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Abstract

Robotic navigation algorithms for real-world robots require dense and accurate
probabilistic volumetric representations of the environment in order to traverse
efficiently. Sensor data in a Simultaneous Localisation And Mapping (SLAM)
context, however, always has associated acquisition noise and pose uncertainty,
and encoding this within the map representation while still maintaining com-
putational tractability is a key challenge in deploying these systems outside of
controlled laboratory settings.

The occupancy inference problem is essentially a high dimensional search
in the space of all maps. By incorporating the physics of sensor formation
using forward models, it is possible to reason in terms of the likelihood of the
measurements for a given map hypothesis to obtain a solution that explains
the noisy observations as well as possible. However, this approach to mapping
has historically been prohibitively expensive to compute in real-time. Thus,
conventional robotic mapping algorithms have primarily chosen to work with
limiting assumptions to maintain tractability.

In this thesis we present a framework that explicitly reasons about the condi-
tional dependence imposed on the occupancy of voxels traversed by each ray of
a depth camera as a Markov Random Field (MRF). The tight intra-and inter-ray
coupling explicitly incorporates conditional dependence of the occupancy of
individual voxels as opposed to making independent log-odds Bayes filter
updates as conventional occupancy maps do. Visibility constraints imposed
by using a forward sensor model enables simplification of the otherwise high
dimensional inference. The forward model allows incorporating learnt sensor
noise characteristics for accurate inference. Instead of marginalising sensor data
immediately, data from camera poses is retained, and can be added, moved, or
removed in an ad-hoc fashion whilst performing inference. In order to avoid
prohibitive sensor data storage costs, an extension to using the framework in a
submapping setting with pose graphs is presented with sensor data marginal-
isation deferred until as late as possible. Marginalisation is performed using
succinct parametric Gaussian distribution representations. Finally, Gaussian
mixture model map representations are then demonstrated to be capable of
providing robust localisation in multi-hypothesis settings. All of this is made
real-time feasible by the inherent parallelisability of the proposed framework
and is implemented on GPUs.
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Chapter 1

Introduction

Probabilistic algorithms have served as the cornerstone on which robotics has moved from
the realm of controlled environments to that of the dull, dirty, and dangerous. With the
democratisation of depth sensing cameras, it is possible for mobile agents to use low cost
off-the-shelf cameras for autonomous navigation and exploration. These cameras however
often have poor noise characteristics that makes it imperative for navigation algorithms to
explicitly reason about map uncertainty for optimal traversal.

Forward models are the way we physically instrument and compute sensor uncertainty.
Fundamentally, they describe the statistical behaviour of sensor measurements given the
presence of matter existing at a certain location. Mapping, then, is a problem of inverting
this problem - given sensor data that has noise, what is the most likely hypothesis of the
environment that explains the measurements obtained?

Consider an occupancy grid comprised of N voxels with a binary label of occupancy
assigned to each voxel. Given sensor measurements the total number of states then for
this representation to naı̈vely perform inference over is 2N . Due to this combinatorial
complexity conventional robotic mapping techniques make simplifying assumptions to
make this inference feasible. Specifically, by dropping the correlations between multiple
measurements of a single map element, and utilising so-called inverse sensor models, these
techniques break down the problem to an inference over 2N possible states. These inverse
sensor models often require environment specific parameter tuning, and because of the
incorrect assumptions involved, lead to suboptimal maps.

However, clearly there is structure imposed by the forward sensor model on the map,
that, if exploited, permits inference in the original high dimensional space. As shown in
the seminal work by [84] this is possible to do, specifically for sonar data, and provides
more accurate maps but at a prohibitive computational cost. More recently, multi-view
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1. Introduction

geometry approaches to inferring occupancy have introduced ray belief propagation for
camera sensors that explicitly model intra-and-inter-ray occupancy dependency via factor
graphs but that have also been expensive to evaluate in real-time [46, 87]. In concert with
this different strategy that lends itself well to modern GPU computing architectures the
previously intractable map occupancy inference can now be feasibly computed in real-time.
This leads to our formal thesis statement, which states that

Ray belief propagation enables online inference of joint occupancy using forward sensor models
and trajectory posteriors for deliberate robot navigation.

Although we limit the scope of the discussion in this thesis to using RGB-D depth
camera sensors commonly utilised to operate on Micro-Aerial Vehicles, the formulation
can easily be extended to other beam-based sensing paradigms.

The key contributions of this thesis are:

1. MRFMap, a volumetric inference framework that explicitly encodes forward sensor
models using ray belief propagation to obtain a posterior over map occupancies and
permits ad-hoc removal and addition of sensor data from any individual camera
pose during inference;

2. Utilising a succinct Gaussian mixtures based parametric representation to estimate
the posterior over trajectories;

3. An extension of the MRFMap framework to interoperate with this succinct parametric
map representation; and

4. Real-time implementation of the above on a GPU.

A brief outline of the thesis is as follows:
Chapter 2 briefly introduces mapping in the context of full SLAM, discusses map

representations based on inverse sensor models and presents a conventional forward
sensor model obtained from first principles. Chapter 3 details the sensors we focus on in
this thesis and the systems developed to collect and fit noise models to them. Chapter 4
presents MRFMap, our proposed framework, and details experimental evaluation on
synthetic and real-world datasets. Chapter 5 presents a particle filter based framework
that estimates the posterior over trajectories using a succinct parametric representation for
robust localisation. Chapter 6 demonstrates the use of MRFMap in a submapping context,
with a bridge to using the succinct parametric representation for dealing with increasing
memory usage. Finally, Chapter 7 contains concluding remarks and discussions for future
work.

2



Chapter 2

Background

The main focus of this thesis is presenting a volumetric occupancy inference framework
that employs forward sensor models and can be used within a full SLAM context for
robot autonomy. This chapter serves as a brief introduction to this context, discusses how
conventional mapping algorithms fall short, and sets up the probabilistic intuitions for
using forward sensor models from a first principles setting.

2.1 Mapping as a subset of the probabilistic full SLAM problem

The full SLAM problem involves representing the joint distribution of the trajectories of a
robot sensor and the map representation given all the sensor measurements obtained until
the current time t:

p(x1:t,m|z1:t), (2.1)

where x1:t are the poses x1,x2, . . .xt, m is the map representation, and z1:t are the sensor
measurements z1, z2, . . . zt corresponding to each of those poses.

It is worth noting that in the case of mobile robots, as opposed to visual SLAM, we
have an additional source of information about motion from the controls applied to the
robot - this is often incorporated as a probabilistic update on a one step future pose given
the robot kinematic model

p(xt|ut−1,xt−1) = f(xt−1,ut−1) +N (0;σnoise), (2.2)

where ut−1 is the control input applied for the time interval time t− 1 and the evolution of
the state is modelled as being distorted by Gaussian noise with standard deviation σnoise.

3



2. Background

Thus, the desired distribution to be obtained can then be expressed as

p(x1:t,m|z1:t,u1:t−1). (2.3)

zt zt+1 zt+2

xt xt+1 xt+2. . . . . .

ut−1 ut ut+1

m

Figure 2.1: Graphical model of the full SLAM process. The map generates observations
zt for each robot pose xt based on some subset mi (not visualised) of the map m. Control
inputs ut−1 at each time step provide further information about the evolution of the state
via a kinematics function. The map is constituted by a number of components that are
conditionally independent given the measurements and the poses by d-separation [29].

However, obtaining this joint distribution is computationally prohibitive due to the
combinatorial complexity of inference in the space of all possible map element occupancy
states and trajectories, so robotic approaches have attempted to use various simplifying
assumptions to make this inference tractable. For instance, by employing the Markov
assumption that postulates that the past and the future states are independent given
the current state, Bayes filters are employed to only use the previous state to update
belief estimates of current state. These also exclude future measurements from updating
the current state. Further approximations are made in terms of practical inference over
these joints - multiple hypotheses are usually represented using particle filters, while
smoothing and filtering approaches infer the unimodal maximum likelihood estimates of
poses and cameras. The objective of this introduction to the SLAM problem is not to be
comprehensive and the interested reader can purview works that have endeavoured to do
so in the past [6, 12, 18].

A significant property of the full SLAM problem is that the map estimates are condi-

4



2. Background

tionally independent given the robot path [51, 85]. This also implies that correlations in
the uncertainty among different map elements arise only through robot pose uncertainty.
Graphically, this is shown in Fig. 2.1. This enables us to factorise the problem as

p(x1:t,m|z1:t,u1:t−1) = p(x1:t|z1:t,u1:t−1)p(m|x1:t, z1:t), (2.4)

which is the product of the posterior over robot poses and that of the map given the poses
and the sensor measurements. Thus, we can approach the joint inference by computing the
posterior over trajectories and then given a sampled trajectory estimate infer its respective
map estimate separately. This thesis is primarily focussed on the framework used to obtain
the latter posterior which dovetails well with approaches that compute the posterior over
the trajectories. We demonstrate a system to compute the posterior over trajectories with a
separate map representation and a simple system utilising the map inference framework
within a full SLAM context in Chapters 5 and 6 respectively.

2.2 Conventional Volumetric Mapping Approaches and Inverse
Sensor Models

In order to deal with the high-dimensional map occupancy inference problem many
historical SLAM algorithms have used sparse, feature-based map representations, starting
from the very first Extended Kalman Filter SLAM techniques [72] leading to modern-
day sparse and semi-dense visual SLAM algorithms [22, 49]. Many more sophisticated
techniques, such as using likelihood fields [11], signed distance fields [94], and parametric
primitive based mapping [30, 40, 66] also exist and serve the purpose of localisation well.
Although many representations exist for high fidelity surface mapping and SLAM, in this
section we focus the discussion on volumetric probabilistic map representations that can
be used directly within planning that explicitly represent free as well as occupied space.

In order to speed up the mapping inference, conventional mapping approaches can be
considered instances of Bayes filters where two implicit assumptions are made. The first is
the static world assumption, which states that the past sensor readings are conditionally
independent given the map

p(zt|z1:t−1,m) = p(zt|m). (2.5)

This is a reasonable assumption, as the map occupancy does not change in static environ-
ments. We also work on the same assumption. However, the other strong assumption that
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is employed in these approaches is the independent map element assumption which states
that the measurements are independent given an individual map element mi

p(zt|z1:t−1,mi) = p(zt|mi). (2.6)

Note that the map element could be a 3D feature, a surfel [80], a NDT-OM [65] Gaussian
distribution, or an occupancy voxel. This is an incorrect assumption since sensor measure-
ments clearly couple multiple map elements, especially with discretised representations,
all of which need to be known for the conditional independence to hold. Intuitively, nearby
sensor measurements share implicit information and considering them independent adds
falsely confident information. However, making this assumption allows inverting this
relationship to infer the occupancy of each map element independently of the others
given all the sensor measurements, and thus reducing the complexity of the inference
significantly [21].

Occupancy Grids [21] are the canonical representation used for robotic mapping. These
involve binary labelled cells that denote occupied or unoccupied regions of the map. A
Bayes filter is used to update the probability of occupancy for each cell independently.
Hornung et al. [38] introduced the OctoMap framework that uses octrees as an efficient
data structure to implement variable resolution occupancy grids. Variants such as Normal
Distribution Transform Occupancy Maps (NDT-OM) [65] store a Gaussian density within
each cell to capture a more precise measure of the occupancy distribution. Schulz et al.
[68] present a real-time version of the same and add occlusion aware updates. Similarly,
approaches exist that perform per cell filtering [67] that can be used to filter incoming
sensor scan end points. Although the fidelity of the reconstruction in these approaches
is better than equivalent occupancy grid maps, they suffer the same drawbacks with
independent cells not sharing information.

Gaussian Process Occupancy Maps [55] and their variants such as [42, 92] have been
employed for estimating continuous occupancy maps by casting occupancy inference as
a classification problem. By exploiting implicit structure in the world correlated sparse
sensor measurements are used to reason about unobserved regions of space. Additionally,
these maps can also encode sensor data and pose uncertainty. However, a major drawback
of these approaches is the high computational complexity and memory usage that is pro-
hibitive for real-time operation with dense 3D data, despite recent attempts to address the
same [34, 64]. There has also been work that attempts a particle filter based SLAM strategy
using Hilbert maps in 2D environments [89] but the results are inferior to conventional
SLAM techniques in terms of accuracy.

6
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Recent work on combining Truncated Signed Distance Field (TSDF) and Euclidean
Signed Distance Field (ESDF) [58] presents a representation that is catered for SLAM and
planning. However, TSDFs are generated by using geometric weighted averaging over
the raycasted endpoint estimates and are only concerned with representing surfaces. This
limits their applicability in reasoning about occlusions, and specifically regions behind
observed surfaces. Recently Vespa et al. [91] introduced a novel hybrid representation that
combines TSDFs and occupancy grids that although doesn’t combine information from
multiple rays explicitly, does use an implicit forward sensor model.

These approaches, while still making the static world assumption, can be thought of as
attempting to perform updates similar to the independent cell assumption in grid-based
techniques by imposing local structure on the sensor endpoints where each measurement
only updates a small region around it. Although practically effective, another drawback of
these approaches is that they limit their applicability to environments with solid surfaces
and have no way to reason about translucency or limited visibility.

All these approaches effectively marginalise out the pose information of the sensor to
only use the end point samples instead of reasoning continuously over entire ray lengths
and different perspectives. Intuitively, reasoning about measurements as rays instead
of endpoints provides more information that they discard. Further, incorporating loop
closures elegantly is not feasible for any of the above mentioned approaches because of the
marginalised sensor pose information. However, they do permit incremental updates of
the map that enable them to be practically efficient.

The impact of these decisions results manifests in multiple ways for these represen-
tations. In the case of grid based techniques, maps end up blurring out detail [84] or
clearing out shallow grazing sensor measurements [38]. In the latter set of representations,
increasingly noisy sensor data ends up blurring out the details in relation to the spatial
constraints imposed which may or may not reflect the underlying geometry. Further, due
to the strong underlying surface structure and high object density implicit assumptions, ap-
proaches such as TSDFs and NDT-OMs perform well in structured environments with flat,
planar surfaces, but struggle in large outdoor environments with foliage, or non-regular
structure [15].

We defer discussion of forward sensor model related occupancy mapping work to
Chapter 4 and instead we next detail how a conventional forward sensor noise model for
camera based sensors is formulated.
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2.3 Forward Sensor Models for Occupancy Inference

In order to incorporate forward sensor noise models within an occupancy grid and to reason
about the underlying model utilised in a wide variety of ray potential based literature,
we look at deriving a simple Bayesian model of sensor readings as obtained by a depth
camera. This presentation largely follows the approach presented in [33].

2.3.1 Formulation

The objective is defined as inferring the occupancy of a grid volume given camera poses
and sensor measurements. To solve this problem, we note that a necessary requirement is to
solve a joint distribution of a number of random variables. At the top of the causality chain
is occupancy of space itself - the sensors measuring surface properties are predicated on the
existence of matter itself. For the purpose of robust navigation through the environments
we only need to explicitly calculate the marginal for the occupancy probability for the
space, which is thus going to be the distribution in focus. All that remains then is to obtain
the forward sensor model for an individual ray to calculate this occupancy probability.

We discretise the space into an occupancy grid. The occupancy of any cell is a binary
variable o ∈ {0, 1} signifying an empty cell or not, respectively. Given a camera location
x ∈ SE3, the corresponding depth image pixel measurement is denoted by the random
variable d. In an ideal environment the distance of the first occupied voxel along the ray
would be the generating surface for the measurement. However, since the measurement
could potentially originate from locations before a known occupied voxel, we model
the latent unknown generating surface location by a variable η. This process is shown
graphically in Fig. 2.2. Given this graphical model, the joint distribution is

p(o,x, d, η, τ) = p(τ)p(o|τ)p(x|τ)p(η|o)p(d|x, η). (2.7)

2.3.2 Priors

The random variable τ allows us to encode any domain specific knowledge

• p(τ) represents the prior probabilities of our parameters. Since there is no reason
to favour any particular parameter value, we set it to a uniform distribution and
disregard it for inference.

• p(o|τ) is the prior likelihood for occupancy. This could utilise any heuristic or guess
we may have regarding occupancy (say, e.g. from CNN based long range depth
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τ

x oη

d

Figure 2.2: Graphical model of first principles modelling. A prior node τ encodes prior
information for all the primary parameters. Given the current occupancy o, latent measure-
ment generating surface along the ray η, and camera pose x we can estimate the likelihood
of a given depth image pixel d being measured.

estimates). For the current example since we don’t have any reason to favour a
particular voxel location we set this to uniform as well.

• p(x|τ) is the prior for the camera pose. This could utilise estimates say from a
trajectory planner from an active camera configuration (e.g. a minimum jerk trajectory
for quadrotors) given past camera locations. For the current example, we assume this
pose to be known.

2.3.3 Inference

Given the joint distribution, we can estimate the marginal occupancy probability at each
cell given the value of the known variables and marginalising over the latent variable

p(o|x, d, τ) =
p(o,x, d, τ)

p(x, d, τ)
=

∑
η p(o,x, d, η, τ)∑
η,o p(o,x, d, η, τ)

=
p(d|o,x)∑
o p(d|o,x)

. (2.8)

The term in the numerator is the forward sensor model and is discussed in the next section.
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Depth Image Forward Sensor Model

The depth image sensor directly observes the distance to the occupied cell and hence
in an ideal scenario there would be a direct edge from the occupancy probability to the
measurement. However, following the process highlighted in [33], to account for the
possibility of the sensor measurement originating from any cell along the ray we consider
a latent variable η to model the generating surface distance.

In order to obtain the depth likelihood for a particular pixel value d from the depth
image we need to marginalise the generating surface η. Specifically,

p(d|o,x) =
1

nx

∫ dmax

dmin

p(η|o)p(d|x, η)dη, (2.9)

where dmin and dmax are the minimum and maximum ranges for the depth sensor, respec-
tively, and nx is the appropriate normalizing factor.

• p(η|o) is the probability of the measurement generating surface existing at a distance
η from the camera origin along the ray given the knowledge of an occupancy cell
state. Accordingly we can model this corresponding to the two possible states of the
given cell.

The event that a given occupancy cell is empty provides no information regarding the
location of the measurement generating surface. Thus any valid location along the
ray is assigned a uniform probability 1/range of being the measurement generating
surface, where range = dmax − dmin. Thus,

p(η|o = 0) = 1/range (2.10)

Next, we consider the event that the occupancy of the cell o is occupied. If o = 1, then
clearly the measurement generating surface cannot exist beyond its corresponding
depth distance do. Note that this is valid only for sensors that follow strict visibility
constraints, i.e., the sensor only observes surfaces. The measurement could still
originate from a surface closer to the sensor, and so those events are assigned the
same uniform probability 1/range. In order to make the distribution sum to 1 over
the domain, an appropriate Dirac delta term is specified for the depth corresponding
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to the known cell do.

p(η|o = 1) =


0 if η > do

δ(1− (do − dmin)/range) if η = do

1/range if η < do

(2.11)

• p(d|x, η) is the depth measurement term that determines how likely a measurement
is given that the originating surface exists at η. This is represented by a standard
normal distribution centred around η to represent sensor measurement noise

p(d|x, η) = N (d|η, σ), (2.12)

where σ can be trained from a calibration process.

To gain an intuitive understanding of what this sensor model does, by substituting
Eq. 2.9 in Eq. 2.8, we obtain the corresponding so-called inverse sensor model as illustrated
in Fig. 2.3. The resulting sensor model clearly probabilistically spreads the measurement
information along the ray taking into account the specified forward model.

2.3.4 Comparison with Conventional Inverse Sensor Models for Occupancy
Grids

As mentioned in the introduction, inverse sensor models attempt to obtain the probability
of matter existing for any given voxel location given a measurement. When dealing with
ray based measurements, this ends up effectively spreading probability mass for voxels
along a given sensor ray based on the sensor reading, independent of any other voxel or ray.
These models require parameter adjustment and fine-tuning to closely approximate the
inverse sensor model obtained above. Further, parameters fit for a particular environment
may not work as well for others [38]. Some approaches exploit domain knowledge of stereo
depth uncertainty to closely fit to the ideal model derived in the previous section [3, 35]. By
accounting for the forward sensor model via the stereo depth uncertainty they incorporate
the spread of the error to a higher fidelity than regular OctoMap (see Fig. 2.4), but are still
limited by the choice of the simplifying independence assumption made in Eq. 2.6 to infer
map occupancy. Specifically, although they can model intra-ray relationships better than
vanilla occupancy grid sensor models, they still cannot model inter-ray data, a problem
that we address in this thesis in Chapter 4.
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Figure 2.3: Inverse sensor model generated using the forward sensor model for a mea-
surement of 5m with a σ = 0.2m and minimum sensor range of 0.5m. As expected, the
probability rises to a maximum value at the measured sensor reading, and then falls to a
completely uncertain value afterwards, since the measurement gives us no information
about what exists beyond the occupied boundary.

Figure 2.4: Conventional inverse sensor models have parameters for pass and hit that have
to be fine tuned to get appealing results. This figure shows the resulting map occupancy
after a single raycast using the standard inverse sensor model. Left: OctoMap [38] and
Right: a fine tuned variant for stereo RGB sensors [35]. The perceived depth then along
this ray is the edge of the first voxel above a certain occupancy probability threshold in
the case of occupancy grids. These can both be seen as approximations to the continuous
inverse sensor model obtained in Fig. 2.3. Figure from [58].
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2.4 Conclusion

Having seen the full SLAM context and a comparison of conventional inverse sensor
models with a true posterior inverse model from a first principles forward sensor model
for beam based sensors, we detail the process and model we use to characterise the depth
measurement term for the sensors that we use for this thesis in the next chapter. We will
then incorporate this sensor characterisation and introduce inter-ray coupling within the
mapping inference framework in Chapter 4.
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Chapter 3

Characterising Bias and Variance
Forward Models for RGB-D Cameras

In this thesis we are motivated to provide accurate occupancy inference from sensor data
obtained via cheap off-the-shelf RGB-D depth sensors that are now ubiquitous and can
be easily deployed on mobile robots. We first briefly highlight dominant sources of error
in these sensors, describe our chosen model to fit the depth measurement term within a
forward sensor model 2.12, and finally detail the experimental setup to fit this model from
sensor data.

3.1 Sources of depth error for RGB-D Cameras

Commercially available off-the-shelf RGB-D cameras primarily fall under two broad cat-
egories. Structured light cameras such as the Kinect and Realsense operate on the basis
of active stereo-matching that exploit near-infrared pattern projectors. These, along with
passive stereo cameras form the first category of available depth sensors. The other are
Time of Flight (ToF) cameras that are a lot more similar to laser rangefinders in that they
have active components that measure depth using modulated emitted light radiation.
Correspondingly, the two sensor types have different error characteristics.

For stereo cameras and structured light cameras, the error uncertainty is determined by
transforming the error in computing disparity in pixel space to backprojected 3D space.
For these cameras, the backprojected 3D point coordinates for a pixel u, v given a baseline b,
focal length f , principal point coordinates cu, cv, and disparity measurement δ are obtained
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as  x

y

z

 =
bf

δ
K−1

 u

v

1

 =
bf

δ


u−cu
f

v−cv
f

1

 , (3.1)

whereK =

f 0 cu

0 f cv

0 0 1

 is the pinhole camera projection matrix. Differentiating the third

row gives us the relationship

∆z =
bf

δ2
∆δ, (3.2)

where ∆z denotes the uncertainty in the backprojected depth given ∆δ, the uncertainty
of the disparity measurement δ. The latter is conventionally set to 0.5 pixels to account
for sub-pixel accuracy of disparity computation algorithms. Thus, the measured error
uncertainty for these cameras should increase quadratically as a function of ground truth
distance.

ToF sensors have systematic errors that stem primarily from the choice of modulation
used in the emitted radiation, also referred to as wiggling error [27]. The magnitude of
this error, however, is much smaller and is typically less than 1 cm [7]. Nevertheless, both
types of sensors also suffer from non-linear radial distortion patterns that can be a function
of distance as well [7]. Other factors such as angle of incidence, reflectivity, visual texture,
and ambient illumination are also some of the primary contributors to sensor noise [53, 95].

3.2 Depth Measurement Model

Instead of fitting complex, camera-dependent distortion models, we choose to fit a per
pixel block bias and variance model that is a function of depth. We choose to model the
sensor bias and noise as a function of distance travelled along a ray. Although individually
simple, computing distinct polynomials for each pixel block can capture a significant extent
of sensor idiosyncrasies. We choose to directly learn the sensor bias and noise for every
pixel region for all depths in the operating range of the camera. We collect measured
and ground truth depths for pixel regions and fit a 2nd degree polynomial as expected for
RGB-D cameras. This choice has also been used in prior works [7]. The depth measurement
term introduced in Eq. 2.12 for a depth measurement dp at pixel p in the U, V pixel block is
then expressed as

p(dp|x, ηp) = N (dp|fU,V (ηp), gU,V (ηp)), (3.3)

where fU,V and gU,V are 2nd degree polynomials fit per pixel block indexed by U and V .
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Thus, given a set of input depth images from a RGB-D sensor, our objective is to
determine per-pixel block depth bias and noise characteristics that can then be incorporated
in occupancy inference.

3.3 Fitting the Depth Measurement Model

In order to fit the above mentioned sensor bias and variance polynomials, we need to
obtain ground truth depth estimates for each pixel block over the entire operating range
of the cameras. In order to do this we first present the systems designed to acquire the
ground truth data, and then detail the process for collecting the corresponding sensor and
ground truth data.

3.3.1 Acquiring Ground Truth Data

In order to obtain accurate sensor noise characteristics, we need accurate spatio-temporal
ground truth measurements corresponding to the sensor data. To obtain this, we utilise

1. A graph optimisation based pipeline for computing accurate extrinsics between
ground truth motion capture frame and camera optical frame;

2. A simple utility for determining the temporal lag between data streams obtained on
a collecting device between the ground truth odometry and the image stream; and

3. A real-time interactive utility to collect sensor data at discrete depth bins for blocks of
pixels with corresponding ground truth for evaluating per-pixel block sensor noise
characteristics for use in inference.

Computing Camera-Ground Truth Extrinsics

We use GTSAM1 for pose graph optimisation with a custom factor that solves for the
extrinsics of both the chessboard frame and the camera optical camera frame with respect
to their respective Vicon frames. In order to evaluate the performance of the pose graph
optimisation we evaluate the extrinsics calibration in a Gazebo2 simulation with arbitrary
extrinsics of increasing magnitude to determine the basis of convergence that the calibration
can accommodate. As can be seen in Fig. 3.2, the calibration process could successfully
recover the correct extrinsics up to a displacement of T body

cam norm of 0.6 for Tworld
tag norm up

to 0.05 in metric units (meters for translation and radians for orientation). The codebase is
available at https://github.com/rislab/extrinsics_calibrator.

1Georgia Tech Smoothing and Mapping Library - https://gtsam.org/
2Gazebo Simulator - http://gazebosim.org/
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T
body
cam Tworld

tag

xt xt+1 xt+2

Twbt Twbt+1
Twbt+2

ft ft+1 ft+2

Figure 3.1: Factor graph schematic for extrinsic calibration. Multiple camera body poses xt
observe the static chessboard at pose Tworld

tag and generate corner pixel observations. Each
of the body poses have a strong unary prior from motion capture. These pixel observations
are used in custom factors ft evaluating the error and the jacobians of the projection of
the physical chessboard corners into the camera frame after being transformed by the
corresponding two variables.

In line with the recommendations by the manufacturer3, for the Realsense D435 we use
the left infrared global shutter camera since it provides a global shutter image, and is pixel
aligned to the stereo depth image that the ASIC provides.

Figure 3.2: Left: Evaluating performance of extrinsics solver over 100 samples of ran-
domised extrinsics drawn for each tag offset value. Right: Reprojected chessboard corner
points through transform chain.

3https://dev.intelrealsense.com/docs/tuning-depth-cameras-for-best-performance
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Figure 3.3: Estimating temporal lag between image stream and Vicon motion capture
odometry stream. By comparing the yaw profile of PnP and Vicon poses, a simple linear
interpolation search helps determine the offset to sufficient precision for alignment.

Determining Temporal Lag

Streaming image data coming via camera drivers generally has some real-world latency
due to sensor characteristics and transmission delays. Similarly, Vicon motion capture
data coming over the network also has some latency introduced by packet transfer. For
the purpose of data collection and calibration, assuming a constant aggregate latency for
both the streams, it is important to align the two data streams for correct association. To
perform this, we record data from the global shutter camera at the highest framerate at
the chosen resolution (848× 480) at 90 Hz and perform a yaw rotation about the camera Z
axis inside the motion capture arena whilst looking at a chessboard target. By comparing
the yaw values from Perspective-n-Pose (PnP) and those obtained from the Vicon stream
a simple linear search allows determining the temporal lag between the two streams to
sufficient precision.

New Vicon Driver

The release of the latest Vicon SDK under an MIT license enables operation of the Vicon
driver on ARM platforms such as the TX2, which wasn’t possible earlier. Further, the SDK
exposes new lower latency variants of accessing streaming pose data in the ServerPush
mode. To exploit these characteristics, we have created a much simpler Vicon package to
stream Vicon data at https://github.com/pumaking/simple_vicon.

Data Acquisition Process

The camera is held static on a tripod while a chessboard is moved around in the view
frustum of the depth camera. The projected calibration target dimensions in the image
are used to create a valid masked depth image. For every valid pixel in the masked depth
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Figure 3.4: Top Left: A real-time utility that visualises the mocap calibration target location
and the relevant slices of the view frustum for which sufficient data has been collected for
learning the forward sensor noise model. Top Right: The segmented depth image of the
chessboard using the mocap pose estimates of the board and the camera. Bottom: After
collecting up to the order of 104 data points for each valid 20×20 pixel block, the measured
depth is regressed against the ground truth depth to fit a polynomial sensor noise model
and the residuals are used to regress the bias and variance. Shown for a Realsense D435
operating at 848× 480 px resolution.
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image, the corresponding ground truth location is determined by performing a ray to plane
intersection test using the relative transform obtained from the relevant mocap frames.
Thus, each masked depth image provides a large number of ground truth and measured
depth values per pixel location. This data is then binned over small configurable pixel
neighbourhoods that are then used to fit bias and noise models (Fig. 3.4).

3.4 Results

We collect data in two batches – for near-field and far-field data. First is in the 0.25-2.5m
region, where we use a smaller chessboard, and the other is from 2.5-5m where we use
a larger chessboard. In order to guide the data acquisition process we use a utility that
visualises the amount of data collected for each 0.5m depth bin in real-time (see Fig. 3.4).

We also show overall meta trends of the bias and variance of the raw data compared
to the ground truth. These are generated by taking the mean of the bias and standard
deviation images in a central patch of pixels. The bias and standard deviation images are
generated by computing the mean and the standard deviation for each 20× 20 pixel block
in a 0.5m window around the queried planar distance. These agree with prior work on
calibrating this class of cameras [7]. The comparison for the two sensors can be seen in
Fig. 3.7.

3.4.1 Kinect One

The Microsoft Kinect One is a Time of Flight (ToF) camera that can output dense RGB-D
data at Full HD resolution (1920× 1080) at 30 Hz. In practice however, we use it mostly
used in the QHD configuration (960×540) with the depth image rectified to the downscaled
colour image. The raw IR depth camera has a resolution of 512 × 424 px with a FoV of
roughly 70.6× 60 degrees, while the colour camera has a resolution of 1920× 1080 px and
a FoV of 84.1× 53.8 degrees.

3.4.2 Realsense D435

The Intel Realsense D435 is an IR stereoscopic depth camera that can output dense RGB-D
data at up to 1280× 720 px at 15 Hz. We use it at the VGA resolution (640× 480 px) in the
high precision preset at 30 Hz. The depth camera has a FoV of roughly 87 × 58 degrees
and the RGB camera has a FoV of 69.4× 42.5 degrees.
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Figure 3.5: Bias and variance plots of the collected characterisation data at 0.5m increments
collected over a 0.5m window around the sample planar depth for the Kinect One.
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Figure 3.6: Bias and variance plots of the collected characterisation data at 0.5m increments
collected over a 0.5m window around the sample planar depth for the Realsense D435.
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Figure 3.7: Meta level characteristics of the bias and standard deviation for the Realsense
D435 and the Kinect One on the left and right, respectively. Note that the characteristics
of the D435 camera follow a quadratic profile whereas those of the Kinect One are almost
linear.

3.5 Conclusion

In this chapter we described the per block sensor bias and noise depth measurement
model we use within the inference framework described in the next chapter for a pair of
off-the-shelf RGB-D depth cameras. The meta trends of these sensors agree with prior
published work on calibration for this family of sensors, and the per-pixel block capture
evident asymmetric noise characteristics in the respective sensors.
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Chapter 4

MRFMap: Online Probabilistic 3D
Mapping using Forward Ray Sensor
Models

This chapter presents the primary framework of this thesis that infers the posterior distri-
bution over map occupancy given a trajectory hypothesis using forward sensor models as
presented in the introduction. Specifically, it provides the second term in

p(x1:t,m|z1:t,u1:t−1) = p(x1:t|z1:t,u1:t−1) p(m|x1:t, z1:t)︸ ︷︷ ︸
This chapter

. (2.4)

4.1 Introduction

The seminal work by Thrun [84] argued that the occupancy mapping problem is essentially
a high dimensional search in the space of all maps and should be tackled as such. By
reasoning about the physics of sensor formation using forward models it is possible to
reason in terms of the likelihood of the measurements for a given map hypothesis. The
sensor data then directly drives a solution that explains the noisy observations as well
as possible given the forward sensor model. However, this approach to mapping has
historically been prohibitively expensive to compute in real-time.

We present a framework that explicitly reasons about the conditional dependence
imposed on the occupancy of voxels traversed by each ray of a depth camera as a Markov
Random Field (MRF). The tight intra-and inter-ray coupling explicitly incorporates con-
ditional dependence of the occupancy of individual voxels as opposed to effectively
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Figure 4.1: In the presence of sensor noise, or glancing rays, standard occupancy grid
methods (OctoMap [38], Left) end up blurring out the map details and clearing occupied
space, respectively. An MRFMap (Right) reasons about sensor ray formation and explicitly
couples voxels both within each ray and between rays. Inset from Fig. 4.8 from maps
inferred using the augmented ICL-NUIM dataset [13] at 0.05 m resolution. Occupied
voxels coloured by height to highlight morphological differences.

marginalising out the sensor data in the form of log-odds updates as occupancy maps do.
Visibility constraints imposed by using a forward sensor model enables simplification of
the otherwise high dimensional inference. The forward model allows incorporating learnt
sensor noise characteristics for more accurate inference. Finally, the inherent parallelisablity
of both constructing the MRF and inferring it enable real-time performance on GPUs.

Our key contributions are:

• A Markov Random Field (MRF) based 3D occupancy grid framework that explicitly
couples all voxels ray traced based on visibility;

• Incorporation of learnt sensor noise characteristics for improved map fidelity com-
pared to occupancy grids;

• A principled evaluation metric for probabilistic occupancy maps; and

• An open-sourced1 real-time GPU implementation.

4.2 Map Representations using Forward Models

We have previously discussed existing conventional volumetric probabilistic map repre-
sentations that can be used directly within planning and explicitly represent free as well as
occupied space in Sec. 2.2. Here we discuss mapping approaches related to our desired

1https://mrfmap.github.io
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objective.

Confidence-rich grid mapping [1] aims to enhance occupancy grids by encoding un-
certainty within the grid and coupling voxels by reasoning about forward sensor models.
The Bayes filter updates turn out to be identical to the ones used in [63], and thus share
similar properties as with the MRFMap framework. The key difference between their
approach and ours is that our framework allows for obtaining occupancy marginals based
on poses being added or removed ad-hoc rather than relying on recursive Bayes filter
updates, provides varying levels of resolution fidelity, and also permits the addition of
visual data for enhancing inference, if required. Factor graphs and forward sensor models
were presented in [17] to tackle the occupancy inference problem with inference performed
using belief propagation and dual decomposition but was prohibitive to compute in real-
time. Recently Vespa et al. [91] introduced a novel hybrid representation that combines
TSDFs and occupancy grids that although doesn’t combine information from multiple rays
explicitly, does use an implicit forward sensor model.

The theoretical foundations for performing inference using ray belief propagation trace
their origins to methods that recover shape from silhouette cues [28, 33]. More recent
work [46, 87, 88] use similar probabilistic foundations to come up with generative models
of appearance and occupancy representations from multiple image views. However, for
all these frameworks, occupancy is a latent variable that is not directly observed. Our
framework, although heavily inspired by Ulusoy et al. [87, 88], utilises depth images
as opposed to using grayscale camera images. Since the variable of interest is directly
observed, inference is much faster and possible to do in real-time. Further, we augment
the formulation to incorporate learnt sensor noise to enable higher mapping fidelity.

4.3 Theory

We focus on sensors whose measurements can be modelled as ray measurements that return
a single distance. For such sensors the uncertainty in angle is negligible in comparison to
the uncertainty in distance, permitting the ray approximation instead of volumetric tracing.
We also assume independence of rays in order to handle the updates separately for each
ray. For the purpose of this work we present utilising the ray belief propagation within a
fixed size volumetric grid. However, it is important to note that the underlying spatial map
parametrisation can be anything that permits easy and consistent ray traversal evaluation
from multiple perspectives and indeed we demonstrate initial results with using Gaussian
distributions within the framework.

We first present a brief introduction of depth ray potentials followed by the inference
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procedure, and finally the extension to incorporate learnt forward sensor model uncertainty.

Figure 4.2: Graphical model illustration of the MRFMap framework. Each ray traversing
through the voxels oi establishes a depth potential ψr that connects all the occupancy nodes
ori it traverses through and an auxiliary depth variable dr. Each voxel has a prior depth
potential φi. Voxels connected by multiple rays (such as o9) share information across the
graph. Voxels within a shaded region are the or voxels for that particular ray.

4.3.1 Ray Markov Random Field

A Markov Random Field (MRF) is a bipartite graph containing nodes corresponding to
variables and factors that are connected by edges. Under mild conditions this undirected
graph can be factorised over its cliques into a factor graph, which is what we use as the
actual underlying formulation, but retain the MRF language for consistency with prior
work [87, 88]. Consider the ray MRF formation process as shown in Fig. 4.2. Each ray
from the camera sensor generates a ray potential that associates all the cells traversed by
the ray. The cells are signified as nodes that can have a binary label oi ∈ {0, 1} signifying
whether they are unoccupied or occupied, respectively. Similar to Ulusoy et al. [87], we
specify a variable dr associated with the ray to represent the event that the depth of the first
occupied cell along the direction of the ray is dri (for ori , i ∈ 1 . . . Nr in increasing distance
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along a ray). However, we do not model the appearance of the voxels along the ray, since
unlike their work, we have direct access to depth information. The joint distribution of this
factor graph is

p(o,d) =
1

Z

∏
i∈X

φi(oi)
∏
r∈R

ψr(or, dr), (4.1)

where X is the set of all the voxels oi ∈ {0, 1} corresponding to them being empty or
occupied respectively, andR is the set of all the rays from all the cameras viewing the scene,
or = {or1, . . . , orNr

} is the list of all the voxels traversed by a ray r, dr is its corresponding
depth variable, and Z is the normalisation constant. The total set of all the occupancy and
depth variables are summarised as o = {oi | i ∈ X} and d = {dr | r ∈ R}. φi and ψr are
the potential factors as described as follows:

Prior Occupancy Factor

This is simply a unary factor assigning an independent Bernoulli prior γ to the voxel
occupancy label for each voxel

φi(oi) = γoi(1− γ)1−oi . (4.2)

In our experiments we use a non-informative prior however note that these per-voxel
priors can be informed from per-pixel predictive methods if desired.

Ray Depth Potential Factor

A ray depth potential creates a factor graph connecting the binary occupancy variables
ori for all the voxels traversed by a single ray by virtue of making a measurement. Each
of these voxels has a corresponding distance from the camera origin, and thus the ray is
defined to include a depth variable dr that represents the event that the measured depth is
at distance dri . For this to happen all the preceding voxels ought to be empty, i.e., have the
value 0, and the corresponding voxel needs to be occupied, i.e., have a value 1. This leads
to the definition of the joint occupancy and depth potential factor

ψr(or, dr) =

νr(dri ) if dr =
∑Nr

i=1 o
r
i

∏
j<i(1− orj)dri

0 otherwise
. (4.3)
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Here νr(dri ) denotes the probability of observing the measured depth measurement Zr if it
originated from the latent depth variable dri that we model as

νr(d
r
i ) = N (Zr; dri , σ(dri )). (4.4)

This is our forward sensor model. This is based on the nature of RGB-D sensors, that are
more precise compared to sonars that require different forward sensor models [84]. Similar
to Basso et al. [7] we model this probability to vary in mean and noise as a function of the
distance from the camera, which enables utilising learnt sensor noise characteristics for
most RGB-D sensors for accurate map inference.

This ray potential measures how well the occupancy and the depth variables explain
the depth measurement Zr. This is more apparent when Eq. 4.3 is written as

ψr(or, dr) =



νr(d
r
1) if dr = dr1, o

r
1 = 1

νr(d
r
2) if dr = dr2, o

r
1 = 0, o2 = 1

...

νr(d
r
N ) if dr = drN , o

r
1 = 0,

. . . , orNr−1 = 0, orNr
= 1

. (4.5)

This sparse structure of the ray potential enables simplification of the message passing
equations by reducing the inference to a linear pass along the ray instead of exponential
steps as detailed in the following subsections.

4.3.2 Sum-Product Belief Propagation

Sum-Product belief propagation [45] is a common message-passing algorithm for perform-
ing approximate inference on cyclic factor graphs. By exploiting marginalisation of joint
distributions using factorisation of a graph it enables computing marginal distributions
very efficiently. Messages are passed back and forth between connected nodes and factors
that try to influence the marginal belief of their neighbours. Although convergence is not
guaranteed, in practice since the depth images are mostly consistent due to the relative
accuracy of depth sensor measurements oscillations are rare and we obtain a solution
quickly [44, p. 429].

The message sent from a variable node x to a factor f is the cumulative belief of all the
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incoming messages from factors to the node except the factor in question

µx→f (x) =
∏

g∈Fx\f
µg→x(x), (4.6)

where Fx is the set of neighbouring factors to x. Similarly, the message sent from the factor
to the node is the marginalisation of the product of the value of the factor φf with all the
incoming messages from nodes other than the node in question

µf→x(x) =
∑
Xf\x

φf (Xf )
∏

y∈Xf\x
µy→f (y), (4.7)

where Xf is the set of all neighbouring nodes of f .

Upon convergence, the estimated marginal distribution of each node is proportional to
the product of all messages from adjoining factors

p(x) ∝
∏
g∈Fx

µg→x(x). (4.8)

Similarly, the joint marginal distribution of the set of nodes belonging to one factor is
proportional to the product of the factor and the messages from the nodes

p(Xf ) ∝ φf (Xf )
∏
Xf

µx→f (x). (4.9)

4.3.3 Messages to the variables

Ray Depth Potential to Depth Variable Messages

Since we are only concerned about the depth variable, we marginalise out the messages
from all the occupancy nodes going to the ray depth potential. Following Eq. 4.7 we have

µψr→dr (dr = dri ) =
∑
or1

· · ·
∑
orNr

ψr (or, dr)

Nr∏
j=1

µorj→ψr

(
orj
)
. (4.10)

Naı̈vely evaluating this equation would involve 2Nr evaluations for each ray (correspond-
ing to the two possible event states for each orj ). However, we can exploit the sparse nature
of the ray depth potential to recursively simplify this expression. After dropping the
ray index for notational convenience and abbreviating µorj→ψr(orj) as µ(oj) we obtain (see
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Figure 4.3: Inference scheme involves first sending messages from all the factors to the
nodes, and then from the nodes to all the factors that are connected to them. This process is
repeated three times in our implementation. Shown here are what the message pathways
look like for a single ray potential.

Appendix B for a detailed derivation)

µψ→d (d = di) = ν(di)µ(oi = 1)
∏
k<i

µ(ok = 0). (4.11)

Depth Variable to Ray Depth Potential Messages

Since the only factor connected to the depth variable is the ray depth potential itself, the
message µdr→ψr is uninformative and, following Eq. 4.6, it is set to a uniform value.

Ray Depth Potential to Occupancy Variable Messages

Similar to the depth variable messages, we marginalise out all the variables except the
occupancy node in question

µψr→ori (ori = 1) =
∑
dr

∑
or
j

j 6=i

µdr→ψr(dr)ψr (or, dr)

Nr∏
j=1

µorj→ψr

(
orj
)
. (4.12)

After simplification using the sparse structure of Eq. 4.3 and dropping the ray indices
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for convenience we obtain (see Appendix B for a detailed derivation)

µψ→oi (oi = 1) =

i−1∑
j=1

µ (oj = 1) ν(dj)
∏
k<j

µ (ok = 0) +

ν(di)
∏
k<i

µ (ok = 0) (4.13)

and

µψ→oi (oi = 0) =

i−1∑
j=1

µ (oj = 1) ν(dj)
∏
k<j

µ (ok = 0) +

N∑
j=i+1

µ (oj = 1)

µ(oi = 0)
ν(dj)

∏
k<j

µ (ok = 0) . (4.14)

To provide an intuition of what these messages do, the positive outgoing message in
Eq. 4.13 sends a high value only if the likelihood of all the preceding voxels being empty is
high (second term) after taking into account the possibility of each preceding voxel to be
occupied (first term). Similarly, the negative outgoing message in Eq. 4.14 sends a high
value if any of the subsequent voxels have a high likelihood of being occupied (second
term) after taking into account the possibility of each preceding voxel to be occupied (first
term). The first terms in both these equations are significant since they encapsulate the
concept of visibility, i.e., as we traverse the ray through regions of occlusion, we can be less
certain of the information the sensor measurement provides, and eventually the outgoing
messages send out uninformative uniform messages.

Occupancy Variable to Ray Depth Potential Messages

Since other rays can (and often do) pass through the same occupancy variable node, the
outgoing message µori→ψr is computed as per Eq. 4.6. However, if a voxel is only traversed
by a single ray, the only other factor that it receives messages from is the prior factor, φi,
described in Eq. 4.2.

4.3.4 Evaluation Metric for Probabilistic Occupancy Maps

In order to determine the accuracy of a given probabilistic occupancy map, especially
one that has been generated from noisy data, the best map hypothesis should be one that
maximises the likelihood of the sensor data. Further, it is not simply enough to look at
thresholded occupancy values of a map and determine if sensor ray endpoints lie within
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Figure 4.4: Piecewise continuous ray generating surface likelihood evaluation. For a
camera ray parametrised by s, the probability of occupancy per voxel can be considered a
region with a constant occlusion density α(s). The visibility decreases corresponding to
the magnitude of α(s) and the length traversed within. The probability of an occluding
surface existing at a distance s is ω(s), which is the product of the visibility and the map
occlusion probability along the ray. Here, even though a voxel in the second region of the
probabilistic map has higher probability mass of occupancy, it is obscured by a traversed
region before it that reduces the likelihood of it being the generating surface for the ray
depth measurement.

an occupied voxel, as done in [38]; one has to reason about visibility and occlusions by
partially occupied voxels along the way. To approximate this, Stoyanov et al. [78] sampled
negative free space to determine the fidelity of the reconstructed map. However, this is
an ad-hoc approach and needs heuristics to determine what the region of the negative
sampled distance along a ray should be. Pathak et al. [62] introduced a visibility based
measure that reasoned about occlusion. However their model does not take into account
the fact that rays traverse through unequal lengths within a voxel, allowing the choice of
discretisation to significantly influence the likelihood. To fix this, a continuous version of
the same is presented by Crispell [14] that models voxels as piecewise constant regions
of occlusion density, which is what we present here in the context of probabilistic map
evaluation.

As an analogue for the event that an occluding surface occurs at cell depth di, ω(s)

is defined as the probability density function of the measurement generating surface
along the ray length parametrised by a distance variable s. The probabilistic volume is
reimagined as a region of occlusion density, α(s), that monotonically reduces the chances
of the originating surface being at distance s as we move further along the ray (see Fig. 4.4).
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The visibility at a distance s is defined as

vis(s) = e−
∫ s
0 α(s

′)ds′ = e−
∑n−1

i=0 αi`i+αn(s−sn), (4.15)

where αi denote the piecewise constant occlusion density, sn denotes the distance of the
ray upon hitting the nth voxel, and li = si+1 − si denote the lengths travelled within each
voxel discretisation. This permits using voxels of differing dimensions while evaluating
the accuracy. The difference between two consecutive visibility probabilities across a voxel
boundary then is equivalent to an occlusion probability assigned to it

Ωi = visi − visi+1. (4.16)

The likelihood of the originating surface being at a particular distance s is proportional to
the rate of change in the visibility along the ray as it traverses a region. This leads to the
definition

ω(s) =
d

ds
(1− vis(s)) (4.17)

= α(s)e−
∫ s
0 α(s

′)ds′

ω(s) = α(s) vis(s). (4.18)

Intuitively, even if there exist voxels along a ray with a higher probability of occupancy as
per the map, the fact that the ray has already traversed through partially occluded regions
previously reduce the probability that the measurement generating surface exists further
along the ray (see Fig. 4.4). Note the similarity with the first terms in Eq. 4.13 and Eq.4.14.

We thus define a ray depth measurement as being accurately classified if the sensor mea-
surement lies within the voxel boundaries of the voxel at which the maximum likelihood
generating surface,i.e., the distance arg maxω(s) is found. On reaching the map boundary,
if the visibility is not reduced sufficiently by the map volume, then the generating surface
is determined to be accurate if the sensor measurement is greater than the distance to the
map boundary, i.e., if Zr > s∞.

Taking into account that the map is going to be of a bounded volume, residual proba-
bility of visibility at the end of the ray is represented by vis∞. In order to determine the
likelihood of a ray given the probabilistic map we need to accumulate the evidence of the
possibility of the occluding surface being at a distance s and the probability of s being the

35



4. MRFMap: Online Probabilistic 3D Mapping using Forward Ray Sensor Models

true distance given the depth measurement Zr

p(Zr) =

∞∫
0

p(s)p(Zr|s)ds

=
S−1∑
i=0

si+1∫
si

ω(s)p(Zr|s)ds+ vis∞p∞(Zr), (4.19)

where vis∞ is the residual visibility when a ray hits the edges of the map boundary
and p∞(Zr) is an experimentally obtained terminal probability depending on the ray
measurement.

Since we model p(Zr|s) as a continuous normal distribution (Eq. 4.4) although a closed
form solution of the first term is feasible to compute, we make a simplifying assumption
of computing its Riemann integral using the normal pdf values between the start and
end point lengths of the ray within the voxel for computational reasons. The first term in
Eq. 4.19 then simplifies to

si+1∫
si

ω(s)p(Zr|s)ds ≈
νr(si+1) + νr(si)

2
Ωi. (4.20)

In order to determine p∞(Zr), we follow the approach of Pathak et al. [62]

p∞(Zr) =

1− ε r > rmax

ε otherwise
, (4.21)

where rmax is the maximum range of the sensor, or the intersection of the ray with the
bounding volume, and ε is a small experimentally obtained value. Note the similarity
of our likelihood to the expressions in the EM based inference for forward sensor model
based mapping in [84]. Finally, due to the independence assumption of the rays, the total
likelihood of an image is just the sum of the individual log likelihoods

p(Z) =
∏

Zr∈scan

p(Zr). (4.22)
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(a) High likelihood measurement.

(b) Low likelihood measurement.

Figure 4.5: High likelihood vs low likelihood measurements. As a ray traverses an inferred
probabilistic volume we can determine the probability of the location of the generating
surface, ω(s). This can have multiple modes dependent on the map volume and the
viewing perspective, as discussed earlier in Fig. 4.4. For an arbitrary pose, the likelihood
of a ray measurement is the integral of the product of the probability of the measurement
generating surface being at that location and the measurement probability given by Eq. 2.9
over the entire ray. This product will be high when there is significant overlap between
these two probability density functions.
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4.4 Implementation

4.4.1 Belief Propagation

We initialise all the occupancy variables with a Bernoulli initial distribution as in [88]
with a probability of 0.1. The lower value corresponds to the observation that regions of
interest are mostly empty. Lower prior probabilities aid in the initial inference steps since
it permits the visibility terms to not saturate the outgoing messages. At inference time all
keyframe images are ray traced and each ray atomically updates the corresponding nodes
it traverses. We explicitly take into account the traversed length of each ray within a voxel
to determine the contribution of the specific ray. The ray traversal is done via the standard
3DDA traversal algorithm [2]. These are then accumulated to obtain the current incoming
belief and prepared for the next pass of inference. Since storing all incoming messages for
each voxel is prohibitive, we make an assumption that all rays going through a voxel from
a single keyframe send the same average message. Thus, for each new keyframe image we
create an auxiliary buffer that stores the average outgoing message. For the purpose of this
work we perform three sequential up and down passes of belief propagation between all
the factors and nodes respectively which we have empirically observed to be sufficient for
obtaining convergence.

4.4.2 Compact GPU representation

We extend and utilise the GVDB library [37], which represents a VDB [52]-like sparse data
structure on GPUs. The smallest unit of allocated storage is a brick, which is a configurable
size. In our implementation we chose it to be 83. Each level of the hierarchy then can
contain a configurable number of bricks. Brick data is stored in contiguous space, enabling
sparse data storage. The library allows for empty skip 3DDA ray traversals for regions
where no data is stored. Fig. 4.4 demonstrates a pictorial 2D example of a < 2, 2, 2 >

configuration of the topology.

When adding new depth images, new bricks are allocated in a region around the repro-
jected 3D depth point cloud. This enables fast skip steps until within the neighbourhood of
the ray measurement where the sensor model provides the most information. Once within
an occupied brick, we traverse each voxel until a 3σ distance beyond the measured depth
at which point the sensor model provides no more useful information.
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4.4.3 Incorporating learnt sensor noise models

Structured light based RGB-D cameras and stereo cameras have a distinct quadratic in-
crease in measurement uncertainty as a function of depth and often also have bias errors [7].
We choose to model the sensor bias and noise as a function of distance travelled along a
ray. Other factors such as angle of incidence, reflectivity, and texture are also some of the
primary contributors to sensor noise that are only partially addressed within this model
and are out of scope to model in this work. Within our implementation for the forward
sensor model (Eq. 4.4), at any given traversed length, we first utilise the sensor bias to
predict what the mean sensor measurement would be and then evaluate the probability of
a given measurement originating from this predicted measurement and distributed using
the learnt noise value. Note that this is a significant difference to traditional approaches,
where undistortion functions need to be computed [7] as a first step that are then provided
to conventional mapping processes. In addition to incorporating it within the mapping
process to reduce latency, directly using the learnt sensor noise characteristics can also
easily account for other sensor or environment idiosyncrasies without doing any addi-
tional preprocessing. We choose a 20× 20 pixel neighbourhood to trade-off noise model
fidelity and memory usage on the GPU. Details about the noise modelling are presented in
Chapter 3.

4.5 Evaluation and Results

The emphasis of our results here is that

• The MRFMap framework enables higher fidelity mapping than OctoMap [38], the
standard robotic grid based volumetric occupancy framework, especially for noisy
data; and

• The time taken for ray tracing and inference is much faster than CPU based ap-
proaches, especially at finer map resolutions.

Quantitatively, we measure the accuracy of the maps by utilising the metric discussed
in Sec. 4.3.4. All pixels (rays) for which the distance of the maximum likelihood generating
surface, s lies within a constant 1.5σ standard deviation of the measured depth are classified
as accurate, and those that are not are classified as being incorrect. Sample accuracy images
are shown in Fig. 4.7. The final accuracy score for a given depth image is then the sum of
all pixels (rays) that are accurately explained by the map over the total number of valid
depth pixels in the depth image. The accuracy score is then computed over all scans in the
dataset and the mean and the standard deviation reported in the tables below.
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Figure 4.6: Left: We use a synthetic scene in the Gazebo simulator as viewed from 12
different simulated depth camera views of 640× 480 px resolution. Right: Camera rig for a
Realsense D435 and a Kinect One sensor used for acquiring the real-world dataset.

We detail three different scenarios

1. A simple simulated scene in the Gazebo2 simulator to demonstrate the accuracy
measure and ability to encode bias and noise modelling within inference;

2. A standard open access dataset with very precise simulated sensor noise for RGB-D
sensors to demonstrate inference with simulated real-world noise; and

3. A real-world dataset where we use a noisy sensor (Realsense D435) and evaluate the
generated map using a much more accurate sensor (Kinect One).

Demonstrating the accuracy metric

For the Gazebo simulation environment shown in Fig. 4.6 we obtain 12 ground truth ray
traced images and then sample simulated depth images by utilising the learnt per 20×20 px
patch bias and standard deviation noise models for the Realsense D435 at 640 × 480 px
resolution. These simulated true noise images are used to infer the probabilistic maps
and are then evaluated for accuracy in a leave one out cross-validation scheme. A sample
view is shown in Fig. 4.7 and the corresponding accuracy is shown in Table 4.1. For a
specific pixel, we plot the occupancy probability of the map pocc, the visibility vis, and the
generating surface probability ω(s). The peak of the ω(s) distribution is highlighted by a
blue vertical line - thus, according to the accuracy metric the pixel would be classified as
being accurate if the ground truth depth measurement at that pixel lies within 1σ of this
distance. This region is shown as a purple translucent region. As can be seen in Fig. 4.6 for
the given pixel the MRFMap predicted ground truth distance lies within this region, while
that for the OctoMap does not. The dashed vertical line is the noisy measurement sampled

2http://gazebosim.org/
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from the ground truth for the pixel that was used for inferring the map - highlighting the
fact that incorporating the forward sensor noise and the bias within the inference allows to
compensate for noisy, inflated depth measurements.
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Figure 4.7: Computing accuracy with simulated learnt noise. Top: Accuracy images.
Correctly predicted pixels are coloured yellow, incorrectly predicted pixels as green, and
invalid pixels as purple. Insets: Plots of ray-traced pocc(s), ω(s), andvis(s) for the selected
pixel. Purple vertical line represents the ground truth depth dgt, with a corresponding
1σ band around it to determine if the maximum likelihood generating surface location is
present within. Dashed vertical line is the depth measurement dmeas at the selected pixel
in this held out sampled depth image for evaluation. Blue vertical line is the location of
the maximum likelihood generating surface dmax = arg maxω(s)(Sec. 4.3.4). Note how for
the selected ray at the right edge of the cuboidal box, the MRFMap accurately describes
the probability of occupancy along the ray (green). The ray first hits the cuboidal box,
corresponding to the first peak of ω around 3.05 m and then travels through empty space
till it hits the ground at a distance of 4.0 m. For the OctoMap, an incorrect over-confident
map occupancy probability causes the visibility (red) to drastically drop and it incorrectly
predicts the most likely generating surface.
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Since the injected depth noise and bias is non-trivial, OctoMap struggles at accurately
inferring the map, while MRFMap infers the map accurately, predicting the generating
surface location for each pixel to be close to the ground truth depth, thus demonstrating
the ability to compensate for injected bias and noise when correctly modelled.

Resolution 0.01m 0.02m 0.05m

MRFMap 0.870± 0.011 0.917± 0.022 0.843± 0.017
OctoMap 0.082± 0.010 0.118± 0.020 0.213± 0.049

Table 4.1: Accuracy values for the simulated ground truth environment using leave one
out cross-validation over 12 images in a 4× 4× 3 m3 environment. Accuracy is determined
based on the sensor likelihood metric presented in 4.3.4. Higher accuracy represents better
agreement of inferred volumetric occupancy with ground truth sensor data.

Demonstration on publicly available dataset with known ground truth

For these results we use the livingroom1 noisy depth sequence of the Augmented ICL-
NUIM dataset [13] since it accurately models sensor noise characteristics of projective
IR based RGB-D cameras. To select the keyframes to perform inference we use a simple
geometric displacement based heuristic. A new keyframe is generated if the tangent norm
of the translation or the rotation from the last keyframe pose is larger than a threshold (here
1.0 for each). To evaluate the accuracy we then use the ground truth depth images from
the same trajectory. We use the Kinect noise model as reported in [7] for performing map
inference, and a constant noise model for the evaluation. Accuracy results are presented
in Table 4.2. As expected, at finer resolutions, the noise model can very precisely impact
inference involving multiple voxels and thus provides much more accuracy than at lower
voxel resolutions.

Resolution 0.01 m 0.02 m 0.05 m

MRFMap 0.945± 0.097 0.939± 0.101 0.891± 0.114
OctoMap 0.922± 0.105 0.882± 0.108 0.723± 0.113

Table 4.2: Accuracy means and standard deviations over the entire dataset for the
livingroom1 noisy depth sequence. The MRFMaps are constructed using the Kinect
forward sensor noise model and evaluated on a constant noise model. Map volume is
10× 10× 5 m3.
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Figure 4.8: Occupied voxel map for the livingroom1 noisy depth sequence of the Aug-
mented ICL-NUIM dataset [13]. 10×10×2 m3 volume at 0.05 m resolution. Top: OctoMap,
Bottom: MRFMap. Note the artifacts in the OctoMap due to a combination of glancing
rays and sensor noise.
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Real-world dataset

For the real-world dataset we utilise a rig shown in Fig. 4.6 in a Vicon motion capture
arena and capture a human subject. Maps are built with the noisier stereo IR Realsense
D435 camera and accuracy evaluated with data from the Kinect One, a Time of Flight (ToF)
based camera. The latter is employed for evaluating accuracy in the absence of having
ground truth depth. For inference, we use the aggregate polynomial model for bias and
standard deviation demonstrated in Fig. 3.7 for all pixels. The keyframes are selected
based on the same geometric heuristic with smaller thresholds (0.5 each) to account for
the smaller capture volume. Low accuracy values can be attributed to errors in the inter-
camera registration and the dynamic camera motion. Inferred maps are shown in Fig. 4.9
at multiple resolutions and highlight the drastically better qualitative maps obtained from
the noisy sensor data.

Resolution 0.01 m 0.02 m 0.05 m

MRFMap 0.305± 0.185 0.335± 0.195 0.406± 0.188
OctoMap 0.309± 0.192 0.302± 0.191 0.263± 0.170

Table 4.3: Accuracy values for the real-world dataset shown in Fig. 4.9. Map volume is
3× 3× 2 m3.

Timing

By virtue of being a framework that retains keyframe sensor data in memory, adding a
new image causes the inference to iterate over all the images, and the overall time taken
for inference increases monotonically. However, due to the accelerated data structure and
parallelised implementation, an MRFMap is much faster at ray tracing and performing
map inference than an OctoMap, especially at finer resolutions. Fig. 4.10 demonstrates
that, for instance, at a resolution of 0.01 m on the livingroom1 dataset even after adding
30 keyframes, ray tracing a new image and performing three passes of inference over all
keyframes still takes two orders of magnitude less time than adding it to the OctoMap.
These results were obtained on an NVIDIA RTX 2060 Super and an eight-core AMD Ryzen
3700x CPU.
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(a) 0.01 m

(b) 0.02 m

(c) 0.05 m

Figure 4.9: OctoMap (left) and MRFMap (right) at various map resolutions on real-world
data. The MRFMaps are constructed using Realsense D435 data at 848× 480 px resolution
with the aggregate forward sensor noise model (including bias) shown in Fig. 3.7 and
evaluated on a constant noise model using a rigidly attached Kinect One. Note the much
better reconstructed fidelity of the MRFMaps in the head and the hand region. Dark violet
represents lower occupancy probability while bright yellow represents high occupancy
probability.
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Figure 4.10: Incremental time taken for adding a new image and performing inference in
an MRFMap and an OctoMap to generate Fig. 4.8

4.6 Conclusion

Through our experiments, we show that explicitly modelling intra-and inter-dependence
of neighbouring voxels due to sensor ray formation as opposed to treating all voxels as
being independent enable more accurate occupancy inference than conventional occupancy
grid mapping frameworks. Incorporating learnt forward sensor models helps obtain even
higher map fidelity, and ensures that the map is a maximum likelihood solution that best
attempts to explain the sensor data.

The MRFMap framework is envisioned as an essential building block for replacing
traditional grid based submapping implementations [24, 54, 73] since it enables perform-
ing on-demand inference to obtain a probabilistically accurate map without having to
approximately resample the submaps when moving any subset of keyframe poses. The
monotonically increasing runtime considerations can be addressed by performing inference
only over images that view a region of interest, often called an active region. The increasing
memory costs can be offset by marginalising out occupancy in the inactive regions. These
are addressed in the subsequent Chapter 6.
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Chapter 5

Localisation using Gaussian Mixture
Model Maps

This chapter presents an implementation of a real-time particle filter based estimator that
infers the posterior distribution over camera trajectories given a succinct parametrised map
representation. Specifically, it provides the first term in the previously discussed equation

p(x1:t,m|z1:t,u1:t−1) = p(x1:t|z1:t,u1:t−1)︸ ︷︷ ︸
This chapter

p(m|x1:t, z1:t). (2.4)

5.1 Introduction

For an agent lost in a known environment, much of the cost of localisation can be offset
by pre-computing measures of what the sensor is expected to see; localisation can then
be cast as the much simpler problem of a search through these pre-existing “hallucinated”
views. However, exhaustively considering all possible views incurs a prohibitive cost that
increases exponentially with both the dimensionality of the state space and the size of the
environment. Further, naı̈ve pre-rendering approaches can be susceptible to errors caused
by perceptual aliasing due to slight variations in the environment appearance or by regions
that are not feature rich, such as blank walls [4].

In this chapter we present a framework enabling rapid computation of sensor data
likelihood via an environment representation that is both high-fidelity and memory ef-
ficient. The framework models a depth camera observation as being sampled from the
environment representation with a likelihood measure that varies smoothly about the
true camera pose. We thus exploit the dramatically reduced storage complexity of the
representation and the local spatial regularity of a fast-to-compute likelihood function to
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re-cast the pose estimation problem as that of Monte-Carlo localisation [86].

Our framework solves the problem of 6 Degree-of-Freedom pose estimation for Size,
Weight, and Power (SWaP) constrained micro air vehicles operating in a known dense 3D
pointcloud environment with an onboard depth camera and Inertial Measurement Unit
(IMU). We assume that the vehicle pitch and roll are obtained from an attitude estimation
algorithm using the IMU in order to constrain the search space to just heading and position.
Our main contributions are:

• A particle filter-based localisation strategy based on a high fidelity, memory efficient
environment representation enabled by a fast likelihood computation approximation;
and

• Experimental evaluation of the approach on a desktop and an off-the-shelf mobile
GPU system.

Figure 5.1: Comparison of the mean particle filter pose (orange) with that of the integrated
process model trajectory (cyan) from a representative (office) dataset. The filter estimate
is initialized with a uniform distribution away from the true location of the vehicle. As
the camera observes more informative data the filter quickly converges to the correct pose.
Top Right: Four views of the raw point cloud sensor data and the corresponding view of
the GMM map from the mean of the particle filter estimates. The GMM components are
superimposed on top of the source point cloud with their 3Σ bounds visualized as gray
ellipsoids.
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5.2 Related Work

Similar in spirit to our choice of representation, [25] map the world with a succinct, albeit
restrictive parametrisation of using only dominant planes. Our choice of representation
however, does not have any such restrictions. Likewise, [8] is similar in its restriction of
representation to a structured world consisting of planes and edges and only localizes in 2D.
Approaches such as NDT occupancy maps [16, 56, 77], unlike the representation used in this
work, learn independent distributions over each discretised cell leading to a lower fidelity
representation at the cell boundaries [19, 74]. Further, for fast pointcloud alignment they
require pre-computation of the incoming data for comparison with a stored model, known
as Distribution-to-Distribution (D2D) registration. The more accurate Point-to-Distribution
(P2D) registration approaches, however, are not as real-time viable [16, 47], and are less so
for our purpose. In [11] the authors represent each point in the reference scan of a 2D sonar
scan as an isotropic Gaussian distribution and iteratively compute the 2D transformation
that maximizes the likelihood of all points in the target scan. Our approach, on the other
hand, represents clusters of points in the reference scan as individual anisotropic Gaussian
components and is not restricted to transformations of small magnitude.

Closest in terms of our choice of implementation framework, [26] propose a particle
filter based real-time RGB-D pose estimation approach and [10] present a real-time localisa-
tion approach on a fixed-winged aircraft during aggressive flights with a laser scanner and
an IMU. The latter work implicitly exploits much more restricted dynamics of a fixed wing
aircraft within its process model and further, both these approaches use the OctoMap [38]
representation to provide correction updates within their filter estimates. Note that the
memory footprint of an OctoMap is much greater than that of our choice of representation.
For instance, memory consumption for an OctoMap of dataset D3 (Sec. 5.5.1) with 0.1 m
resolution is 872 KB while the corresponding data usage for our Gaussian Mixture Model
(GMM) map representation consisting of 1000 Gaussian components is 40 KB.

Prior works exploiting known map appearance for precise monocular pose estima-
tion [31, 57, 61, 76] employ a textured depth map within an iterative optimization frame-
work to compute the warp that minimizes a photometric cost function between a rendered
image and the live image such as the Normalized Information Distance[61], that is robust
to illumination change, or a Sum of Squared Differences cost function with an affine illu-
mination model to tackle illumination change[57]. Both algorithms rely on initialization
for tracking via a GPS prior or an ORB-based bag-of-words approach, respectively, and
expensive raycasted dense textured data for refinement. Note that in contrast to the above
mentioned algorithms that use RGB information, we only use depth observations and only
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project a finite number of mixture components as opposed to dense pre-rendered views of
the map.

5.3 Approach

Contemporary direct tracking algorithms require the projection of large numbers of dense
or semi-dense points into image space to align the current sensor data to a reference model.
In contrast, we employ GMMs as a succinct parameterized representation to achieve
orders of magnitude computational savings via an analytic projection into image space.
The consequent reduction in complexity enables projection in multiple pose hypotheses
concurrently in real-time and motivates this work. This representation is then used to
generate better proposal distributions for a particle filter that is provided an estimate of
camera odometry.

5.3.1 Spatial GMMs as an Environment Representation for Tracking

Conventional means of representing maps such as voxel grids discretize space to encode
occupancy leading to resolution dependent model fidelity and memory efficiency. An
alternate approach is to represent occupancy using a GMM map that attempts to approx-
imate the underlying distribution from which sensor measurements are sampled. This
formulation is capable of representing the environment model with as high a fidelity as
required that scales gracefully with model complexity when used in a hierarchical fash-
ion [74]. Additionally, this representation provides a probabilistic uncertainty estimate of
the occupancy at any sampled location. Fitting these models to data in real time is possible
due to recent advances that enable efficient operation [20]. We utilise the contribution pre-
sented in [20, 74] to inform the number of Gaussian components required to pre-compute
GMM maps of the environment point cloud at various fidelity levels. For the purpose of
this paper, however, we limit the discussion to using only GMM maps at a certain fidelity
level chosen according to Sec. 5.5.2, but note that the approach can be readily extended to a
hierarchical formulation.

A spatial GMM represents the probability of matter existing at a specific position Pw

given the model component parameters Θ = {µi,Σi, λi}i=1...M such that

p
(
Pw; Θ

)
=

M∑
i

λiN (µi,Σi) (5.1)

where λi is the mixture weight, µi the mean 3D position, and Σi the covariance of the ith
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Figure 5.2: Negative log-likelihood plots of sensor data acquired from camera poses offset
from a randomly chosen true pose in dataset D1 by incremental linear and rotational dis-
placements. Utilising only the relevant components using the approximation discussed in
Sec. 5.4 leads to almost identical likelihoods as when utilising all the Gaussian components
present in the model.

component of the GMM respectively, with
∑M

i λi = 1 and λi > 0.

5.3.2 Projection of a GMM Component into Image Space

In order to determine relevant mixture components of a given spatial GMM map for
evaluating sensor data likelihood we first analytically project the mixture components into
image space.

For a point Pw in the world frame, the transformed position Pc in a camera frame Tc
w

is denoted as
Pc = Rc

wPw + tcw

where Rc
w and tcw are the corresponding rotation matrix and translation vectors, respec-

tively. Since this is a linear operation on Pw, using Eq. 5.1 the transformed distribution of
points in the camera frame for the ith component is

p
(
Pc; Θi

)
= N (Tc

wµi,R
c
wΣiR

c
w

T)

Consider a sample xs ∼ N (µ,Σ) and a monotonic continuous nonlinear function y = f(x)
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(where y and xs are in the same space). Utilising the delta method, the first order Taylor
series expansion about a point xs leads to

y ∼ N
(
E[f(x)],

∂f

∂x

∣∣∣∣
x=xs

Σ
∂f

∂x

∣∣∣∣T
x=xs

)

Under the standard pinhole projection model, a point P in the camera frame is projected
to the image space using the operation π : R3 → R2 defined as

π(P) =

[
cx + f Px

Pz

cy + f
Py

Pz

]

where f is the focal length of the camera, and cx and cy are the principal point offsets. The
derivative of the projection operation with respect to the 3D point P is

∂π

∂P
=

[
f
Pz

0 −f Px
P2

z

0 f
Pz

−f Py

P2
z

]

Thus the projection of a 3D normal distribution component into image space is the 2D
normal distribution

p(u, v; Θi) =

N

π(Tc
wµi),

∂π

∂P

∣∣∣∣
Tc

wµi

Rc
wΣiR

c
w

T ∂π

∂P

T
∣∣∣∣∣
Tc

wµi

 (5.2)

where u, v are pixel coordinates in the image. Although this is only an approximation, for
components far away from the camera the linearisation is accurate enough for the purpose
of projection.

5.3.3 Estimating the Likelihood of a Camera Pose Hypothesis

As shown in the previous subsection, each Gaussian component can be projected into
image space as a 2D Gaussian distribution. We utilise this property to determine relevant
components for computing the likelihood of sensor data (Sec. 5.4). Given a scan Zt of
depth pixels {z1, z2, . . . , zk} from a sensor scan and a set of 3D GMM parameters Θ, the
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log likelihood of the scan being sampled from the GMM is defined as

l
(
Zt|Θ,Tc

w

)
=

K∑
i

ln
M∑
j

1jλjN
(
π−1(zi); Tc

wµj ,R
c
wΣjR

c
w

T) (5.3)

where 1i is a binary indicator function that signifies if the ith component is used to compute
the log likelihood, π−1 is the inverse projection from depth image pixel to 3D points, and
K is the number of pixels in the sensor scan. This likelihood should peak at the true sensor
pose and decay smoothly in the local neighbourhood, which is indeed observed as shown
in Fig. 5.2.

Figure 5.3: System overview. The algorithm operates on depth image streams and a source
of odometry given a precomputed GMM map of the environment. For each particle,
the GMM components are projected into image space using its current pose hypothesis.
Relevant components are sub-selected and are then used to compute the likelihood of the
depth image. The likelihood values for all the particles are used to resample a new set of
particles that are then forward propagated using the process model.

The discussion above only considers the nature of the likelihood in the vicinity of the
true location; in practice it is not reasonable to assume that a single viewpoint suffices
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to localize the system as perceptual aliasing may arise due to a paucity of data that
precludes state observability. Hence, we require a technique that permits tracking of
multiple hypotheses and ensures appropriate weighting of equally likely viewpoints given
the current sensor observations.

5.3.4 Inference of Posterior over Trajectories

A standard approach to tracking multiple hypotheses is a Monte Carlo filter (or particle
filter). Particle filters [83] operate by continuously sampling candidate particle poses and
measure the likelihood of the current sensor data having originated at the sampled pose.
Based on the relative scores of the samples the particles are resampled and propagated
based on a process model (often a noisy source of odometry). Convergence is generally
achieved as soon as the sequence of observations made over time render alternate hypothe-
ses inadmissible. Note that due to their inherent structure particle filters are extremely
parallelisable and we exploit this in our implementation.

We use the strategy presented in Grisetti et al. [32] to use the most recent observation
and the map estimate from the previous time step in the proposal distribution, especially
for sensors that provide significant precision and density in measurements, such as depth
cameras [5]. The final expression for the proposal distribution ends up being

p(xt|xt−1,m, zt, ut) =
p(zt|xt,m)p(xt|xt−1, ui)

p(zt|xt−1,m, ut)
(5.4)

The former likelihood term is generally highly peaked, but can have multiple modes due
to perceptual aliasing. The motion model obtained via odometry helps curtail it to regions
that are actually feasible given the prior, as can be seen in Fig. 5.4. In the context of the
GMM representation these two terms are estimated as follows:

• Motion Model: We assume the presence of some odometry to drive the first order
Markov motion model and inject Gaussian noise into it. Note that we assume that we
know the pitch and roll that can be obtained from the attitude and heading reference
system onboard a robotic system to a high level of accuracy.

• Measurement Likelihood: The measurement likelihood represents a how well the
sensor scan matches the GMM map at a given location. Since the negative log
likelihood of the current scan Zt being drawn from the GMM map is a minimum at
the true location, as shown in Fig. 5.2, in practice we use the inverse of the negative
log likelihood. Thus, given the current state estimate Tc(i)

w of a particle i out of N
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Figure 5.4: The measurement likelihood is often highly peaked for dense sensor mea-
surements such as depth sensors, but may have multiple local minima. The distribution
of future robot poses from odometry and motion models is less peaked but more uni-
modal. The combination of these two distributions serve to work as an effective proposal
distribution. Figure from [75].

particles at time step t, the corresponding normalized importance weight is

w
(i)
t =

l
(
Zt|Θ,Tc(i)

w

)−1∑N
j l
(
Zt|Θ,Tc(j)

w

)−1 . (5.5)

Sampling Strategy

A particle filter should ideally converge to the correct hypothesis after running for a finite
amount of iterations with a reduction in the filter variance signifying the confidence of
the filter. At the same time, an early reduction in the filter variance may cause the filter to
diverge to an incorrect hypothesis and never recover due to low variance. In order to avoid
such situations, we implement the stratified sampling strategy [43] in combination with
low variance sampling [86]. The particles are divided into random groups of equal weights
and in each group we employ low variance sampling. This approach has low particle
variance [86] and works well when the particle filter is tracking multiple hypotheses at
once.

Handling Particle Deprivation

One of the most common failure modalities of a particle filter is that of particle depriva-
tion [90]. Even with a large number of particles, the stochasticity intrinsic to a particle
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filter might cause it to diverge from the correct state. We employ a modified version of
Augmented MCL strategy as described in [86] where instead of adding new particles we
reinitialize Nmodify number of particles randomly selected from the original set using the
parameters αslow and αfast. This is done since we cannot increase the number of particles
once the filter is initialized because of implementation limitations. For our process model
we use diagonal covariances for translation, and the final choice of parameters in all our
experiments is shown in Table 5.1.

5.4 Fast Localisation

In order to perform fast localisation using the above approach it is essential to compute
the likelihood of the data given a proposed pose as quickly as possible. Eq. 5.3 suggests
that computing the likelihood of a scan having been sampled from the GMM map is the
summation of the contribution of all the components within the GMM. However, the key
insight here is that not all the components have a significant contribution to the likelihood.

The point clouds that we use in our experiments have roughly uniform coverage of
points across the scene. As a consequence, all Gaussian components fit to these pointclouds
end up having roughly equivalent mixture weight probabilities. This fact, in addition to
the diminishing probability mass of the Gaussian distribution, permits the approximation
of using only the projected components within spatial proximity of a certain pixel location
for computing the likelihood of the corresponding 3D point being sampled from the map.
As an added optimization step we perform this membership computation over subdivided
patches of the image. These optimizations have negligible effect on the computed likelihood
value of the sensor data, as demonstrated in Fig. 5.2.

We follow the following steps (graphically illustrated in Fig. 5.5) to obtain the relevant
components for computing the likelihood of a depth image:
• Divide the image into 32× 32 pixel patches;

• Compute the 2D projection of each Gaussian component on to the image plane of the
depth sensor;

• Inflate the 3Σ-bound ellipse of the projected 2D Gaussian of each component by half
the diagonal of the patch along its major and minor axis to generate ellipses Ei; and

• For each patch, check if the center of the image patch cp lies within or on each of the
Ei and update the indicator variable 1i,p accordingly.

1i,p =

1, if cp ∈ Ei
0, otherwise

(5.6)
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Figure 5.5: Membership computation process. 3D Gaussian components from the GMM
representation of the world are projected to the image plane. The image is subdivided
into multiple patches, where for a selected patch the relevant Gaussian members are
determined for computing the likelihood. In order to determine the latter, we employ the
heuristic described in Sec. 5.4. For instance the inflated bounds of the bottom left projected
component (red) do not contain the center of the selected patch; in contrast those of the
bottom right (green) do, and the component is thus selected for computing the likelihood
of data within that particular patch.

Given a set of updated indicator variables 1i,p for all the Gaussian components Θ and a
depth image, Zt, the likelihood of the image can be computed as the sum of the likelihoods
of all the image patches computed according to Eq. 5.3.

5.5 Results

5.5.1 Experiment Design

This section presents performance analysis of our filtering approach on a wide variety
of datasets. First, we conduct a sensitivity analysis to determine the number of particles
and the number of components we use in our implementation. Second, we analyse metric
accuracy of the proposed filter on publicly available datasets and show that our filter
output is consistent with ground truth. Third, we compare the localisation performance
of our approach with a state-of-the-art RGB-D tracking algorithm (ORB-SLAM2 [49]) on
the same sequences and demonstrate superior performance for localisation. Fourth, we
demonstrate the ability of our approach to incorporate both different odometry algorithms
and ground truth map acquisition methodologies. Finally, we analyse runtime performance
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of our filter and show that its runtime is competitive both on a desktop class system and
on an embedded platform, thus enabling SWaP constrained operation.

We evaluate our approach on

• D1: The (a) lounge and (b) copyroom datasets [96];

• D2: The voxblox dataset [58];

• D3: A representative dataset collected in-situ; and

• D4: The TUM Freiburg3 dataset [81] for demonstrating the ability to generalize.

In all cases we utilise a fixed number of components (Sec. 5.5.2) to first fit a GMM to the
pointcloud using the scikit-learn1 toolkit.

We employ two processing systems for evaluation: (1) A desktop with an Intel i7 CPU
and an NVIDIA GTX 960 Ti GPU, and (2) An embedded NVIDIA TX2 platform.

5.5.2 Sensitivity Analysis

Particle filters can achieve increased performance with large number of particles at the
cost of increased computational complexity. Conversely too few particles can lead to
divergence from the true location due to an inability to represent the true underlying
distribution. In order to find the appropriate number of particles that ensure precision
while still being computationally feasible we compare the filter performance with various
number of particles against a ground truth filter withN = 16200. Assuming the underlying
distribution represented by the particle set to be a unimodal Gaussian (a valid assumption
after convergence), we compute the variance of the KL-Divergence [36] of multiple runs of
the filter output with that of the ground truth filter to determine the empirically optimal
parameters to be used in our implementation. A low value of the KL-Divergence variance
indicates similar performance to the ground truth filter.

The fidelity of a GMM map to the underlying distribution monotonically increases
with the number of components. However, the marginal benefit (in a KL-Divergence sense)
of increasing the model complexity diminishes rapidly after adding an adequate number
of components [74]. In order to determine the appropriate model complexity to represent
the original map concisely while enabling accurate filter performance, we perform similar
experiments with the optimal number of particles obtained from the previous study, this
time with varying number of Gaussian components.
We compute the optimal parameters to beN = 1068 andM = 1000 based on D3, the dataset
with the largest volumetric span. This specific parameter choice is further motivated by

1http://scikit-learn.org/stable/modules/mixture.html
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Table 5.1: Filter hyperparameters

Process Noise σ
αslow αfastTranslation (m) Yaw (rad)

Desktop 0.02 0.01 0.01 0.001
TX2 0.025 0.1 0.05 0.005

implementation constraints.

Figure 5.6: Left: Log of variance of KL-Divergence between the ground truth filter (N =
16200) and filters with reduced particle counts. The knee point implies similar performance
to the ground truth filter at particles counts N > 1000. Right: A similar comparison given a
ground truth map with many components (M = 2500) and those with a reduced number
motivates the choice of M >= 1000. Evaluated on D3.

5.5.3 Metric Accuracy Analysis

In this subsection we discuss the localisation accuracy of our approach. As mentioned in
Sec. 5.4 since we do not add new particles when the filter observes particle deprivation and
instead randomly reinitialize the particles from the original set, the Root Mean Squared
Error (RMSE) of the filter estimate increases when the filter observes particle deprivation.
This is highlighted in the plots as vertical shaded regions. For all our evaluations we run
the filter 10 times on each dataset and report the average of the mean filter estimate. We do
not quantify the sensitivity of the likelihood values to the AHRS pitch and roll estimates as
they are accurate enough to not cause any significant difference.
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Evaluation with Ground Truth Datasets (D1, D2)

The objective of using these datasets is to demonstrate the ability of the filter to converge to
the ground truth given perfect odometry. We generated a GMM map of the environments
using the reconstructed point cloud and used the delta transforms between two consecutive
reported sensor poses with added noise as our process model. In all these experiments, we
initialized the particles from a uniform distribution over a 4 m cube and π radians yaw
orientation around the known initial location. D1(a) and D1(b) contain nominal motion of
the sensor, while D2 consists of very aggressive motion in all degrees of freedom.

Figure 5.7: Mean trajectory (red) of the particle filter estimate of 10 trials on the D1(a)
dataset compared to the process model trajectory (blue). The shaded region around the
mean trajectory shows the variance of the filter estimate over multiple runs. The filter
estimates have high variance in the beginning of the trajectories, but soon converge to the
correct location and track the ground truth trajectory (blue).

The filter estimate converged to an incorrect hypothesis for some runs in the initial
iterations due to the highly symmetric nature of the environments about the X axis, as can
be seen in Fig. 5.7. The RMSE of the filter poses for these datasets is presented in Fig. 5.8.
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Figure 5.8: RMSE of 10 trials of the particle filter on the D1(a), D1(b), and D2 datasets
respectively. The region in red indicates the time at which the particle filter observes
particle deprivation and a consequential RMSE rise.

Evaluation with Representative Dataset (D3)

The objective of using this dataset is to demonstrate results on a real-world application of
the filter. We no longer use ground truth odometry. Additionally, since we don’t have a
baseline algorithm to directly compare against, we compare the localisation performance
against ORB-SLAM2 which builds its own succinct map representation. Note that ORB-
SLAM2 also utilises the RGB image data in the dataset whereas we only use the depth.
Finally, we also briefly contrast the performance of the filter on the same dataset.

We generate a ground truth pointcloud using a FARO Focus 3D Laser scanner 2 and use
an ASUS Xtion RGB-D camera for acquiring sensor data. An IMU strapped to the camera
determines the roll and pitch of the sensor. For odometry, we only use the frame to frame
relative transform as opposed to the global pose output from ORB-SLAM2 as input to the
process model. Note that the global ORB-SLAM2 position we compare to in Fig. 5.9 and
Fig. 5.10 is using loop closure to mitigate the drift in its frame to frame estimates.

As ground truth is not available for this dataset, we report the negative log likelihood
values at the mean particle filter location and the reported ORB-SLAM2 poses. We show
results of two runs in this environment in Fig. 5.9: The first through a nominal path with
feature rich data (as shown in detail earlier in Fig. 5.1) where the estimated positions
of the sensor for the two approaches are very similar (but with worse likelihood values
for ORB-SLAM2). The second run demonstrates the advantage of using particle filters

2https://www.faro.com/products/construction-bim-cim/faro-focus/
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Table 5.2: Performance on D4 (RMSE in cm)

Our Approach ORB-SLAM2
Process Input mean var (cm2)

ORB-SLAM2 Velocity 7.67 0.21
Ground Truth Velocity 7.56 0.28 4.55

G-ICP Velocity 9.07 0.21

over maximum likelihood estimators in that the former can converge to the correct result
even after moving through a region of low observability. We observe that the sensor
measurements register at the converged filter location better after snapping back than those
for the ORB-SLAM2 estimate, as can be qualitatively seen in Fig. 5.10.

The particles in these experiments are initialized from a uniform distribution over a
4m× 8m× 3m for position and π radians in yaw.

Evaluation with TUM Dataset (D4)

To demonstrate the ability of our filter to generalize to both different odometry algorithms
and datasets we compare the performance with three different odometry inputs as pro-
cess models: The Generalized-ICP algorithm [69], ORB-SLAM2 frame-to-frame relative
transform, and ground truth odometry. The point cloud map of the environment was
created by stitching several sensor scans together using their corresponding ground truth
poses. In spite of the stitched point cloud not being as well registered as that from a FARO
scanner due to sensor and ground truth pose noise, the performance of the filter is similar
(Table 5.2).

5.5.4 Runtime Performance Analysis

As seen in Fig. 5.12, the likelihood evaluation is the most computationally expensive
operation. Execution time for this step varies with the number of Gaussian components
used to compute likelihood for each image patch and therefore is dependent on the fidelity
of the model.

The filter runs at an average rate of 80 Hz and 9.5 Hz on the Desktop and embedded
class systems, respectively. This is comparable to the ORB-SLAM2 rates of 47 Hz and
20 Hz on the respective platforms. Initial convergence on the TX2 is slower due to the
implicitly larger odometry steps. However, post convergence the metric performance is
not significantly affected. As an illustrative example, the impact of the slower runtime
performance on the TX2 for D1(a) is demonstrated in Fig. 5.13.

62



5. Localisation using Gaussian Mixture Model Maps

Figure 5.9: Comparison between the position and corresponding likelihood estimates for
two runs from ORB-SLAM2 and our filter, respectively. Top: A nominal path with feature
rich data, and Bottom: A path moving through regions of low observability. Contrast the
continually increasing divergence (capped in the graph) of the ORB-SLAM2 estimate after
moving through the feature poor region with the lower snapped negative likelihood values
for the same locations for our filter. The corresponding poses and overlaid depth scan at
approximately 55s is shown in Fig. 5.10. Due to a minimal overlap of the depth scan with
the map for the ORB-SLAM2 frame, the likelihood value is very low.
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Figure 5.10: Comparison of registration of current sensor measurement at ground truth
point cloud (gray) at ORB-SLAM2 pose estimation (cyan) and at the estimated filter pose
(orange). The sensor measurement aligns with the ground truth point cloud in the filter
estimate frame while the accumulated drift in the ORB-SLAM2 frame due to transition
through a less feature rich region leads to poor alignment.

Figure 5.11: Comparison of our particle filter approach using ORB-SLAM2 frame-to-frame
odometry (orange) and Generalized-ICP (cyan) as process models with ground truth pose
(black) on TUM’s Freiburg 3 Desk Dataset. The GMM representation of the world is created
by stitching sensor scans using the ground truth pose estimates. The higher global error of
our approach than that of ORB-SLAM2 can be attributed to the noisy reconstruction of the
environment point cloud from the accumulated scans.
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Figure 5.12: Execution time comparison for subcomponents of the algorithm for the D1(a)
dataset on an Intel i7 desktop with an NVIDIA GPU and an embedded NVIDIA TX2
platform. Performance scales linearly with the number of CUDA cores. As a point of
comparison ORB-SLAM2 runtime on the same dataset is faster on the embedded platform
than on the desktop.

Figure 5.13: Comparison of the filter performance on the desktop with the NVIDIA TX2
on the D1(a) dataset. As the filter operates at a slower frame rate on the TX2 it initially
exhibits a larger error but once the sensor observes a uniquely identifiable location, both
trial sets converge to the ground truth location.
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5.6 Conclusion

We present a framework to perform real-time localisation of depth sensors given a prior
continuous spatial belief representation. Key to being able to do this is the ability to project
a succinct representation into the image frame of the sensor to evaluate the likelihood of the
data having originated from the given map for a given pose. By utilizing a fast likelihood
computation approximation we can then perform robust particle filter localisation in
real-time even on an embedded GPU platform.

Despite the apparent suitability of the likelihood function to an optimization based
approach for more fine grained pose refinement, it is not so straightforward. For Gaussian
components that are more flat (as would be expected for planar surface fits) the gradient
profile can vary rapidly in the vicinity of the components leading to poor conditioning that
can challenge traditional iterative Gauss-Newton descent strategies. Further, the absence
of strong gradient information in spatial data as encoded by the necessarily smooth-by-
construction representation hinders the application of such methods.
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Chapter 6

MRFMapScape: MRFMap
Submapping and Sensor Data
Marginalisation with Gaussian
Distributions

Having presented approaches to inferring both the posteriors of the full SLAM decomposi-
tion separately in the previous two chapters, this chapter presents an application of first
steps of incorporating the MRFMap framework within a full SLAM problem. Specifically,
it presents a practical approximation to

p(x1:t,m|z1:t,u1:t−1) = p(x1:t|z1:t,u1:t−1)p(m|x1:t, z1:t). (2.4)

6.1 Introduction

There is an inherent trade-off within robotic mapping to choose between delaying the
marginalisation of sensor data and bounding computational and spatial complexity. In
addition to incorrectly modelled sensor noise uncertainty, even small pose errors can
manifest themselves as potentially conflicting noisy sensor data measurements for a con-
ventional occupancy grid mapping framework that assumes perfect pose information. An
ideal formulation would retain all the sensor data collected up to the inference time to
best maximise the joint likelihood of the sensor trajectory and map structure. This has
historically not been feasible in practice and thus all conventional mapping algorithms
have been designed to incorporate incremental updates.
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In Chapter 4 we demonstrated that the MRFMap framework not only permits using
the submapping approaches in a consistent fashion while incorporating forward sensor
models, but also explicitly reasons about perspective information along each ray instead of
treating sensor scans as end points. However, as presented earlier the framework does not
scale with increasing data since the choice to defer inference is taken to the extreme. In
contrast, convention occupancy grids and Gaussian process based mapping techniques
immediately marginalise the sensor information, leading to map corruption due to sensor
pose errors existing at marginalisation time.

One of the key drawbacks of using fixed sized grid based representations is the degree
of redundancy and thus the memory inefficiency incorporated within. For long term robot
operation it is imperative for the map representation to be able to scale in complexity.
Further, it is not necessary for the map representation to have a fixed fidelity for all types
of traversal. For instance, fast flight through cluttered environments only require the
gross occupancy characteristics of the environment to be identified for flight concerns.
Conversely, inspection tasks often require specific regions of the environment to be mapped
to a greater level of specificity than others. An ideal map representation should be able to
accommodate both these extremes and scale between them automatically based on time
and compute budgets.

This chapter attempts to bridge the gap between the two extremes. We utilise the
MRFMap framework to perform occupancy inference utilising forward sensor noise models
and then marginalise older information by using the succinct parametrised mixture models
that can later be used for instant likelihood evaluation. The parametric model is fit to
keyframe perspectives rather than a fixed frame thus allowing for post-hoc correction in
their location. Further, inference over pose posteriors is done via a pose graph.

Thus, this chapter presents two key ideas:
• Using MRFMap within submapping to provide a more accurate and probabilistic

fusion of submaps within pose graph optimisation by avoiding premature marginali-
sation due to incremental mapping; and

• Utilising a succinct volumetric surface representation to compress occupancy infor-
mation for older inactive regions to bound memory growth.

6.2 Related Work

For a mobile agent using a map it is imperative that the growth of the map as it explores
the environment is not unbounded. In order to be able to reason based on past experiences
and revisit old locations, it is not sufficient to only maintain local maps. Although utilising
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hierarchical data structures such as OctoMap [38] help in exploiting the sparse nature of
occupancy in most environments, they are not sufficient to bound the constant increase
in memory. This gives rise to the idea of using a moving active volume within a larger
environment that moves along with the agent and previously inferred regions cached to
disk [35, 94]. This can be potentially implemented by suitably pre-caching regions of the
map as determined by predictive visibility criteria.

Typical approaches to circumvent the issue of prematurely marginalising out the sensor
information in the map via unoptimised, inaccurate poses have used submaps as locally
consistent map representations that can be later stitched together on receiving updates
to the respective keyframe poses. These updates to poses are often performed by pose
graph based optimisation algorithms that take into account sources of odometry and loop
closures to mitigate accumulated drift. Here we focus primarily on approaches that are
used for globally consistent robotic planners.

Occupancy grid based submapping approaches such as [73] utilise updated poses from
a pose graph to update the underlying octomap representation. In addition to losing
fidelity due to effectively resampling from the compressed representation, the approach
’undos’ previous updates and reapplies them at the new pose using log-odds updates.
These updates are made possible again due to the use of independent cells approximation,
but on account of working on already marginalised data are not very precise. Other recent
approaches employing hybrid T-SDF and E-SDFs such as [59] utilise TSDF sub-volumes
that are fused after passing a pose estimate quality check. This measure is inversely
proportional to the L2 norm of the covariance matrix of their estimated relative pose.
Similar to the log-odds based approach, the fusion process involves taking two sets of
previously marginalised data and aggregating them together. Neither of these class of
approaches perform probabilistic updates that reason about the sensor formation. Using
MRFMap within either of the two frameworks can provide significant accuracy benefits
and a much more principled fusion of sensor information that can be used with frequently
changing camera poses even within a local frame.

6.3 Pose Graphs as Inference over Trajectories

Recall the decomposition of the full SLAM problem in Eq. 2.4

p(x1:t,m|z1:t,u1:t−1) = p(x1:t|z1:t,u1:t−1)p(m|x1:t, z1:t). (2.4)
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MRFMap provides us an excellent means to obtain the posterior map distribution given
a trajectory estimate. We now shift our focus to the posterior over trajectories. Although
we presented a means of computing a posterior over trajectories in Chapter 5, here we
demonstrate the incorporation of MRFMap with the common pose graph optimisation
solution used within submapping.

Pose graph optimisation aims to obtain the maximum likelihood estimate of the trajec-
tory given relative odometry measurements and loop closures between poses. Pose graphs
are an instance of a unimodal Gaussian maximum likelihood estimate of this trajectory pos-
terior, with loop closures being the only contribution from the sensor inputs z1:t. Modern
day implementations utilise factor graphs to perform efficient updates to the variables and
factors in question. We follow the approach of [73], where on achieving loop closure in an
iSAM2 [41] framework, we add the poses of the keyframes that demonstrate a significant
change in pose in the full inference window

‖Tnew 	 Told‖ > ε, (6.1)

where ε is a small threshold value, and 	 is the inverse composition operator [71]. In our
experiments we choose ε to be 0.5 metric units.

6.4 Implementation Details

6.4.1 Active Co-visibility Based Window

Co-visibility graphs as in [50, 79] employ an inner window of point-pose constraints as
in Bundle Adjustment (BA), and the number of visible features in multiple cameras to
determine constraints between two poses for an outer window on the graph. In our
approach we borrow the construction of the active window from [97] that splits the active
window into a temporal part and a co-visible part. The temporal window ensures that the
most recent keyframes are always involved in the inference, while the co-visible windows
include activable keyframes that have the most overlap with the latest keyframe. The
advantage of the latter is to allow incorporating data from distant perspectives. Each
keyframe in the active window is utilised to do full BP inference and gets its own copy
of the sparse voxel atlas. These copies of the volume are necessary in order to store the
outgoing message per voxel from a given perspective. Co-visibility is determined by
the number of atlas bricks that project into the camera frame. A graph keeps track of
the pairwise co-visibility weight between each set of keyframes. On exiting the active
window the camera is retained in the list of frames that can be activated until the maximum
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limit of activable camera keyframes is reached. At this point a keyframe is chosen to
be marginalised into a parametric mixture model using a distance heuristic that prefers
retaining keyframes that preserve parallax [97]. The choice of when to marginalise the
activable keyframe can also be made on more principled measures, such as an L2 norm on
the marginal pose covariances, as presented in [48, 73].

6.4.2 Marginalising Sensor Data using Gaussian Mixtures

For the purpose of marginalising older sensor information, we utilise Gaussian distribu-
tions fit to inferred depth images. The compressive benefits of these approaches have been
highlighted in the previous Chapter 5. The rest of this section details our proposed sensor
data marginalising scheme.

Generating expected depths

Given a MRFMap inference instance, for a given camera, for each ray potential we can
estimate the distribution of likely depth by marginalising all the other occupancy nodes
along the ray. From Eq. 4.11 we had

µψ→d (d = di) = ν(di)µ(oi = 1)
∏
k<i

µ(ok = 0). (4.11)

This depth distribution along the ray takes into account messages from other rays
passing through voxels along the specific ray and thus is often multi-modal. One approach
to generate the expected depth image would be to take the maximum likelihood generating
surface. This can be done by operating with a L1 norm on the distance under this depth
distribution [88]. The choice of the L1 norm ensures that the median mode of the distribu-
tion is chosen as the maximum likelihood generating surface depth. Thus, for each pixel in
the keyframe we can obtain the MLE expected depth given all the other frames that also
view the same set of voxels. These expected depth images can then be backprojected to 3D
and Gaussian components fit to the spread of the backprojected 3D points to approximate
the same depth distribution along the ray.

An alternative approach would be to sample 3D points for each ray corresponding
to the depth distribution prior to backprojecting them to 3D. The resulting fit Gaussian
components would potentially provide a better approximation to the depth distribution.
However, since the RGB-D camera noise characteristics we utilise are so precise in com-
parison with map resolutions used (order of a few cm), the resulting depth distributions
are not multi-modal over large cell spans, and thus the L1 norm suffices to represent the
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distribution. See appendix B.8 for a more detailed look at this phenomenon. However, for
sensor models that are noisier, a sampling approach might better encapsulate potential
multi-modal behaviour.

Fitting GMMs to inactive regions

For a given set of bricks deemed as being inactive, we look up their keyframe pixels and
obtain the maximum likelihood generating surface depth distance as per Eq. 4.11 and
then fit parametric GMMs to these virtual point clouds. At the time of marginalisation,
the connectivity graph between all observed keyframes is used to select the cameras that
have high overlap with the chosen camera and inference is performed on the subset. The
incoming messages from the voxels from all the other camera views are then taken into
account while determining the expected depth distribution. After fitting the Gaussian
distribution the camera contribution to the active window is subtracted and the GPU
memory for the image is deallocated. In practice due to projective geometry we do not fit
the data via expectation maximisation over the span of the entire map, but do so within
each brick volume as an approximation of the span of space that Gaussian components
would impact an individual ray’s likelihood. Thus, much like NDT-OM [65] we store a
Gaussian distribution per brick, with the important distinction that the 3D points used to
fit the distributions include probabilistic perspective information from multiple keyframes.

6.4.3 Extension of Ray Likelihood to Gaussian distributions

Here we demonstrate that the conditional distribution of a ray tracing through a mixture of
Gaussians in 3D is a mixture of Gaussians in 1D. This property can then be used to obtain
one step analytic expressions of ray measurement likelihood instead of ray tracing through
the grid volume for keyframes within the active window of the MRFMap.

Consider a 3D point pw = [xw, yw, zw]T in world space. This can be modelled to
be sampled from a Gaussian mixture model, a commonly used mixture model where
each component is a multivariate Gaussian [19]. If λi is a boolean variable that indicates
whether pw was generated by the component i, the joint distribution for k components is
represented as

p(pw) =
k∑
i

p(λi)N (pw|µwi ,Σw
i ), (6.2)

where
∑
p(λi) = 1.

Intuitively, a given ray from a camera will correlate the x,y,z coordinates for an arbitrary
point and reduce the dimensionality of the Gaussian component along itself. Let the point
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be observed from the camera frame, corresponding to a rigid body transform T cw. The
GMM is then transformed as

p(pc) =
∑

p(λi)N (pc | T cwµwi ,Rc
wΣw

i R
c
w

T) (6.3)

⇒ p(xc, yc, zc) =
∑

p(λi)N


 xc

yc

zc

 ∣∣∣∣ T cwµwi ,Rc
wΣw

i R
c
w

T

 . (6.4)

After dropping the camera superscripts for brevity, we can consider the partition [x, y]

and [z], and find the conditional distribution of the z variable. Thus, µi and Σi are then
correspondingly partitioned as

µi =

[
µxy

µz

]
, and Σi =

[
Σxy Σxy,z

Σz,xy σ2z

]
, (6.5)

where we drop the i suffix for notational brevity.

Using the law of total probability, we can express

p(z|x, y) =
∑

p(λi|x, y)p(z|x, y, λi). (6.6)

Figure 6.1: The conditional of a 3D Gaussian along a ray is also Gaussian shaped, although
it is not a probability density function by itself. The projection of the 3Σ ellipsoid bounds
of a 3D Gaussian in the image plane is an ellipse. See appendix for more details.

The first term, is the conditional probability of choosing each component and can be
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obtained via Bayes’ rule

p(λi|x, y) =
p(λi)p(x, y|λi)

p(x, y)
(6.7)

=
p(λi)p(x, y|λi)∑
j p(λj)p(x, y|λj)

, (6.8)

which can be seen as the weights of the marginalised 2-D distribution of the ith Gaussian

component, p(x, y|λi) = N
([

x

y

]
| µxy,Σxy.

)

The second term is the 1-D conditional distribution of the ith Gaussian component with
a mean and covariance

µz|x,y = µz + Σz,xyΣ
−1
xy,xy

([
x

y

]
− µxy

)
(6.9)

σ2z|x,y = σ2z −Σz,xyΣ
−1
xy,xyΣxy,z. (6.10)

In order to evaluate this conditional distribution along a ray we rotate the camera Z
axis to align with the ray direction. This is equivalent to rotating the component means and
covariances by an additional rotation matrix. This permits us to set x, y terms in Eq. 6.9 to
be 0 instead of a parametric equation and simplifies evaluation to use pixel coordinates u, v

p(s) =
∑

p(λi|u, v)p(s|u, v, λi). (6.11)

This corresponding distribution is then used in the subsequent steps. The alternative would
be to perform a transformation of the Gaussian variables via a perspective projection, which
however no longer retains the linear Gaussian mixture model nature of the components
due to the non-linear transformation involved in camera projection.

We can then utilise these GMM components instead of the probabilistic map used in
Eq. 4.19 to evaluate the likelihood of a depth image measurement

p(Zr) =

∞∫
0

p(s)p(Zr|s)ds. (4.19)

If we know the Gaussian components along the ray, which can be obtained by a simple
projection technique, then the first term is simply the conditional of the GMM along the
ray, and the second term is a Gaussian centred around the measurement Zr. On expanding
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the integral, we have

p(Zr) =

∞∫
0

m∑
i

p(λi)p(s|λi)p(Zr|s)ds+ vis∞p∞(Zr) (6.12)

=
m∑
i

p(λi)

∞∫
0

p(s|λi)p(Zr|s)ds+ vis∞p∞(Zr), (6.13)

where vis∞ is the residual visibility when a ray hits the edges of the map boundary, p∞(Zr)
is an experimentally obtained terminal probability depending on the ray measurement
as discussed in Sec. 5.3.3, and p(s) is the 1-D conditional distribution of the GMM along
the ray obtained in Eq. 6.11. Now, since both the terms within the integrand are two 1-D
Gaussian distributions, and we only consider components ahead of the camera, we can
obtain an approximate closed form solution of the product of the two distributions using
standard properties of Gaussian distributions. We thus have

p(Zr) ≈
m∑
i

p(λi)N
(
µi|Zr, σ(Zr)2 + σ2z|x,y

)
+ vis∞p∞(Zr), (6.14)

where we make a similar assumption as in Eq. 4.20 and assume a constant average sigma
noise and bias of the measurement at the 1.5σz|x,y intervals about the 1-D conditional
component mean. Further due to insignificant overlap, distant components can be safely
ignored and effectively only the nearest component to the measurement remains relevant.
This thus provides us an approximate closed form measure of the sensor data likelihood
given marginalised Gaussian map components that is fast to evaluate and does not involve
any ray tracing through the volume.

6.5 Results

This section details initial experiments and results of the proposed implementation. They
serve to highlight:
• The ability of MRFMaps to defer marginalisation until required and thus incorporate

pose graph updates seamlessly;

• The efficacy of the active windowing strategy in reducing the unbounded memory
consumption of batch settings; additional

• Qualitative and quantitative comparison of the impact of the marginalised sensor
data in terms of sensor likelihood.
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6.5.1 Pose Graph Optimisation

For these preliminary results we utilise an iSAM2 based smoother within GTSAM as the
pose-graph backend. This runs in parallel with the MRFMap mapping thread and asks the
inference to update the camera poses for only the keyframes for which the pose changes
more than a fixed geometric displacement as expressed in Eq. 6.1. As specified earlier here
we use an ε of 0.05 metric units. We utilise the ICL-NUIM livingroom1 dataset and for
the purpose of this demonstration artificially inflate the rotational odometry by 10%. As
expected, this results in a map that is severely distorted (see Fig. 6.2). We then inject a
ground truth odometry edge every 500 frames out of a total of roughly 2800 frames in the
dataset and demonstrate the output of the inference. Even with just five loop closure edges,
the resulting map is qualitatively much better. See Fig. 6.2

Figure 6.2: Qualitative comparison of occupancy inference with and without Pose Graph
Optimisation. The odometry for the livingroom1 dataset is artificially inflated by 10%
in rotation and used to infer the MRFMap without (Top) and with (Bottom) pose graph
optimisation.
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6.5.2 Compute Time and Memory Usage

Since each additional keyframe within the MRFMap implementation utilises an auxiliary
channel to store outgoing messages per activated voxel, the memory cost increases sig-
nificantly as the map bounds and the number of keyframes increase. Marginalising older
keyframes as Gaussian distributions as keyframes move out of the active window bounds
the compute time and reduces the growth in memory usage substantially. The plots for
running the implementation on the livingroom1 dataset are shown in Fig. 6.3.
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Figure 6.3: Memory usage and timing comparison. Top: Memory usage comparison
between the batch mode inference and version with an active window. The active window
maintains only a fixed number of keyframes for inference and the sensor data for frames
moving out of the window are marginalised. Bottom: Elapsed time for the time taken to
add a camera to the active window and that to perform inference of the two approaches.
The marginalisation implementation is not optimised and thus the time taken to add a new
keyframe is relatively high and introduces the variability.
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Figure 6.4: Screenshot of the active window and marginalised sensor measurements
overlaid on the map with the current keyframe poses. The active keyframes are shown
by green coloured frustums while the inactive keyframes are shown in gray. The current
frame is shown by the large white frustum with the current backprojected depth image
pointcloud rendered as well. 3Σ bounds of the marginalised Gaussian distributions fit
to older keyframes are rendered with random high saturation hues. Current marginal
occupancy of the MRFMap is shown in a volumetric deep brick rendering in red.

6.5.3 Expected Depth Image and Gaussian Mixture Fitting

We present a sample maximum likelihood expected depth image computed as explained
in Sec. 6.4.2 and a view of the projected marginalised Gaussian distributions for the data in
Fig. 6.5. Further, we evaluate the variation of the likelihood field in the vicinity of the true
ground truth pose of a depth image, and show that the negative log-likelihood plots even
at coarser brick discretisations show a characteristic minima close to the true pose. This
suggests that the marginalised parametric representation can be used for multi-hypothesis
localisation purposes as well (see Sec. 5.5.2).
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Figure 6.5: The expected depth image from a keyframe before its data is marginalised (Left)
and afterwards when we fit Gaussian distributions to its expected depth image (Right).
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Figure 6.6: Comparison of the negative log likelihood plots of ground truth depth images
in the vicinity of the ground truth camera pose using the marginalised parametric repre-
sentation at voxel resolutions of 0.01 m (Left) and 0.02 m (Right), respectively. Note the
similarity to the plots in Fig. 5.2.
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6.6 Conclusion

In this chapter we demonstrated the extension of the MRFMap framework to a real-time
capable system by utilising a co-visibility based active window and marginalising old
inferred sensor depth information in the form of a succinct parametric representation. The
representation tries to be faithful to the inferred depth distribution while still being much
more sparse than a dense gridded structure. Initial results also demonstrate the viability of
the succinct representation to be used for localisation as has been demonstrated previously
in Chapter 5. Another interesting insight is that on account of incorporating forward
sensor noise within the inference, we can obtain high fidelity results without the need of
incorporating aggregated sensor data as is done with other approaches thus leading to
higher data efficiency.
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Chapter 7

Conclusion

Robust robotic operation requires a tightly coupled amalgamation of a series of components.
State estimation is often the most critical path, and all too often perception and control
are treated as independent separate blocks. However, state estimates can be informed
by knowledge of the system - from high level preference of trajectories to even low level
system dynamics. Similarly, control and planning algorithms can exploit map-based
uncertainty to make locally deliberate decisions. Premature decisions made earlier in the
pipeline may render certain later operations infeasible, and, at worse, can have catastrophic
consequences.

It is thus desirable to retain as much information as possible in prior steps of the
autonomous pipeline in order to make informed decisions downstream in an operating
paradigm. However, this is often at odds with computational feasibility, especially on
robotic agents, and thus by virtue of intelligent assumptions and approximations we
endeavour to incrementally achieve robust autonomous operation. Further, there is also
fundamentally a redundancy in sensor information, and there exists an information bottle-
neck that limits the capability of any agent to process vast amounts of information. Robotic
mapping, thus, deals with the exciting challenge of retaining as much informative content
from sensor data as possible while minimising redundancy.

In this thesis we presented an inference framework for estimating marginal occupancy
inference using forward sensor models that runs in real-time. This is significant because
to the best of our knowledge this is the first result in robotics literature that computes
the inference over the joint distribution of occupancies in real-time at centimetre level
volumetric resolutions. Further, by virtue of delaying sensor data marginalisation until
required, the framework achieves an elegant probabilistic submapping solution that does
not include discretisation errors when merging submaps in a local window. Finally, the
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framework suggests exciting avenues for future work that can have potentially very high
impact.

This thesis limits the scope to performing occupancy inference for a specific class of
dense depth sensors. However, the framework can be used as a general system applicable
to a wider variety of sensor types. For instance, with sparser depth data such as that from
laser rangefinders it is often necessary to impose structural regularity across voxels to
get denser maps. It is feasible to add pairwise smoothness constraints to voxels within
ray belief propagation to encourage nearby voxels to take the same occupancy label [88].
Further, more complex forward sensor noise models can be incorporated within the in-
ference framework than the simple bias and noise models that we utilise, for instance for
sensors with wider beams such as sonar. Since the framework explicitly reasons about the
distribution of possible generating surfaces along the ray, the framework can feasibly work
with such sensor data.

In the pursuit to compress as much information as possible while retaining fidelity, this
work also demonstrates the application of succinct parametrisations to reduce redundancy
of representation. However, there is still a lot more data that can be compressed by utilising
richer information about the environment. For instance, knowing that a span of matter
is a wall should allow us to both more sparsely represent the spatial extents, and also
reason about other regions connected to it. Recent developments in the field such as [9, 23]
are incredibly exciting since they serve as excellent proofs of concept that a lot of the
spatial and appearance information can be represented in a much smaller subspace. The
challenge then lies in combining the strengths of data-driven processes and making them
generalisable, interpretable, and consistent using physically correct models and principled
uncertainty propagation.

7.1 Avenues for further Research

As final comments, we detail some promising avenues for further research based off the
MRFMap framework.

7.1.1 Inference over Multimodal Trajectories and Occupancy

One of the most exciting future applications of the MRFMap framework would be the infer-
ence over the multimodal joint posterior over trajectories and occupancies, a problem that
has so far been out of reach for 3D volumetric full SLAM. For 2D sensor data FastSLAM [82]
introduced particle filters to tackle the full SLAM problem where each particle estimated its
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robot trajectory as well as its own copy of the map. This system explicitly models multiple
hypotheses of the world given the sensor data, and incorporates non-linearities present
within state propagation. Further, the fact that the amount of computation required per
incremental update is constant and each map component is updated independently of
the others makes the approach amenable to GPU parallelisation. We envision being able
to use MRFMap within a FastSLAM context since it allows the occupancy volume to be
inferred on demand and only requires the sensor information to be retained per keyframe.
The sensor information can be shared amongst all particles, thus eliminating the need of
maintaining expensive concurrent multiple high-dimensional map hypotheses. This how-
ever hinges on the ability of the map representation and the likelihood measurement to be
convex in the vicinity of the true pose so that most of the support of the proposal particles
is drawn from a region around the local maximal scan aligned location. This is indeed the
case for maps inferred with the MRFMap formulation, as is evidenced by Fig. 6.6, and is a
sufficiently convincing demonstration of the ability of this formulation to work well within
a particle filter implementation. Other recent backends such as multi-hypothesis Bayes
tree [39] and belief-propagation based parallelised bundle adjustment [60] could also be
excellent fits within such a joint inference framework.

7.1.2 Multi-resolution Parametric Map Representations

Recent work in hierarchical GMMs has shown the ability to encode depth maps in very
concise representations that scale in fidelity. In this thesis, we have formulated and evalu-
ated a particle filter based strategy for localizing within a GMM map of a fixed hierarchy
in Chapter 5. We have also demonstrated a means of building up these representations
with inferred depth distributions that take forward noise models into account 6. In the
framework we don’t specify the choice of the map representation as long as the individual
components are independent given the trajectory. Thus, instead of a grid map, we can
use a set of mixture components and update them per particle to build up maps that
scale with time. Further, the resolution of these models can be arbitrary, and data driven
techniques could be used for fitting models at only the smallest resolution that they need
to be represented at, thus minimising redundancy.

7.1.3 Including Appearance Potentials and Semantic Labels

The ability to add metadata within the mapping process can enable a host of other applica-
tions, e.g., we could add a per-pixel classification score (say of rooftop damage) to each
voxel to help actively map out regions of damage in an inspection scenario by focussing
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compute budget on regions of the world that require it more. Another example would be
utilising per-pixel class object labels to help impose semantic constraints to reconstructions
of objects such as furniture in living room environments to capture difficult to reconstruct
thin surfaces from multiple perspectives or under occlusion. At the high level, for potentials
that we have direct depth observability over, the occupancy will converge quickly to the
final value, whereas for voxels with only appearance based information, the convergence
will take longer in a sort of near-far inference. This is effectively very similar to the model
used in [88] in that within the MRFMap depth ray potential factor the model would have
an additional random variable a that could take labels ∈ 0, 1 . . . k for each of the occupancy
locations, where k is an appropriately determined discretisation. Since the appearance of a
particular cell is also a surface property, and is dependent on the first occupied cell, the ray
potential would now connect appearance, occupancy, and the ray depth nodes. Note that
this allows the framework to potentially not directly observe the depth label and still infer
the depth as long as the rays potentials share members due to the implicit photometric
consistency introduced by adding the appearance data, going truly beyond the capability
of GMM-based spatial mapping, TSDFs, and Gaussian Process mapping algorithms.

7.1.4 Inferring Anisotropic Voxel Occupancy

Discretising the environment into voxels involves making an implicit assumption about
the occlusion density being constant within that span. This assumption starts breaking
down rapidly as voxel sizes increase. For applications on platforms with limited compute
and memory it is however desirable to use as large voxels as possible. MRFMap as a
framework can permit inferring different occlusion densities given different perspectives.
For instance, a majority of rays going through a voxel looking head on might suggest high
occlusion whereas one from the side wouldn’t (as in the case of thin surfaces). The current
implementation ends up averaging all outgoing messages to a voxel from one perspective
to provide unimodal updates. However, voxels can store multi-modal messages that store
incoming messages from different directions. Exploiting this property could lead to being
able to use much larger voxels than currently possible while only nominally increasing
storage costs per voxel, which could further enable additional downstream tasks that are
blocked by memory constraints.
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Appendix A

Rendering Covariance Ellipsoids
with GLSL

A.1 Objective

Being able to render generic Gaussian components into the camera frame can facilitate
projective correspondence. In this document we discuss utilising OpenGL to project
covariance ellipsoids to the image frame to do so.

A.2 Quadrics

A quadric is a 2D quadratic surface embedded in 3D, called so because of the general form

xQxT + Pxt +R = 0. (A.1)

Using homogeneous coordinates x = (x, y, z, 1)T this can be expressed in a convenient
matrix form

xTQx = 0. (A.2)

For conics, the matrixQ is symmetric and is also invariant under perspective projections

Q =


A B C D

B E F G

C F H I

D G I J

 . (A.3)

87



A. Rendering Covariance Ellipsoids with GLSL

A.3 Ellipsoid

The general equation of an axis-aligned ellipsoid centred at the origin is

x2

a2
+
y2

b2
+
z2

c2
= 1. (A.4)

In the form of the previous conic matrix, this can be written as

xT


1
a2

0 0 0

0 1
b2

0 0

0 0 1
c2

0

0 0 0 −1

x = 0. (A.5)

In fact, all conics can be obtained by transforming a distinct basis matrix D that is
diagonal with elements dii ∈ {0,±1} [70]. For ellipsoids this basis is the unit sphere

D =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 . (A.6)

We can obtain an ellipsoid from this unit sphere by performing an affine transformation.
Recall that the structure of the conic is invariant under perspective transformations since it
is linear. For any affine transformation T applied to coordinates x, we have

x′ = Tx

⇒ x = T−1x′. (A.7)

Substituting in equation

(T−1x′)TD(T−1x′) = 0

⇒ x′TT−TDT−1x′ = 0

⇒ Q = T−TDT−1 (A.8)

For an ellipsoid, this matrix is composed via a scaling, rotation, and translation matrix,
respectively.

T = TRS. (A.9)
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Thus, an ellipsoid can be expressed in a parametric form as

xT (TRS)−TD(TRS)−1x = 0. (A.10)

Deconstructing an ellipsoid into this so-called parametric form enables convenient
projection operations as we shall see in Sec. A.5.

A.4 Rendering Gaussian Components

A 3D multivariate Gaussian component is characterised by a mean and an associated
covariance. When fitting spatial data to a GMM using EM, a practical observation is
that most of the spatial data mass coincides with the component location and span. It is
thus often helpful to visualise the 3σ spatial support of the normal distribution. This is
expressed as

supp(N (µ,Σ)) ≈ (x− µ)T Σ̂−1(x− µ), (A.11)

where Σ̂ is the scaled covariance matrix, where the support operator supp is the approxi-
mate domain for which the Gaussian component provides significant probability density.

Now, a covariance matrix can be considered an ellipsoid where the basis has been
scaled by the primary axes and then rotated. Further, (x−µ) = Tx is simply the operation
of a translation matrix parametrised by −µ on the vector x. In order to write this span in
the parametric form, we can utilise the singular value decomposition to obtain the scale
and rotation matrices as

Σ = UΛUT , (A.12)

where U = [u1u2u3] is the decomposed rotation and Λ = diag(σ21, σ
2
2, σ

2
3). We can split

this as
(x− µ)TΣ−1(x− µ) = xTT TUΛ

−1
2 I3×3Λ

−T
2 UTTx (A.13)

Comparing with the parametric form in Eq. A.10, and taking into account scaling the
singular values for the 3σ support, the required parametrisation is

T−1 = Λ
−1
2 UTT (A.14)

⇒ T =

[
I3×3 µ

01×3 1

][
u1 u2 u3 0

0 0 0 1

]
3
√
σ12 0 0 0

0 3
√
σ22 0 0

0 0 3
√
σ32 0

0 0 0 1

 . (A.15)
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A.5 OpenGL Projection

With the correct T one needs to only follow the technique as presented in [70] to project
the ellipsoid. The summary of the process is to utilise an OpenGL fragment shader to
determine if a ray from the camera space intersects the transformed ellipsoid at a billboard
location determined by an axis aligned bounding box in image space obtained via the
projection of the ellipsoid to the image plane (which is an ellipse). Determining the size
of the bounding box helps bound the number of pixels that are discarded in the fragment
shader as being outside the ellipsoid. This leads to a much more accurate projection of
the ellipsoid than an approach that generates a polygonal approximation the ellipsoid in
a vertex shader and then paints it in. We detail this process for completeness in the next
section.

A.6 Estimating Bounding Box

Figure A.1: Illustration of the ellipsoidal projection steps. The bounding box in image space
(a) is determined by the frustum planes hxi and hyi (b). These planes, when transformed
to the parameter space have to be tangent to the unit sphere (c). This property is exploited
to obtain the bounding box in screen coordinates for the fragment shader. Illustration
from [93].

To obtain the bounding box, the key idea we exploit is that there is a bijection between
the direction of a normal and a surface point on the ellipse. Further, there’s a linear mapping
from the ellipsoid to the basis sphere. The mapping of the normal on the basis sphere to a
point on its surface is simply the norm. Finally, we can then map this point on the surface
of the sphere back to the ellipsoid, thus giving us the required point corresponding to the
desired normal on the ellipsoid.

As can be seen in Fig. A.1, the axis aligned bounding boxes in camera space are simply
the planes parallel to the x and y axes that are tangent to the ellipsoid. Thus, for the patch
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extents we only require the points on the ellipsoid that corresponds to the four axis vectors.
In particular, e.g., the rightmost point will correspond to the normal [1, 0, 0]T .

Let us operate in the cuboidal clip space (thus after applying the projection matrix) to
ensure that we only project ellipsoids that project into ellipses in the image plane. The
mapping from a point in parameter space to a point in clip space is

xc = PMTxp, (A.16)

where PMT are the projection matrix, the model view matrix (the matrix that transforms
from world space to camera space), and the parametric transformation matrix, respectively.
The equation of a plane in clip space is

vTc xc = 0, (A.17)

where vc = [nTc , d]T , with nc being the normal to the plane and d the distance from the
origin. Substituting Eq.A.16

vTc PMTxp = 0 (A.18)

((PMT)Tvc)
Txp = 0 (A.19)

vTp xp = 0. (A.20)

Now each normal of a tangent plane on the basis sphere corresponds to a point on it.
The equation of a tangent plane toD is

vTp = xTpD (A.21)

However, since we know that this point lies on the sphere

xTpDxp = 0

⇒ xTpDD
−1Dxp = 0

⇒ vTpDvp = 0 (A.22)

Now for vc = [1, 0, 0,−x]T , a plane parallel to the y axis, using vp = (PMT)Tvc above,
we get

vp = r1 − xr4, (A.23)

where ri is the i-th row of the compound matrix PMT. Substituting into Eq. A.22 yields a
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quadratic equation

(
rT4Dr4

)
x2 − 2

(
rT1Dr4

)
x+

(
rT1Dr1

)
= 0. (A.24)

The two solutions correspond to the left and right borders of the bounding rectangle.
Replacing r1 by r2 gives the vertical bounding borders. The centre of the bounding box is
thus

vc =

[
−2
(
rT1Dr4

)
2
(
rT4Dr4

) ,−2
(
rT1Dr4

)
2
(
rT4Dr4

) , 0, 1]T
=
(
rT1Dr4, r

T
2Dr4, 0, r

T
4Dr4

)T
(A.25)

The Z depth is written to the buffer later based on the ray intersection in the shader.

A.7 Fragment shader Ray-Quadric intersections

In the rasterisation process we find the roots for the ray corresponding to each fragment
inside the point sprite and kill all the fragments that don’t have any roots, i.e., don’t lie
inside the projected quadric.

A fragment in the window can be expressed as a combination of its xy coordinates and
unknown depth:

xw =


xw

yw

zw

1

 = x′w + zw


0

0

1

0

 . (A.26)

Now this point in window coordinate can be mapped to the parametric basis sphere as

xp = (V · P ·M · T)−1xw = x′p + zwc3, (A.27)

where V is the so-called viewport matrix

V =


w
2 0 0 minX + w

2

0 h
2 0 minY + h

2

0 0 f−n
2.0

f+n
2

0 0 0 1

 , (A.28)

where f and n are glDepthRange() values that default to 1.0 and 0.0, respectively and

92



A. Rendering Covariance Ellipsoids with GLSL

minX and minY are the viewport x and y coordinates that are 0 when rendering full-screen.
Thus, replacing this in the basis quadric equation, we have

0 =
(
x′p + zwc3

)T
D
(
x′p + zwc3

)
=
(
cT3 Dc3

)
z2w + 2

(
x′Tp Dc3

)
zw + xTp Dx′p

. (A.29)

The smaller of the two depths is assigned to the depthbuffer. Note that it is important to
enable GL_DEPTH_TEST to assign the gl_FragDepth value and to assign a default value
for the discarded fragments (we choose 1, the furthest depth).

Figure A.2: Sample 1000 covariances rendered using above technique.

A.8 Inverse Depth Buffer

Conventional Z depth buffer gives too much precision to data in the near plane and
loses precision for points at a further distance 1 This causes Z fighting to occur. This
can be avoided by using the so-called inverse Z buffer, implementing which requires
enabling the glClipControl(GL_LOWER_LEFT, GL_ZERO_TO_ONE), using a floating
point depth buffer, flipping the depth comparison to glDepthFunc(GL_GREATER), clear-

1https://developer.nvidia.com/content/depth-precision-visualized
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ing the depth to glClearDepth(0.0f), and finally modifying the projection matrix such
that z coordinates are linearly mapped from 0 to 1 accordingly whether they are at infinity
or at the near plane respectively 2. Note that the viewport matrix also changes, as per 3 to
be

V =


w
2 0 0 minX + w

2

0 h
2 0 minY + h

2

0 0 f − n n

0 0 0 1

 . (A.30)

These changes allow retaining depth precision to a very high precision for a very large
viewing distance.

2https://nlguillemot.wordpress.com/2016/12/07/reversed-z-in-opengl/
3https://www.khronos.org/registry/OpenGL/extensions/ARB/ARB_clip_control.txt
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Appendix B

MRFMap Message Derivation

B.1 Sum-Product Belief Propagation

Sum-Product belief propagation is a common message-passing algorithm for performing
inference on factor graphs [44]. By exploiting marginalisation of joint distributions using
factorisation of a graph it enables computing marginal distributions very efficiently. A
factor graph is a bipartite graph containing nodes corresponding to variables and factors
that are connected by edges. Messages are passed between connected nodes and factors
that try to influence the marginal belief of their neighbours. The passing continues until
convergence (if any) is achieved.

The message sent from a variable node x to a factor f is the cumulative belief of all the
incoming messages from factors to the node except the factor in question

µx→f (x) =
∏

g∈Fx\f
µg→x(x), (B.1)

where Fx is the set of neighbouring factors to x. Similarly, the message sent from the factor
to the node is the marginalisation of the product of the value of the factor φf with all the
incoming messages from nodes other than the node in question

µf→x(x) =
∑
Xf\x

φf (Xf )
∏

y∈Xf\x
µy→f (y), (B.2)

where Xf is the set of all neighbouring nodes of f .

Upon convergence, the estimated marginal distribution of each node is proportional to
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the product of all messages from adjoining factors

p(x) ∝
∏
g∈Fx

µg→x(x) (B.3)

Similarly, the joint marginal distribution of the set of nodes belonging to one factor is
proportional to the product of the factor and the messages from the nodes

p(Xf ) ∝ φf (Xf )
∏
Xf

µx→f (x) (B.4)

B.2 Markov Random Field

Each ray in all the cameras generates a factor graph, the joint distribution of which is

p(o,d) =
1

Z

∏
i∈X

φi(oi)
∏
r∈R

ψr(or, dr), (B.5)

where X is the set of all the voxels oi ∈ {0, 1} and R is the set of all the rays from all the
cameras viewing the scene, or = {or1, . . . , orNr

} is the list of all the voxels traversed by a
ray r, dr is its corresponding depth variable, and Z is the normalisation constant. The
total set of all the occupancy and depth variables are summarised as o = {oi | i ∈ X} and
d = {dr | r ∈ R}. φi and ψr are the potential factors as described as follows:

B.2.1 Prior Occupancy Factor

This is simply a unary factor assigning an independent Bernoulli prior γ to the voxel
occupancy label for each voxel

φi(oi) = γoi(1− γ)1−oi . (B.6)

Note that these priors can be informed from predictive methods if required.

B.2.2 Ray Depth Potential Factor

A ray potential creates a factor graph connecting the binary occupancy label oi for all voxels
traversed by a single ray by virtue of making a measurement. Each of these voxels has
a corresponding distance from the camera origin, and thus the ray is defined to include
a depth variable dr that represents the event that the measured depth is at distance dri .
For this to happen all the preceding voxels ought to be empty and the corresponding
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voxel needs to be occupied. This leads to the definition of the joint occupancy and depth
potential factor

ψr(or, dr) =

νr(dri ) if dr =
∑Nr

i=1 o
r
i

∏
j<i(1− orj)dri

0 otherwise
. (B.7)

Here νr(dri ) denotes the probability of observing depth dri given the measured depth value
Dr that we model as νr(dri ) = N (dri ;Dr, σ(dri )). Note that we model this probability to vary
in mean and noise as a function of the distance from the camera, which enables utilising
learnt sensor noise characteristics.

This ray potential measures how well the occupancy and the depth variables explain
the depth measurement Dr. This is more apparent when Eq. B.7 is written as

ψr(or, dr) =



νr(d
r
1) if dr = dr1, o

r
1 = 1

νr(d
r
2) if dr = dr2, o

r
1 = 0, o2 = 1

...

νr(d
r
N ) if dr = drN , o

r
1 = 0, . . . , orNr−1 = 0, orNr

= 1

(B.8)

This sparse structure of the ray potential enables massive simplification of the message
passing equations, as shown next.

B.3 Message Passing Derivation

B.4 Ray Depth Potential to Depth Variable Messages

Since we’re only concerned about the depth variable, we marginalise out the messages
from all the occupancy nodes going to the ray depth potential. Following B.2 we have

µψr→dr (dr = dri ) =
∑
or1

· · ·
∑
orNr

ψr (or, dr)

Nr∏
j=1

µorj→ψr

(
orj
)
. (B.9)

Naı̈vely evaluating this equation is not feasible. However, we can exploit the sparse
diagonal nature of the ray depth potential to recursively simplify this expression. After
dropping the ray index for notational convenience and abbreviating µorj→ψr(orj) as µ(oj)
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we have

µψ→d (d = di) = µ (o1 = 1)

4︷ ︸︸ ︷∑
o2

· · ·
∑
oN

ψ (o1 = 1, o2, . . . , oN , d = di)
N∏
j=2

µ (oj)


+ µ (o1 = 0)

∑
o2

· · ·
∑
oN

ψ (o1 = 0, o2, . . . , oN , d = di)

N∏
j=2

µ (oj)


︸ ︷︷ ︸

�

(B.10)

From Eq. B.8, for the top expression4 the ray potential term ψ (o1 = 1, o2, . . . , oN , d = di)

evaluates to ν(d1) if i = 1 and 0 otherwise. Since it only depends on d1 it can be brought
out of the summation as follows:

4 = ν(d1)
∑
o2

· · ·
∑
oN

N∏
j=2

µ (oj)︸ ︷︷ ︸
evaluates to 1.

. (B.11)

Assuming that all the incoming messages µ are normalised such that they sum to 1, the
terms highlighted with the underbrace evaluate to 1. We maintain this normalisation in
our implementation.

Assuming that i 6= 1, the bottom expression � can be recursively expanded similar to
this step. Each such expansion brings in a term of the form

∏
k<j µ(ok = 0)µ(oj = 1)ν(dj),

until we reach the ith term Thus

µψ→d (d = di) =
∏
k<i

µ(ok = 0)

[
µ(oi = 1)

∑
oi+1

· · ·
∑
oN

evaluates to ν(di)︷ ︸︸ ︷
ψ (o1 = 0, o2 = 0, . . . , oi = 1, oi+1, . . . oN , d = di)

N∏
j=i+1

µ (oj)

+ µ(oi = 0)
∑
oi+1

· · ·
∑
oN

ψ (o1 = 0, o2 = 0, . . . , oi = 0, oi+1, . . . oN , d = di)︸ ︷︷ ︸
evaluates to 0

N∏
j=i+1

µ (oj)

]
(B.12)
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where the first term evaluates to ν(di), and the next term evaluates to 0, giving us

µψ→d (d = di) =
∏
k<i

µ(ok = 0)µ(oi = 1)ν(di)
∑
oi+1

· · ·
∑
oN

N∏
j=i+1

µ (oj)︸ ︷︷ ︸
evaluates to 1

⇒ µψ→d (d = di) = ν(di)µ(oi = 1)
∏
k<i

µ(ok = 0). (B.13)

B.5 Depth Variable to Ray Depth Potential Messages

The message from the depth variable to the depth ray potential is irrelevant since the only
factor connected to the variable is the potential itself.

B.6 Ray Depth Potential to Occupancy Variable Messages

Similar to the depth variable messages, we marginalise out all the variables except the
node in question

µψr→ori (ori = 1) =
∑
dr

∑
or
j

j 6=i

µdr→ψr(dr)ψr (or, dr)

Nr∏
j=1

µorj→ψr

(
orj
)
. (B.14)

After dropping the ray indices, we have

µψ→oi (oi = 1) =

dN∑
d=d1

µ(d)︸ ︷︷ ︸
evaluates to 1

∑
o1

· · ·
∑
oi−1

∑
oi+1

. . .
∑
oN

ψ (o1, . . . , oi = 1, . . . , oN , d)
N∏
j=1
j 6=i

µ (oj) ,

(B.15)
where we use the shorthand µ(d) = µdr→ψr(dr), and µ(o) = µorj→ψr(orj). Note that as
mentioned above, µ(d) sends a uniform message to the potential since it has no other factor
connected to it. Thus the outermost summation evaluates to 1.

µψ→oi (oi = 1) =
∑
o1

· · ·
∑
oi−1

∑
oi+1

. . .
∑
oN

ψ (o1, . . . , oi = 1, . . . , oN , dj)

N∏
j=1
j 6=i

µ (oj) (B.16)
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We intend to simplify this expression in a similar manner to the previous derivation.
Breaking apart into two terms, we have

µψ→oi (oi = 1) =

µ (o1 = 1)

[∑
o2

· · ·
∑
oi−1

∑
oi+1

. . .
∑
oN

evaluates to ν(d1)︷ ︸︸ ︷
ψ (o1 = 1, . . . , oi = 1, . . . , oN , d)

N∏
j=2
j 6=i

µ (oj)

]

+ µ (o1 = 0)

[∑
o2

· · ·
∑
oi−1

∑
oi+1

. . .
∑
oN

ψ (o1 = 0, . . . , oi = 1, . . . , oN , d)

N∏
j=2
j 6=i

µ (oj)

]
(B.17)

Similar to the previous strategy, we can keep breaking it up till oi−1. At that point we have

µψ→oi (oi = 1) =
i−1∑
j

µ(oj = 1)ν(dj)
∏
k<j

µ(ok = 0) +
∏
k<i

µ(ok = 0)

[∑
oi+1

. . .
∑
oN

ψ (o1 = 0, o2 = 0, . . . , oi−1 = 0, oi = 1, . . . , oN , d)︸ ︷︷ ︸
evaluates to ν(di)

N∏
j=i+1

µ (oj)

]
.

(B.18)

Thus, we have

µψ→oi (oi = 1) =
i−1∑
j=1

µ (oj = 1) ν(dj)
∏
k<j

µ (ok = 0) + ν(di)
∏
k<i

µ (ok = 0) (B.19)

For the negative case we get to the same point as Eq. B.18, except with oi = 0

µψ→oi (oi = 0) =

i−1∑
j

µ(oj = 1)ν(dj)
∏
k<j

µ(ok = 0) +
∏
k<i

µ(ok = 0)

[∑
oi+1

. . .
∑
oN

ψ (o1 = 0, o2 = 0, . . . , oi−1 = 0, oi = 0, . . . , oN , d)
N∏

j=i+1

µ (oj)

]
.

(B.20)

Observing that starting from oi+1 it is the same form of expansion, we then simplify and
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get

µψ→oi (oi = 0) =

i−1∑
j=1

µ (oj = 1) ν(dj)
∏
k<j

µ (ok = 0) +

N∑
j=i+1

µ (oj = 1) ν(dj)
∏
k<j
k 6=i

µ (ok = 0) ,

(B.21)

Which for convenience can also be written as

µψ→oi (oi = 0) =
i−1∑
j=1

µ (oj = 1) ν(dj)
∏
k<j

µ (ok = 0) +

1

µ(oi = 0)

N∑
j=i+1

µ (oj = 1) ν(dj)
∏
k<j

µ (ok = 0) . (B.22)

B.7 Occupancy Variable to Ray Depth Potential Messages

Since other rays can (and often do) pass through the same occupancy variable node, the
outgoing message µori→ψr is computed as per Eq. B.1.

B.8 Depth Distribution along a Ray

Here we illustrate how the message passing based inference interacts between two rays.
The objective is to demonstrate how the resulting evaluated depth distribution along a
ray is impacted by other rays passing through nearby voxels. Recall the expression for the
depth distribution along a ray as shown in Eq. B.13

µψ→d (d = di) = ν(di)µ(oi = 1)
∏
k<i

µ(ok = 0)︸ ︷︷ ︸
visibility of ithvoxel

. (B.13)

Consider a single ray with a measurement falling within the displayed voxel in an
empty map, as shown in Fig. B.1. All voxels in this map have a small uniform prior
probability factor φi attached. For the first pass of messages sent from the ray depth factor
to the nodes (Eq. B.2) the only outgoing messages from the voxel to the ray depth potential
factor are the small uniform prior probability messages µoi→ψ = µφi→oi since the prior
factor is the only other connected factor to each voxel. Correspondingly, the visibility term
monotonically decreases slowly. Corresponding to the visibility term and the forward
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Figure B.1: Left: First pass of messages sent from the ray depth potential factor to the
nodes. The incoming messages from each voxel along the ray µoi→ψ are shown in blue.
The corresponding visibility term is displayed in green. The measurement distribution
ν corresponding to the measured depth is displayed in yellow. The resulting outgoing
message from the ray depth potential to each of the voxels is displayed in red. At the end
of this first pass, each voxel now has two incoming messages - one from the prior factor,
and one from the ray depth potential factor. Right: Marginal occupancy of voxels along the
map are shown at the top. Resulting depth distribution is shown in red. The L1 expected
depth for this depth distribution is denoted by d∗ and very nearly coincides with the actual
measured depth dmeas. Plots are not discretised for illustration purposes.

model ν the outgoing message µψ→oi is sent to each voxel. At the end of this first pass, each
voxel now has two incoming messages - one from the prior factor, and one from the ray
depth potential factor. Right: Nodes along the ray receive occupied messages according
to the continuous inverse sensor model as shown in Fig. 2.3. This results in a occupancy
distribution as shown on the top, and a depth distribution as defined by Eq. ?? as shown in
the bottom plot. The depth distribution (red) then closely follows the forward sensor noise
model, shifted by virtue of the probability mass of the area under the prior probability.
This can be seen as an analogue to setting a uniform low probability of occupancy for any
voxel ahead of the measurement as discussed in Sec. 2.3. The L1 expected depth for this
depth distribution is denoted by d∗ and very nearly coincides with the actual measured
depth.

Now consider another ray terminating close to the previous ray that sends a high
outgoing message to the voxel right before the occupied voxel shown in Fig. B.2. The
corresponding outgoing message from that ray would now be at odds with what the
original ray suggested for this voxel. As expected, then the visibility and hence the
outgoing message of the original ray is impacted by this additional information. For the
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Figure B.2: Now consider another ray terminating close to the previous ray that sends
a high outgoing message to the voxel right before the occupied voxel in Fig. B.1. Left:
Corresponding to the incoming message from the intersecting ray the voxel sends a higher
occupied belief (blue bump) to the original ray. This causes a drop in visibility (green), that,
in concert with the sensor measurement probability (yellow) impacts the outgoing message
(red). Right: The resulting occupancy distribution is now more spread out between two the
voxels (top). The resulting depth distribution is also split into two modes corresponding to
Eq. B.13.

preceding voxel that the new ray passes through since the set of incoming messages are
the product of the prior and the message sent by the intersecting ray (Eq. B.1), there is a
drop in visibility, and a corresponding increase in the probability of the generating surface
being at that voxel. Further, the probability of the generating surface close to the actual
measurement of the ray correspondingly decreases by virtue of the loss in visibility. Thus,
depending on how confident either ray is the relative size of the modes would change. The
choice of the L1 maximum likelihood estimator used for marginalisation biases the MLE
generating surface to prefer lying within one of the two modes.
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