. Our multi-tree approach is inherently search-based and thus offers guarantees
on solution suboptimality.
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4.3 Approach Overview

4.3.1 Notations and Assumptions

We build from the notation established in Section 3.3. Ssampled ⊆ Sfree refers to the set of
sampled states used as additional roots in the multi-tree setting. Prior to search, k states
are sampled as additional bidirectional search roots. These searches are denoted as T i

f and
T i
b for i = 1, . . . , k, and T 0

f and T 0
b correspond to the main bidirectional searches between

sstart and sgoal. All of these searches are contained in T = {T i
f |0 ≤ i ≤ k} ∪ {T i

b|0 ≤ i ≤ k}.
We assume each search supports its own search functions, properties, and containers, such
as T.g(s), T.sstart, and T.Open.

4.3.2 Algorithm

At a high level, we initialize bidirectional local searches rooted from k samples, in addition
to the main, global bidirectional search between sstart and sgoal. Supplementary searches
are performed forwards and backwards from each sample for a total of 2k+ 2 searches (line
7, Alg. 4), each maintaining separate Open and Closed lists.

At each iteration, a non-terminated search is selected for expansion and connection steps in
round-robin fashion (lines 9-14, Alg. 4). These processes follow closely to the bidirectional
cases in Alg. 3 but are modified for the multi-tree setting. The checks to see if considered
state smin has been closed in the opposite search on line 9, Alg. 3 and line 21, Alg. 2 apply
only to main bidirectional searches. Connect instead selects the nearest-neighboring state
sNN belonging to a tree on a different connected component, which may induce multiple
nearest-neighbor calls. Because of this additional criterion, only a single extension will be
realized for each pair of searches, resulting in the need to maximize information sharing.
For a successful connection between smin and sNN, smin is additionally inserted or updated
to the Open list corresponding to sNN’s search. The main search keeps track of the cost of
the best solution so far, u, and terminates under the global stopping condition (line 1, Alg.
4). The other 2k searches terminate under the unidirectional criterion (line 3, Alg. 4). As
we operate and terminate within our bidirectional framework, we maintain the guarantees
established in Section 3.3.4.
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Algorithm 4 Multi-Tree Heuristic Search with Extend Operator

1: procedure GlobalTerminationCriterion(u)
2: return u ≤ max

(
T 0
f .Open.MinKey(), T 0

b .Open.MinKey()
)

3: procedure LocalTerminationCriterion(T i
dir)

4: return T i
dir.g(T i

dir.sgoal) ≤ T i
dir.Open.MinKey()

5: procedure main(Ssampled)
6: u←∞
7: T ← InitializeSearches(sstart, sgoal, Ssampled)
8: while not GlobalTerminationCriterion(u) do
9: T i

dir ← SelectSearch()
10: if T 0

f .Open.Empty() or T 0
b .Open.Empty() then

11: return null
12: smin ← T i

dir.Open.Top()
13: Expand(smin, T

i
dir)

14: Connect(smin, T
i
dir)

15: ExtractPath()
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4.3.3 Additional Optimizations

Shortcut Successors

We add additional shortcut successors [40] when a connection between two searches is made
(through either expansion or extension). A shortcut state corresponds to the best state
in a connected component according to a search’s heuristic. Shortcuts help progress a
local planner by leveraging efforts from other searches and by reducing the amount of re-
expansions and retracings of previously expanded states. They also enable local searches to
quickly terminate in the case of a successful extension to a connected component containing
its respective goal. As a result, this method offers an alternative to explicitly merging
searches when a connection is established, allowing searches to reason through partial paths
already generated by other efforts.

To determine the costs of jump successor states, we maintain an abstracted graph G̃(T , Elocal).
Edges represent connectivity between searches. Edge costs correspond to the current least-
cost paths between root pairs, determined and updated by search in the original planning
graph G. Vertices that correspond to searches with the same root have edge cost 0, and
edges between unconnected searches are initialized as infinity. When a state s′ is determined
as a jump successor to s, we compute cost c(s, s′) in G using G̃. s and s′ are temporarily

added as vertices to G̃ and are connected to searches that additionally contain them. The
associated edge costs are the g-values for the state in the respective search. The cost c(s, s′)
in the original planning graph G is then the cost of the least-cost path between s and s′

in G̃. In [40], paths between vertex pairs in the shortcut graph can be computed prior to
search as the graph is static.

Critical States as Search Roots

While any number of additional searches could be employed, it is ideal to use them sparingly
to reduce overhead costs associated with maintaining multiple searches. With this in mind,
we propose to identify states critical for a given environment in a pre-processing phase
following [41] (line 1, Alg. 6) and sample k critical states as additional roots prior to search
(line 4, Alg. 6). While resulting critical states are not directly associated with local minima
in contrast to [42], they are often located in areas of high connectivity and effective when
used in conjunction with the extend operator. Preliminary experiments have also shown
that this approach is superior to explicitly using the samples as extension targets.

The criticality metric for a state is measured using the notion of betweenness centrality [43]
and depends on the number of shortest paths that pass through a given state. To measure
centrality scores for states in a static environment, a standard probabilistic roadmap (PRM)
[44] is first constructed in Sfree denoted as GPRM (line 2, Alg. 6). A database maintains
each vertex’s criticality score, all of which are initialized as 0 (line 2, Alg. 5). Then, many
one-to-all shortest path problems are solved over this PRM, where a shortcutting process,
ReduceVertices, removes any noncritical solution vertices that can be skipped without
invalidating the found path (lines 6-7, Alg. 5). This step aims to remove any states that
may lie in large, open spaces and are therefore not necessarily helpful in capturing the
environment’s complexity. Each surviving, non-endpoint vertex then has its centrality score
incremented (line 9, Alg. 5). Once a database of vertices and their respective criticality
scores has been computed, states can then be sampled in direct proportion to their scores.
An example of identified critical states for a kitchen environment appears in Fig. 4.3.
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In the original work [41], this process is used to generate training data to predict a sample’s
criticality scores conditioned on local environment features. We solely use this approach to
construct a database of critical states and their scores for a given environment. Since roots
are sampled from the continuous space, we first Snap them to the center of a discrete cell
before use (line 13, Alg. 5). In practice, the benefits of this selection method are three-fold:
the number of roots can be minimized for greater search efficiency; regions that often induce
local minima, such as narrow passage regions, are successfully captured; and the approach
can be scaled to similar, new environments.

Algorithm 5 Critical Sampling

1: procedure BuildDatabase(GPRM,m)
2: DBcrit : VPRM → {0|v ∈ VPRM}
3: for i = 0, . . . ,m do
4: vstart ← Sample(VPRM)
5: for each vgoal ∈ VPRM \ {vstart} do
6: P ← Solve(GPRM, vstart, vgoal)
7: P ← ReduceVertices(P )
8: for each v ∈ P \ {vstart, vgoal} do
9: DBcrit(v)← DBcrit(v) + 1

10: return DBcrit

11: procedure InitializeCriticalStates(k,DBcrit)
12: I ← Sample k critical states from DBcrit proportional to criticality scores
13: I ← Snap(I)
14: return I

Algorithm 6 Multi-Tree Heuristic Search with Critical Samples

1: procedure PreProcessingPhase(Sfree,m)
2: GPRM ← ConstructPRM(Sfree)
3: DBcrit ← BuildDatabase(GPRM,m)

4: procedure QueryPhase(k,DBcrit)
5: Scrit ← InitializeCriticalStates(k,DBcrit)
6: RunMultiTreeSearch(Scrit)
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Figure 4.2: Visualization of MT-WA*-Extend for the mobile manipulation planning domain,
featuring a kitchen (left) and living room (right). A narrow doorway exists to connect the
two rooms, as implied by the found solution. The query start and goal configurations are
denoted in green, and critical states are shown in red. The found solution is visualized
(at differing resolutions for improved visibility) with blue and gray states indicating states
found from procedural expansion and extension, respectively.

4.4 Evaluation

4.4.1 Experimental Setup

We evaluate our proposed multi-tree approach for high-dimensional mobile manipulation
using the environment shown in Fig. 4.2. We simulate the UBTECH Walker robot with
a mobile base represented with a 10 DoF state space: (x, y, θ) for the 3 DoF base and
(j1, . . . , j7) for the 7 DoF arm. Each planning problem involves generating a collision-
free path for start-goal configurations within a fixed time budget. Start configurations are
randomly generated such that their base positions lie within the left room, biased to be
closer to the kitchen island. Goal configurations are similarly generated, with the constraint
that their end-effector is positioned over one of the tables in the living room. The tested
environment features two main sources of local minima: the narrow walkway between the
kitchen island and the north wall, and the doorway connecting the two rooms.

We compare our multi-tree planner (MT-WA*-Extend) with the previously discussed op-
timizations against the bidirectional version WA*-Extend. We use weighted A* without
re-expansions as the base planners for each algorithm. In addition, we benchmark MT-WA*-
Extend against RRT-Connect, a multi-tree variant of RRT-Connect (MT-RRT-Connect),
and PRM ran in the single-query setting. For a fair comparison, sampling-based planners
are also augmented to best utilize a priori information of sampled critical states used as
roots in our approach.

Mobile Manipulation

For the mobile manipulation domain, we use the maximum of admissible heuristics corre-
sponding to the arm’s end-effector and the robot’s base. hBFS, as described in Section 3.4,
is used to guide the end-effector. Similarly, a backwards 2D Dijkstra is used to guide the
mobile base.

Motion primitives are small feasible motions that are used to discretize the robot’s action
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space in search-based planning. During search, an implicit graph is constructed, where the
number of motion primitives decides the branching factor. For 10 DoF mobile manipulation,
we use 36 primitives consisting of small joint movements in both directions and at varying
magnitudes.

Implementation Details

The PRM used to construct a database of critical samples is allotted 90 seconds and adopts
a 2:1 ratio for growing and expanding the roadmap. Each vertex attempts to connect to its
10 nearest neighbors (default OMPL settings). The constructed PRM GPRM(Vprm, Eprm)
where |Vprm| = 17607 and |Eprm| = 458328. To determine criticality scores for these states,
we sample (without replacement) 50 start vertices and plan to 2000 sampled goal vertices
for each start. We post-process the 100k solution paths such that only key states remain
and see their respective centrality scores increment. A fixed number of samples are drawn
in proportion to their criticality scores prior to starting search.

The sampling-based planners are extended from OMPL implementations and modified to
utilize pre-processed environmental information. PRM is run in the single-query setting,
where each vertex in the roadmap has an assumed edge to all critical samples. To encour-
age growth towards critical states, RRT-Connect is given a 25% chance to select a root as its
sample, akin to goal biasing. The MT-RRT-Connect follows design choices similar to those
of our multi-tree implementation, where expansions are done in round-robin fashion and a
single connection is attempted from the nearest state within a different tree. When connec-
tions are made, search trees are merged and removed from selection for expansion.

Search-based planners use an inflation factor ω = 100. MT-WA*-Extend expands searches
with round-robin scheduling and WA*-Extend changes search direction after each iteration.
Both planners attempt to connect frontiers on each iteration. Search-based approaches use
the distance traveled in joint space as their cost function. The L1 and L2 norms are used
for angular and linear components, respectively. We post-process all solutions with OMPL
to simplify and smooth paths.

4.4.2 Experimental Results

Our experimental results demonstrate that the selection of additional starts in multi-tree
search significantly affects planning performance for both search-based and sampling-based
methods. We first evaluate critical samples as search roots compared to those that have
been randomly drawn or selected by a user.

We then evaluate MT-WA*-Extend against other planners for 50 planning problems with
randomly generated start-goal pairs and a fixed timeout of 60 seconds. Planners with ran-
domized components, such as sampled additional search roots, are run 3 times for each
problem. Table 4.1 compares planning performances across all planners and only considers
pairwise common successes with presented approach MT-WA*-Extend. Results are pre-
sented as ratios with respect to those of MT-WA*-Extend.

Evaluating Critical Samples

To better understand multi-tree performance in a search-based setting, we compare perfor-
mance when using varied amounts of additional bidirectional searches as well as different
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(a) (b)

Figure 4.3: (a) An example problem for the kitchen environment with start and goal config-
urations (green) and 10 critical sampled roots (red). (b) The base positions of critical states
and their respective normalized centrality scores are visualized, with their marker size and
color denoting relative magnitude.

sampling strategies for choosing their roots (random, critical, and hand-picked). We fix the
start and goal states, such that the scenario’s key complexity is the doorway connecting the
two rooms. Samples near or in this passageway aid in search, while others prove to be much
less informative. Randomized sampling methods are repeated 5 times. Since hand-picking
roots is deterministic, there are no standard deviation error bars. Fig. 4.4 presents the
results.

Hand-picked roots result in the fewest expansions as the user is able to directly identify key
states to enable near-instant connections with search fronts. However, user guidance is not
always an available option and can be time-consuming to provide. Random sampling has
the largest variance of the three and the worst performance due to the inability to target key
regions. Critical sampling strikes a favorable balance with lower variability and comparable
performance with the hand-picked strategy.

Across all the strategies, the required number of expansions initially decreases with addi-
tional search fronts, but performance appears to degrade after some point. This can be
primarily attributed to the increased overhead costs in maintaining many active searches.
For instance, using 12 roots significantly increased the required planning time with the
critical strategy. Numerous roots are unnecessary as the largest source of complexity was
a doorway, and the hand-picked strategy confirms this. At 4-8 samples, critical sampling
could reliably draw samples at the doorway, as highlighted in Fig. 4.3a.

To escape local minimas induced by the entire map, roots ideally would be placed near the
south end of the kitchen island and between the doorway. We found that 8 samples had the
best empirical performance in producing states belonging to these regions.

Comparison to WA*-Extend

With a success rate almost double that of WA*-Extend, it is clear how a multi-tree approach
can be effective in search-based planning in the presence of local minima where connectivity
between search fronts is low. While WA*-Extend is prone to being pulled into local minima
region in the kitchen and timing out, MT-WA*-Extend uses multiple search efforts that
can offer alternative paths. By reducing search fronts, we also see greater efficiency in
commonly passed tests with respect to state expansions and planning time. By having roots
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Figure 4.4: Performance of MT-WA* using varied number of additional starting roots and
sampling strategies.

Table 4.1: Performance for Mobile Manipulation Planning with 8 Critical Roots

MT-WA*-Extend WA*-Extend MT-RRT-Connect RRT-Connect PRM
Success (%) 92 48 100 100 100

Mean State Expansions 1.0 30.5 - - -
Mean Base Cost 1.0 0.83 1.32 1.43 1.42
Mean Arm Cost 1.0 0.74 1.76 1.71 1.62

Mean Total Plan Time 1.0 11.5 0.36 0.47 0.91
Mean Processed Base Cost 1.0 0.86 1.29 1.33 1.32
Mean Processed Arm Cost 1.0 0.70 1.74 1.65 1.51

initialized in central areas, connectivity in the configuration space is improved. Solution
quality, however, is slightly lower in this case, given that searches are rooted in sampled
configurations.

Comparison to Sampling-based searches

All sampling-based searches achieve a success rate of 100% largely owing to their robustness
to deep local minima induced by the kitchen passageway. Comparable in that regard, MT-
WA*-Extend offers much higher-quality paths before post-processing, since it is primarily a
search-based approach with suboptimality bounds.

The multi-tree variant of RRT-Connect also outperforms the original version. This is due
to the ability of MT-RRT-Connect to conduct search directly from a critical root, enabling
much more frequent connectivity. The augmented PRM has slower planning times compared
to its other sampling-based planners, as every grown vertex must consider additional critical
roots as neighbors.
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4.5 Summary

In this chapter, we present the natural extension to bidirectional search that provides heuris-
tic search with robustness in the case that the heuristic fails to provide guidance. Multi-
rooted searches split the search space, while the extend operator works to connect search
efforts. Within a bidirectional framework, theoretical guarantees for bounded suboptimality
and completeness are preserved. We also demonstrate how informed sampling techniques can
be coupled with search-based planning to capitalize on the advantages of both philosophies.
Simulated experimental results in the mobile manipulation domain demonstrate the efficacy
of this approach in a difficult setting that would typically trap search-based planners.
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Chapter 5

Conclusion

In this thesis, we consider the problem of speeding up search-based planning for single-query,
high-dimensional motion planning. To address these challenges, we outline a framework that
exploits the extend operator in the context of search-based planning. In Chapter 3, we use
the extend operator in bidirectional heuristic search to greedily seek out connections between
search fronts. We show that guarantees for completeness and bounded suboptimality are
preserved in this setting. When evaluated for single-arm planning, the proposed algorithm
produces high-quality solutions with great search efficiency, striking a successful balance.
By efficiently reasoning through large regions of free space, our approach proves to be faster
than other state-of-the-art bidirectional heuristic searches, while yielding solutions of lower
cost and higher consistency compared to those of sampling-based strategies.

The bidirectional framework lends itself to a multi-tree implementation, which has been
shown to improve connectivity in constrained and cluttered environments for similar sampling-
based variants. In Chapter 4, we formalize multi-directional heuristic search for single-query
motion planning with greater robustness to local minima and lesser dependence on the qual-
ity of the heuristic. We propose further improvements such as the adoption of shortcut suc-
cessors to leverage other search efforts quickly and the use of critical states to serve as more
informative search roots. When tested in a high-dimensional mobile manipulation domain
for a challenging environment, our augmented approach sees a significantly higher success
rate than its bidirectional counterpart, and found solutions are of better quality compared
to those returned by sampling-based planners.

5.1 Future Work

This work establishes the use of an extend operator for search-based planning in the bidi-
rectional and multi-tree settings, with the primary goal of capturing the milestone success
of RRT-Connect for heuristic search. These extend operators may need to be adapted
to account for the kinodynamic constraints of robots and to take advantage of redundant
degrees-of-freedom of complicated robots. This leaves open the possibility of further research
into more advanced operators and extension strategies.

In practice, collision checking often becomes the computational bottleneck in planning,
motivating more efficient methods for extending to frontiers. These could entail increasing
the number of extensions in each iteration or learning when an extension is likely based
on environmental or graph-based features from other ongoing searches. Differing distance
metrics in nearest-neighbor queries could also be used to exploit the planning domain or to
diversify extension targets in other search frontiers.

The use of the extend operator in unidirectional search may also be worth further explo-
ration, as predicting when bidirectional heuristic search will be the more effective method
remains an active research problem [45].
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All these directions for future work promise to make additional strides towards closing the
performance gap between heuristic-based and sampling-based planners in high DoF motion
planning.
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Appendix A

Full Proofs for WA*-Extend

A.1 Pseudocode of WA*-Extend

The following pseudocode of the extend operator and WA*-Extend in Algorithms 7 and 8
slightly differs from that presented in the main text. Every state s maintains an additional
variable v(s) for each direction similar to g(s). All vdir-values are initially set to ∞ and
then set to gdir(s) upon expansion of s in search dir. These modifications to the pseudocode
simplify the proofs and do not affect the behavior or performance of WA*-Extend. For the
following proofs, we follow the notation and assumptions stated in Section 3.3.1.

Algorithm 7 Extend Operator

1: procedure Priority(s,dir)
2: return gdir(s) + ω · hdir(s)
3: procedure NearestNeighbor(scur,dir)
4: return arg min

s∈Opendir ∪Closeddir

4(s, scur)

5: procedure Extend(s, sNN,dir)
6: ExtendStatus← Trapped
7: if NewState(s, sNN, s

′) then
8: if s′ = sNN then
9: ExtendStatus← Reached

10: else
11: ExtendStatus← Advanced
12: if s′ 6∈ Opendir ∪Closeddir then
13: gdir(s

′)←∞
14: vdir(s

′)←∞ . For proofs only

15: if gdir(s
′) > gdir(s) + c(s, s′) then

16: gdir(s
′)← gdir(s) + c(s, s′)

17: if s′ 6∈ Closeddir then
18: Insert/Update s′ in Opendir with Priority(s′,dir)

19: UpdateLeastCostPath(s′,dir)

20: return ExtendStatus
21: procedure Connect(s,dir)
22: if s 6∈ Closeddir then
23: sNN ← NearestNeighbor(s,dir)
24: repeat
25: ExtendStatus← Extend(s, sNN,dir)
26: until not ExtendStatus = Advanced
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Algorithm 8 Bidirectional WA* with Extend Operator

1: procedure TerminationCriterion(u)
2: return u ≤ max

(
Opendir.MinKey(),Opendir.MinKey()

)
3: procedure UpdateLeastCostPath(s,dir)
4: if gdir(s) + gdir(s) < u then
5: u← gdir(s) + gdir(s)
6: sc ← s

7: procedure Expand(s,dir)
8: Remove s from Opendir

9: if s 6∈ Closeddir then
10: vdir(s)← gdir(s) . For proofs only
11: Closeddir ← Closeddir ∪ {s}
12: for s′ ∈ Succdir(s) do
13: if s′ 6∈ Opendir ∪Closeddir then
14: gdir(s

′)←∞
15: vdir(s

′)←∞ . For proofs only

16: if gdir(s
′) > gdir(s) + c(s, s′) then

17: gdir(s
′)← gdir(s) + c(s, s′)

18: if s′ 6∈ Closeddir then
19: Insert/Update s′ in Opendir with Priority(s′,dir)

20: UpdateLeastCostPath(s′,dir)

21: procedure main()
22: u←∞
23: sc ← ∅
24: Openf ← ∅,Openb ← ∅
25: Closedf ← ∅,Closedb ← ∅
26: gf(sstart)← 0, gf(sgoal)←∞
27: gb(sstart)←∞, gb(sgoal)← 0
28: vf(sstart)←∞, vf(sgoal)←∞ . For proofs only
29: vb(sstart)←∞, vb(sgoal)←∞ . For proofs only
30: Insert sstart into Openf with Priority(sstart, f)
31: Insert sgoal into Openb with Priority(sgoal,b)
32: dir← f
33: while not Opendir.Empty() do
34: smin ← Opendir.Top()
35: if TerminationCriterion(u) then
36: return ExtractPath(sc)

37: Expand(smin,dir)
38: Connect(smin,dir)
39: dir← dir
40: return null
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A.2 Proofs

In this section, we provide the full proofs for Theorems 1 and 2 introduced in the main text.
The extend operator of WA*-Extend allows for additional successors during each iteration
of the main search loop, unlike WA* without re-expansions. Therefore, we must first re-
establish the correctness of gdir-values. We use these results to prove lower-bound properties
established by Theorems 1 and 2. Theorem 3 then relies on these properties in Section 3.3.4
to prove bounded suboptimality for WA*-Extend.

Lemma 2. At any point of time and for any state s in search dir, we have vdir(s) ≥ gdir(s).

Proof. The lemma clearly holds after initialization (before line 33, Alg. 8) since vdir-values
are infinite. Afterwards, gdir-values can only decrease (line 16, Alg. 7 and line 17, Alg.
8). For any state s, vdir(s) is initialized to ∞ (line 14, Alg. 7 and line 15, Alg. 8) and
only changes on line 10 in Alg. 8 when it is set to gdir(s). Thus, it is always true that
vdir(s) ≥ gdir(s).

Lemma 3. On line 33 in Alg. 8 and for any search dir, vdir- and gdir- values are non-
negative, gdir(sstart) = 0, and ∀ s 6= sstart, gdir(s) = min

u∈Preddir(s)

(vdir(u) + c(u, s)).

Proof. The lemma holds after initialization, where gdir(sstart) = 0 and the remaining gdir-
values and all vdir-values are infinite. The only places where gdir- and vdir- values are changed
afterwards are on line 16 in Alg. 7 and lines 10 and 17 in Alg. 8. If vdir(s) changes in line
10, then it is decreased according to Lemma 2. Thus, it may only decrease the gdir-values
of its successors. The tests on line 15 in Alg. 7 and line 16 in Alg. 8 check this and update
gdir-values if necessary. Since all costs are non-negative and never change, gdir(sstart) can
never be changed: it will never pass the aforementioned tests and is therefore always 0.

Theorem 6. Suppose state s is selected for expansion and connection on line 34, Alg. 8
for any search dir. Then, the next time line 33, Alg. 8 is executed, vdir(s) = gdir(s), where
gdir(s) before and after the expansion of s remains the same.

Proof. Suppose s is selected for expansion and connection in search dir. Then on line 10, Alg.
8, vdir(s) = gdir(s), and it is the only place where vdir-value changes. We therefore only need
to show that gdir(s) does not change during these procedures. For expansion, gdir(s) could
only change if s ∈ Succdir(s) and gdir(s) > vdir(s)+c(s, s). The second test, however, implies
that c(s, s) < 0 since we have just set vdir(s) = gdir(s). This contradicts our assumption
that costs are non-negative. For connection to search dir, gdir(s) similarly could only change
if s is generated from extension function NewState and gdir(s) > vdir(s)+c(s, s). The first
condition cannot be met as NewState is assumed to take a positive ε-distance step from s
to sNN , as defined on line 23 in Alg. 7. The latter again contradicts our non-negative cost
assumption.

We will now prove Theorems 1 and 2, which help establish the bounded suboptimality
property of WA*-Extend. Both these theorems refer to states corresponding to the minimum
Priority-value or lower bound for search dir. Theorem 1 guarantees that the path costs to
these states upon their expansion are no more than a factor of ω greater than the optimal
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cost. Theorem 2 provides similar bounds on the estimated path costs from respective sstart
to sgoal through these states.

We expect the first lower-bound result to follow from WA* without re-expansions. We
can intuitively view an Opendir in WA*-Extend as a superset of Open in WA* without
re-expansions, at any point during main search. This is because successors can be added
from additional extension steps on line 18, Alg. 7 in addition to the typical expansion
performed on line 19, Alg. 8. We show that adding these states to Opendir will never
increase respective path lengths. We then extend this result to prove Theorem 2.

To formally analyze these results, we introduce Qdir, the set of all states that have been
generated but not yet expanded for search dir, as follows,

Definition 1. Qdir = {u|vdir(u) > gdir(u) ∧ vdir(u) > ωg∗dir(u)}

Theorem 7. On line 33 in Alg. 8, let Qdir be defined according to Definition 1. Then, for
any state s = arg min

u∈Qdir

Priority(u,dir), gdir(s) ≤ ωg∗dir(s).

Proof. We assume g∗dir(s) <∞; otherwise, the theorem trivially holds. We prove by contra-
diction. Suppose there exists an s such that Priority(s,dir) ≤ Priority(u,dir)∀u ∈ Qdir,
but assume, instead, that gdir(s) > ωg∗dir(s). We also assume that s 6= sstart since otherwise
gdir(s) = 0 = g∗dir(s) by Lemma 3. We will now show that there exists some si ∈ Qdir

such that Priority(s,dir) > Priority(si,dir) for all settings, arriving at a contradiction.
Consider the least-cost path from sstart to s, π∗dir(s0 = sstart, . . . , sk = s). The cost of this
path is g∗dir(s). Our assumption that gdir(s) > ωg∗dir(s) means that there exists at least one
si ∈ π∗dir(s0, . . . , sk−1) whose vdir(si) > ωg∗dir(si). Otherwise,

gdir(s) = gdir(sk) = min
s′∈Preddir(sk)

(vdir(s) + c(s′, sk))

≤ vdir(sk−1) + c(sk−1, sk)

≤ ωg∗dir(sk−1) + c(sk−1, sk)

≤ ω(g∗dir(sk−1) + c(sk−1, sk))

≤ ωg∗dir(sk)

Let us now consider si ∈ π∗ with smallest index i ≥ 0 (that is, closest to sstart) such
that vdir(si) > ωgdir(si). We will now show that si ∈ Qdir. If i = 0, then gdir(si) =
gdir(sstart) = 0 and vdir(sstart) is non-negative, as initialized on lines 28-29, Alg. 8. Thus,
vdir(si) > ωg∗dir(si) = 0 = gdir(si), and si ∈ Qdir.

We will now show that gdir(si) ≤ ωg∗dir(si). For i > 0, we have vdir(si) > ωg∗dir(si) and by
the choice of si,

gdir(si) = min
s′∈Preddir(si)

(vdir(s
′) + c(s′, si))

≤ vdir(si−1) + c(si−1, si)

≤ ωg∗dir(si−1) + c(si−1, si)

≤ ωg∗dir(si−1) + c(si−1, si)

≤ ω(g∗dir(si−1) + c(si−1, si))

≤ ωg∗dir(si)
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Thus, vdir(si) > ωg∗dir(si) ≥ gdir(si), implying si ∈ Qdir. Using this result, we will show
Priority(s,dir) > Priority(si,dir) and finally arrive at a contradiction. According to
our assumptions,

Priority(s,dir) = gdir(s) + ωhdir(s)

> ωg∗dir(s) + ωhdir(s)

> ω(g∗dir(si) + c∗(si, s) + hdir(s))

> ωg∗dir(si) + ωhdir(s) hdir is consistent

> g∗dir(s) + ωhdir(s)

> Priority(si,dir)

Now, as si ∈ Qdir and Priority(si,dir) < Priority(s,dir), we encounter a contradiction
to our assumption that Priority(s,dir) ≤ Priority(u,dir) ∀ u ∈ Qdir.

Theorem 8. On line 33 in Alg. 8, let Qdir be defined according to Definition 1. Then
Qdir ⊆ Opendir.

Proof. We prove this by induction. At the very start, Opendir contains its respective starting
state sstart, vdir(sstart) = ∞, and gdir(sstart) = 0. Thus, sstart ∈ Qdir, and clearly sstart ∈
Opendir. Also, for all other states s′, gdir(s

′) = vdir(s
′) =∞; thus, the statement holds.

Now, we consider the states that are part of Closeddir. Closeddir holds all the states that
are expanded in a given search dir on line 37, Alg. 8 (insertion in line 11, Alg. 8). Such a
state s is removed from Opendir on line 8, Alg. 8 (before it is inserted in Closeddir). It
follows that s ∈ Closeddir implies s 6= Opendir, as a state s expanded in search dir will
never be put back into its Open list due to the checks on line 18, Alg. 8 and line 17, Alg.
7.

Next, we show that the statement denoted below holds for the first time line 33, Alg. 8 is
executed,

vdir(s) ≤ ωg∗dir(s) ∀ s ∈ Closeddir (∗)

This is obviously true as before the first execution of line 33, Alg. 8, no state is expanded in
search dir and thus Closeddir is empty. We will now show by induction that the statement
and the theorem continue to hold for subsequent executions of line 33, Alg. 8. Suppose the
theorem and statement (∗) hold during all previous executions of line 33, Alg. 8. We need
to show that the theorem holds the next time line 33, Alg. 8 is executed.

We first prove that the statement (∗) still holds during the next execution of line 33, Alg.
8. Considering the current iteration of the main search loop, we observe the following
possibilities: either the search terminates, in which case the theorem is proved trivially (as
there will be no more calls to line 33, Alg. 8) or state s will undergo expansion in search
dir and connection to search dir.

When state s is selected for expansion and connection, it has the minimum Priority-value
such that s = arg min

u∈Opendir

Priority(u,dir). According to our induction hypothesis, Qdir ⊆

Opendir, selection of s therefore guarantees gdir(s) ≤ ωg∗dir(s) by Theorem 7. From Theorem
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6, it then also follows that the next time line 33, Alg. 8 is executed, vdir(s) ≤ ωg∗dir(s), and
hence statement (∗) still holds.

We now prove that after s is expanded in dir and an attempt to connect to dir is made,
the theorem itself also holds. We prove this by showing that Qdir ⊆ Opendir the next time
line 33, Alg. 8 is executed.

Any state s that is generated for the first time from Expand or Connect will be initialized
with vdir(s) = gdir(s) =∞. Now, if the gdir-value is lowered during expansion, then vdir(s) =
∞ > gdir(s). Similarly, for any other state s′, if the gdir-value is lowered, then vdir(s

′) >
gdir(s

′), as either vdir(s
′) =∞ or vdir(s

′) holds the value gdir(s
′) when s′ was last expanded.

Every such state will be inserted/updated in Opendir on line 19, Alg. 8 for expansion and
on line 18, Alg. 7 for connection. The only exception is if either of the prior checks on line
18, Alg. 8 or line 17, Alg. 7 are satisfied. In both cases, s has been expanded earlier in
search dir, in which case s ∈ Closeddir, and thus vdir(s) ≤ ωg∗dir(s) from statement (∗).

All states that have vdir(s) > gdir(s), are either in Opendir or Closeddir. From statement
(∗), any state s ∈ Closeddir satisfies vdir(s) ≤ ωg∗dir(s). Therefore, for any state s such
that vdir(s) > gdir(s) and vdir(s) > ωg∗dir(s), it follows that s ∈ Opendir. Thus, Qdir ⊆
Opendir.

Theorem 1. On expansion for any search dir and state s = arg min
v∈Opendir

Priority(v,dir), it

holds that gdir(s) ≤ ωg∗dir(s).

Proof. From Theorem 8, Qdir ⊆ Opendir, so any state s that satisfies Priority(s,dir) ≤
Priority(u,dir) for all u ∈ Qdir also satisfies Priority(s,dir) ≤ Priority(u,dir) for all
u ∈ Opendir. From Theorem 7, it follows that gdir(s) ≤ ωg∗dir(s).

We recall the following statement proven in Section 3.3.4 of the main text.

Lemma 1. Suppose state s is selected for expansion and connection at line 30, Alg. 3. If
s ∈ Closeddir, the main search terminates.

Lemma 4. When search for a given direction dir selects its respective goal state sgoal for
expansion and connection on line 34 in Alg. 8, the main search terminates.

Proof. We assume sstart 6= sgoal and search does not terminate after a single expansion.
Then, sgoal is guaranteed to be expanded since goal states are initially added to respective
Open lists (lines 31-32, Alg. 8) and search direction changes on line 33, Alg. 8. The lemma
then holds as a direct result of Lemma 1.

Theorem 2. On expansion for any search dir and state s = arg min
u∈Opendir

Priority(u,dir), it

holds that Priority(s,dir) ≤ ωg∗dir(sgoal).

Proof. We assume g∗dir(sgoal) <∞; otherwise, the theorem trivially holds. Let G̃ denote the
subgraph of G, where extensions between nodes of opposite search efforts are not allowed.
We will first prove this theorem holds in this setting and use the result to generalize to G.
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We prove by contradiction. Suppose there exists an s such that Priority(s,dir) ≤ Priority(u,dir)
for all u ∈ Opendir, but assume, instead, that Priority(s,dir) > ωg∗dir(sgoal). In this
case, we will show that there exists some si ∈ Opendir such that Priority(si,dir) <
Priority(s,dir), arriving at a contradiction.

For G̃, consider the least-cost path π̃∗(s0 = sstart, . . . sk = sgoal). From this path, we choose
the state si to be the shallowest state in Opendir that has yet to be expanded by search
dir. Such a state is guaranteed to exist because a) Opendir is initialized with sstart; b)
when any sj ∈ π̃∗ undergoes expansion, its successor sj+1 is added to Opendir; c) any
sj ∈ (Closeddir ∩ π̃∗) is never expanded, according to Lemma 1; and d) sk = sgoal is never
expanded as sgoal always satisfies the termination criterion and ends the main search under
Lemma 4.

We will now show that for such si, it holds that gdir(si) ≤ ωg∗dir(si). For i = 0, we have
gdir(s0) = gdir(sstart) = 0 ≤ ωg∗dir(s0) = 0. If i 6= 0, by our choice of si, we know that
si−1 ∈ π̃∗ has already been expanded. Then, gdir(si−1) ≤ ωg∗dir(si−1) by Theorem 1. We
have,

gdir(si) ≤ gdir(si−1) + c(si−1, si) (line 16, Alg. 8)

≤ ωg∗dir(si−1) + c(si−1, si)

≤ ω(g∗dir(si−1) + c(si−1, si))

≤ ωg∗dir(si)

We can now use this result to obtain,

Priority(si,dir) = gdir(si) + ωhdir(si)

≤ ωg∗dir(si) + ωhdir(si)

≤ ω(g∗dir(si) + hdir(si))

≤ ω(g∗dir(si) + c∗(si, sgoal) hdir is admissible

≤ ωg∗dir(sgoal)

As si ∈ Opendir and Priority(si,dir) ≤ ωg∗dir(sgoal) < Priority(s,dir), state s no longer
has the minimum Priority-value in Opendir, arriving at a contradiction. Thus, the as-
sumption that Priority(s,dir) > ωg∗dir(sgoal) must be incorrect, proving the theorem in
the case of no extensions.

Now, for G, where extensions are possible, the proof follows in an identical manner with
one key difference. Consider the least-cost path π∗(s0 = sstart, . . . , sc, . . . , sk = sgoal) and
denote subpaths corresponding to each search as π∗dir(s0, . . . , sc) and π∗

dir
(sc, . . . , sk). The

difference between the proof for G and subgraph G̃ is that it is now possible for search dir
to have expanded all states s ∈ π∗dir, including sc if sc has yet to be realized by search dir.

However, this case then reduces to planning over subgraph G̃, which we have already proven
for.
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