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Abstract

Fully autonomous vehicles are expected to share the road with less ad-
vanced vehicles for a significant period of time. Furthermore, an increasing
number of vehicles on the road are equipped with a variety of low-fidelity
sensors which provide some perception and localization data, but not
at a high enough quality for full autonomy. In this work, we develop a
fused perception system that allows a vehicle with low-fidelity sensors to
incorporate high-fidelity observations from a vehicle in front of it, allow-
ing both vehicles to operate with full autonomy. The resulting system
generates perception information that is both low-noise in regions covered
by high-fidelity sensors and avoids false negatives in areas only observed
by low-fidelity sensors, while dealing with latency and dropout of the
communication link between the two vehicles. At its core, the system uses
a set of Extended Kalman filters which incorporate observations from
both vehicles’ sensors and extrapolate them using information about the
road geometry. Our perception algorithm is evaluated both in simulation
and on real vehicles as part of a full cooperative driving system.
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Chapter 1

Introduction

Vehicles are currently being developed with varying levels of driver assistance and

autonomy capabilities. There are already cars on the road today that have some

ability to sense their surroundings and provide driver assistance but are unable to

drive autonomously without constant human supervision. These cars are designated

as Level 2 (L2) vehicles. Meanwhile, Level 4 (L4) vehicles are fully autonomous and

do not require human supervision in the areas in which they are approved to drive.

Such vehicles are currently in development, but are not yet widely available, and will

take a long time to replace existing cars on the road even once they are available.

For a long period of time, the road will be shared by L4, L2, and lower capability

vehicles.

Standards are already in place for vehicle-to-vehicle (V2V) communication, allow-

ing vehicles to communicate wirelessly, albeit at low bandwidth and limited range.

Because of this, it is desirable for a limited number of vehicles with high-fidelity sen-

sors (L4 vehicles) to be able to share information from their own perception systems

with less capable (L2) vehicles. This allows an L2 vehicle to achieve “Affordable

Autonomy through Cooperative Sensing & Planning” (Figure 1.1), where an L2

vehicle is able to operate autonomously for some period of time without expensive

sensors by receiving perception information and a suggested trajectory from an L4

vehicle. Fused perception is necessary in order for such a system to be safe; using

only perception information from the L4 vehicle, for instance, might miss vehicles

behind the L2 vehicle, such as the vehicle in the left side of the top lane in Figure 1.1.
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CHAPTER 1. INTRODUCTION

Figure 1.1: An L2 vehicle engaged in cooperative sensing and planning with an L4
vehicle. The L2 vehicle is following the L4 vehicle, and cooperative perception is
necessary for the two to have a good state estimate for all the surrounding vehicles.

Failing to detect such a vehicle could cause the system to plan an unsafe lane change

for the L2 vehicle. So, the L2 vehicle then fuses the perception information from both

vehicles, the L4 vehicle and itself, into a single set of estimates of all surrounding

vehicle states. This can then be used to generate a safe plan which follows the L4

vehicle but also avoids obstacles that might not be visible to the L4. This work is

concerned specifically with the process of fusing the perception measurements from

the two vehicles into a single estimate of the surrounding vehicles’ states, and not

with other aspects of the system such as cooperative planning or localization.

There are several challenges involved in such a system. First, the bandwidth of

a V2V link is not high, meaning that raw sensor information cannot be shared and

fused in the same way that sensors would be fused on a single vehicle. Second, there

is some latency associated with the network communication. At highway speeds

(approximately 55mph and above), this means that measurements of each observed

vehicle must be extrapolated separately and accurately for robust results. Third, the

system must be able to handle a drop in communication or in quality of perception

data from the L4. If another vehicle cuts between the L2 and the L4, or if the L4

goes out of range of the L2, there must be some amount of time where the L2 is

able to operate autonomously before the driver is able to take over. And finally, the

two vehicles are expected to have different sensor suites with different uncertainties

and fields of view. The L4 vehicle in our system has full LiDAR coverage of its

surroundings, while the L2 vehicle has more limited and noisier camera and radar

coverage.
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CHAPTER 1. INTRODUCTION

1.1 Contributions

We present a cooperative perception system which deals with the above challenges.

Our system shares observed vehicles (“tracks”) and their associated uncertainties

along with localization estimates and uncertainties. These estimates are matched to

vehicles observed by the L2, allowing elimination of false negatives due to occlusion

or limited sensor range. The associated measurements are then fused together in a

set of Extended Kalman filters to give high-fidelity estimates of tracked vehicle states

at the current time. Because of this EKF architecture, the system degrades gracefully

over time if communication drops out, producing reliable perception until the driver

is able to take over. Part of our approach is also described in [11]. The system is

validated both in simulation and on physical test vehicles equipped with typical L2-

and L4-capable sensor suites.

Specifically, our contributions are the following:

• Design of a cooperative perception system for dynamic, highway driving envi-

ronments

• Development of a model for differing false negatives based on occlusions

• Demonstration and evaluation of the system in simulation and on real vehicles

3



Chapter 2

Related Work

There has been a good deal of work in both the cooperative driving space and the

single-robot perception and tracking space, each of which is laid out in the following

sections.

2.1 Cooperative Driving

First, in cooperative driving, one set of approaches has come primarily from a con-

nected vehicles perspective with less emphasis on sensing. Many of these approaches

were demonstrated in the Grand Cooperative Driving Challenge [16]. This required

competitors to demonstrate various connected vehicle behaviors, such as platooning,

using shared localization information from the connected vehicles, but did not require

interaction with vehicles only observed by sensors.

Some work has also been done to fuse perception data from multiple vehicles.

Several works have done this using occupancy grids [10] [18] [3] or raw point clouds

[8]. These approaches successfully combine static obstacles from multiple vehicles,

eliminating false negatives and mitigating occlusions. They do have some ability to

deal with dynamic obstacles either at low speed or low latency. However, due to

the loss of representation of individual vehicles and the lack of velocity information,

these approaches cannot fuse observations of other vehicles at highway speeds while

tolerating latency in communication.

Other approaches include using Probability Hypothesis Density (PHD) filters
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CHAPTER 2. RELATED WORK

[6], which are able to represent uncertainty both in locations of observed objects

and in the number of observed objects. However, these approaches require high

communication bandwidth and latency is not considered.

Rauch et al. [17] do fuse individual vehicles by representing them as point clouds,

using a single point with uncertainty for each corner of each observed vehicle. This

successfully fuses tracks with lower bandwidth requirements, but suffers from higher

estimation errors than expected and does not consider latency compensation necessary

for operation at highway speeds.

2.2 Distributed Sensor Networks

Work on distributed sensor networks is also relevant to our problem. Several ap-

proaches allow for measurements to be made by multiple sensors, or vehicles, connected

by a network. These approaches often aim to approximate, or converge to, a global

optimum assuming that all measurements are available centrally. Approaches such as

the Consensus Kalman filter [13, 14, 15] or the Distributed Kalman filter [25] allow

for distributed computation while converging to this global estimate.

The problem can also be approached with more optimization-based methods;

for example, [21] derives a distributed optimization-based method that gives better

results than the Consensus Kalman filter for distributed tracking in networks of

autonomous cars.

The problem of data association in sensor networks has also been studied, and

is often used as a component in distributed filtering algorithms. [12] proposes an

algorithm which utilizes local matches between pairs of robots and computes global

correspondences, resolving inconsistencies caused by incorrect pairwise associations.

2.3 Single-Robot Multi-Target Perception and

Tracking

There is a large body of work on data association and filtering for multi-target tracking

using sensors on a single vehicle, with either a single sensor or fusing multiple sensors.

The data association component of the problem is particularly challenging, even in
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CHAPTER 2. RELATED WORK

the single-vehicle setting. Conceptually, our problem of associating measurements

from multiple vehicles is similar to the problem of associating new measurements to

existing tracks, which is well studied in the multi-target tracking literature.

There are a variety of methods for defining an objective function for the association

problem. A variety of simple pairwise costs can be used, such as those described in

[20]. First, there are a variety of possible geometric costs, such as vehicle position,

bounding box overlap, or vehicle shape. Also, appearance-based costs can be used,

such as distance between visual feature descriptors computed for each detection.

More complex cost functions can also be learned from data. For instance, [19] learns

costs based on geometric information from each detection. [26] learns appearance-

based costs based on images. [5] uses a more complex association algorithm based on

converting the association to a linear program, and also is able to learn the weights

for the linear program based on both LiDAR and camera data. Finally, approaches

using Graph Neural Networks are able to not only learn costs based on image or

LiDAR features for individual detected vehicles, but also model interactions between

features computed for different detected vehicles, as demonstrated in [23, 24].

Algorithmically, the optimization is often solved by the Hungarian algorithm [9]

[7], which computes the minimum cost matching between two sets, given pairwise

costs between objects in the first set and objects in the second set. See for instance

[22] for LiDAR-based tracking and [20] for camera-based tracking using Hungarian

assignment.
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Chapter 3

Problem Formulation

3.1 Sensor Suites

The approach we present is general and can be applied regardless of the types of

sensors on each vehicle. With that being said, the domain for the experiments is

highway driving. In our experiments on the physical test vehicles, the L4 vehicle is

equipped with high-resolution sensors typical of an L4 test vehicle today - LiDAR

and Radar covering 360 degrees around the vehicle as well as cameras for perception,

and an RTK GPS for localization. The L2 vehicle, on the other hand, is equipped

only with Radar and a forward-facing camera for perception and a lower resolution

GPS-INS system for localization. Each vehicle is equipped with a DSRC radio for

V2V communication. Diagrams showing similar vehicles to the ones that we tested

on are shown in Figure 3.1.

3.2 Mathematical Formulation

We start by denoting the L2 vehicle state by xL2
t and the L4 vehicle state by xL4

t .

Similarly, vehicles other than the L2 or the L4 have states xi
t. The state of each

vehicle is a vector x =
[
x y θ v ω

]T
, where x, y, and θ are the pose of the center

of the rear axle, v is the signed speed, and ω is the angular velocity. Then, the state

of the whole environment can be summarized as Et = (xL2
t ,x

L4
t ,x

1
t ,x

2
t , ...,x

N
t ).
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CHAPTER 3. PROBLEM FORMULATION

Figure 3.1: Sensor layouts of the two real test vehicles. The L2 is on the left and the
L4 is on the right.

Several types of measurements are assumed to be available, and all are assumed

to be normally distributed. First, each vehicle has some localization system which

provides measurements

zL2
t = xL2

t + εL2t , ε
L2
t ∼ N (0,ΣL2

t )

zL4
t = xL4

t + εL4t , ε
L4
t ∼ N (0,ΣL4

t )
(3.1)

with independent Gaussian noise εL2t and εL4t , respectively.

We assume that each vehicle has its own perception and tracking system which

operates on its own sensors, and the perception measurements we receive are the

outputs of these single-vehicle tracking systems. The perception system is assumed

to both have some false negatives (i.e. missed detections) and have some error

in estimated state of the tracked vehicles. We do not attempt to deal with false

positives, i.e. spurious detections; we assume that these can be filtered out by each

single-vehicle tracker. False negatives can have a variety of causes, the most common

being occlusions and limited sensor range. These false negatives can be eliminated by

the combined system, but cannot be expected to be eliminated by either single-vehicle

perception and tracking system alone. Formally, we assume there is some probability

pL2FN(xi
t, Et) that track i is undetected by the L2 vehicle’s perception system at time t,

and similarly probability pL4FN(xi
t, Et) that track i is undetected by the L4 vehicle at

time t, where the subscript FN stands for false negative. For vehicles with states xi
t

8



CHAPTER 3. PROBLEM FORMULATION

which are detected at time t, we have measurements

zi,L2
t = xi

t + εi,L2t , εi,L2t ∼ N (0,Σi,L2
t )

zi,L4
t = xi

t + εi,L4t , εi,L4t ∼ N (0,Σi,L4
t ),

(3.2)

for vehicles detected by the L2 and L4, respectively, again with independent Gaussian

noise εi,L2t and εi,L4t .

9



Chapter 4

Fused Perception Approach

The overall algorithm uses a set of Extended Kalman Filters (EKFs), one for each

tracked vehicle. The state of each EKF is reinitialized each time a new set of tracks is

available from the L4 vehicle; during normal operation, this measurement is delayed

by communication latency, and during a drop in communication this measurement

is delayed even more. We reinitialize the state instead of fusing the whole stream

of measurements from the L4 because the L4 perception system is assumed to have

its own filtering scheme, and the measurement we receive is assumed to contain

all information from older measurements made by the L4’s sensors. More recent

measurements from the L2 perception system are then fused in these EKFs to get

a current estimate of the tracked vehicles’ states. For this to be possible, we must

know which track observed by the L2 corresponds to each track observed by the L4,

as well as which tracks were only observed by one of the two vehicles. Finding this

correspondence is nontrivial, especially when covariances of estimates aren’t uniform.

The overall perception algorithm (shown in Algorithm 1) then has two essential

components: a Match function which takes two sets of tracks and returns a set of

pairings between them, and a set of EKFs which make up the Predict and Update

functions used to extrapolate and fuse the individual track states. It uses these to

extrapolate the current set of tracks St−1|t−1 to a timestamp t when a measurement

is available, producing the set St|t−1, then associate the measurements with existing

tracks and update them to produce the set St|t, before repeating the process until the

current time is reached.

10



CHAPTER 4. FUSED PERCEPTION APPROACH

This algorithm handles drops in communication with no further modifications

- when no new messages are being received, it is still able to take the last received

measurement from the L4 vehicle and iteratively fuse more recent measurements from

the L2; as the time since the communication failure increases, the output gradually

becomes noisier and closer to the L2’s raw perception output.

4.1 Matching Tracks between Vehicles

Each measurement must be associated correctly with a measurement from the other

vehicle; cases where a vehicle is not observed by both the L2 and the L4 should be

correctly identified. We first present a method for doing this when the probability

of each false negative, pvFN, is assumed to be independent of other vehicles in the

scene. In this case, the problem can be solved very efficiently. We also present a more

complex model for pvFN which explicitly reasons about occlusions caused by other

vehicles.

4.1.1 Efficient Solution for Constant pvFN

In this case, the problem can be formulated as a minimum-weight bipartite matching

problem, where a measurement can be matched either to a measurement from the

other vehicle or left unmatched. A cost is associated with each of these, coming from

the log-likelihood of the measurement under that match.

For a pair of measurements (zi,L2
t ,Σi,L2

t ) and (zj,L4
t ,Σj,L4

t ), made by the L2 and

L4 vehicles respectively, that are matched to each other, the likelihood of the two

measurements is
L =[1− pL2FN(zi,L2

t , Et)]f(zi,L2; x̂ij
t ,Σ

i,L2
t )

[1− pL4FN(zj,L4
t , Et)]f(zj,L4; x̂ij

t ,Σ
j,L4
t ),

(4.1)

where f(·;µ,Σ) is the PDF (probability density function) of the multivariate normal

distribution. This contains four factors; first is the probability that the L2 perception

system successfully detects the vehicle. Next, we have the probability density f . The

vector x̂ij
t here is the state obtained by fusing the pair of measurements zi,L2

t and

zj,L4
t ; specifically, it is the maximum likelihood state of the vehicle given the two

Gaussian measurements zi,L2
t and zj,L4

t and their respective covariances. Equivalently,
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CHAPTER 4. FUSED PERCEPTION APPROACH

it can be viewed as the state of an Extended Kalman filter initialized with these two

measurements, which is how it will be used in Section 4.2. Then the f(zi,L2
t ; x̂ij

t ,Σ
i,L2
t )

factor is the likelihood of the L2 making the measurement of the precise state that

it did; it corresponds to a Gaussian PDF centered on the fused vehicle state, with

covariance Σi,L2
t , evaluated at the state estimated by the L2 perception system. The

second line of Equation 4.1, i.e. the third and fourth factors in the likelihood, are the

corresponding values for the L4 perception system’s measurement, given the same

fused vehicle state x̂ij
t .

The cost for pairing tracks i and j together is then the negative log-likelihood

C(zi,L2
t , zj,L4

t ) =− ln(1− pL2FN(zi,L2
t , Et))

− ln(1− pL4FN(zj,L4
t , Et))

− ln f(zi,L2
t ; x̂ij

t ,Σ
i,L2
t )

− ln f(zj,L4
t ; x̂ij

t ,Σ
j,L4
t ).

(4.2)

Similarly, for a measurement zi,L2
t from the L2 vehicle that is left unmatched to a

measurement from the L4 vehicle, the likelihood is

L = [1− pL2FN(zi,L2
t , Et)]f(zi,L2

t ; zi,L2,Σi,L2
t )pL4FN(zi,L2

t , Et). (4.3)

The first two factors are identical to those in the paired case, except that the fused

position (the center of the Gaussian PDF) is now simply equal to the measured state,

because there is only one measurement. The final factor is simply the probability of

a false negative from the L4 perception system at that particular state. The cost for

assigning track i from the L2 as a false negative from the L4 is then

C(zi,L2,FN) =− ln(1− pL2FN(zi,L2, Et))

− ln f(zi,L2
t ; zi,L2

t ,Σi,L2
t )

− ln pL4FN(zi,L2
t , Et).

(4.4)

The cost for assigning a track j measured by the L4 perception system as unmatched

to any track from the L2 can be computed analogously.

It should be noted that Et in these equations is unknown. If pL2FN and pL4FN are

12



CHAPTER 4. FUSED PERCEPTION APPROACH

independent of which other tracks in the problem are matched to each other, then the

problem can be modeled as a bipartite graph, as shown in Figure 4.1. The problem is

then solved by the Hungarian algorithm [9] [7] [2], which finds the best cost matching

in cubic time in the total number of measurements from both vehicles. In particular,

we evaluate simply letting pL2FN and pL4FN be constants. An example matching problem,

and its formulation as a bipartite graph to be solved by the Hungarian algorithm, is

shown in Figure 4.1.

4.1.2 Occlusion-based model for pvFN

We also develop a more complex model for pvFN that accounts for occlusions due to

other vehicles in the scene, as well as for the distance between the sensor and the

detected vehicle. Both of these are accounted for naturally by considering the angle

φ occupied by a vehicle as seen by the sensor; an example can be seen in Figure 4.2.

For a lone vehicle with no others around to occlude it, this can be calculated simply

from the predicted bounding box of the detected vehicle. If the vehicle is occluded

by one of the other observed vehicles in the scene, however, we only count φ as the

portion of the occluded vehicle which is visible to the sensor.

Then, given φ, we assume that ln pvFN = −αφ for some positive constant α. This is

a reasonable assumption; for example, consider a LiDAR sensor with a fixed angular

resolution. If detection involves pointwise classification or segmentation, then a

false negative may require misclassifying all k points belonging to an object. If we

assume that there is a fixed probability p of misclassifying each point, and that these

misclassifications are independent, then we have

pFN = pk =⇒ ln pFN = k ln p.

And if the sensor has ρ points per radian, then we have

ln pFN = k ln p = ρφ ln p = −αφ,

where α = −ρ ln p is a positive constant. In practice, we also bound pvFN away from 1

by some amount, so that a probability of 0 is never assigned to a detection.

In the previous section, we were able to solve the problem efficiently because

13



CHAPTER 4. FUSED PERCEPTION APPROACH

zL2

z1,L2

z2,L2

zL4

z1,L4

z2,L4

z3,L4
zL4 z1,L4 z2,L4 z3,L4 FN FN FN

zL2 ∞ −12 19964 2154 7 ∞ ∞
z1,L2 −12 3595 1647 1892 ∞ 7 ∞
z2,L2 4820 2890 1325 −10 ∞ ∞ 7
FN 7 ∞ ∞ ∞ 0 0 0
FN ∞ 7 ∞ ∞ 0 0 0
FN ∞ ∞ 7 ∞ 0 0 0
FN ∞ ∞ ∞ 7 0 0 0

Figure 4.1: Example toy matching problem. The scenario is shown in the top right;
tracks and localization from the L4 vehicle (with their covariances in x and y) are
shown in blue, and tracks and localization from the L2 are shown in yellow. In
the representation of the matching problem as a bipartite graph (on the left), each
blue node represents a localization measurement, black nodes represent perception
measurements, and red nodes represent false negatives. The left column shows the
L2 localization and one track detected by the L2, while the right column shows the
L4 localization and two tracks detected by the L4 perception system. Each edge
represents an allowed connection - no edge between two nodes is the same as infinite
cost. Black edges are associated with pairs of measurements and have costs given by
the function C. Orange edges represent assigning a detection as undetected by the
other vehicle and have costs − ln pvFN. Green edges allow FN nodes to be matched
with each other for 0 cost, which is necessary for this to be a well-defined bipartite
matching problem. The table of edge costs is shown in the bottom right; edges
forming the optimal matching are in bold.
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CHAPTER 4. FUSED PERCEPTION APPROACH

Figure 4.2: An example scenario for the occlusion-based false negative model. The
L2 vehicle is shown in yellow on the bottom left, the L4 is in blue on the bottom
right, and three other vehicles are in grey. Here we show the visibility of each vehicle
to the L2’s sensors; a similar diagram could be made for the L4’s sensors. The model
considers the angle φ occupied by each vehicle in the sensor’s field of view, based on
the predicted bounding box of each vehicle. For occluded objects, only the visible
portion contributes to φ.

the log likelihood decomposed into a sum over terms which only depended on single

vehicles or pairs of vehicles. However, in this case, the angle φ that each vehicle

in the scene presents to the sensor may depend on arbitrarily many vehicles in the

scene. Therefore, the problem can no longer be solved efficiently with the Hungarian

algorithm. In our experiments, it is still solvable for small numbers of vehicles by

enumeration of possible solutions with simple pruning rules.

4.2 Extrapolation and Filtering

Each tracked vehicle has its own EKF with state space [x, y, θ, v, ω]T , where x, y, and

θ are the pose in SE(2), v is the signed speed, and ω is the angular velocity. The

angular velocity is not expected to be measured; instead, we use the road curvature

and vehicle speed v to calculate a prior for ω. The Predict function assumes constant

speed and angular velocity to extrapolate the given set of states to the desired time,

while propagating uncertainty and adding process noise. The Update function is

then the standard EKF update which takes the filter state and covariance (x̂, Σ̂)

and measurement (z,Σ) and returns the new state and covariance. Because each

single-vehicle perception system is assumed to have some internal filtering scheme

that would cause sequential measurements to be highly correlated, we do not fuse

every measurement we get from the perception system; instead, we subsample down
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CHAPTER 4. FUSED PERCEPTION APPROACH

to a frequency at which sequential measurements are not highly correlated. A diagram

of the filter structure is shown in Figure 4.3.

zthem,j
t

x̂ijt

zme,i
t zme,i

t+1 zme,i
t+2 zme,i

t+3 zme,i
t+4 zme,i

t+5 zme,i
t+6

x̂ijt+3 x̂ijt+6 x̂ijtnow

Figure 4.3: The structure of the Extended Kalman filter for each tracked vehicle.
This diagram shows the flow of information through the filter corresponding to
our measurement of vehicle i, which has been matched with the other perception
system’s track j. The top row represents the most recent measurement of vehicle j
from the tracking system on the other vehicle; only the most recent measurement is
used because it comes from a tracking system which is assumed to incorporate all
information from earlier times. The bottom row contains all measurements of vehicle
i from the tracking system on our own vehicle. The middle row then contains the
fused estimates of the vehicle state. First, the two measurements at time t are fused
into the state. Next, the state is extrapolated forward by enough timesteps to avoid
too much autocorrelation in the tracker output, and another measurement from the
tracker on our vehicle is fused. This is repeated up to the most recent measurement,
after which the estimate is simply extrapolated up to the current time.

4.3 Summary

The overall fusion process (on the L2 vehicle) is summarized in Algorithm 1. Compu-

tation begins each time a new set of tracks is received from the L4 vehicle, at which

point the corresponding measurement from the L2 vehicle is retrieved from memory.

These two sets of tracks are then matched together, using either the approach in

Section 4.1.1 or Section 4.1.2.
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CHAPTER 4. FUSED PERCEPTION APPROACH

Algorithm 1 Fuse Perception on L2

1: tL4 = Time of last available measurement from the L4
2: T = Time of last available measurement from the L2
3: M = Match( {zi,L4

tL4
}, {zj,L2

tL4
})

4: StL4|tL4
= ∅

5: for match in M do
6: if match is a false negative from one vehicle then
7: Add one measurement (zi,L4

tL4
or zj,L2

tL4
) to StL4|tL4

8: else
9: Add Fuse(zi,L4

tL4
, zj,L2

tL4
) to StL4|tL4

10: end if
11: end for
12: for t = tL4 + k, tL4 + 2k, ..., T do
13: St|t−1 = Predict(St−1|t−1, t)

14: St|t = Update(St|t−1, {zj,L2
t })

15: end for
16: return Predict(ST |T , tnow)

We maintain a set St1|t2 of tracks estimated at time t1 given measurements up

to time t2; this is initialized as StL4|tL4
by iterating over the pairs returned by the

Match function. For vehicles which were detected by both the L2 and the L4, their

states are initialized by the result of the Fuse function, which computes the posterior

given the two Gaussian measurements. For vehicles which were only detected by one

of the L2 and the L4, the single measured state is simply added to the set.

Finally, we step forward in time, fusing every kth set of tracks into the maintained

set of vehicle states. Each vehicle state measurement is fused using the EKF Predict

and Update functions into the correct filter, as determined by the original Match

results from line 3. The end result is then extrapolated to the current time and

returned.
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Chapter 5

Experiments and Results

We tested our perception system both in simulation and on real vehicles. Testing

in simulation allowed us to study how the system responds to various amounts of

latency and to gather statistics on how the system performs. On the real vehicle,

we are able to gather some statistics as well. However, we rarely have ground truth

positions for the tracked vehicles, so we are primarily concerned with demonstrating

that the perception system generates smooth output which eliminates false negatives.

In the following subsections, we present results from testing perception in simulation

and on real vehicles.

5.1 Simulation with added noise

The first set of experiments were done in a highway driving scenario using the VTD

simulator (shown in Figure 5.1). The road is a divided highway with a speed limit

of 60mph (26.8m/s) and moderate to heavy traffic traveling at approximately that

speed. The simulator generates perception from both the L2 and L4 vehicles by

applying limited sensor range to each (200m for the L4 and 100m for the L2), along

with Gaussian noise on the poses and speeds of all observed vehicles (.12m and .5m/s

on position and velocity respectively on the L4, and .25m and .5m/s on the L2).

Similarly, the simulator adds Gaussian noise to the localization available to the system

for each vehicle (.01m on the L4 and .1m on the L2). Random latency is also injected

into the communication between the vehicles; the typical delay is around 100ms, but
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CHAPTER 5. EXPERIMENTS AND RESULTS

Figure 5.1: Simulation running in VTD in the top left, with the output of the fused
perception system shown in the main figure.

there are random spikes of higher latency as well.

First, the RMS error and the 99th percentile error of the fused perception output

is shown in Figure 5.2. It remains in a high-quality range (on the level of the L4

perception system) for all typical latencies; for longer delays from the last measurement,

as caused by drops in communication, the error increases, but remains in a usable

range for long enough that the system can continue operating until the system is able

to ask the driver to take control.

The rate of mismatched tracks is also low; in these experiments in simulation,

only 0.017% of measurements were incorrectly associated between the L2 and L4

perception systems.

5.2 Simulation with a real perception system

We also do experiments in the Carla [4] simulator, which allows us to simulate multiple

vehicles with LiDAR and camera sensors. An example of the system running in

simulation is shown in Figure 5.4. We can then run standard single-vehicle perception

and tracking algorithms on these sensors to generate more realistic inputs to our

system. This is intended to include more realistic failure modes due to occlusions

from other vehicles or seemingly random false negatives. Because of this, we are
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Figure 5.2: RMS and 99th-percentile errors between the ground truth track locations
and output of the fused perception system in VTD with simulated noise. Position
error is split into on-track (blue) and cross-track (orange) error. The horizontal axis
shows the time since the last measurement from the L4 perception system; the average
error increases with time, but remains near or below the L2 perception system on its
own up to 1s of latency.

Figure 5.3: Change in perception error with varying amounts of noise in simulation,
with L4 and L2 sensor noise increased in proportion to each other. As in Figure 5.2,
blue and orange are on-track and cross-track error respectively. Error increases
linearly with sensor noise, as would be expected.
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able to compare the fused perception system with and without the occlusion-based

false negative model. Here, we evaluate using metrics inspired by MOTA and MOTP

[1] from the multi-target tracking literature. The standard MOTA metric penalizes

false negatives, false positives, and identity switches; our system is matching between

detections from two vehicles instead of across time, so we do not measure identity

switches, and only include false negatives and false positives. It should be noted

that while we assume the underlying single-vehicle detection and tracking systems to

not generate a significant number of false positives, the fusion system can and does

generate false positives; this occurs whenever two detections of the same physical

vehicle are not matched and are output from the fusion system as two separate tracks.

MOTP is calculated as usual, with the distance being the 2D distance in the ground

plane.

The results are shown in Table 5.1. MOTA is low for all the systems tested,

because the set of ground truth vehicles in the simulator includes vehicles not visible

to sensors on either the L2 or L4. Because of this, the interesting point is the

comparison between the single-vehicle MOTA and the MOTA of the output of the

fusion system. As shown in the table, the MOTA of the fusion system is significantly

higher than the MOTA of either the L2 or L4 vehicles alone, indicating that our

system is correctly matching the tracks observed by the L2 and L4 vehicles.

There is not a significant difference in performance between the occlusion-based

and constant models for pvFN; this is partially because the detection algorithms

tested were not very high-quality, giving seemingly random false negatives not caused

by occlusions. Further experiments using either higher quality detectors or more

sophisticated false negative models could give more conclusive results; this is discussed

further in Section 6.2.1.

5.3 Real vehicles

Experiments were run on data from real vehicles on a test track and on a public road.

The test track is similar to a divided highway with three lanes. Vehicles were not

driving at highway speed, but instead at approximately 12m/s on the test track and

up to 18m/s on the public road.

The perception system was tested on several scenarios on the test track and a
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Figure 5.4: Cooperative perception simulation in Carla. On the top and bottom left,
third-person views of the lead L4 vehicle and the following L2 vehicle are shown,
respectively. The right side shows the corresponding scenario in RViz. The L2 vehicle
is at the center of the screen, with the L4 vehicle above. Tracks from the L2 vehicle
perception system are in blue and tracks from the L4 perception system are in yellow.
Other vehicles can be seen by the coordinate axes at their ground truth locations, for
example at the bottom of the figure.
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L2 Alone L4 Alone Occlusion-based pvFN Constant pvFN
MOTA 0.106 0.129 0.201 0.208
MOTP 0.519 0.507 0.491 0.512

Table 5.1: MOTA and MOTP results for fused perception in Carla. The method of
evalution is described further in section 5.2. In terms of MOTA, the fused perception
system (in the two rightmost columns) achieves much better results than either the
L2 or L4 perception systems alone, indicating that the system successfully eliminates
false negatives as intended. In terms of MOTP, the fused perception system is
approximately equivalent to each indiviual perception system.

Figure 5.5: The trajectory of a vehicle tracked by the perception system. The vehicle
is traveling from left to right while changing lanes. Both the raw input from the L2
and L4 systems are shown, as well as the output of the fusion system. The fusion
system successfully deals with false negatives from both perception systems, while
also having less error than the L2 system alone. Because the tracked vehicle also has
an RTK, we use this to show the ground truth trajectory as well.

public road, with other vehicles in each scenario. The perception system successfully

matched the vehicles from the L2 and L4 perception systems correctly, eliminating

false negatives (which were due to occlusions and sometimes to blind spots). An

example detection is shown in Figure 5.6. Because we did not have access to ground

truth poses or velocities for most of the tracked vehicles, we do not study the accuracy

of the predicted tracks on the real data. However, we do have one example of the

system tracking a vehicle equipped with an RTK to provide ground truth position;

this is shown in Figure 5.5, where the system handles false negatives from both the

L2 and L4 perception systems at different times and generates a smooth output

trajectory close to the ground truth.
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Figure 5.6: An example detection on the real vehicle. The image on the left is from
a camera in the L4 vehicle (not the camera used for detection). On the right, the
detected vehicle is seen in pink, the L4 is shown in blue, and the L2 is in green.
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Chapter 6

Discussion

On average, our system performs well; however, there are a variety of tradeoffs present,

and potential for future work to improve on our approach in multiple ways.

6.1 Tradeoffs in Our Approach

First, we use only the measured vehicle states (pose and velocity) in the matching

process. This has the advantage of requiring minimal network bandwidth between

the L2 and L4 vehicles, which is useful because typical DSRC radios such as the one

on our physical test vehicles do not have much bandwidth available. It also has the

advantage of being fairly independent of the specific sensor or set of sensors making

the measurement, up to differing sensor uncertainties. However, using only vehicle

pose and velocity can sometimes result in ambiguous matching problems, especially

with the L2 vehicle having lower quality sensors. For this reason, single-robot MOT

approaches often use additional features, as discussed in Section 2.3.

Second, there are no components in our system that are learned from data. There

are some advantages to this approach; the output of our approach is very explainable,

while methods such as neural networks can make predictions that are difficult or

impossible to explain or diagnose. For autonomous driving applications where safety

is a concern, explainability can be an important factor. Furthermore, approaches that

are learned from data by definition require a dataset, and can behave unpredictably

in situtations which are not present in the training data. There are also advantages
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to using learned components in such a system; learned components can be more

expressive and capture effects that are very difficult to model explicitly. Possible

methods of integrating learned components are described in the following section.

6.2 Future Work

6.2.1 Modeling or Learning Association and False Negative

Costs

Both the pairwise cost of associating two tracks and the cost associated with a false

negative can be improved by future work. First, future work could investigate the

use of non-Gaussian distributions to model the errors in perception more accurately.

However, even arbitrary distributions over measured state vectors (pose and velocity)

may not be expressive enough. There are possible additions to the matching cost,

such as other cost terms based on geometric or appearance information used in the

multi-target tracking literature, which may help with the matching process.

In addition, learning either the pairwise cost or the false negative cost from data

could offer better performance. For the false negative cost in particular, the failure

modes of a given detection and tracking pipeline are difficult to model explicitly,

but may be easier to learn with a function approximator such as a neural network.

A system which learns both of these pairwise and unary costs would still have to

respect the constraints of the problem setup: first, low communication bandwidth;

and second, differing sensor suites on the L2 and L4 vehicles. So, a viable approach

may be to learn separate encoders for the L2 and L4 vehicles which map relevant

information about each detection (such as appearance information from the available

sensors) into a low-dimensional feature space. This would allow these low-dimensional

features to be shared across the network, instead of raw sensor data. Furthermore,

recent work [23, 24] on the single-vehicle multi-target tracking setup has shown that

Graph Neural Networks (GNNs) can also be used on top of feature extractors to learn

interactions between multiple vehicles in the scene and produce better cost estimates

for association. An approach such as this could be trained end-to-end, in our case

training the two different feature extractors for the L2 and L4 vehicles, as well as a

GNN on top of those feature extractors.

26



CHAPTER 6. DISCUSSION

6.2.2 Prediction

Another potential area for improvement is in the prediction model we use in the

Extended Kalman filters, as described in Section 4.2. So far, we have used a constant-

velocity model with Gaussian process noise; this has the advantage of allowing us to

easily maintain a unimodal, Gaussian representation of the predicted vehicle state

in an EKF. However, vehicle behavior is often much more predictable, albeit often

multimodal. Recent work in prediction and forecasting for autonomous driving has

made progress on much more sophisticated prediction models, often using not only the

current vehicle state, but also information about the road geometry and connectivity

as well as other vehicles in the area. An extension to such prediction models would

also require using a more sophisticated filter to represent a likely multimodal vehicle

state distribution, such as a particle filter. Use of more sophisticated prediction

models could allow the system to tolerate higher latency, or maintain good estimates

for longer after a loss of communication.

6.2.3 Broader System Context

Our work has considered the problem of fusing perception data while an L2 and L4

vehicle are connected, and for a short period of time after a loss of communication.

However, this is only one component of several required to deploy such a system in

the real world. Work has also been done on cooperative localization (described in

[11]) and cooperative planning for this system. However, the problem of determining

whether it is possible for a particular L2 vehicle to pair with a particular L4 vehicle

on the road would still need to be explored, as well as the problem of initializing and

terminating cooperative driving, potentially with multiple eligible vehicles on the

road at a time.
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Chapter 7

Conclusions

We presented the cooperative perception problem as a necessary component of a full

cooperative driving system, aimed at allowing an L2 vehicle to operate autonomously

by pairing with and following an L4 vehicle, with both vehicles engaged in cooperative

perception, localization, and planning. In particular, we focused on highway driving

scenarios, where the two vehicles could travel in the same direction for a longer period

of time. We developed approaches for cooperative perception in these scenarios,

capable of combining and filtering measurements from both the L2 and L4 vehicle,

while dealing with latency and drops in communication. Our method eliminates false

negatives from either the L2 or the L4, producing a single set of tracks covering

the combined area visible to the two vehicles. This approach was demonstrated

successfully both in simulation and on data from real vehicles as part of a full

cooperative driving system.
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