
On-Policy Reinforcement Learning for

Learning to Drive in Urban Settings

Tanmay Agarwal

CMU-RI-TR-20-32

July 28, 2020

The Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Jeff Schneider, Chair

David Held
Benjamin Eysenbach

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Robotics.

Copyright c© 2020 Tanmay Agarwal. All rights reserved.

Keywords: Reinforcement Learning, Representation Learning, Robot Planning
and Control, Autonomous Driving

To my family, for their endless love and support, and friends and teachers who have
made this journey a truly memorable one.

iv

Abstract

Traditional autonomous vehicle pipelines that follow a modular approach
have been very successful in the past both in academia and industry, which
has led to autonomy deployed on road. Though this approach provides
ease of interpretation, its generalizability to unseen environments is limited
and hand-engineering of numerous parameters is required, especially in the
prediction and planning systems. Recently, deep reinforcement learning
has been shown to learn complex strategic games and perform challenging
robotic tasks, which provides an appealing framework for learning to
drive.

In this thesis, we propose two works that formulate the urban driving tasks
using reinforcement learning and learn optimal control policies primarily
using waypoints and low-dimensional representations, also known as
affordances. We demonstrate that our agents when trained from scratch
learn the tasks of lane-following and driving around intersections as well
as learn to stop in front of other actors or traffic lights even in the dense
traffic setting. Further, we also propose an algorithm which we term
as Exploratory Policy Search (EPS) that combines forward search with
model-free reinforcement learning algorithms to find the optimal policy
with increased exploration.

v

vi

Acknowledgments

I am glad to use this opportunity to thank numerous people for their
guidance and support without whom this thesis would not have been
possible.

Firstly, I would like to thank my advisor, Prof. Jeff Schneider for being
an incredible advisor and extending extraordinary support in my last two
years here at Carnegie Mellon University. He has not only shaped my
research passion and skills but also guided me throughout my journey with
fruitful advice and exciting discussions. I believe without his guidance, I
would not have grown to the position where I am now. Thus, I sincerely
thank him for his unconditional support and belief in my potential.

Next, I am highly indebted to my parents for their boundless love and
support throughout this journey. I am also thankful to them for believing
in me and giving me this opportunity to explore beyond my potential.
Besides this, I am grateful to them for everything else they have provided.

I would also like to thank my colleague Hitesh Arora who not only has
been a great individual to work with but also a true friend that I have
found during my journey. I am glad that our numerous discussions have
often lasted for hours which has led us to discover better solutions as well
as thought-provoking problems to work on during the research. Besides
him, I would also like to thank Theophile, Shuby, Tanvir, Audrey, Adam,
Christoph, Vinay, and Mayank for being amazing lab-mates.

I am also grateful to my other committee members Prof. David Held
and Benjamin Eysenbach for their concrete research discussions and
constructive feedback that has helped me shape this research.

A special thanks to Darshi for helping me choose this research project
and supporting me through the journey. Also, I am grateful to my other
friends Gautham, Tithi, Aditya, Sarthak, Talha, and many others who
have made this expedition fun and exciting.

Also, this work could not have been possible had it not been for all the
Auton Lab members and the resources that have led to the success of this
thesis. I would also like to extend my gratitude to Predrag Punosevac for
being an amazing lab administrator and graciously helping us with all the

vii

system resource needs.

Lastly, I am grateful to the entire student community at CMU that
has given me an amazing set of friends and made my stay a fantastic
experience with innumerous life learnings and memorable experiences.

viii

Funding

This work was supported by the CMU Argo AI Center for Autonomous
Vehicle Research.

ix

x

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research Contributions . 3
1.3 Outline . 5

2 Related Work 7
2.1 Modular Approaches . 7
2.2 Imitation Learning . 8
2.3 Reinforcement Learning . 9

3 The Reinforcement Learning Problem 11
3.1 Markov Decision Processes . 12

3.1.1 Policy . 12
3.1.2 Return . 12
3.1.3 Value Functions . 13
3.1.4 Optimal Value Functions . 13

3.2 RL Algorithms Family . 15
3.3 Q-Learning . 17
3.4 Policy Optimization . 18

3.4.1 Policy Gradient . 18
3.4.2 REINFORCE . 19
3.4.3 Trust Region Policy Optimization 19
3.4.4 Proximal Policy Optimization 20

4 CARLA Environment 23
4.1 Server-Client Interface . 24
4.2 Sensors . 24
4.3 Waypoint Planner . 25
4.4 Intermediate Affordances . 25
4.5 Benchmarks . 26

4.5.1 Original CARLA Benchmark 26
4.5.2 NoCrash Benchmark . 27

5 Learning to Drive using Waypoints 29

xi

5.1 RL Setup . 30
5.1.1 State Space . 31
5.1.2 Action Space . 32
5.1.3 Reward Function . 33

5.2 Model-Free RL with Learned Representations 34
5.3 Training . 36
5.4 Experiments . 37

5.4.1 Baselines . 38
5.4.2 Training Stability . 39

5.5 Results . 40
5.5.1 Evaluation on the Original CARLA Benchmark 40
5.5.2 Evaluation on the NoCrash Benchmark 42

5.6 Discussion . 43

6 Learning to Drive with Dynamic Actors 45
6.1 RL Setup . 47

6.1.1 State Space . 47
6.1.2 Action Space . 49
6.1.3 Reward Function . 49

6.2 Model-Free RL on Low-Dimensional Affordances 50
6.3 Training . 50
6.4 Experiments . 52

6.4.1 Baselines . 52
6.4.2 Training Stability . 53

6.5 Results . 54
6.5.1 Evaluation on the Original CARLA Benchmark 54
6.5.2 Evaluation on the NoCrash Benchmark 55
6.5.3 Infraction Analysis . 57

6.6 Discussion . 58

7 Exploratory Policy Search 59
7.1 Motivation . 61
7.2 Algorithm . 62
7.3 Experiments . 63
7.4 Results . 64

7.4.1 MuJoCo Control tasks . 64
7.4.2 CARLA Driving task . 66

7.5 Discussion . 67

8 Conclusion 69
8.1 Key Takeaways . 70

xii

8.2 Future Work . 70

A Additional Experiments 73
A.1 Learning to Drive with Dynamic Actors 73

A.1.1 Ablation with Different Cameras 73
A.2 Exploratory Policy Search . 74

A.2.1 Degenerate EPS . 74

B Supplementary Details 77
B.1 CARLA Environment . 77

B.1.1 Hyperparameters . 77
B.2 Learning to Drive using Waypoints 78

B.2.1 Hyperparameters . 78
B.3 Learning to Drive with Dynamic Actors 78

B.3.1 Hyperparameters . 78
B.4 Exploratory Policy Search . 79

B.4.1 Hyperparameters . 79

Bibliography 81

xiii

List of Figures

1.1 Traditional autonomous driving stack that uses a suite of sensors to
predict the end control. The overall pipeline can be modularized into
different subsystems that include mapping and localization, perception,
actor prediction, motion planning and vehicle control. 1

3.1 RL Setup: An agent interacting with the environment. 11

3.2 Overview of different algorithms in RL. Credits: Spinning Up, OpenAI.
[3] . 15

3.3 Tree backup diagram for different class of RL algorithms. Left: Monte-
Carlo methods use empirical average of returns to estimate the value
function. Centre: Temporal-Difference methods estimate the value
function based on estimate of the next state (or state-action). Right:
Dynamic Programming methods solve the entire backup tree to esti-
mate the expected return. 17

4.1 CARLA Simulator [29]: A realistic urban-driving simulator this is
open-sourced for autonomous driving research. The simulator supports
multiple actors, pedestrians, weather conditions and maps that are
each configurable in the simulator. Credits: CARLA [29] 23

4.2 The CARLA simulator [29] supports a wide variety of sensors that
include the LIDAR, RGB camera, semantic camera, depth sensors
and GPS units. The above figure three shows such sensors. Left:
normal vision camera, Centre: ground-truth depth camera and Right:
ground-truth semantic segmentation camera. Credits: CARLA [29] . 24

5.1 Our proposed RL setup that defines our Markov decision process with
the state space S, action space A and reward function R. 29

xiv

5.2 Our proposed architecture [4]: The inputs to our architecture are
semantically segmented (SSimage) image and intermediate waypoints
that are directly fetched from the CARLA simulator. The SSimage is
encoded using a pre-trained auto-encoder whose bottleneck encoding
alongwith waypoint features form as inputs to the policy network.
The policy network outputs the control actions (ŝ, v̂) where ŝ is the
predicted steer and v̂ is the predicted target speed which is then
mapped to predicted throttle and brake (t̂, b̂) using a PID controller. . 37

5.3 The figure reports the mean cumulative reward and success rate on
the Navigation task defined by the original CARLA benchmark [29].
The plots indicate that the RL agent can successfully learn the task
within 2M time steps of training. The shaded region corresponds to
the minimum and maximum values showing variation across 3 runs. . 40

6.1 Our proposed RL setup for the dynamic actor setting that defines our
Markov decision process with the state space S, action space A and
reward function R. 45

6.2 Our proposed architecture for state representation (S = A, A+ I or
I): The state representation is a combination of waypoint features w̃,
dynamic obstacle affordance õ, traffic light affordance t̃, previous time
step steer and target speed actions (ŝ, v̂), distance to goal destination
ĝ, signed distance from the optimal trajectory n̂ or latent features of
the autoencoder h̃ depending on the state representation S. The policy
network outputs the control actions (ŝ, v̂) where ŝ is the predicted steer
and v̂ is the predicted target speed which is then mapped to predicted
throttle and brake (t̂, b̂) using a PID controller. 51

6.3 The figure reports the mean cumulative reward and success rate for our
three choices of state representation: S=A, A+I or I, on the Dynamic
Navigation task [29]. The plots indicate that the state-representation
A and A+ I learn the navigation task successfully whereas the state-
representation I learns the task slowly as observed by the performance
improvement after 10M time steps of training. The shaded region in
the plot corresponds to the minimum and maximum values showing
variation across 3 different seeds. 53

7.1 Backup diagram of our proposed algorithm, Exploratory Policy Search
(Algo. 3) that the finds the optimal policy among the K randomly
explored and trained policies. 59

xv

7.2 Catastrophic performance decay observed during one of our exper-
iments on learning to drive with the dynamic actor scenarios. (a):
Mean validation reward across 6 different seeds of the experiments.
The blue oval represents the performance decay observed after 5.5M
time steps of training. (b) - (g): Individual seed-wise validation reward
for the same experiment. 61

7.3 Comparison of our EPS algorithm with the the vanilla RL algorithm
(without EPS) across different population sizes (K = 1, 3, 5) on four
distinct MuJoCo [98] control tasks. The figure reports the mean reward
plots that is averaged over 3 random seeds. We use the PPO-Clip [89]
variant as the vanilla RL algorithm and train our proposed algorithm
for E = 50 epochs and a total of 2M time steps. 64

7.4 Fair comparison, in terms of compute, of our EPS algorithm with the
the vanilla RL algorithm (without EPS) across different population
sizes (K = 3, 5) on four distinct MuJoCo [98] control tasks. The figure
reports the mean reward plots that is averaged over 3 random seeds.
We use the PPO-Clip [89] variant as the vanilla RL algorithm and
train our proposed algorithm for E = 50 epochs and a total of 10M
time steps. 65

7.5 Comparison of our EPS algorithm with the the vanilla PPO-Clip
variant (without EPS) across different population sizes (K = 1, 3, 5)
on the Dynamic Navigation task defined in the CARLA simulator [90].
The figure reports the mean cumulative reward and success rate that
is averaged over 3 random seeds. 66

A.1 The figure reports the mean cumulative reward and success rate for
seven different choices of state representation on the Dynamic Navi-
gation task [29]. The first three representations A, A+ I, and I use
the top-down semantic segmentation camera. Next, FS:A+I and FS:I
use the forward-facing semantic segmentation camera whereas the last
two FR:A+I and FR:I use the forward-facing RGB camera. The plots
indicate that the state-representation A and A+ I successfully learn
the task whereas the state-representation I gradually learns the task
after 10M time steps of training. Further, among the forward-facing
camera experiments, FR:I and FS:A+I seem to show a performance
improvement while the rest do not run long enough and show similar
performance as the top-down camera experiments when trained for the
first 3M time steps. The shaded region in the plot corresponds to the
minimum and maximum values showing variation across 3 different
seeds. 74

xvi

A.2 Comparison of our EPS algorithm with the the vanilla RL algorithm
(without EPS) across different population sizes (K = 1, 3, 5) and two
epoch variants (E = 1, 50) on four distinct MuJoCo [98] control tasks.
The figure reports the mean reward plots that is averaged over 3
random seeds. We use the PPO-Clip [89] variant as the vanilla RL
algorithm and train our proposed algorithm for a total of 2M time steps. 75

A.3 Fair comparison, in terms of compute, of our EPS algorithm with the
vanilla RL algorithm (without EPS) across different population sizes
(K = 3, 5) and two epoch variants (E = 1, 50) on four distinct MuJoCo
[98] control tasks. The figure reports the mean reward plots that is
averaged over 3 random seeds. We use the PPO-Clip [89] variant as
the vanilla RL algorithm and train our proposed algorithm for a total
of 10M time steps. 76

xvii

List of Tables

4.1 Original CARLA Benchmark [29] that describes the different driving
tasks: Straight, One Turn, Navigation & Dynamic Navigation. 27

5.1 Quantitative comparison with the baselines that solve the four goal-
directed navigation tasks using modular, imitation learning or rein-
forcement learning approaches on the original CARLA benchmark
[29]. The table reports the percentage (%) of successfully completed
episodes for each task in the training (Town 01) and testing town
(Town 02). Higher is better. The baselines include MP [29], IL [29],
RL [29], CIL [23], CIRL [61], CAL [86], CILRS [24], LBC [20] and
IA [99] compared with our model-free RL method [4]. The reported
results are the average over 3 seeds that are evaluated on 5 different
runs of the benchmark. Bold values correspond to the best mean
success rate. 41

5.2 Quantitative comparison with the baselines that solve the three goal-
directed navigation tasks using modular, imitation learning or rein-
forcement learning approaches on the NoCrash benchmark [24]. The
table reports the percentage (%) of successfully completed episodes
for each task in the training (Town 01) and testing town (Town 02).
Higher is better. The baselines include CIL [23], CAL [86], CILRS
[24], LBC [20], IA [99] and CARLA built-in autopilot control (AT)
compared with our model-free RL method [4]. The reported results
are the average over 3 seeds that are evaluated on 5 different runs of
the benchmark. Bold values correspond to the best mean success rate. 42

xviii

6.1 Quantitative comparison with the baselines that solve the four goal-
directed navigation tasks using modular, imitation learning or rein-
forcement learning approaches on the original CARLA benchmark
[29]. The table reports the percentage (%) of successfully completed
episodes for each task in the training (Town 01) and testing town
(Town 02). Higher is better. The baselines include MP [29], IL [29],
RL [29], CIL [23], CIRL [61], CAL [86], CILRS [24], LBC [20] and
IA [99] compared with our PPO method. The reported results are
the average over 3 seeds that are evaluated on 5 different runs of the
benchmark. Bold values correspond to the best mean success rate. . 55

6.2 Quantitative comparison with the baselines that solve the three goal-
directed navigation tasks using modular, imitation learning or rein-
forcement learning approaches on the NoCrash benchmark [24]. The
table reports the percentage (%) of successfully completed episodes
for each task in the training (Town 01) and testing town (Town 02).
Higher is better. The baselines include CIL [23], CAL [86], CILRS
[24], LBC [20], IA [99] and CARLA built-in autopilot control (AT)
compared with our PPO method. The reported results are the average
over 3 seeds that are evaluated on 5 different runs of the benchmark.
Bold values correspond to the best mean success rate. 56

6.3 Quantitative analysis of episode termination causes and comparison
with the baselines that solve that three goal-direction navigation tasks
using modular, imitation or reinforcement learning approaches on the
NoCrash benchmark [24]. The table reports the percentage (%) of
episodes with their termination causes for each task and for the training
(Town 01) and testing town (Town 02). The columns for a single
method/task/condition should add up to 1. For each cause of episode
termination we bold the method with the best performance. The
baselines include CIL [23], CAL [86] and CILRS 100 [24] compared
with our PPO method. The reported results are the average over 3
seeds that are evaluated on 5 different runs of the benchmark. 57

xix

xx

Chapter 1

Introduction

1.1 Motivation

Figure 1.1: Traditional autonomous driving stack that uses a suite of sensors to predict
the end control. The overall pipeline can be modularized into different subsystems
that include mapping and localization, perception, actor prediction, motion planning
and vehicle control.

A recent survey conducted by the National Highway Traffic Safety Administration

suggested that more than 94% of road accidents are caused by human errors [94].

This has led to the rapid evolution of the autonomous driving systems over the

last several decades with the promise to prevent such accidents and improve the

driving experience. But despite numerous research efforts in academia and industry,

the autonomous driving problem remains a long-standing problem in the domain of

1

1. Introduction

artificial intelligence and machine learning. This is because the current systems still

face numerous real-world challenges for which it is not ready yet. These challenges

include ensuring the accuracy and reliability of the prediction systems, maintaining

the reasonability and optimality of the decision-making systems, to determining the

safety and scalability of the entire system.

Another major factor that impedes success is the complexity of the problem that

ranges from learning to navigate in constrained industrial settings, to learning to

drive on highways, to navigation in dense urban environments. Navigation in dense

urban environments requires understanding complex multi-agent dynamics including

tracking multiple actors across scenes, predicting intent, and adjusting agent behavior

conditioned on historical states. These factors provide a strong impetus for the need

of general learning paradigms that are ‘complex’ enough to take these factors into

account.

The most common practice of solving the massive task of driving is to divide the

system into subcategories and employ an array of sensors and algorithms to each

of the different modules [19, 48, 60, 69, 72, 100, 107]. The overall system consists

of a few core blocks that include localization and mapping, perception, prediction,

planning and decision making, and vehicle control (Fig. 1.1). Developing each of these

individual modules makes the overall task much easier as each of the sub-tasks can

independently be solved by popular approaches in the literature of computer vision

[32, 87], robotics [14, 57] and vehicle dynamics [30, 81]. But with the advent of deep

learning [58], most of the current state of the art systems use a variant of supervised

learning over large datasets [33] of collected logs to learn individual components’

tasks. The major disadvantage of these heavily engineered modular systems is that it

is extremely hard to tune these subsystems and replicate the intended behavior which

leads to its poor performance in new environments. Moreover, these systems are also

prone to error propagation [64] as an erroneous perception or prediction subsystem

may impact the performance of planning and control subsystems.

Another approach that has recently become popular is exploiting Imitation Learn-

ing where the aim is to learn a control policy for driving behaviors based on obser-

vations collected from expert demonstrations [9, 12, 13, 20, 23, 24, 71, 77, 80, 83,

86, 91, 109]. The advantage of these methods is that the agent can be trained in an

end-to-end fashion to learn the desired control behavior which significantly reduces

2

1. Introduction

the effort of tuning each component that is common to more modular systems. The

drawback however is that these systems are challenging to scale and generalize to

novel situations since it is impractical to obtain expert demonstrations for all the

scenarios that we care about or train an agent that can ever outperform the expert.

Furthermore, imitation learning assumes that the data is independent and identically

distributed (i.i.d.). In contrast, the driving scenarios are non-i.i.d. where each new

state is dependent upon the previous history of states and control outputs, thereby

limiting the scale of these approaches.

More recently, deep reinforcement learning (DRL) has made large strides towards

solving sequential decision-making problems, including learning to play complex

strategic games such as Go [92], chess [93] or Atari games [65, 66] , as well as completing

complex robotic manipulation tasks [5, 35, 108]. The superhuman performance

attained using this learning paradigm motivates the question of whether it could

be leveraged to solve the long-standing goal of creating autonomous vehicles. This

approach of using reinforcement learning has inspired a few recent works [29, 49, 50, 53,

61] that learn control policies for navigation task using high dimensional observations

like images. The previous approach using DRL [29] reports poor performance in

navigation tasks, while the imitation learning-based approach [61] that achieves better

performance, suffers from poor generalizability.

Although learning policies from high dimensional state spaces remain challenging

due to the poor sample complexity of most reinforcement learning (RL) algorithms,

the strong theoretical formulation of reinforcement learning and its generality to

unseen scenarios make it a useful learning framework to be applied to autonomous

driving. Moreover, RL also offers a corrective mechanism to improve the learned

policies. These factors make us strongly believe in its potential to learn common urban

driving skills for autonomous driving and form the basis for the research questions

that we pose in this work.

1.2 Research Contributions

This work motivates reinforcement learning as a learning paradigm to learn com-

mon driving behaviors. Building on some of the advancements in continuous control

DRL [88, 89], we propose two works that formulate the urban driving tasks using

3

1. Introduction

reinforcement learning and learn optimal control policies primarily using waypoints

and low-dimensional representations. Our agents when trained from scratch learn

to drive straight, around intersections and stop for other vehicles and traffic lights

without colliding with any static and dynamic obstacles. Additionally, our agents

also demonstrate a reduced number of infractions, including collisions with static or

dynamic actors, which is at least an order of magnitude lesser than the previously

reported results in the prior works.

Since we do not have access to the environment model in the real world, we primar-

ily develop our framework based on model-free reinforcement learning algorithms that

are more stable than model-based reinforcement learning methods [1, 38, 41, 56, 68].

Also, as it is impractical to train RL algorithms on the self-driving vehicle in the real

world, we demonstrate our findings on the CARLA simulator [29] and hope that our

work paves the way for real-world deployment in the future.

Specifically, our research contributions can be listed as follows.

• We pose the autonomous driving problem as a reinforcement learning problem,

devise its various components to make the problem easier while keeping it

general enough to be easily extensible.

• We demonstrate that using an off-the-shelf reinforcement learning algorithm

(Proximal policy optimization [89]), our agents are capable of learning optimal

driving policies in the CARLA [29] simulator.

• We propose to use waypoints and low-dimensional representations as feature

inputs to the policy network, that encode the current state of the world in the

near horizon and is crucial to determining the optimal control.

• We design a dense reward function that is fundamentally similar to the cost

function used by the state-of-the-art planning systems.

• We also propose a new algorithm known as Exploratory Policy Search (EPS)

that combines forward search with model-free Proximal policy optimization to

find the best-optimized driving policy that we care about in the real world.

• Lastly, we plan to open-source our reinforcement learning CARLA environment

to readily be used by the research community that works in a similar direction.

4

1. Introduction

1.3 Outline

This section outlines the different chapters that are organized in this thesis.

• Chapter 2 discusses the related work in the autonomous driving domain which

can broadly be categorized into modular, imitation, or reinforcement learning-

based methods.

• Chapter 3 gives a quick overview of reinforcement learning and the different

algorithms that exist in this domain.

• Chapter 4 introduces our CARLA environment that we build from scratch to

enable reinforcement learning through interactions with the simulator. We also

discuss the sensors and affordance algorithms developed by us that form the

basis for the next chapters.

• Chapter 5 describes our first approach to autonomous driving using reinforce-

ment learning. This work [4], demonstrates learning common driving skills like

lane-following and driving around intersections.

• Chapter 6 discusses our next approach that formulates the urban driving task in

the presence of dynamic actors. We demonstrate that our approach of learning

to drive using low-dimensional representations outperforms all our other chosen

representations as well as gives us significant improvements when compared

with the prior works.

• Chapter 7 introduces our Exploratory Policy Search algorithm that aims to

combine forward search with model-free reinforcement learning algorithms.

• Chapter 8 describes the conclusions and key takeaways from this thesis and

directs readers to some open problems for future work.

5

1. Introduction

6

Chapter 2

Related Work

Autonomous driving is a field that has received a great deal of attention from

both the research community and the industry. It shares a long history of approaches

that can broadly be clustered into three common approaches: modular, imitation

learning, and reinforcement learning-based approaches. In this chapter, we review

each of the different variety of methods that are popular in literature and that have

been used towards solving the task of autonomous driving.

2.1 Modular Approaches

Most of the state-of-the-art autonomous driving systems use approaches that can

commonly be clustered under this category. These approaches aim to divide the

entire task into different sub-tasks and sub-modules that include the core functional

blocks of localization and mapping, perception, prediction, planning, and decision

making, and vehicle control [19, 48, 60, 69, 72, 100, 107].

The localization and mapping subsystem senses the state of the world and locates

the ego-vehicle with respect to the environment [8, 15, 55, 74, 107]. This is followed

by the perception sub-system that detects and tracks all surrounding static and

dynamics objects [6, 8, 27, 74, 78, 107]. The intermediate representation produced by

the perception subsystem then feeds into the prediction and planning subsystems that

outputs an optimal plan of action [8, 74, 76, 90, 107] based on the future trajectories

of all the agents in the environment [28, 59, 70] and the planning cost function.

Finally, the plan of action is then mapped into low-level control actions that are

responsible for the motor actuation. For more details on these approaches, we direct

7

2. Related Work

readers to [8, 60, 107].

Although these systems offer high interpretability, they employ a heavily engineered

approach that requires cumbersome parameter tuning and large amounts of annotated

data to capture the diverse set of scenarios that the autonomous driving vehicle may

face. Tuning these subsystems for each new town and capturing the labeled data is

a tedious process that questions the scalability of these approaches. Furthermore,

the driving policy does not differ a lot from one town to another which raises the

question to learn driving policies that are independent of the driving conditions using

more sophisticated approaches.

2.2 Imitation Learning

Another branch of approaches that are common in literature and practice is

the imitation learning-based approaches that learn control policies based on expert

demonstrations. Dating back to one of the earliest successful works on imitation

learning is the ALVINN [80] which uses a simple and shallow feedforward network to

learn the task of the road following. This method first demonstrated an end-to-end

learning approach that outputs a target direction based on raw images and a laser

range finder. Other works, well studied in the literature, include [2, 82, 85, 96] that

either leverage expert demonstrations using supervised learning or formulate online

imitation learning using game-theory or maximum margin classifiers.

With the development of the deep learning [54, 58], the trend has shifted towards

using Convolutional Neural Networks (CNNs) for the perception tasks. The first

architecture that used CNN based end-to-end method for steering angle prediction

was proposed by Nvidia [12] that learned directly from raw pixels. A follow-up work

[13] explained that the architecture does learn to encode salient objects on the road

and more subtle features that are hard to anticipate and programmed by engineers.

These features correlate with the features that are essential for the driving task and

thus learn to ignore structures from the images that are not relevant. Similar works

have been proposed in the past that map the raw images to steering angles [71] or

learn an additional visual attention model [51] that highlights image regions that

contribute to the action predictions . One limitation in the assumption of the above

models is that the optimal action can be inferred solely from a single perception

8

2. Related Work

input. To that end, [21, 105, 106] propose to combine spatial and temporal cues

using recurrent units (LSTMs / Conv-LSTMs) to learn actions conditioned on the

historical states and instantaneous camera observations.

Although the imitation learning based deep networks have learned to follow the

roads and avoid obstacles, these policies suffer at test time as they cannot be controlled

by human experts. This is because a vehicle trained to imitate the expert cannot be

guided when it hits an intersection. [23] proposes to condition the imitation learned

policies based on the high-level navigational command input which disambiguates

the perceptuomotor mapping and allows the model to still respond to high-level

navigational commands provided by humans or a mapping application. Another work

[20] decouples the sensorimotor learning task into two, learning to see and learning to

act. In the first step, a privileged agent is learned that has access to simulator states

and learns to act. The second step involves learning to see where a sensorimotor

agent is learned based on supervision provided by the privileged agent. For a more

in-depth review of these methods, we direct readers to check out [20, 23, 46, 75, 97].

Although these methods have low model complexity and can be robust with

enough training data, their generalization ability to complicated environments is still

questionable. This is because none of the above approaches reliably handle the dense

traffic scenes and are prone to suffer from inherent dataset biases and lack of causality

[24]. Moreover, collecting a large amount of expert data that imitates every potential

scenario which the autonomous agent may encounter, remains an expensive process

and is difficult to scale. On the other hand, these agents can never outperform the

human expert as the training data is annotated solely from expert demonstrations.

Additionally, imitation learning assumes the data to be independent and identically

distributed (i.i.d.) which differs from the usual driving setup where the data is

sequential. These limitations restrict the extent to which imitation learning-based

methods can be used for large-scale learning of common urban driving behaviors and

suggest the use of reinforcement learning-based approaches for optimizing policies for

sequential decision-making tasks.

2.3 Reinforcement Learning

A recently proposed work [49], posed the autonomous driving problem as a Markov

decision process (Sec. 3.1) and demonstrated the use of deep reinforcement learning

9

2. Related Work

(RL) to learn the driving task in both simulated and real-world environments. It

shows that using a canonical RL algorithm, Deep Deterministic Policy Gradients

(DDPG) [62], the model can learn a continuous-valued policy for the lane following

task, using a single monocular image as input.

Another line of work that has attracted RL researchers is using the TORCS

simulator [104], which is an open-source and easy to use the racing simulator. The

first work that demonstrated learning stable driving policies on TORCS was the

asynchronous advantage actor-critic (A3C) [67] that learned discrete action policy

only using a visual RGB image. [62] extends the prior work to continuous action

space by proposing DDPG, which also learns policies in an end-to-end fashion directly

from raw pixels.

Recently, many works have focused on using the new CARLA simulator [29] that

is an open-source urban driving simulator that includes pedestrians, traffic lights,

and other dynamic actors. The original CARLA work [29] released a new driving

benchmark along with three baselines that used a modular, imitation learning, and

reinforcement learning-based approach respectively. The RL baseline used the A3C

algorithm [67] but reported poor results than the imitation learning one. These

results were improved by [61] that finetune the imitation learned agent using DDPG

for continuous action space. Although the results are better than the original CARLA

RL baseline [29], this method relies heavily on the pre-trained imitation learned agent

and hence it is unclear whether the improvement comes from the RL fine-tuning.

Moreover, they also do not model the traffic light behaviors.

A more recent work [99] combines the ideas of Rainbow, IQN, and Ape-X [26, 40,

44] to propose an end-to-end trainable RL algorithm. The agent proposed by this

work divides the task into two phases. The first phase trains a Resnet-18 encoder [39]

that predict affordances like traffic light state or distance to the center of the lane.

The second phase uses the output features of the encoder, also termed as implicit

affordances, as the RL state, with the advantage that the RL optimizer only trains

the last past of the network.

The works discussed here highlight the rising trend in the research community to

explore deep reinforcement learning algorithms for autonomous driving tasks.

10

Chapter 3

The Reinforcement Learning

Problem

Reinforcement learning (RL) is the branch of machine learning that deals with

solving sequential decision-making processes. In the usual setup, an RL problem

consists of an agent interacting with an environment, where at each timestep, the

agent takes an action and receives an observation and a scalar reward back from

the environment (Fig. 3.1). The primary objective that the RL problem seeks, is to

maximize the agent’s cumulative reward through this interactive process of learning

through trial-and-error.

Figure 3.1: RL Setup: An agent interacting with the environment.

This chapter describes some of the preliminaries and the related work that are

required for understanding the context of this thesis.

11

3. The Reinforcement Learning Problem

3.1 Markov Decision Processes

The Markov decision processes (MDPs) [11, 45] is the formal framework that de-

scribes any RL environment, where the environment is assumed to be fully observable.

This implies that the set of states that characterizes the MDP follows the Markovian

property, i.e., each of the states captures all the relevant information from the past.

Hence the future outcomes are independent of the past given the present state.

Formally, an MDP can be described as (S,A, P,R, γ) whose key components are

the following.

• A set of states, s ∈ S, where S denotes the state space.

• A set of actions, a ∈ A, where A denotes the action space.

• A transition probability function, P (s′|s, a), where s, s′ ∈ S and a ∈ A.

• A reward function, R(s, a, s′), where R : S × S × A → R and R(s, a, s′) =

E[rt|St = s, At = a, St+1 = s′].

• Discount factor, denoted by γ.

We now describe the common RL terminology that is widely used across literature

and this thesis.

3.1.1 Policy

The policy function, denoted by π(a|s), is defined as a probability distribution

over actions given the states. It governs the behavior of the agent in the environment

and could be either deterministic or stochastic based on the probability distribution

function.

3.1.2 Return

The return, denoted by Gt, mathematically describes the cumulative discounted

reward from time step t that the RL agent seeks to maximize.

Gt = rt + γrt+1 + γ2rt+2 + ... =
∞∑
k=0

γkrt+k (3.1)

12

3. The Reinforcement Learning Problem

3.1.3 Value Functions

To choose the optimal action from any state (or state-action pairs), almost every

RL algorithm estimates a “goodness” score for the agent to be in a given state (or

how good it is to perform a given action in a given state). This “goodness” score is

defined in terms of the expected return and is defined for every policy π as the future

rewards depend on the actions the policy π chooses.

Thus, the state-value function (Eq. 3.2), denoted by Vπ(s), is defined as the

expected return that an agent collects starting from state s and following a policy π

thereon.

Vπ(s) = Eπ[Gt|St = s] = Eπ
[∞∑
k=0

γkrt+k|St = s
]

(3.2)

Similarly, we also define the action-value function (Eq. 3.3), denoted by Qπ(s, a),

as the expected return that an agent collects starting from state s, taking the action

a and following a policy π thereon.

Qπ(s, a) = Eπ[Gt|St = s, At = a] = Eπ
[∞∑
k=0

γkrt+k|St = s, At = a
]

(3.3)

The above value functions follow a nice recursive property where the return can be

broken down into the sum of immediate reward and the value of its possible successor

states (or state-action pairs). These equations (Eq. 3.4) are commonly referred to as

the Bellman Expectation equations.

Vπ(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)
[
r + γVπ(s′)

]
Qπ(s, a) =

∑
s′,r

p(s′, r|s, a)
[
r + γ

∑
a′

π(a′|s′)Qπ(s′, a′)
] (3.4)

3.1.4 Optimal Value Functions

In order to solve any RL problem, we seek to maximize the above defined value

functions. Thus, the optimal value functions are those that maximize the value

function over the policy space and in turn yield the optimal policy, denoted by π∗.

13

3. The Reinforcement Learning Problem

Mathematically, the optimal state-value (or optimal action-value) function, de-

noted as V∗(s) (or Q ∗ (s, a)), can be defined as,

V∗(s) = max
π

Vπ(s),∀s ∈ S,

Q∗(s, a) = max
π

Qπ(s, a),∀s ∈ S,∀a ∈ A.
(3.5)

Also, for an optimal policy, the following equation holds true.

V∗(s) = max
a∈A

Qπ∗(s, a) (3.6)

Using the above optimal set of equations, it follows that these too can be expressed

in the recursive form yielding the Bellman Optimality Equations (Eq. 3.7).

V∗(s) = max
a∈A

∑
s′,r

p(s′, r|s, a)
[
r + γV∗(s

′)
]

Q∗(s, a) =
∑
s′,r

p(s′, r|s, a)
[
r + γmax

a′∈A
Q∗(s

′, a′)
] (3.7)

The Bellman Expectation Equations (Eq. 3.4) and the Bellman Optimality Equa-

tions (Eq. 3.7) form the basis for most reinforcement learning algorithms and are

essential in order to have a concrete understanding.

For a finite MDP, the Bellman Optimality Equation yields a unique solution

independent of the policy. This is because, for a N state system, the Bellman

Optimality Equations can be written as N equations in N unknowns. If the dynamics

(i.e, p(s′, r|s, a)) of the environment are known, we can determine v∗ using any one of

the varieties of methods used to solve systems of nonlinear equations.

In practice, the dynamics (i.e, p(s′, r|s, a)) of the environment is usually unknown,

which brings us to a wide family of reinforcement learning algorithms as detailed in

Sec. 3.2.

14

3. The Reinforcement Learning Problem

3.2 RL Algorithms Family

The RL family of algorithms is bifurcated based on whether the agent has access

to (or learns) a model of the environment, thereby giving rise to model-free and

model-based reinforcement learning methods as shown in Fig. 3.2.

Figure 3.2: Overview of different algorithms in RL. Credits: Spinning Up, OpenAI.
[3]

• Model-free methods : These methods seek to learn the optimal value functions

solely through interactions with the environment and explicitly not considering

the environment dynamics.

The model-free methods are further divided into policy optimization and Q-

learning based methods. The former parameterizes the policy function and

directly optimizes its parameters by doing gradient ascent on the performance

objective, or indirectly, by maximizing local approximations of the objective (e.g.

policy gradient). The latter methods parameterizes the optimal action-value

function, Q∗(s, a), and optimize the objective based on the Bellman equation

(e.g. DQN [65], C51 [10], QR-DQN [25]). The intersection of these two methods

form the actor-critic methods, that are more common in literature and form

the basis for most state-of-the-art model-free approaches (e.g. A2C/A3C [67],

DDPG [62], TRPO [88], PPO [89]).

15

3. The Reinforcement Learning Problem

• Model-based methods: These methods explicitly seek to learn (or have access

to) the model of the environment which allows the agent to plan by thinking

ahead, and choose the best actions from a given state. Approaches include pure

planning based methods (e.g. MPC [18], MBMF [73]), tree-search algorithms

(e.g. MCTS [16]), or joint methods that integrate planning into the policy /

value function learning step (e.g. World Models [36], MBVE [31]).

The major upside of having a model of the environment is the substantial im-

provement in sample efficiency of the learning algorithms whereas the model-free

methods are relatively less sample efficient but do provide the ease of implementation

and tuning [1, 17, 38, 41, 56, 68, 73].

Another terminology that is common in the RL literature, is the difference between

on-policy and off-policy algorithms.

• On-Policy : An on-policy algorithm improves or evaluates the same policy that

is carried out by the agent including the exploration steps.

• Off-Policy : An off-policy algorithm learns the optimal value function indepen-

dently of the agent’s actions, or, improves or evaluates a policy that is different

from that used to generate the data.

As discussed in Section 3.1.4, a common way of solving the MDP is to solve the

system of equations using dynamic programming for cases where the MDP is finite

and we have access to the dynamics of the environment. But this method is too costly

owing to the high cost of the matrix inversion (O(N3)) while visiting all the states.

One way to solve this is to selectively back up the value function estimates for an

MDP or choosing state-actions that the agent visits often. For environments where

we do not have access to the dynamics, the agent learns solely through interactions by

collecting experiences and estimating the value function based on Monte-Carlo and

Temporal-Difference based methods. The backup diagram and equations for these

methods can be summarized from Fig. 3.3.

Next, we briefly review Q-Learning based methods in Section 3.3 and dive deeper

into the policy optimization-based methods in Section 3.4, that forms the primary

focus area of this thesis.

16

3. The Reinforcement Learning Problem

Figure 3.3: Tree backup diagram for different class of RL algorithms. Left: Monte-
Carlo methods use empirical average of returns to estimate the value function. Centre:
Temporal-Difference methods estimate the value function based on estimate of the
next state (or state-action). Right: Dynamic Programming methods solve the entire
backup tree to estimate the expected return.

3.3 Q-Learning

Q-Learning [102], one of the foremost breakthroughs in reinforcement learning,

was the first algorithm that proposed the development of an off-policy Temporal-

Difference control algorithm. In this method, an agent learns the optimal action-value

function Q∗(s, a) based on historical experiences that are collected by the old policy.

This facilitates the agent to estimate the optimal action-value function under the

assumption that the agent can explore all actions from all states infinitely many

times.

Deep Q-Learning [65], extends the above idea to learn action-value function

approximator in the form of deep networks and reports significant improvement in

performance as compared to all previous methods. This work was further extended

to develop Deep Deterministic policy gradients (DDPG) [62] that concurrently learn

an action-value and policy function for environments with continuous action spaces.

Another work that is currently state-of-the-art in off-policy reinforcement learning

is the Soft-Actor Critic [37] that does stochastic policy optimization in a maximum

entropy RL framework, thus optimizing the trade-off between the expected reward

and entropy.

17

3. The Reinforcement Learning Problem

3.4 Policy Optimization

Recalling the primary objective of RL problems, the goal is to maximize the

expected reward following a policy π. The policy gradient methods aim to model and

optimize the policy parameters directly with the key goal to increase the probabilities

of actions that lead to higher returns and decrease the probabilities of actions that

lead to lower returns. The policy, defined as πθ(a|s) where θ denote the set of policy

parameters, governs the value of the objective function, which is denoted as J(θ).

This objective function can be maximized either through gradient-free approaches

or gradient ascent algorithms that find the best θ that produces the highest return.

Mathematically, the performance objective or the reward function is defined by Eq. 3.8

where dπ(s) is the stationary distribution of the Markov chain for πθ.

J(θ) =
∑
s∈S

dπ(s)Vπ(s) =
∑
s∈S

dπ(s)
∑
a∈A

πθ(a|s)Qπ(s, a) (3.8)

3.4.1 Policy Gradient

Computing the gradient of the performance objective, J(πθ), is tricky as the

performance depends on both the action selections and the distribution of states in

which those selections are made. Given that the environment is usually unknown it

becomes difficult to estimate the effect of the policy update on the state distribution.

Fortunately, the policy gradient theorem (Eq. 3.9) provides a solution to this problem

by giving an analytic expression for the gradient of performance with respect to the

policy parameter θ.

∇θJ(θ) = ∇θ

∑
s∈S

dπ(s)
∑
a∈A

πθ(a|s)Qπ(s, a)

∝
∑
s∈S

dπ(s)
∑
a∈A

∇θ(πθ(a|s))Qπ(s, a)
(3.9)

In the episodic case, the proportionality constant is equal to the average length of

the episode and for the continuing case, it is considered to be equal to 1. Thus the

above policy gradient equation (Eq. 3.9) can further be written as (Eq. 3.10),

18

3. The Reinforcement Learning Problem

∇θJ(θ) ∝
∑
s∈S

dπ(s)
∑
a∈A

∇θ(πθ(a|s))Qπ(s, a)

=
∑
s∈S

dπ(s)
∑
a∈A

∇θ(πθ(a|s))
πθ(a|s)

πθ(a|s)Qπ(s, a)

= Es∼dπ ,a∼πθ [∇θ(ln πθ(a|s))Qπ(s, a)].

(3.10)

3.4.2 REINFORCE

REINFORCE [95, 103], also known as Monte Carlo policy gradient, uses Monte-

Carlo methods to estimate returns of sampled episodes that in turn update the policy

parameter θ. The key idea behind this algorithm is that the expectation of the sample

gradient is equal to the actual policy gradient.

∇θJ(θ) = Es∼dπ ,a∼πθ [∇θ(ln πθ(a|s))Qπ(s, a)]

= Eπ[∇θ(ln πθ(At|St))Gt],
(3.11)

since Qπ(St, At) = Eπ[Gt|St, At].
A commonly used variation of REINFORCE [95, 103] (Eq. 3.12) is to subtract a

suitable baseline from the return Gt to reduce the variance of the gradient estimates

while keeping the bias unchanged. Often, the state-value function is used as a baseline

that is subtracted from the action-value function, yielding the advantage function,

denoted by Aπ(s, a) (Eq. 3.13).

∇θJ(θ) = Eπ[∇θ(ln πθ(At|St))Aπ(St, At)] (3.12)

Aπ(s, a) = Qπ(s, a)− Vπ(s) (3.13)

3.4.3 Trust Region Policy Optimization

The vanilla policy gradient methods, keep the updated and old policies close in

the parameter space. But this optimization is difficult as even a small change in the

19

3. The Reinforcement Learning Problem

parameter space may yield very large differences in the performance of the policies.

Thus, determining the right step size, without hurting the policy performance is

cumbersome, which is where the beauty of Trust Region policy optimization (TRPO)

[88] lies.

TRPO [88] avoids the policy performance collapse by constraining the updated and

old policies in terms of KL-divergence and monotonically improving the performance

objective.

Although TRPO [88] is considered to be an on-policy algorithm, it considers the

subtle difference in the behavior policy and the policy we seek to optimize for. Thus,

the performance objective equation (Eq. 3.8) includes an importance sampling term

that compensates for the mismatch between the training data distribution and the

true policy state distribution, yielding Eq. 3.14.

J(θ) =
∑
s∈S

ρπθold (s)
∑
a∈A

πθold(a|s)
πθ(a|s)
πθold(a|s)

Aπθold (s, a)

= Es∼ρπθold ,a∼πθold
[πθ(a|s)
πθold(a|s)

Aπθold (s, a)
] (3.14)

TRPO [88] aims to maximize the objective function (Eq. 3.14), subject to the

following trust region constraint (Eq. 3.15) that enforces the old and updated policies

to not diverge much.

Es∼ρπθold

[
DKL

(
πθold(.|s)||πθ(.|s)

)]
≤ δ (3.15)

3.4.4 Proximal Policy Optimization

Although TRPO [88] proposes an algorithm that offers a monotonic improvement

to the policy function, it solves a second-order optimization problem that is compli-

cated and difficult to implement. On the other hand, Proximal policy optimization

(PPO) [89] proposes a first-order optimization that aims to optimize a “surrogate”

objective function and in practice performs equivalent to current on-policy based

algorithms. This method is significantly simpler to implement and offers a reasonable

balance between sample complexity, simplicity, and wall-time.

20

3. The Reinforcement Learning Problem

Algorithm 1 Vanilla PPO-Clip Algorithm

1: Input: initial policy parameters θ0, initial value function parameters φ0, trajectory
length T , total training steps S

2: for step = 1, 2, . . . , S//T do
3: Collect set of trajectories D of length T by running policy π = π (θold) in the

environment.
4: Compute rewards-to-go R̂1 . . . , R̂T .
5: Compute advantage estimates, Â1, . . . , ÂT based on the current value function

Vφold .
6: Update the policy by maximizing the PPO-Clip objective (Eq. 3.16):

θ = arg max
θ

1

|D|T
∑
τ∈D

T∑
t=0

min

(
r(θ)Aπθold (st, at), clip

(
r(θ), 1−ε, 1+ε

)
Aπθold (st, at)

)
typically via stochastic gradient ascent with Adam.

7: Fit value function by regression on mean-squared error:

φ = arg min
φ

1

|D|T
∑
τ∈D

T∑
t=0

(
Vφ (st)− R̂t

)2
typically via stochastic gradient descent with Adam.

8: end for

There are two primary variants of PPO [89] that are each discussed below.

• PPO-Penalty: This variant solves a KL-constrained update like TRPO, but

penalizes the KL-divergence in the objective function rather than imposing

a hard constraint and automatically adjusts the penalty coefficient over the

course of training.

• PPO-Clip: This variant neither has an explicit KL-divergence term in the

objective function nor has any constraints. Rather, it uses a surrogate objective

function that clips the objective function and keeps the new policy close to the

old policy.

Empirically, the second version, PPO-Clip [89] (Algo. 1), performs better and is

the one that is more widely used. The clipped objective function used by this variant

can be defined by Eq. 3.16,

21

3. The Reinforcement Learning Problem

J(θ) = Es,a∼πθold

[
min

(
r(θ)Aπθold (s, a), clip

(
r(θ), 1− ε, 1 + ε

)
Aπθold (s, a)

)]
(3.16)

where r(θ) = πθ(a|s)
πθold (a|s)

is the probability ratio. The motivation for this modified

surrogate objective function is as follows. The first term inside the min is the same

as that defined in 3.14, whereas the second term, clip
(
r(θ), 1− ε, 1 + ε

)
Aπθold (s, a),

clips the range of the probability ratio to [1− ε, 1 + ε] and the minimum is chosen

depending on the sign of the advantage function Aπθold (s, a). The modified objective

function forms a lower bound to the original performance objective function (Eq. 3.14)

and the clipping is triggered only when the objective is impacted. This clipping

parameter also acts as a regularizer by removing incentives for the policy to change

abruptly by pessimistically constraining the new policy with respect to the old policy,

while still maximizing the performance objective function. The overall algorithm can

be outlined in Algo. 1.

In this thesis, we primarily build upon the PPO-Clip variant of Proximal policy

optimization [89] and present two works (Chap. 5, 6) that demonstrate the effectiveness

of using reinforcement learning methods to learn even the complex tasks of learning

to drive in urban settings.

22

Chapter 4

CARLA Environment

Figure 4.1: CARLA Simulator [29]: A realistic urban-driving simulator this is open-
sourced for autonomous driving research. The simulator supports multiple actors,
pedestrians, weather conditions and maps that are each configurable in the simulator.
Credits: CARLA [29]

In this chapter, we describe and detail the CARLA environment (Fig. 4.1) that

enables our agent to interact with the simulator [29] and learn optimal driving policies

using reinforcement learning approaches presented by us in Chap. 5, 6. We first

describe the server-client communication framework that we set up using the simulator,

then dive into the array of sensors used by us. Further, we discuss our waypoint

computation logic and algorithms developed by us to detect obstacles and traffic light

23

4. CARLA Environment

state. These components (Sec 4.1 - 4.4) combined together form the core building

blocks of our environment. Finally, we describe the original CARLA benchmark [29]

and the NoCrash benchmark [24] that defines the task for our reinforcement learning

agent and forms the basis for comparison with our baseline methods (Sec. 5.4.1, 6.4.1).

4.1 Server-Client Interface

CARLA [29] provides a simple server-client interface where the server is responsible

for running the simulation and rendering the dynamic world which enables the client

to interact with it. The client sends control and environment commands to the server

and receives the sensor readings in return. The entire communication is managed via

TCP sockets with the client API’s exposed in Python.

We build our environment on top of the server-client interface provided by CARLA

[29] and use the synchronous mode of communication that runs at a frequency of

10fps.

4.2 Sensors

Figure 4.2: The CARLA simulator [29] supports a wide variety of sensors that include
the LIDAR, RGB camera, semantic camera, depth sensors and GPS units. The above
figure three shows such sensors. Left: normal vision camera, Centre: ground-truth
depth camera and Right: ground-truth semantic segmentation camera. Credits:
CARLA [29]

CARLA [29] offers a variety of sensor suite (Fig. 4.2) that is configurable on

the agent’s end. To develop our environment and train our reinforcement learning

approaches, we equip our agents with the following sensors to determine their state

with respect to the simulated world.

24

4. CARLA Environment

• Semantic Segmentation Camera: The semantic segmentation camera in CARLA

classifies every object in its view based on 13 predetermined classes. We use

the output of this sensor and map it further to 5 important classes that include

Pedestrian, Road Line, Road, Car, and Everything Else. This forms as one of

the inputs to our architecture (Fig. 5.2, 6.2) that define our state representation

(Sec. 5.1, 6.1).

• Collision sensor : This sensor enables our agent to detect collisions with any

kind of objects that are present in the simulated world. Specifically, we consider

all types of collisions with static and other vehicle actors as infractions and we

terminate our agent when this sensor triggers a collision event.

• Lane-invasion sensor : This sensor enables us to detect infractions like invading

the opposite lane or getting onto the sidewalk. It detects the crossing of any

lane markings which helps us determine the episode termination condition for

such infractions.

4.3 Waypoint Planner

In the next two chapters (Chap. 5, 6), we present our formulation of learning

to drive as goal-directed navigation. Since the visual input is not sufficient to

disambiguate the navigation direction, we propose to use waypoints that direct

our learning agent to a future world location that lies on the optimal trajectory.

These waypoints are computed using a heuristic-based A* search algorithm that

determines the optimal trajectory between a pair of start and goal destination points

at a predefined resolution of wd m. This process is repeated for every goal-directed

training episode. Additionally, we use the planner implementation that is provided

within the CARLA release1.

4.4 Intermediate Affordances

For the task of learning to drive with dynamic actors (Chap. 6), we formulate the

RL problem by defining a pair of affordances: the front Dynamic Obstacle Affordance

1CARLA v0.9.6 - https://carla.org/2019/07/12/release-0.9.6/

25

https://carla.org/2019/07/12/release-0.9.6/

4. CARLA Environment

and the Traffic Light Affordance. The goal behind proposing these low-dimensional

affordances is to simplify the policy learning problem by predicting these intermediate

affordances through a separate perception system.

• Dynamic Obstacle Affordance : The dynamic obstacle affordance encodes the

front actor’s state in a lower-dimensional intermediate representation. Particu-

larly, we aim to encode the distance between our agent and the front dynamic

actor as well as its corresponding speed. Since the CARLA simulator [29] gives

us direct access to the speed and position of any actor, the task reduces to

determining if a target dynamic actor exists in front of our agent. This is done

by iteratively checking if a target actor’s bounding box lies in front of our agent

that is within a threshold distance of dprox.

• Traffic Light Affordance : Similarly, we also propose the traffic light affordance

that encodes the front traffic light’s state in a lower-dimensional intermediate

representation. This affordance aims to encode the distance to the nearest

traffic light in front of our agent. This is done in a similar way like the dynamic

obstacle affordance with an extension that the target light’s road and lane

identifier matches our agent’s road and lane identifier. The proximity threshold

distance is given by tprox.

4.5 Benchmarks

4.5.1 Original CARLA Benchmark

The original CARLA benchmark [29] proposed four driving tasks. Each task is set

up as goal-directed navigation where the agent is initialized randomly at some location

in the town and the goal is to reach a destination point. The benchmark includes

two towns out of which Town 01 is used for training whereas the Town 02 is used for

testing. The tasks are organized in the increasing order of their difficulty (Table 4.1)

that includes driving on straight roads, around intersections, and navigating through

the town with and without dynamic actors. The first three tasks (Straight, One Turn,

Navigation) do not include any dynamic actors whereas the fourth task (Dynamic

Navigation) includes dynamic actors with navigation from start point to goal point.

26

4. CARLA Environment

Task Drive Straight Drive w. one turn Drive w. multiple turns Drive w. dynamic actors

Straight X
One Turn X X
Navigation X X X

Dynamic Navigation X X X X

Table 4.1: Original CARLA Benchmark [29] that describes the different driving tasks:
Straight, One Turn, Navigation & Dynamic Navigation.

The benchmark [29] proposed evaluating each of these tasks based on the success

rate. It considers an episode as a success if the agent reaches the goal regardless of

any collisions or other infractions that it may encounter during the episode. Hence,

this benchmark mainly focuses on evaluating skills such as lane-keeping and turning

around intersections while ignoring the urban driving setting that commonly has

complex interactions due to dynamic agents or changing traffic light behavior [24].

4.5.2 NoCrash Benchmark

Owing to the limitations of the original CARLA benchmark [29], a new NoCrash

[24] benchmark was proposed that evaluates the agent behaviour on three different

driving tasks: Empty Town, Regular Traffic and Dense Traffic. Each task consists

of similar goal-directed episodes as the original benchmark [29] (Sec. 4.5.1), while

increasing the difficulty in terms of the number of cars and pedestrians. The training

is performed in Town 01 whereas the testing occurs in Town 02.

The original benchmark considered a goal conditioned success rate that allows

the episode to continue even after the infraction. This metric was improved in the

NoCrash benchmark that considers an episode as a failure if the agent collides with

any object. For traffic lights, the benchmark suggests counting the traffic light

violations separately while not terminating the episode due to this infraction.

27

4. CARLA Environment

28

Chapter 5

Learning to Drive using Waypoints

Figure 5.1: Our proposed RL setup that defines our Markov decision process with
the state space S, action space A and reward function R.

We see in Chap. 2 that most of the literature in the autonomous driving domain

is predominantly clustered into the modular or imitation learning-based approaches.

These approaches often do not scale well to urban driving scenarios where it is

common to encounter a variety of interactions between our autonomous agent and

traffic lights, pedestrians, and other actors at intersections. The major challenge

with the urban driving task is that complexity of the classical rule-based approaches

29

5. Learning to Drive using Waypoints

increases as it becomes difficult to handle such high variability. On the other hand,

end-to-end approaches that use imitation learning often suffer from a distribution

mismatch between the expert labeled data and the data seen at test-time.

In contrast, reinforcement learning algorithms do not suffer from distribution

mismatch as the agent continues to explore new state while still exploiting states that

lead to higher cumulative rewards. This motivates us to pose the driving problem as

a sequential decision making task and use the classical formulation of reinforcement

learning (Chap. 3). Further, we believe that the paradigm of reinforcement learning

has a strong potential to learn autonomous driving behaviors towards which we

present our first approach in this chapter.

Specifically, we formulate the urban driving problem as a Markov decision process

(Sec. 3.1) where the goal of our autonomous agent is to learn optimal driving policy

using a reinforcement learning algorithm [4]. The agent seeks to maximize the sum

of cumulative rewards that it can collect from the environment. Since the dynamics

of the environment is usually difficult to model or unknown, we take a model-free

approach to reinforcement learning (Sec. 3.2) where the agent iteratively evaluates

the current policy and updates it solely through interaction with the environment.

As RL relies on learning through interactions via trial and error, we develop

our framework using the CARLA1 [29] simulator due to safety and data efficiency

constraints. We now describe the RL setup in Sec. 5.1, discuss our model-free

reinforcement learning algorithm in Sec. 5.2 and the training methodology Sec. 5.3.

Further, we describe our experimental setup in Sec. 5.4 followed by results and

discussion in Sec. 5.5 and Sec. 5.6 respectively.

5.1 RL Setup

The major contribution of this work [4] is setting up the autonomous driving task

in an RL setup. We develop our own CARLA RL environment (Chap. 4), define our

own state space S, action space A and reward function R (Fig. 5.1) that facilitates

our agent to interact with the simulator and learn solely from the interactions.

1CARLA v0.9.6 - https://carla.org/2019/07/12/release-0.9.6/

30

https://carla.org/2019/07/12/release-0.9.6/

5. Learning to Drive using Waypoints

5.1.1 State Space

The key to the design of our state-space S is defining the observation Ot that

feeds into the algorithm at each time step. Theoretically, state st should follow the

Markov property that encodes all previous observations which can be done using a

recurrent neural network [22, 43]. However, for our task, we consider the observation

to itself approximate the state.

In the autonomous driving literature, many sensors have been proposed that

provide sophisticated observations for driving algorithms, not limited to cameras,

LiDARs, IMUs, GPS units, and IR depth sensors. Although these sensors are equipped

with advanced sensing capabilities, they are often not cost-efficient. Conversely, in

this work, we propose to use only cameras and GPS units that readily provide the

visual and navigational information that is required for an agent to navigate a complex

urban scene.

Specifically, we choose the bird’s-eye view (BEV) semantically segmented image

(SSimage) as one of our state-input that is easily obtained from the CARLA’s semantic

segmentation camera sensor [4]. Given the current state-of-the-art architectures in

perception, we believe segmentation as a task can be trained in isolation and hence we

focus on the more complex task of learning to drive using deep reinforcement learning

directly from SS images. To that end, we consider feeding in the semantic segmented

images through a stack of convolutions [34, 54] or learning a smaller representation of

the image, using a Convolutional or Variational Autoencoder (CAE or VAE) [52, 63].

We notice that learning a deterministic latent representation as in the case of an

autoencoder, has a stabilizing effect on policy learning. The AE bottleneck embedding

forms as one of the state space inputs to our agent’s policy network (Fig. 5.2). We

refer to the AE bottleneck embedding as h̃, and define it in Eq 5.1 where e denotes the

encoder function of our AE. The reconstructed semantic segmented image (SSrimage)

is decoded using the decoder function d of our AE (Eq. 5.1).

h̃ = e(SSimage)

SSrimage = d(h̃)
(5.1)

Besides the visual state input, the agent also requires an input to guide its

31

5. Learning to Drive using Waypoints

navigation. Past approaches [23, 29, 61, 86] have used a higher level planner that

directs the agent using high-level commands on intersections. Instead of this, we

propose to use trajectory waypoints [4] that are readily available from the GPS units

and used to guide the agent’s navigation. Given a source and destination location,

waypoints are intermediate locations pre-computed at a fixed resolution using standard

pathfinding algorithms and can be fetched easily from the CARLA simulator (Sec. 4.3).

We believe the features computed from waypoints can provide a richer signal to the

learning agent for navigation. The waypoint features w̃ are computed using some

generic function f defined by the next n waypoints (w1,w2, ...,wn) and agent’s

current pose p. These features w̃ form the second input to our agent policy network

[4] as defined in Equation (5.2).

w̃ = f(p,w1,w2, ...,wn) (5.2)

For simplicity, we define the function f as the average angle between the agent’s

current pose p and the next n waypoints (w1,w2, ...,wn) but this can extended

to work with any possible functional form. Mathematically, the waypoint feature

function f can be defined by Eq. 5.3.

w̃θ =
1

n

n∑
i=1

(
θp − θwi

) (5.3)

This leads to our final state representation [4], denoted by [h̃.w̃], that concatenates

the latent features of the autoencoder h̃ with the waypoint features w̃.

5.1.2 Action Space

For our autonomous driving agent, it is natural to include the steer, throttle,

and break actions, denoted by (s, t, b) respectively, in the action space A, which also

form the control input to the CARLA simulator. But these actions could either be

discretized or be applied in the continuous domain. In this work [4], we primarily

choose to focus on learning continuous action policies.

As the end control predictions may be noisier, we also reparameterize the throttle

and brake actions in terms of a target speed set-point. Thus the predicted throttle

and brake actions, denoted by t̂ and b̂ respectively, form the outputs of a classical PID

32

5. Learning to Drive using Waypoints

controller [7, 84] that attempts to match the set-point. This smoothens the control

response as well as simplifies learning the continuous actions to just two actions,

steer, and target speed. The predicted steer action, denoted by ŝ lies in the range

of [−0.5, 0.5] that approximately maps to [−40◦, 40◦] of steering angle whereas the

predicted target speed, denoted by v̂, lies in [−1, 1] range and linearly maps to [0, 20]

km/h.

5.1.3 Reward Function

We know that the reward signal in RL is the sole feedback that guides the agent

towards optimal actions conditioned on the state. Hence, we propose a simple and

dense reward function [4] to make the optimization easier and which also correlates

with how humans learn the driving task. The reward function R (Eq. 5.4) incentivizes

our agent to continue moving towards the goal destination until an infraction occurs

that dictates if the episode is to be terminated. Overall, our reward function [4] can

be decomposed into three basic components as follows and mathematically be defined

by Eq. 5.4.

R = Rs +Rd + I(c) ∗Rc (5.4)

• Speed-based Reward (Rs): This reward incentivizes the agent to learn the throttle

action as it receives a reward that is directly proportional to the current speed

u of the agent. Over time, the cumulative reward equals the total distance

moved by it from the start point.

Rs = α ∗ u (5.5)

• Distance-based Penalty from Optimal Trajectory (Rd): This reward penalizes

the agent based on the lateral distance d between the centre of our agent and

the optimal trajectory that is precomputed by the planner. This incentivizes

the agent to stay close to the optimal planned trajectory.

Rd = −β ∗ d; (5.6)

33

5. Learning to Drive using Waypoints

• Collision Penalty (Rc): This reward penalizes the agent when it collides (denoted

by the indicator function I(c)) with other static or dynamic objects. The penalty

incentives the agent to drive safely without any collision infractions.

Rc = −γ ∗ u− δ (5.7)

The design of our reward function R aligns with our intuition that this objective

is similar to the objective utilized by most classical planners that determine the best

action to be executed from a given state.

5.2 Model-Free RL with Learned

Representations

Since we formulate the RL problem for a continuous action domain, we select

a state-of-the-art on-policy model-free reinforcement learning algorithm: Proximal

policy optimization (PPO) [89] (Sec. 3.4.4), and combine it with our proposed

Autoencoder (AE) setup (Sec. 5.1.1). Although the on-policy reinforcement learning

algorithms are sample inefficient when compared to off-policy methods, we believe

that their performance is much more stable which makes it an easier choice to study

the impact of reinforcement learning for autonomous driving. We show that using an

off-the-shelf RL algorithm combined with the autoencoder solves the task of learning

optimal driving policies, by solving the Markov decision process as defined by us in

Sec. 5.1.

We propose a stable learning algorithm (Algo. 2) [4] that uses a pre-trained

autoencoder and finetunes it simultaneously with the policy learning step. We

conjecture that the pre-training step helps in generating better state representations

during the initial phase of the training whereas the finetuning step facilitates the

encoder-decoder to improve its representation as the RL algorithm explores diverse

states. The autoencoder function approximator d(e(SSimage)), parameterized by β,

optimizes for the multi-class cross-entropy loss summed over all the pixels (Eq. 5.8).

For a fixed number of time steps (n), the autoencoder is frozen and is updated only

using the n semantically segmented images that it collects over that interval. PPO,

34

5. Learning to Drive using Waypoints

Algorithm 2 Learning to Drive via Model-Free RL on Learned Representations

1: Input: initial policy parameters θ0, initial value function parameters φ0, pretrained
auto-encoder parameters β0,

2: for k = 0, 1, 2, . . . do
3: Collect trajectories Dk = {τi} by running policy πθk in the environment.

4: Compute rewards-to-go R̂t.
5: Compute advantage estimates, Ât based on the current value function Vφk .
6: Update the policy by maximizing the PPO-Clip objective (Eq. 3.16).

θk+1 = arg max
θ

1

|Dk|T
∑
τ∈Dk

T∑
t=0

min

(
r(θ)Aπθk (st, at), clip

(
r(θ), 1−ε, 1+ε

)
Aπθk (st, at)

)
7: Fit value function by regression on mean-squared error.

φk+1 = arg min
φ

1

|Dk|T
∑
τ∈Dk

T∑
t=0

(
Vφ (st)− R̂t

)2
8: Every fixed n steps, finetune the autoencoder based on cross-entropy loss.

βk+1 = arg min
β

∑
p∈SSimage

∑
c∈C

(−tc(p) log oc(p))

9: end for

on the other hand, trains an on-policy RL algorithm (Sec. 3.4.4) that uses a surrogate

objective function to optimize for the policy performance (Eq. 3.8). It consists of

training two function approximators. The first being a critic function approximator

Vφ : S → R that estimates the expected cumulative discounted reward starting

from state s and executing policy π thereon. The second approximator is the policy

function πθ : S → A that does policy gradient update based on the clipped objective

(Eq. 3.16).

L(β) =
∑

p∈SSimage

∑
c∈C

(−tc(p) log oc(p))

tc(p) = One-hot(p)

oc(p) = Softmax(d(e(p)))

(5.8)

35

5. Learning to Drive using Waypoints

The autoencoder encodes the SSimage to give its latent representation h̃ which is

fused with the waypoint features w̃ to form the state input π(ŝ, v̂|[h̃.w̃]), as defined

in Sec. 5.1.1. This state representation feeds into both the policy and critic networks,

denoted by π(ŝ, v̂|[h̃.w̃]) and V ([h̃.w̃]) respectively (Figure 5.2). Since PPO can

be used for continuous action domain, the policy network outputs the mean of the

normal distribution through which the actions are sampled during the training time.

The variance is added as a separate parameter to aid the exploration process and is

optimized by adding in a entropy bonus term [89] to the clipped objective. Over the

training time, the randomness in the actions decreases, as the algorithm encourages

it to exploit rewards that it has already found, while still maintaining some entropy

in its actions.

5.3 Training

To train our proposed algorithm [4], we first pre-train the autoencoder based on

the data collected by a mixture of expert and RL training policies. Next, we iteratively

sample a random episode as defined by the benchmark task (Sec. 4.5) that determines

start and goal location. A static planner then precomputes a list of waypoints that

map to the optimal trajectory of the agent (Sec. 4.3) and rewards are calculated

as the agent steps through the environment at each time step. Subsequently, we

train the policy and critic networks along with finetuning the autoencoder after every

n steps based on our Algorithm 2 as discussed in Sec. 5.2, until convergence. The

episode is terminated as a success if the agent reaches within d m of the destination,

while it is terminated as a failure if the agent faces a collision, or fails to reach near

destination within m number of maximum time steps. The episode is not terminated

for a traffic light or opposite lane-invasion or sidewalk infractions.

The actor and critic networks consist of a 2-layer feedforward network whereas

the autoencoder consists of 4 Conv and 4 Deconv layers. All the networks are trained

with a ReLU non-linearity and optimized using stochastic gradient descent with the

Adam optimizer. The overall architecture of our approach can be depicted in Fig. 5.2.

36

5. Learning to Drive using Waypoints

Figure 5.2: Our proposed architecture [4]: The inputs to our architecture are se-
mantically segmented (SSimage) image and intermediate waypoints that are directly
fetched from the CARLA simulator. The SSimage is encoded using a pre-trained
auto-encoder whose bottleneck encoding alongwith waypoint features form as inputs
to the policy network. The policy network outputs the control actions (ŝ, v̂) where ŝ
is the predicted steer and v̂ is the predicted target speed which is then mapped to
predicted throttle and brake (t̂, b̂) using a PID controller.

5.4 Experiments

To evaluate our proposed RL algorithm (Algo. 2) [4], we build on top of the open-

source stable-baselines2 implementation [42]. We train our agents in the CARLA

simulator [29] by formulating the task of learning to drive using the Markov decision

process and environment as defined in Sec. 5.1 and Chap. 4 respectively. We use

the original CARLA benchmark tasks [29] (Sec. 4.5.1) in Town 01 for training and

Town 02 for evaluating our agent. Since the original CARLA benchmark does not

2https://github.com/hill-a/stable-baselines

37

https://github.com/hill-a/stable-baselines

5. Learning to Drive using Waypoints

provide accurate evaluation of our agents on the more complex urban driving tasks,

we extend our evaluation to the newer NoCrash benchmark [24] (Sec. 4.5.2) as well.

Our evaluation analysis uses the same agent on all the tasks and we do not explicitly

fine-tune separately for any scenario.

5.4.1 Baselines

We compare our work [4] with the following baselines that solve the goal-directed

navigation task using an either modular approach, end-to-end imitation learning, or

reinforcement learning. Since most of the works do not have open-source implemen-

tations available or report results on the older versions of CARLA, we report the

numbers directly from their work.

• CARLA MP, IL & RL [29]: These baselines, proposed in the original CARLA

work [29] suggest three different approaches to the autonomous driving task. The

modular pipeline (MP) uses a vision-based module, a rule-based planner, and a

classical controller. The imitation learning (IL) one learns a deep network that

maps sensory input to driving commands whereas the reinforcement learning

(RL) baseline does end-to-end RL using the A3C algorithm [67].

• AT : This baseline refers to the CARLA built-in autopilot control that uses a

hand-engineered approach to determine optimal control.

• CIL [23]: This work proposes a conditional imitation learning pipeline that

learns a driving policy from expert demonstrations of low-level control inputs,

conditioned on the high-level navigational command.

• CIRL [61]: This work proposes to use a pre-trained imitation learned policy to

carry-out off-policy reinforcement learning using the DDPG algorithm [62].

• CAL [86]: This baseline proposes to learn a separate visual encoder that predicts

low-dimensional representations, also known as affordances, that are essential for

urban driving. These representations are then fused with classical controllers.

• CILRS [24]: This work builds on top of CIL [23] to propose a robust behavior

cloning pipeline that generalizes well to complex driving scenarios. The method

suggests learning a ResNet architecture [39] that predicts the desired control as

well as the agent’s speed to learn speed-related features from visual cues.

38

5. Learning to Drive using Waypoints

• LBC [20]: This work decouples the sensorimotor learning task into two, learning

to see and learning to act. In the first step, a privileged agent is learned that

has access to the simulator states and learns to act. The second step involves

learning to see that learns an agent based on supervision provided by the

privileged agent.

• IA [99]: This work proposes to learn a ResNet encoder [39] that predicts the

implicit affordances and uses its output features to learn a separate policy

network optimized using DQN algorithm [65].

Although all of the above baselines use RGB image and high-level navigational

command as inputs, we acknowledge the differences in our inputs and show that

our results are comparable or even better with our simplified representation. The

results align with our belief that with an ideal perception system our approach using

reinforcement learning can beat the current decision making and control systems put

together.

We note that since the CARLA 0.9.6 version supports pedestrians that only

move along the sidewalks unlike the earlier versions, we limit our baselines and

benchmark comparison to not include pedestrian actors. Additionally, all the prior

methods except LBC [20] and IA [99] report results on CARLA versions prior to

0.9.6. Although the newer CARLA 0.9.6 version included a significant rendering

engine and pedestrian actor change, our choice of input representation makes us

affirm that the difference is not significant across CARLA 0.9.X versions. We also

note that the waypoint feature did not exist in CARLA 0.8.X versions. Thus, we

report our results on CARLA 0.9.6 and compare our method with all the prior work

without any reservations.

5.4.2 Training Stability

To demonstrate the training stability of our proposed RL algorithm (Algo. 2), we

plot the mean cumulative reward and success metric which indicates that our RL

agent can successfully learn the navigation task as described on the original CARLA

benchmark [29]. The plots show that our agent learns the navigation task in just

1.5M time steps of training, where we see that the total reward and total success

episode values converge to the maximum possible on that task. Similar training plots

39

5. Learning to Drive using Waypoints

Figure 5.3: The figure reports the mean cumulative reward and success rate on
the Navigation task defined by the original CARLA benchmark [29]. The plots
indicate that the RL agent can successfully learn the task within 2M time steps
of training. The shaded region corresponds to the minimum and maximum values
showing variation across 3 runs.

are observed in other tasks as well.

We note that our method achieves the optimal driving performance within 2M

time steps, equivalent to a single day of training, that is a significant improvement

over the standards of deep reinforcement learning where it is common to train for

hundreds of millions of steps [67], corresponding to months of subjective experience.

5.5 Results

Given that our method is built on the semantically segmented image as an input,

we compare and report results only on the training weather conditions as described

in the original CARLA [29] and NoCrash [24] benchmarks. Further, we report our

results averaged over 3 seeds and 5 different evaluations of the benchmarks. For

all evaluations, we pick the best performing model from each seed based on the

cumulative reward it collects at the validation time.

5.5.1 Evaluation on the Original CARLA Benchmark

Since the original CARLA benchmark (Sec. 4.5.1) [29] focuses on skills like lane-

following and driving around intersections, we observe from our results (Table. 5.1)

40

5. Learning to Drive using Waypoints

Original CARLA Benchmark (% Success Episodes)
Task Training Conditions (Town 01)

MP IL RL CIL CIRL CAL CILRS LBC IA Ours
Straight 98 95 89 98 98 100 96 100 100 100± 0

One Turn 82 89 34 89 97 97 92 100 100 100± 0
Navigation 80 86 14 86 93 92 95 100 100 100± 0

Dyn. Navigation 77 83 7 83 82 83 92 100 100 100± 0

Task Testing Conditions (Town 02)
MP IL RL CIL CIRL CAL CILRS LBC IA Ours

Straight 92 97 74 97 100 93 96 100 100 100± 0
One Turn 61 59 12 59 71 82 84 100 100 100± 0
Navigation 24 40 3 40 53 70 69 98 100 100± 0

Dyn. Navigation 24 38 2 38 41 64 66 99 98 100± 0

Table 5.1: Quantitative comparison with the baselines that solve the four goal-
directed navigation tasks using modular, imitation learning or reinforcement learning
approaches on the original CARLA benchmark [29]. The table reports the percentage
(%) of successfully completed episodes for each task in the training (Town 01) and
testing town (Town 02). Higher is better. The baselines include MP [29], IL [29],
RL [29], CIL [23], CIRL [61], CAL [86], CILRS [24], LBC [20] and IA [99] compared
with our model-free RL method [4]. The reported results are the average over 3 seeds
that are evaluated on 5 different runs of the benchmark. Bold values correspond to
the best mean success rate.

[4] that our agent perfectly masters these skills as it can solve all the driving tasks of

Straight, One Turn, Navigation & Dynamic Navigation both in Town 01 and Town

02. For a qualitative analysis, we also publish a video3 of our agent driving on the

Navigation task.

Further, on comparing our method with the baselines, particularly the CARLA

RL [29] baseline, we observe that our method achieves a significant improvement in

the success rate performance on all the driving tasks. This baseline uses a similar

approach to ours that trains reinforcement learning from scratch but instead focuses

to learn from high-dimensional image observations. Further, we observe that our

method achieves better performance than the MP [29], IL [29], CIL [23], CIRL [61],

CAL [86] and CILRS [24] baselines and comparable to the recent baselines of LBC

3https://www.youtube.com/watch?v=UoEdZqEejL8

41

https://www.youtube.com/watch?v=UoEdZqEejL8

5. Learning to Drive using Waypoints

NoCrash Benchmark (% Success Episodes)
Task Training Conditions (Town 01)

CIL CAL CILRS LBC IA AT Ours
Empty 79± 1 81± 1 87± 1 97± 1 100 100± 0 100± 0
Regular 60± 1 73± 2 83± 0 93± 1 96 99± 1 52± 6
Dense 21± 2 42± 1 42± 2 71± 5 70 86± 3 19± 2

Task Testing Conditions (Town 02)
CIL CAL CILRS LBC IA AT Ours

Empty 48± 3 36± 6 51± 1 100± 0 99 100± 0 100± 0
Regular 27± 1 26± 2 44± 5 94± 3 87 99± 1 45± 5
Dense 10± 2 9± 1 38± 2 51± 3 42 60± 3 12± 1

Table 5.2: Quantitative comparison with the baselines that solve the three goal-
directed navigation tasks using modular, imitation learning or reinforcement learning
approaches on the NoCrash benchmark [24]. The table reports the percentage (%) of
successfully completed episodes for each task in the training (Town 01) and testing
town (Town 02). Higher is better. The baselines include CIL [23], CAL [86], CILRS
[24], LBC [20], IA [99] and CARLA built-in autopilot control (AT) compared with
our model-free RL method [4]. The reported results are the average over 3 seeds that
are evaluated on 5 different runs of the benchmark. Bold values correspond to the
best mean success rate.

[20] and IA [99]. We conjecture that our perfect results can be attributed to our

simpler choice of input representation. However, a notable difference between the

latter baselines and our method is that they leverage expert demonstrations or learn

a separate lower-dimensional affordance that receives strong supervision, unlike our

method that learns the optimal policy from scratch based on trial-and-error learning.

This indicates the strength of off-the-shelf reinforcement learning algorithms and their

immense potential to solve some of the complex problems in autonomous driving.

5.5.2 Evaluation on the NoCrash Benchmark

Considering the fact that the original benchmark does not account for collision

infractions, we extend our evaluation to the recent NoCrash benchmark (Sec. 4.5.2)

42

5. Learning to Drive using Waypoints

[24] that registers a success if the agent reaches the goal destination without colliding

with any objects. We observe from our results (Table. 5.2) that our agent perfectly

learns to navigate in the Empty Town 01 and Town 02 tasks. For the task with

Regular and Dense traffic, we notice that our agent reports poor performance when

compared to other baseline methods. This is because our agent fails to recognize the

behavior of the brake action in the dynamic actor scenario as it has partial access

to the environment state. For a qualitative analysis, we also publish a video4 that

demonstrates the failure case on the Dense traffic task.

This points us to the limitation of our Markov decision process formulation as the

agent’s state (Sec. 5.1) does not explicitly encode the front actor or the nearest traffic

light state. While it may seem reasonable to argue that the latent representation of the

autoencoder should encode the front actor state, the limitation of this representation

is that our agent does not have sufficient information to decode the temporal change

in the position of the target actor with respect to its position. Therefore, we improve

on this limitation and discuss our new formulation in our next work (Chap. 6) that

deals with the dynamic actor and traffic lights interactions.

5.6 Discussion

In this chapter, we present our first approach to autonomous driving that learns

optimal driving policies using reinforcement learning. We believe that the key to

solving any reinforcement learning task is to deliberately define the Markov decision

process (Sec. 3.1) which we detail in Sec. 5.1. Further, using a variant of the off-the-

shelf on-policy reinforcement learning algorithm and combining it with an autoencoder

objective, we show that the driving agents learned from our proposed model-free RL

algorithm learn to master common driving skills like lane-keeping and driving around

intersections.

We also note that our approach when learned from scratch achieves comparable or

near-perfect performance on the original CARLA [29] and NoCrash [24] benchmarks

without any dynamic actors but fails to report a good performance in the complex

dynamic actor scenario. We speculate that this performance gap is owing to our

4https://www.youtube.com/watch?v=JnRn59mHlPE

43

https://www.youtube.com/watch?v=JnRn59mHlPE

5. Learning to Drive using Waypoints

formulation of the Markov decision process that is limited in its capability to encode

other dynamic actors state. We address this shortcoming in our next work (Chap. 6)

that reduces the complexity of the problem to low-dimensional representations that

are crucial to navigating the dynamic actors’ scenario.

44

Chapter 6

Learning to Drive with Dynamic

Actors

Figure 6.1: Our proposed RL setup for the dynamic actor setting that defines our
Markov decision process with the state space S, action space A and reward function
R.

With the recent advancements in deep reinforcement learning, there has been a

growing trend towards applying RL for learning the autonomous driving task. Towards

that end, Chap 5 discusses one such approach that shows exemplary performance on

45

6. Learning to Drive with Dynamic Actors

learning common driving skills like lane following and driving around intersections

using reinforcement learning from scratch. Although the proposed agent drives

perfectly around both the train and test towns, it reports poor performance on the

more critical urban driving tasks like stopping at traffic lights, stop sign intersections,

in front of dynamic actors or pedestrians which are abundantly seen in urban driving

scenarios.

The limitation with our earlier proposed approach (Sec. 5.1) is that the agent does

not observe states that encode the nearest traffic light and the front actor state. These

states are imperative to solving the urban driving tasks that are often complex and

stochastic in nature. A recent technique termed as affordances [86, 99] aims to predict

these low-dimensional representations directly from high-dimensional visual data.

Attributes such as distance to the vehicle ahead, distance from the center-line, nearest

traffic light state are predicted from a separate visual encoder. These attributes or

intermediate representations are then fed into the control algorithm that determines

the optimal policy for the complicated urban driving tasks.

Another approach to deal with these complex urban driving scenarios is to

train a convolutional encoder (CNN) [54] that inherently learn the intermediate

representations that are crucial to determining the optimal control. The advantage of

learning such representations is that the hand-engineering effort is no longer needed

which is often difficult to scale. Therefore to address the dynamic actor scenario, we

first begin with low-dimensional affordance representations and then move towards

the learning these representations using convolutional encoders.

We build on top of our prior work [4] (Chap. 5) and incorporate ideas from

the affordance related works [86, 99] to propose learning optimal policies through

reinforcement learning from these low-dimensional representations. By dividing the

urban driving task into the affordance prediction, and planning and control blocks,

we believe that the overall complexity of the problem is reduced. This is because

affordance prediction is an easy supervised learning task that reduces the difficulty

of the planning and control block which is now responsible for learning the optimal

control policy based on affordances that encode the current state of the world.

In this work, we primarily focus on the planning and control block that learns

the optimal action conditioned on the state of the dynamic world. We formulate

this task again using the Markov decision process (Sec. 3.1) and use the same model-

46

6. Learning to Drive with Dynamic Actors

free approach to reinforcement learning (Sec. 3.2) as our earlier work [4] (Chap. 5).

Further, we extend our previous RL setup (Sec. 5.1) and the CARLA environment

(Chap. 4) for this new task of learning to drive with dynamic actors.

The overall work is divided into the following sections. Sec. 6.1 describes our

reinforcement learning setup, followed by our model-free reinforcement learning

algorithm in Sec. 6.2. Next, we detail the training procedure in Sec. 6.3, and discuss

the experimentation in Sec. 6.4. Finally, we present our results and discussion in

Sec. 6.5 and 6.6 respectively.

6.1 RL Setup

In this section, we define our state space S, action space A and reward function R
(Fig. 6.1) that characterizes the formulation of our Markov decision process (Sec. 3.1)

that we use for the dynamic actor scenario.

6.1.1 State Space

In RL, defining the state space plays a key role as it determines what observations

are available to the agent at the learning time. Since we motivate our formulation

using the low-dimensional affordances, these representations should be fully capable

of encoding the current state of the agent with respect to the dynamic world. In

order to learn the urban driving tasks, these representations should have access to

information such as the dynamic actors’ state, and the nearest traffic light state that

majorly affect our agent’s throttle and brake action. Besides these, our agent must

also have access to pedestrian behavior that also affects the behavior of our agent.

Since these affordances are pivotal to the performance of our agent in the dynamic

actor scenario, we propose determining two affordances: dynamic obstacle affordance

and the traffic light affordance. We do not model a separate pedestrian affordance due

to the limitation of the CARLA simulator in version 0.9.61 that supports pedestrians

actors that only move along the sidewalks.

The dynamic obstacle affordance (Sec. 4.4), denoted by õ, is responsible for

encoding the distance between our agent and the front dynamic actor, as well as its

1CARLA v0.9.6 - https://carla.org/2019/07/12/release-0.9.6/

47

https://carla.org/2019/07/12/release-0.9.6/

6. Learning to Drive with Dynamic Actors

corresponding speed. This low-dimensional representation helps our agent discern

whether the target actor in front is accelerating, decelerating, or moving at a constant

speed with respect to our ego-agent. The second affordance, traffic light affordance

(Sec. 4.4), denoted by t̃, represents the state of the nearest traffic light that affects

our agent. Particularly, this encodes the distance of the nearest traffic light from our

agent when it is in the red state.

Both the aforementioned affordances are useful representations that assist in

determining the optimal actions of our agent. This is because, to avoid collision or

traffic light infractions, our agent must learn to stop when approaching a dynamic

actor or traffic light in the red state.

Besides the two affordances, another useful state representation is the previous time

step action that the policy outputs. This state information is useful in determining

the change in the actions that the policy should be able to predict relative to the

last action. Since the action space consists of steer and target speed (Sec. 6.1.2),

denoted by s̃ and ṽ respectively, we augment our affordance representation with these

previous step actions.

The representation proposed above is still deficient in its capability to predict the

optimal value function for our learning agent. We believe this is because it does not

yet have access to goal destination location which is crucial to determining the correct

optimal value function estimate. To avoid this pitfall, we propose adding the distance

to goal destination, denoted by g̃. Additionally, we also propose adding in the signed

distance from the optimal trajectory, denoted by ñ as the additional state-input since

it aids in disambiguating the position of our agent relative to the optimal trajectory.

Lastly, we also add the waypoint features (w̃) [4], defined in Eq. 5.2, that helps in

directing our agent to the target destination based on the agent’s current pose p and

next n waypoints (w1,w2, ...,wn). This representation is exactly incorporated from

our earlier work (Chap. 5) [4].

In summary, the first state representation (A) that feeds into our reinforcement

learning algorithm can be denoted by A = [w̃.õ.̃t.ñ.ṽ.s̃.g̃] where the (.) indicates the

concatenation operator. We believe that this low-dimensional representation encodes

all the sufficient information to solve the complex navigation tasks.

Further, as our next goal is to learn the affordance representations directly from

high dimensional images, we propose two additional state representations that move

48

6. Learning to Drive with Dynamic Actors

towards that direction. Inspired from our earlier work (Chap. 5), we believe using the

latent features h̃ of an autoencoder that takes in the last k top-down semantically

segmented frames helps in determining the obstacle state affordance. This forms our

second state representation, denoted by A+ I = [h̃.w̃.õ.̃t.ñ.ṽ.s̃.g̃], that concatenates

the latent features with our earlier representation (A). The third representation

(I) aims to explicitly remove the low-dimensional obstacle affordance õ to give

I = [h̃.w̃.̃t.ñ.ṽ.s̃.g̃]. Note that A+ I and I still use the low-dimensional traffic light

affordance explicitly.

6.1.2 Action Space

We use the same action space as defined in our earlier work (Sec. 5.1.2) to learn

continuous action policies that predict the target steer and speed actions, denoted

by ŝ and v̂ respectively. The target speed action is then fed into a classical PID

controller [7, 84] that outputs the throttle and the brake actions, denoted by t̂ and b̂.

6.1.3 Reward Function

As this work focuses on both collisions and traffic light infractions, we modify our

earlier formulation of the reward function R (Sec. 5.1.3) and relabel the penalty term

as the infraction penalty. Thus, the reward function (Eq. 6.1) again has 3 components

to it. For completeness, we present our dense reward scheme again which can be

mathematically defined by Eq. 6.1.

R = Rs +Rd + I(i) ∗Ri (6.1)

• Speed-based Reward (Rs): This reward, that is directly proportional to the

current speed u of the agent, incentivizes it to move towards the goal destination

in the shortest possible time.

Rs = α ∗ u (6.2)

• Distance-based Penalty from Optimal Trajectory (Rd): This penalty, that is

directly proportional to the lateral distance d between the centre of our agent

and the optimal trajectory, incentivizes the agent to stay close to the planned

49

6. Learning to Drive with Dynamic Actors

optimal trajectory.

Rd = −β ∗ d; (6.3)

• Infraction Penalty (Ri): This penalty, activated by a collision or traffic light

violation (I(i)), penalizes our agent to drive safely without causing any infrac-

tions.

Ri = −γ ∗ u− δ (6.4)

6.2 Model-Free RL on Low-Dimensional

Affordances

To train and test our RL formulation (Sec. 6.1), we once again select a state-

of-the-art on-policy model-free reinforcement learning algorithm: Proximal policy

optimization (PPO) [89] (Sec. 3.4.4) and show its performance on learning complex

urban driving tasks. The algorithm (Algo. 2) follows a similar methodology as

described by us in our earlier work (Sec 5.2) except that the autoencoder optimizations

are now skipped.

The clipped objective function (Eq. 3.16) of PPO offers a surrogate optimization

that constrains the policy updates by keeping the new and old policy close together

in the policy vector space. Empirically, this objective function works great in practice

with complex continuous-space environments which we also demonstrate in our prior

work (Chap. 5). This motivates us to extend it again in order to study the impact of

reinforcement learning in learning complex urban driving behaviors.

The algorithm consists of training a policy and a value function approximator

that takes in the state representation S (Sec. 6.1.1) as an input. These networks

symbolized by π(ŝ, v̂|S) and V (S) learn the state to optimal action mapping and the

expected return from that state respectively.

6.3 Training

We train the PPO algorithm by iteratively sampling a random episode with a

start and goal destination. We then run an A* planner that computes a list of

waypoints that trace the optimal trajectory. The state representation we described

earlier (Sec. 6.1.1) is then queried at each time step from the simulator, which in

50

6. Learning to Drive with Dynamic Actors

Figure 6.2: Our proposed architecture for state representation (S = A, A+ I or I):
The state representation is a combination of waypoint features w̃, dynamic obstacle
affordance õ, traffic light affordance t̃, previous time step steer and target speed actions
(ŝ, v̂), distance to goal destination ĝ, signed distance from the optimal trajectory n̂ or
latent features of the autoencoder h̃ depending on the state representation S. The
policy network outputs the control actions (ŝ, v̂) where ŝ is the predicted steer and v̂
is the predicted target speed which is then mapped to predicted throttle and brake
(t̂, b̂) using a PID controller.

real-world is accessible from the perception and GPS subsystems. The agent steps

through the simulator at every time step collecting on-policy rollouts that determine

the updates to the policy and critic networks. The episode is terminated upon a

collision, lane invasion, or traffic light infraction, or is deemed as a success if the

agent reaches within distance d m of the destination. Finally, this procedure repeats

until the policy function approximator converges to the optimal policy.

The actor and critic networks consist of a standard 2-layer feedforward network.

All the networks are trained with a ReLU non-linearity and optimized using stochastic

gradient descent with the Adam optimizer. The overall architecture of our approach

can be depicted in Fig. 6.2.

51

6. Learning to Drive with Dynamic Actors

6.4 Experiments

For experimentation, we build on top of our modified version of stable-baselines2

implementation and train the algorithm in the CARLA simulator [29]. The Markov

decision process is formulated using our RL setup and CARLA environment defined

by us in Sec. 6.1 and Chap. 4 respectively.

The training procedure described in the earlier section (Sec. 6.3) trains our agents

on the Dynamic Navigation task (Sec. 4.5.1). This trained agent is then evaluated

across all tasks on the original benchmark [29] (Sec. 4.5.1) as well as on the new

dynamic actor tasks proposed by the recent NoCrash benchmark [24] (Sec. 4.5.2). The

NoCrash benchmark gives us an accurate analysis of the number of infractions the

agent makes as it drives through the towns. Further, to understand the behavior and

robustness of the policy learned by our agent, we also conduct a separate infraction

analysis that helps us analyze the different types of episode terminations and their

relative proportions.

6.4.1 Baselines

For comparing our method with the prior work, we choose modular, imitation

learning and reinforcement learning baselines that solve the goal-directed navigation

task and report results on the original CARLA [29] and NoCrash [24] benchmarks.

As this task is the same as described in our earlier work (Chap. 5) [4], we use the

same set of baselines as defined in Sec. 5.4.1. To summarize, we use the following set

of baselines.

• Modular Baselines: MP [29], CAL [86], AT.

• Imitation Learning Baselines: IL [29], CIL [23], CILRS [24], LBC [20].

• Reinforcement Learning: RL [29], CIRL [61], IA [99].

Although all of the above baselines use forward-facing RGB image and high-level

navigational command as inputs, we recognize the differences in our inputs and

presume that the current state-of-the-art perception systems are capable of predicting

the low-dimensional representations with reasonable accuracy. Further, as the goal of

2https://github.com/hill-a/stable-baselines

52

https://github.com/hill-a/stable-baselines

6. Learning to Drive with Dynamic Actors

Figure 6.3: The figure reports the mean cumulative reward and success rate for our
three choices of state representation: S=A, A+ I or I, on the Dynamic Navigation
task [29]. The plots indicate that the state-representation A and A + I learn the
navigation task successfully whereas the state-representation I learns the task slowly
as observed by the performance improvement after 10M time steps of training. The
shaded region in the plot corresponds to the minimum and maximum values showing
variation across 3 different seeds.

this work is to solve the planning and control side of the driving problem, we believe

that a perception system, trained to predict such low-dimensional representations,

when combined with our approach can beat the current modular or imitation learned

approaches to autonomous driving.

Additionally, we do not consider the pedestrian actors in our approach owing

to the limitations of the CARLA 0.9.6 version. We also note that since our input

representation does not differ across CARLA versions, we choose to report our results

on CARLA 0.9.6 and compare our method with the prior work that reports results

on other versions of CARLA.

6.4.2 Training Stability

We now compare the training stability across our three choices of the state

representations (S=A, A+ I, or I) as defined in Sec. 6.1.1. We observe from Fig. 6.3

that the low-dimensional representation A that explicitly use affordances, performs

the best as it is stably able to learn the dynamic navigation task on the original

CARLA benchmark [29]. We also see that the low-dimensional representation along

with the latent features of the autoencoder, represented by A + I, also learns the

53

6. Learning to Drive with Dynamic Actors

navigation task after the performance dip around 10M time steps. We note that this

representation requires twice the number of time steps that are required with the

low-dimensional representation A.

Further, we also note that the state representation I, which does not explicitly

contain the low-dimensional obstacle affordance, shows improvement on the dynamic

navigation task after 10M time steps of training. This is slower when compared with

the other two representations, which makes us empirically believe that it requires

more samples to learn the dynamic obstacle affordance when compared with the

latter that explicitly encode it. Further, considering the training stability and the

policy performance, we choose to evaluate and report results only on the first two

state representations A and A+ I.

We also ask readers to refer Appendix A, Sec. A.1 for an additional set of

experiments that aim to run our proposed approach with the forward-facing semantic

or RGB camera both with state representation A+I and I. This ablation experiment

helps us analyze and compare our proposed approach with the baseline methods that

use forward-facing RGB images as input.

6.5 Results

Considering our input representation includes low-dimensional representations or

latent features of semantically segmented images, we do not consider the weather

differences at the train and test time as proposed in the original CARLA [29] and

NoCrash [24] benchmarks. Thus, for comparison with the baselines, we compare and

present results only on training weather conditions from all the baselines. Further,

we report our results that are averaged over 3 seeds and 5 different evaluations of

the benchmarks. We pick the best performing model from each seed based on the

cumulative reward it collects at the time of validation.

6.5.1 Evaluation on the Original CARLA Benchmark

On the original CARLA benchmark (Sec. 4.5.1) [29], we note that our method

using both state representations A and A+ I (Table. 6.1) achieve a perfect success

percentage on all the driving tasks in both Town 01 and Town 02. The driving policy

learned by our agent demonstrates stopping in front of other actors or traffic lights in

54

6. Learning to Drive with Dynamic Actors

Original CARLA Benchmark (% Success Episodes)
Task Training Conditions (Town 01)

MP IL RL CIL CIRL CAL CILRS LBC IA Ours (A) Ours (A+I)
Straight 98 95 89 98 98 100 96 100 100 100± 0 100± 0

One Turn 82 89 34 89 97 97 92 100 100 100± 0 100± 0
Navigation 80 86 14 86 93 92 95 100 100 100± 0 100± 0

Dyn. Navigation 77 83 7 83 82 83 92 100 100 100± 0 100± 0

Task Testing Conditions (Town 02)
MP IL RL CIL CIRL CAL CILRS LBC IA Ours (A) Ours (A+I)

Straight 92 97 74 97 100 93 96 100 100 100± 0 100± 0
One Turn 61 59 12 59 71 82 84 100 100 100± 0 100± 0
Navigation 24 40 3 40 53 70 69 98 100 100± 0 99± 1

Dyn. Navigation 24 38 2 38 41 64 66 99 98 100± 0 100± 0

Table 6.1: Quantitative comparison with the baselines that solve the four goal-
directed navigation tasks using modular, imitation learning or reinforcement learning
approaches on the original CARLA benchmark [29]. The table reports the percentage
(%) of successfully completed episodes for each task in the training (Town 01) and
testing town (Town 02). Higher is better. The baselines include MP [29], IL [29],
RL [29], CIL [23], CIRL [61], CAL [86], CILRS [24], LBC [20] and IA [99] compared
with our PPO method. The reported results are the average over 3 seeds that are
evaluated on 5 different runs of the benchmark. Bold values correspond to the best
mean success rate.

red-state while perfectly navigating through the town and around intersections.

Further, our results also demonstrate that on the most difficult driving task

of Dynamic Navigation, we achieve a significant improvement in the success rate

performance on both towns when compared with our baselines such as MP [29], IL

[29], RL [29], CIL [23], CIRL [61] and CAL [86]. For CILRS [24], the improvement

is significant for Town 02 and moderate for Town 01. We also note that our method

reports comparable performance to the recently works of LBC [20] and IA [99].

6.5.2 Evaluation on the NoCrash Benchmark

We also extend our evaluation to the recent NoCrash benchmark (Sec. 4.5.2) [24]

that considers collision infractions and episode termination if the agent happens to

collide with any objects. Our quantitative results (Table. 6.2) again demonstrate

that our driving agent learns the optimal control almost perfectly across different

levels of traffic and town conditions. The agent learned with the low-dimensional

55

6. Learning to Drive with Dynamic Actors

NoCrash Benchmark (% Success Episodes)
Task Training Conditions (Town 01)

CIL CAL CILRS LBC IA AT Ours (A) Ours (A+I)
Empty 79± 1 81± 1 87± 1 97± 1 100 100± 0 100± 0 100± 0
Regular 60± 1 73± 2 83± 0 93± 1 96 99± 1 98± 2 90± 2
Dense 21± 2 42± 1 42± 2 71± 5 70 86± 3 95± 2 94± 4

Task Testing Conditions (Town 02)
CIL CAL CILRS LBC IA AT Ours (A) Ours (A+I)

Empty 48± 3 36± 6 51± 1 100± 0 99 100± 0 100± 0 100± 0
Regular 27± 1 26± 2 44± 5 94± 3 87 99± 1 98± 1 96± 2
Dense 10± 2 9± 1 38± 2 51± 3 42 60± 3 91± 1 89± 2

Table 6.2: Quantitative comparison with the baselines that solve the three goal-
directed navigation tasks using modular, imitation learning or reinforcement learning
approaches on the NoCrash benchmark [24]. The table reports the percentage (%) of
successfully completed episodes for each task in the training (Town 01) and testing
town (Town 02). Higher is better. The baselines include CIL [23], CAL [86], CILRS
[24], LBC [20], IA [99] and CARLA built-in autopilot control (AT) compared with
our PPO method. The reported results are the average over 3 seeds that are evaluated
on 5 different runs of the benchmark. Bold values correspond to the best mean
success rate.

representation A outperform our agent learned with representation A + I. This

difference can be attributed to the low-dimensionality of the state representation A.

Moreover, we also note that the success rate performance achieved by our agent is

significantly higher than all the prior modular and imitation learning baselines such

as CIL [23], CAL [86], CILRS [24], LBC [20] and IA [99]. The AT baseline, which

refers to the autopilot control that is shipped with the CARLA binaries, uses a hand-

engineered approach to determine the optimal control. We observe from our results

that even on the hardest task of Dense traffic, our method significantly outperforms

even the most engineered approach to urban driving. For a qualitative analysis, we

publish a video3 of our agent successfully driving on the dynamic navigation task.

We presume that our near-perfect results can be accounted for our simpler choice

of input representation. Thus for a fair comparison, our future direction is to move

towards high-dimensional RGB images. Nevertheless, a notable difference between

3https://www.youtube.com/watch?v=AwbJSPtKHkY

56

https://www.youtube.com/watch?v=AwbJSPtKHkY

6. Learning to Drive with Dynamic Actors

Infraction Analysis on NoCrash Benchmark (% Episodes)
Task Metric Training Conditions (Town 01) Testing Conditions (Town 02)

CIL CAL CILRS Ours (A) CIL CAL CILRS Ours (A)

Empty

Success 79.00 84.00 96.33 100.00 41.67 48.67 72.33 100.00
Col. Vehicles 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Col. Other 11.00 9.00 1.33 0.00 51.00 45.33 20.00 0.00
Timeout 10.00 7.00 2.33 0.00 7.33 6.00 7.67 0.00

Regular

Success 61.50 57.00 87.33 98.40 22.00 27.67 49.00 98.16
Col. Vehicles 16.00 26.00 4.00 0.27 34.67 30.00 12.67 0.00
Col. Other 16.50 14.00 5.67 0.53 37.33 36.33 28.00 0.92
Timeout 6.00 3.00 3.00 0.80 6.00 6.00 10.33 0.92

Dense

Success 22.00 16.00 41.66 95.38 7.33 10.67 21.00 91.20
Col. Vehicles 49.50 57.00 20.67 0.62 55.67 46.33 35.00 3.73
Col. Other 25.00 24.00 34.67 1.23 34.33 35.33 35.00 1.87
Timeout 3.50 3.00 3.00 2.77 2.67 7.67 9.00 3.20

Table 6.3: Quantitative analysis of episode termination causes and comparison with
the baselines that solve that three goal-direction navigation tasks using modular,
imitation or reinforcement learning approaches on the NoCrash benchmark [24]. The
table reports the percentage (%) of episodes with their termination causes for each
task and for the training (Town 01) and testing town (Town 02). The columns
for a single method/task/condition should add up to 1. For each cause of episode
termination we bold the method with the best performance. The baselines include
CIL [23], CAL [86] and CILRS 100 [24] compared with our PPO method. The
reported results are the average over 3 seeds that are evaluated on 5 different runs of
the benchmark.

the baseline methods and our method is that they use strong supervision signals,

unlike our method that learns the optimal policy from scratch based on trial-and-

error learning. These supervised signals, often expensive to collect, do not always

capture the distribution of scenarios entirely. In contrast, we show that our results

demonstrate the prospects of utilizing reinforcement learning to learn complex urban

driving behaviors.

6.5.3 Infraction Analysis

To analyze the failure cases of our agent, we also perform an infraction analysis

that reports the percentage of episodes for each termination condition and driving

task on the NoCrash benchmark [24]. We then compare this analysis with few of our

57

6. Learning to Drive with Dynamic Actors

baselines like CIL [23], CAL [86] and CILRS [24] that perform end-to-end imitation

learning or take a modular approach to predicting low-dimensional affordances like

ours. We incorporate the baseline infraction metrics from the CILRS work [24].

We observe (Table. 6.3) from this analysis that our agent significantly outperforms

all the other baselines across all traffic and town conditions. Further, we note that our

agent in the Empty town task achieves a perfect success percentage across both Town

01 and Town 02 without facing any infractions. Additionally, on the Regular and

Dense traffic tasks, we notice that our approach reduces the number of collision and

timeout infractions by at least an order of magnitude across both the towns. Therefore,

our results indicate that the policy learned by our agents using reinforcement learning

is robust to variability in both traffic and town conditions.

6.6 Discussion

In this chapter, we present our second approach to learn the urban driving tasks

that commonly include numerous interactions between dynamic actors, and traffic

signs and signals. We formulate a reinforcement learning approach primarily using

low-dimensional representations also known as affordances. We demonstrate that

using such low-dimensional representations makes the planning and control problem

easier as we can learn stable and robust policies demonstrated by our results with

state representation A. Further, we also observe that as we move towards learning

these representations inherently using convolutional encoders, the performance and

robustness of our learned policy decreases which requires more training samples to

learn the optimal representations, as evident from Fig. 6.3.

Thus, we empirically believe that learning optimal policies from high-dimensional

state representations is still challenging given the current state-of-the-art on-policy

reinforcement learning algorithms. Additionally, we conjecture that adding auxiliary

objectives to the primary reinforcement learning objective will make the learning

task easy both from the representation and policy learning aspects. On the contrary,

our perfect results (Sec. 6.5) using the low-dimensional representations is a promising

direction for the autonomous driving community that effectively demonstrates dividing

the complex driving problem into perception (representation learning), and planning

and control (policy learning) subsystems.

58

Chapter 7

Exploratory Policy Search

Figure 7.1: Backup diagram of our proposed algorithm, Exploratory Policy Search
(Algo. 3) that the finds the optimal policy among the K randomly explored and
trained policies.

This chapter introduces a new algorithm that we formulate, with the goal to find

the best-optimized driving policy using reinforcement learning that can easily be

deployed in the real-world. In recent years, deep reinforcement learning (DRL) has

seen great success with the significant breakthroughs both in model-free [65, 66] and

model-based [92, 93] reinforcement learning. To that end, model-free reinforcement

59

7. Exploratory Policy Search

learning is the one that is widely been discussed in literature owing to its simplicity

and stability in the learning process. And yet among others, policy gradient-based

methods are commonly used to search for the optimal policy.

A major challenge with the policy gradient-based method is to estimate the

right step size for updating the policy, as an improper step size may lead to severe

degradation in the performance of the policy. This degradation may be catastrophic

to the optimizing objective as the input data strongly depends on the behavior of

the current policy [47, 88]. Consequently, to achieve the optimal performance the

algorithms should strike the right balance between the learning stability and speed of

convergence.

To address this tradeoff, there exists two representative methods, Trust Region

policy optimization (TRPO) [88], and Proximal policy optimization (PPO) [89]. In

particular, TRPO (Sec: 3.4.3) [88] adds in a divergence constraint when updating the

policy distributions whereas PPO (Sec. 3.4.4) [89] adopts a surrogate objective to avoid

imposing the hard constraint completely. The divergence metric, although proved

theoretically to guarantee a monotonic performance improvement, is computationally

inefficient as it involves solving a complicated second-order optimization. On the

other hand, PPO [89] reduces the complexity to a first-order optimization by adopting

a clipping mechanism through a surrogate objective that is simple to implement and

tune.

However, despite PPO’s success, the algorithm still reports poor performance

under a bad step size (Sec. 7.1). Moreover, the algorithm is prone to suffer from

the risk of lack of exploration [101] especially under a bad initialization that may

lead to a sub-optimal convergence. Thus, the main motivation of this work is to

build a better algorithm that finds the best performing policy over the span of policy

updates to resolve the aforementioned problems. To that end, we propose a new

algorithm known as Exploratory Policy Search, that combines exploratory search

with reinforcement learning algorithms to find the optimal policy.

In this chapter, we first describe the motivation that led to the formulation of

the Exploratory Policy Search Algorithm in Sec. 7.1, describe the algorithm in detail

in Sec. 7.2 and then present the experimentation and results in Sec. 7.3 and 7.4

respectively. Lastly, we conclude the chapter by providing few discussion points in

Sec. 7.5.

60

7. Exploratory Policy Search

7.1 Motivation

Figure 7.2: Catastrophic performance decay observed during one of our experiments
on learning to drive with the dynamic actor scenarios. (a): Mean validation reward
across 6 different seeds of the experiments. The blue oval represents the performance
decay observed after 5.5M time steps of training. (b) - (g): Individual seed-wise
validation reward for the same experiment.

The primary objective of any reinforcement learning algorithm is to overtime find

the best performing policy that leads to maximum possible cumulative return. In

contrast, policy gradient methods are known to be sensitive to the correct step size

where it is empirically common to observe the performance decay catastrophically

in a short range of policy updates. This behavior can be observed in Fig. 7.2 that

demonstrates the mean performance across 6 different seeds of an experiment that

we conduct in the CARLA simulator [29]. As seen from the figure, we observe that

the mean validation reward recorded by 6 different seeds of our experiments reaches

to a near-maximum after 4.5M time steps of training. But as we observe, the mean

validation reward drops drastically after 5.5M time steps which is apparent from

61

7. Exploratory Policy Search

Algorithm 3 Our EPS Algorithm

1: Input: initialize model parameters β, population size K, total epochs E
2: for epoch= 1, 2, . . . E do
3: Clone model parameters β for each individual in population {β1, . . . βK}.
4: Train each individual in parallel with any RL algorithm for S steps.

βk = Train(parameters = βk, steps = S)

5: Evaluate each individual by running the policy, derived from βk, in the
environment to get expected cumulative rewards R̂1 . . . , R̂K .

R̂k = Es,a∼πβk (Rt|St = s)

6: Choose the best performing policy and its corresponding parameters βk∗ to
update β.

k∗ = arg max
K

(R̂k)

β = β∗k

7: end for

Fig. 7.2 (b), (d), and (e) that indicate individual seed reward plots. In contrast,

Fig. 7.2 (c) and (f) indicate seeds that reported stable performance throughout the

training whereas Fig. 7.2 (g) indicates a seed that failed to explore the action space

and reports intermediate performance.

The above observations highlight a limitation of the state-of-the-art policy gradient

algorithms in terms of its exploration capabilities and its learning stability with respect

to the performance objective (Eq. 3.8). This motivates us to propose a new algorithm,

which we term Exploratory Policy Search, that searches for the best policy over time

across K different explorations while still individually maximizing the reinforcement

learning objective.

7.2 Algorithm

The key notion behind the formulation of our algorithm is to iteratively propagate

K explorations and run any reinforcement learning algorithm on them, with the goal

to update the current policy to the best-optimized policy so far. At the beginning of

62

7. Exploratory Policy Search

each iteration, the base policy of the explorations is set to the current best policy

and is then independently trained and evaluated in parallel. The current policy is

then updated to the best amongst those K different policies (Eq. 7.1) by picking the

policy that maximizes the performance objective (Eq. 3.8). This process is repeated

over several iterations until the final current policy converges to the optimal policy.

Note that the exploration in our algorithm comes due to the inherent nature of the

random seeds that sample actions either from a distribution or choose a ε-greedy

action. The overall algorithm can be outlined in Algorithm 3, where population size

K denotes the number of random explorations, and the epochs E indicates the total

number of iterations.

k∗ = arg max
K

[Es,a∼πβk (Rt|St = s)]

β = βk∗
(7.1)

While our proposed algorithm shares similar ideas as the popular asynchronous

advantage actor-critic (A3C) algorithm [67], the global parameters (β) of our model

are updated only from one of the children that fetches the maximum evaluation reward,

rather than updating it asynchronously from each child model as in A3C algorithm.

This is because, in our formulation, we only consider the best optimized policy and

train it further, without accounting for other policies that may have suffered from

bad updates. Another difference between A3C [67] and our algorithm is that A3C

accumulates gradients that asynchronously update the master parameters whereas

our algorithm maintains K set of model parameters βk that are each individually

updated by the base reinforcement learning algorithm.

7.3 Experiments

We conduct experiments on 4 different continuous control tasks (Walker2d-v2,

HalfCheetah-v2, Swimmer-v2 and Hopper-v2) in the MuJoCo simulator [98] as well

as on the most difficult dynamic navigation scenarios on the CARLA simulator [29].

Theoretically, our proposed algorithm (Algo. 3) is invariant to the choice of

the reinforcement learning algorithm. However, to compare with our earlier work

(Chap. 5, 6) we choose the vanilla PPO-Clip variant (Algo. 1) [89] as our primary RL

63

7. Exploratory Policy Search

Figure 7.3: Comparison of our EPS algorithm with the the vanilla RL algorithm
(without EPS) across different population sizes (K = 1, 3, 5) on four distinct MuJoCo
[98] control tasks. The figure reports the mean reward plots that is averaged over 3
random seeds. We use the PPO-Clip [89] variant as the vanilla RL algorithm and
train our proposed algorithm for E = 50 epochs and a total of 2M time steps.

algorithm and train it according to our proposed algorithm. We run the experiments

starting with the best setting of hyper-parameters and then perform a grid-search on

the epochs E and population size K to understand the behavior of our algorithm.

7.4 Results

7.4.1 MuJoCo Control tasks

The Fig. 7.3 reports the mean reward achieved by our algorithm on each en-

vironment for 4 different settings of experiments, without EPS, with EPS K = 1,

K = 3 and K = 5. The without EPS experiment is the vanilla PPO RL algorithm

without our EPS addition. As seen from the reward plots, we observe that the EPS

64

7. Exploratory Policy Search

Figure 7.4: Fair comparison, in terms of compute, of our EPS algorithm with the the
vanilla RL algorithm (without EPS) across different population sizes (K = 3, 5) on
four distinct MuJoCo [98] control tasks. The figure reports the mean reward plots
that is averaged over 3 random seeds. We use the PPO-Clip [89] variant as the vanilla
RL algorithm and train our proposed algorithm for E = 50 epochs and a total of
10M time steps.

algorithm on average performs better than one without EPS. We also observe the

performance to improve as the population size K increases. This higher performance

can be attributed to the fact that our algorithm exhaustively explores the action

space by collecting K sets of trajectories in parallel and optimizing each of them with

respect to the performance objective (Eq. 3.8).

Additionally, we observe that the K = 5 variant performs better than the K = 3

and K = 1 for the Walker2d-v2, Swimmer-v2 and Hopper-v2 environments. The

results align with our intuition that higher K should lead to better rewards. On the

contrary, we observe that for the HalfCheetah-v2 environment, this observation does

not hold true where we observe that K = 3 is the best setting.

65

7. Exploratory Policy Search

Figure 7.5: Comparison of our EPS algorithm with the the vanilla PPO-Clip vari-
ant (without EPS) across different population sizes (K = 1, 3, 5) on the Dynamic
Navigation task defined in the CARLA simulator [90]. The figure reports the mean
cumulative reward and success rate that is averaged over 3 random seeds.

Further, we also conduct a computational analysis in order to have a fair com-

parison with the without EPS version (Fig. 7.4). This is because our algorithm

requires K times more computation as it independently optimizes K policy objectives

in parallel. We observe from this analysis that EPS algorithm still works better

on the Walker2d-v2, HalfCheetah-v2 and Hopper-v2 environments. We also note

that the results on the HalfCheetah-v2 environment are significantly better with the

K = 5 variant when compared with the other two variants. This observation helps

us conclude that our proposed algorithm is promising both from the unfair and fair

comparison standpoints as it suggests a good way to parallelize training or setup

distributed RL algorithms.

Lastly, we ask readers to refer Appendix A, Sec. A.2 for an additional set of

experiments that demonstrate the degenerate form of our EPS algorithm.

7.4.2 CARLA Driving task

We also evaluate our EPS algorithm (Algo. 3) on the Dynamic Navigation task

in the CARLA simulator and compare the results with our prior work as discussed

in Chap. 6. Since the CARLA simulator is too slow to run various experiments, we

pick our low dimensional affordance model from our earlier work (Chap. 6), referred

here as without EPS, and combine it with our EPS algorithm to run on 3 different

66

7. Exploratory Policy Search

population sizes, K = 1, 3, 5.

The Fig. 7.5 demonstrates the mean reward and success plot achieved by each

experiment when trained on the original CARLA dynamic navigation scenario [29]

(Sec. 4.5.1). We observe from the figure 7.5 that the EPS, K=5 version performs

marginally better than all the other variants. We also note from the success plot that

the validation performance of the optimal policy resulting from K = 5 yields a stable

and robust policy between 5 to 8M time steps besides the dip in the performance

that is evident in the graph. Further, we conjecture that our algorithm is not robust

to the performance collapse and thus suffers from determining the optimal step size.

Additionally, when compared with the without EPS version, we observe that this

improvement in the performance is not significant. The marginal improvement in the

performance for K = 5 comes at an extra compute cost, which makes us conclude

that the EPS algorithm proposed by us does not add any significant benefit of our

proposed exploration strategy. Moreover, K = 3 performs worse than the without

EPS experiment, and K = 1 yields similar performance to it. Therefore, we believe

that to completely validate the hypothesis of our proposed algorithm, additional

experimentation needs to be performed.

7.5 Discussion

In summary, our first set of results from the MuJoCo experiments suggest that

our hypothesis to find the optimal policy by combining forward search with model-

free reinforcement learning algorithms is promising. We believe this is because our

method aids in the exploration process by training over K different explorations. The

results presented in Sec. 7.4.1 make us believe that our hypothesis is promising both

from the unfair and fair comparison standpoints as it suggests a better strategy to

parallelize training or set up distributed RL algorithms. Nevertheless, our analysis on

the CARLA simulator does not show any added advantage with our EPS algorithm.

Thus we believe that to reap the full benefits of search combined with reinforcement

learning methods, additional experimentation needs to be done to completely validate

our hypothesis.

67

7. Exploratory Policy Search

68

Chapter 8

Conclusion

In this thesis, we propose two works that aim to solve the urban driving task

using reinforcement learning. The first work (Chap. 5) learns to master common

urban-driving skills like lane-keeping and driving around intersections, by fusing

navigational features, also known as waypoints, with learned latent representations.

This work highlights the first step towards achieving our goal of formulating the

driving problem through reinforcement learning.

Next, we describe our second work (Chap. 6) that solves the limitations of

our earlier proposed method and learns optimal policies for the common urban

driving setting that involves numerous complex interactions between multiple actors,

and traffic signs and symbols. We show that our method when trained using low-

dimensional representations learns the urban navigation task which is comparable

to the modular or the imitation learning-based approaches. We also show that our

agents report a significantly lower number of infractions that are at least an order of

magnitude less than the prior works on the same tasks.

Further, we introduce in Chap. 7 our Exploratory Policy Search (EPS) algorithm

(Algo. 3) that combines the ideas of forward search with model-free reinforcement

learning methods to determine the best policy. We show that our proposed method

showcases promising results on the MuJoCo control tasks but fails to show any

improvement on the CARLA dynamic navigation task. Thus, we conclude that our

work is a step towards combining efficient search methods with the reinforcement

learning objectives and needs additional experimentation to validate our hypothesis.

69

8. Conclusion

Moreover, we also describe our CARLA environment (Chap. 4) that forms the

core basis of our work as well as discuss our plans to open-source our implementation

to push research efforts in this direction.

8.1 Key Takeaways

We now present the important lessons and key takeaways that we have learned

from our overall work.

• We demonstrate in our work that reinforcement learning as a learning paradigm

has a strong potential to learn complex control tasks. We believe that our work

is a step towards exploiting its full potential in learning general driving skills

and we hope that our work inspires more research into applying reinforcement

learning to the autonomous driving task.

• We believe that the key to the success of any reinforcement learning task is to

carefully design the Markov decision process (Sec. 3.1). This includes choosing

the optimal state representations, determining the output action spaces as well

as designing reward functions based on the horizon of rewards that impact the

optimal control policy.

• Since most current state-of-the-art reinforcement learning algorithms often

require millions of samples to learn from high-dimensional state representations,

we believe adding auxiliary objectives to the primary reinforcement learning

objective will reduce the complexity of the overall problem.

8.2 Future Work

Finally, to conclude this work we will highlight some future directions in which

this work can be extended.

• The first step should be to incorporate high dimensional RGB images in our

proposed work by either training a separate visual encoder that predicts the

low-dimensional affordances or training the entire pipeline in an end-to-end

manner. We empirically observe that since the latter idea requires millions

70

8. Conclusion

of samples to learn the correct representations, we believe adding auxiliary

objectives to the reinforcement learning objective is beneficial.

• An interesting direction as part of future work could be to explore Asymmetric

Actor-Critic methods [79] that exploit the full state observability of the simula-

tors to train the critic networks while feeding in partial observations (RGBD

images) to the policy at the test time. This method has shown promising results

when compared with the vanilla actor-critic methods.

• Another direction could be to move towards off-policy reinforcement learning

algorithms that are known to be more sample efficient than the on-policy

methods. The motivation behind this is to exploit tons of stored experiences in

the form of log data in order to bootstrap the policy learning process.

• As the CARLA simulator [29] operates almost in real-time, we propose running

multiple environments in parallel to concurrently train on different maps of

CARLA as well generate more variability in the training data. Additionally,

supporting pedestrians, traffic signs (like stop or yield), and multi-lane towns

with roundabouts will be useful in order to move towards more complicated

urban driving settings.

In the end, our objective of using reinforcement learning as the learning paradigm

for autonomous driving will be a great success if we can see a reinforcement learning-

based policy learn to drive a real-world autonomous vehicle.

71

8. Conclusion

72

Appendix A

Additional Experiments

A.1 Learning to Drive with Dynamic Actors

In this section, we show an additional experiment that runs our proposed approach

with the dynamic actors, using forward-facing semantic or RGB camera with both

state representation A+I and I as defined in Sec. 6.1.1. This ablation experiment

helps us analyze and compare our proposed approach with the baseline methods that

use forward-facing RGB images as input.

A.1.1 Ablation with Different Cameras

The Fig. A.1 shows seven different versions of the experiment. The first three

state representations A, A+I and I use the top-down semantic segmentation camera.

The next two state representation FS:A+I and FS:I use the forward-facing semantic

segmentation camera whereas the last two FR:A+I and FR:I use the forward-facing

RGB camera.

We observe from this figure (Fig. A.1) that the state representation FR:I and

FS:A+I show some promise as we observe the reward and success rate to improve

after 2M and 4M time steps respectively. The other ablation experiments (FS:I and

FS:A+I) with the forward-facing camera are inconclusive when trained for the first 3M

time steps. We also note that all the image experiments in CARLA require immense

computation that is equivalent to more than 3 weeks of real-time training on Nvidia

73

A. Additional Experiments

Figure A.1: The figure reports the mean cumulative reward and success rate for seven
different choices of state representation on the Dynamic Navigation task [29]. The
first three representations A, A+ I, and I use the top-down semantic segmentation
camera. Next, FS:A+I and FS:I use the forward-facing semantic segmentation
camera whereas the last two FR:A+I and FR:I use the forward-facing RGB camera.
The plots indicate that the state-representation A and A+ I successfully learn the
task whereas the state-representation I gradually learns the task after 10M time
steps of training. Further, among the forward-facing camera experiments, FR:I and
FS:A+I seem to show a performance improvement while the rest do not run long
enough and show similar performance as the top-down camera experiments when
trained for the first 3M time steps. The shaded region in the plot corresponds to the
minimum and maximum values showing variation across 3 different seeds.

2080Ti GPUs. Since this was infeasible, we report results till the maximum time

steps each run ran for and note that the learning speed does not change substantially

when compared with the experiments with the top-down camera view.

A.2 Exploratory Policy Search

In this section, we show the results of an additional experiment that runs the

degenerate form of our algorithm, which is equivalent to running EPS with E = 1.

A.2.1 Degenerate EPS

The Fig. A.2 and Fig. A.3 reports the mean reward achieved by our algorithm on

each environment with different settings of experiments, with and without EPS. We

refer to the E = 1 variants as the degenerate form of our proposed algorithm. The

74

A. Additional Experiments

Figure A.2: Comparison of our EPS algorithm with the the vanilla RL algorithm
(without EPS) across different population sizes (K = 1, 3, 5) and two epoch variants
(E = 1, 50) on four distinct MuJoCo [98] control tasks. The figure reports the mean
reward plots that is averaged over 3 random seeds. We use the PPO-Clip [89] variant
as the vanilla RL algorithm and train our proposed algorithm for a total of 2M time
steps.

without EPS experiment is equivalent to running any vanilla RL algorithm without

our EPS addition, which in our case in the Proximal policy optimization algorithm.

As seen from Fig. A.2, we observe that the EPS algorithm on average performs

better than ones without EPS, across different settings of the two hyper-parameters,

which are population size K and training steps of each epoch that is governed by

the total number of epochs E. Next, we observe from Fig. A.3 that the degenerate

form of EPS (E = 1) still performs better on the Walker2d-v2 and HalfCheetah-v2

environments, when performing a fair comparison based on compute. Further, we

make a note that EPS: E=1, K=3 gives a significant improvement on the HalfCheetah-

v2 environment when compared with other variants.

75

A. Additional Experiments

Figure A.3: Fair comparison, in terms of compute, of our EPS algorithm with the
vanilla RL algorithm (without EPS) across different population sizes (K = 3, 5) and
two epoch variants (E = 1, 50) on four distinct MuJoCo [98] control tasks. The figure
reports the mean reward plots that is averaged over 3 random seeds. We use the
PPO-Clip [89] variant as the vanilla RL algorithm and train our proposed algorithm
for a total of 10M time steps.

Therefore, our analysis from the above experiment makes us conclude that our

algorithm is promising in two ways. Firstly, the performance of the algorithm

proposed by us is sensitive to the choice of hyper-parameters E and K chosen to run

the experiment. Secondly, the algorithm paves a way to ultimately propose a strategy

that can automatically tune these hyper-parameters as we observe the performance

on average to improve when changing from E = 1 to E = 50 or K = 1 to K = 5.

76

Appendix B

Supplementary Details

B.1 CARLA Environment

B.1.1 Hyperparameters

In this subsection, we detail all the parameters we use for our experiments with

the CARLA simulator [29], as discussed in Chap. 5, 6, 7. The list mentioned below

covers all the parameters to the best of our knowledge, except those that are set to

default values in the simulator.

• Camera top-down co-ordinates: (x = 13.0, y = 0.0, z = 18.0, pitch = 270◦)

• Camera front-facing co-ordinates: (x = 2.0, y = 0.0, z = 1.4, pitch = 0◦)

• Camera image resolution: (x = 128, y = 128)

• Camera field-of-view = 90

• Server frame-rate = 10fps

• Maximum target-speed = 20km/h

• PID parameters: (KP = 0.1, KD = 0.0005, KI = 0.4, dt = 1/10.0)

• Waypoint resolution (wd) = 2m

• Number of next waypoints (n) = 5

• Maximum time steps (m) = 10000

77

B. Supplementary Details

• Success distance from goal (d) = 10m

B.2 Learning to Drive using Waypoints

B.2.1 Hyperparameters

In this subsection, we detail all the hyper-parameters used by us for the experiments

and results reported in Chap. 5. The list mentioned below covers all the parameters

to the best of our knowledge, except those that are set to default values as defined in

the stable baselines documentation [42].

• Total training time steps = 2M

• Speed-based reward coefficient (α) = 1

• Distance-based penalty from optimal trajectory (β) = 1

• Collision penalty speed-based coefficient (γ) = 250

• Collision penalty constant coefficient (δ) = 250

• Learning rate = 0.0002

• Validation interval = 20K

• Maximum static time steps (m) = 1000

• Random seeds = 3

• Number of benchmark evaluations = 5

B.3 Learning to Drive with Dynamic Actors

B.3.1 Hyperparameters

In this subsection, we detail all the hyper-parameters used by us for the experiments

and results reported in Chap. 6. The list mentioned below covers all the parameters

to the best of our knowledge, except those that are set to default values as defined in

the stable baselines documentation [42].

• Total training time steps = 16M

78

B. Supplementary Details

• N-steps = 10000

• Number of epochs = 10

• Number of minibatches = 20

• Clip parameter = 0.1

• Speed-based reward coefficient (α) = 1

• Distance-based penalty from optimal trajectory (β) = 1

• Infraction penalty speed-based coefficient (γ) = 250

• Infraction penalty constant coefficient (δ) = 250

• Learning rate = 0.0002

• Validation interval = 40K

• Number of dynamic actors at training time = U(70, 150), where U refers to

uniform distribution.

• Image frame-stack fed to autoencoder (k) = 3

• Dynamic obstacle proximity threshold (dprox) = 15m

• Traffic light proximity threshold (tprox) = 15m

• Minimum threshold distance for traffic light detection = 6m

• Random seeds = 3

• Number of benchmark evaluations = 5

B.4 Exploratory Policy Search

B.4.1 Hyperparameters

In this subsection, we detail all the hyper-parameters used by us for the experiments

and results reported in Chap. 7. The list mentioned below covers all the parameters

to the best of our knowledge, except those that are set to default values as defined in

the stable baselines documentation [42].

• Total training time steps = 2M

• N-steps = 2048

79

B. Supplementary Details

• Number of epochs = 10

• Number of minibatches = 32

• Number of environments = 1

• Lam = 0.95

• Discount factor (γ) = 0.99

• Clip parameter = 0.2

• Entropy coefficient = 0.0

• Learning rate = 0.0003

• Epoch validation interval = 40K

• Random seeds = 3

80

Bibliography

[1] Pieter Abbeel, Morgan Quigley, and Andrew Y Ng. Using inaccurate models in
reinforcement learning. In Proceedings of the 23rd international conference on
Machine learning, pages 1–8, 2006. 1.2, 3.2

[2] Pieter Abbeel, Adam Coates, and Andrew Y Ng. Autonomous helicopter
aerobatics through apprenticeship learning. The International Journal of
Robotics Research, 29(13):1608–1639, 2010. 2.2

[3] Joshua Achiam. Spinning up in deep rl, 2018. URL https://spinningup. openai.
com. (document), 3.2

[4] Tanmay Agarwal, Hitesh Arora, Tanvir Parhar, Shuby Deshpande, and Jeff
Schneider. Learning to drive using waypoints. In Workshop on’Machine Learn-
ing for Autonomous Driving’at Conference on Neural Information Processing
Systems, 2019. (document), 1.3, 5, 5.1, 5.1.1, 5.1.1, 5.1.1, 5.1.2, 5.1.3, 5.2, 5.3,
5.2, 5.4, 5.4.1, 5.1, 5.5.1, 5.2, 6, 6.1.1, 6.4.1

[5] Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob Mc-
Grew, Arthur Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael
Ribas, et al. Solving rubik’s cube with a robot hand. arXiv preprint
arXiv:1910.07113, 2019. 1.1

[6] Eduardo Arnold, Omar Y Al-Jarrah, Mehrdad Dianati, Saber Fallah, David
Oxtoby, and Alex Mouzakitis. A survey on 3d object detection methods for au-
tonomous driving applications. IEEE Transactions on Intelligent Transportation
Systems, 20(10):3782–3795, 2019. 2.1

[7] Karl Johan Åström and Tore Hägglund. PID controllers: theory, design, and
tuning, volume 2. Instrument society of America Research Triangle Park, NC,
1995. 5.1.2, 6.1.2

[8] Claudine Badue, Rânik Guidolini, Raphael Vivacqua Carneiro, Pedro Azevedo,
Vinicius Brito Cardoso, Avelino Forechi, Luan Jesus, Rodrigo Berriel, Thi-
ago Paixao, Filipe Mutz, et al. Self-driving cars: A survey. arXiv preprint
arXiv:1901.04407, 2019. 2.1

[9] Mayank Bansal, Alex Krizhevsky, and Abhijit Ogale. Chauffeurnet: Learning

81

Bibliography

to drive by imitating the best and synthesizing the worst. arXiv preprint
arXiv:1812.03079, 2018. 1.1

[10] Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective
on reinforcement learning. arXiv preprint arXiv:1707.06887, 2017. 3.2

[11] Richard Bellman. A markovian decision process. Journal of mathematics and
mechanics, pages 679–684, 1957. 3.1

[12] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner,
Beat Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller,
Jiakai Zhang, et al. End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316, 2016. 1.1, 2.2

[13] Mariusz Bojarski, Philip Yeres, Anna Choromanska, Krzysztof Choromanski,
Bernhard Firner, Lawrence Jackel, and Urs Muller. Explaining how a deep
neural network trained with end-to-end learning steers a car. arXiv preprint
arXiv:1704.07911, 2017. 1.1, 2.2

[14] Michael Brady, John M Hollerbach, Timothy L Johnson, Tomás Lozano-Pérez,
Matthew T Mason, Daniel G Bobrow, Patrick Henry Winston, and Randall
Davis. Robot motion: Planning and control. MIT press, 1982. 1.1

[15] Guillaume Bresson, Zayed Alsayed, Li Yu, and Sébastien Glaser. Simultaneous
localization and mapping: A survey of current trends in autonomous driving.
IEEE Transactions on Intelligent Vehicles, 2(3):194–220, 2017. 2.1

[16] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas,
Peter I Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon
Samothrakis, and Simon Colton. A survey of monte carlo tree search methods.
IEEE Transactions on Computational Intelligence and AI in games, 4(1):1–43,
2012. 3.2

[17] Jacob Buckman, Danijar Hafner, George Tucker, Eugene Brevdo, and Honglak
Lee. Sample-efficient reinforcement learning with stochastic ensemble value
expansion. In Advances in Neural Information Processing Systems, pages
8224–8234, 2018. 3.2

[18] Eduardo F Camacho and Carlos Bordons Alba. Model predictive control.
Springer Science & Business Media, 2013. 3.2

[19] Mark Campbell, Magnus Egerstedt, Jonathan P How, and Richard M Murray.
Autonomous driving in urban environments: approaches, lessons and challenges.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 368(1928):4649–4672, 2010. 1.1, 2.1

[20] Dian Chen, Brady Zhou, Vladlen Koltun, and Philipp Krähenbühl. Learning
by cheating. In Conference on Robot Learning, pages 66–75, 2020. (document),

82

Bibliography

1.1, 2.2, 5.4.1, 5.1, 5.2, 5.5.1, 6.4.1, 6.1, 6.5.1, 6.2, 6.5.2

[21] Lu Chi and Yadong Mu. Deep steering: Learning end-to-end driving model
from spatial and temporal visual cues. arXiv preprint arXiv:1708.03798, 2017.
2.2

[22] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase repre-
sentations using rnn encoder-decoder for statistical machine translation. arXiv
preprint arXiv:1406.1078, 2014. 5.1.1

[23] Felipe Codevilla, Matthias Miiller, Antonio López, Vladlen Koltun, and Alexey
Dosovitskiy. End-to-end driving via conditional imitation learning. In 2018
IEEE International Conference on Robotics and Automation (ICRA), pages
1–9. IEEE, 2018. (document), 1.1, 2.2, 5.1.1, 5.4.1, 5.1, 5.5.1, 5.2, 6.4.1, 6.1,
6.5.1, 6.2, 6.5.2, 6.3, 6.5.3

[24] Felipe Codevilla, Eder Santana, Antonio M López, and Adrien Gaidon. Explor-
ing the limitations of behavior cloning for autonomous driving. In Proceedings
of the IEEE International Conference on Computer Vision, pages 9329–9338,
2019. (document), 1.1, 2.2, 4, 4.5.1, 4.5.2, 5.4, 5.4.1, 5.5, 5.1, 5.5.1, 5.2, 5.5.2,
5.6, 6.4, 6.4.1, 6.5, 6.1, 6.5.1, 6.5.2, 6.2, 6.5.2, 6.3, 6.5.3

[25] Will Dabney, Mark Rowland, Marc G Bellemare, and Rémi Munos. Distribu-
tional reinforcement learning with quantile regression. 3.2

[26] Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit
quantile networks for distributional reinforcement learning. arXiv preprint
arXiv:1806.06923, 2018. 2.3

[27] Guilherme N DeSouza and Avinash C Kak. Vision for mobile robot navigation:
A survey. IEEE transactions on pattern analysis and machine intelligence, 24
(2):237–267, 2002. 2.1

[28] Nemanja Djuric, Vladan Radosavljevic, Henggang Cui, Thi Nguyen, Fang-Chieh
Chou, Tsung-Han Lin, and Jeff Schneider. Motion prediction of traffic actors
for autonomous driving using deep convolutional networks. arXiv preprint
arXiv:1808.05819, 2, 2018. 2.1

[29] Alexey Dosovitskiy, Germán Ros, Felipe Codevilla, Antonio López, and Vladlen
Koltun. Carla: An open urban driving simulator. In CoRL, 2017. (document),
1.1, 1.2, 2.3, 4.1, 4, 4.1, 4.2, 4.4, 4.5.1, 4.1, 4.5.2, 5, 5.1.1, 5.4, 5.4.1, 5.4.2, 5.3,
5.5, 5.5.1, 5.1, 5.6, 6.4, 6.4.1, 6.3, 6.4.2, 6.5, 6.5.1, 6.1, 6.5.1, 7.1, 7.3, 7.4.2, 8.2,
A.1, B.1.1

[30] Roy Featherstone and David Orin. Robot dynamics: equations and algorithms.
In Proceedings 2000 ICRA. Millennium Conference. IEEE International Confer-
ence on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065),

83

Bibliography

volume 1, pages 826–834. IEEE, 2000. 1.1

[31] Vladimir Feinberg, Alvin Wan, Ion Stoica, Michael I Jordan, Joseph E Gonzalez,
and Sergey Levine. Model-based value estimation for efficient model-free
reinforcement learning. arXiv preprint arXiv:1803.00101, 2018. 3.2

[32] David A Forsyth and Jean Ponce. Computer vision: a modern approach.
Prentice Hall Professional Technical Reference, 2002. 1.1

[33] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision
meets robotics: The kitti dataset. The International Journal of Robotics
Research, 32(11):1231–1237, 2013. 1.1

[34] Jiuxiang Gu, Zhenhua Wang, Jason Kuen, Lianyang Ma, Amir Shahroudy,
Bing Shuai, Ting Liu, Xingxing Wang, Gang Wang, Jianfei Cai, et al. Recent
advances in convolutional neural networks. Pattern Recognition, 77:354–377,
2018. 5.1.1

[35] Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep re-
inforcement learning for robotic manipulation with asynchronous off-policy
updates. In 2017 IEEE international conference on robotics and automation
(ICRA), pages 3389–3396. IEEE, 2017. 1.1

[36] David Ha and Jürgen Schmidhuber. World models. arXiv preprint
arXiv:1803.10122, 2018. 3.2

[37] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft
actor-critic: Off-policy maximum entropy deep reinforcement learning with a
stochastic actor. arXiv preprint arXiv:1801.01290, 2018. 3.3

[38] Jessica B Hamrick. Analogues of mental simulation and imagination in deep
learning. Current Opinion in Behavioral Sciences, 29:8–16, 2019. 1.2, 3.2

[39] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–778, 2016. 2.3, 5.4.1

[40] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Os-
trovski, Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David
Silver. Rainbow: Combining improvements in deep reinforcement learning. In
Thirty-Second AAAI Conference on Artificial Intelligence, 2018. 2.3

[41] Todd Hester and Peter Stone. Learning and using models. In Reinforcement
learning, pages 111–141. Springer, 2012. 1.2, 3.2

[42] Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Anssi Kan-
ervisto, Rene Traore, Prafulla Dhariwal, Christopher Hesse, Oleg Klimov,
Alex Nichol, Matthias Plappert, Alec Radford, John Schulman, Szymon
Sidor, and Yuhuai Wu. Stable baselines. https://github.com/hill-a/

84

https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines

Bibliography

stable-baselines, 2018. 5.4, B.2.1, B.3.1, B.4.1

[43] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997. 5.1.1

[44] Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel,
Hado Van Hasselt, and David Silver. Distributed prioritized experience replay.
arXiv preprint arXiv:1803.00933, 2018. 2.3

[45] Ronald A Howard. Dynamic programming and markov processes. 1960. 3.1

[46] Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne.
Imitation learning: A survey of learning methods. ACM Computing Surveys
(CSUR), 50(2):1–35, 2017. 2.2

[47] Sham Kakade and John Langford. Approximately optimal approximate rein-
forcement learning. In ICML, volume 2, pages 267–274, 2002. 7

[48] Takeo Kanade, Chuck Thorpe, and William Whittaker. Autonomous land
vehicle project at cmu. In Proceedings of the 1986 ACM fourteenth annual
conference on Computer science, pages 71–80, 1986. 1.1, 2.1

[49] Alex Kendall, Jeffrey Hawke, David Janz, Przemyslaw Mazur, Daniele Reda,
John-Mark Allen, Vinh-Dieu Lam, Alex Bewley, and Amar Shah. Learning to
drive in a day. In 2019 International Conference on Robotics and Automation
(ICRA), pages 8248–8254. IEEE, 2019. 1.1, 2.3

[50] Qadeer Khan, Torsten Schön, and Patrick Wenzel. Latent space reinforcement
learning for steering angle prediction. arXiv preprint arXiv:1902.03765, 2019.
1.1

[51] Jinkyu Kim and John Canny. Interpretable learning for self-driving cars by
visualizing causal attention. In Proceedings of the IEEE international conference
on computer vision, pages 2942–2950, 2017. 2.2

[52] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114, 2013. 5.1.1

[53] B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A Al
Sallab, Senthil Yogamani, and Patrick Pérez. Deep reinforcement learning for
autonomous driving: A survey. arXiv preprint arXiv:2002.00444, 2020. 1.1

[54] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097–1105, 2012. 2.2, 5.1.1, 6

[55] Sampo Kuutti, Saber Fallah, Konstantinos Katsaros, Mehrdad Dianati, Francis
Mccullough, and Alexandros Mouzakitis. A survey of the state-of-the-art
localization techniques and their potentials for autonomous vehicle applications.
IEEE Internet of Things Journal, 5(2):829–846, 2018. 2.1

85

https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines

Bibliography

[56] Leonid Kuvayev and Richard S Sutton. Model-based reinforcement learning
with an approximate, learned model. In Proceedings of the ninth Yale workshop
on adaptive and learning systems, pages 101–105. Citeseer, 1996. 1.2, 3.2

[57] Jean-Paul Laumond et al. Robot motion planning and control, volume 229.
Springer, 1998. 1.1

[58] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521
(7553):436–444, 2015. 1.1, 2.2

[59] Stéphanie Lefèvre, Dizan Vasquez, and Christian Laugier. A survey on motion
prediction and risk assessment for intelligent vehicles. ROBOMECH journal, 1
(1):1–14, 2014. 2.1

[60] Jesse Levinson, Jake Askeland, Jan Becker, Jennifer Dolson, David Held, Soeren
Kammel, J Zico Kolter, Dirk Langer, Oliver Pink, Vaughan Pratt, et al. Towards
fully autonomous driving: Systems and algorithms. In 2011 IEEE Intelligent
Vehicles Symposium (IV), pages 163–168. IEEE, 2011. 1.1, 2.1

[61] Xiaodan Liang, Tairui Wang, Luona Yang, and Eric P. Xing. Cirl: Controllable
imitative reinforcement learning for vision-based self-driving. In ECCV, 2018.
(document), 1.1, 2.3, 5.1.1, 5.4.1, 5.1, 5.5.1, 6.4.1, 6.1, 6.5.1

[62] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with
deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015. 2.3, 3.2,
3.3, 5.4.1

[63] Jonathan Masci, Ueli Meier, Dan Cireşan, and Jürgen Schmidhuber. Stacked
convolutional auto-encoders for hierarchical feature extraction. In International
conference on artificial neural networks, pages 52–59. Springer, 2011. 5.1.1

[64] Rowan McAllister, Yarin Gal, Alex Kendall, Mark Van Der Wilk, Amar Shah,
Roberto Cipolla, and Adrian Weller. Concrete problems for autonomous vehicle
safety: Advantages of bayesian deep learning. International Joint Conferences
on Artificial Intelligence, Inc., 2017. 1.1

[65] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602, 2013. 1.1, 3.2, 3.3,
5.4.1, 7

[66] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep reinforcement learning.
nature, 518(7540):529–533, 2015. 1.1, 7

[67] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves,

86

Bibliography

Timothy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asyn-
chronous methods for deep reinforcement learning. In International conference
on machine learning, pages 1928–1937, 2016. 2.3, 3.2, 5.4.1, 5.4.2, 7.2

[68] Thomas M Moerland, Joost Broekens, and Catholijn M Jonker. Model-based
reinforcement learning: A survey. arXiv preprint arXiv:2006.16712, 2020. 1.2,
3.2

[69] Michael Montemerlo, Jan Becker, Suhrid Bhat, Hendrik Dahlkamp, Dmitri
Dolgov, Scott Ettinger, Dirk Haehnel, Tim Hilden, Gabe Hoffmann, Burkhard
Huhnke, et al. Junior: The stanford entry in the urban challenge. Journal of
field Robotics, 25(9):569–597, 2008. 1.1, 2.1

[70] Sajjad Mozaffari, Omar Y Al-Jarrah, Mehrdad Dianati, Paul Jennings, and
Alexandros Mouzakitis. Deep learning-based vehicle behaviour prediction for
autonomous driving applications: A review. arXiv preprint arXiv:1912.11676,
2019. 2.1

[71] Urs Muller, Jan Ben, Eric Cosatto, Beat Flepp, and Yann L Cun. Off-road ob-
stacle avoidance through end-to-end learning. In Advances in neural information
processing systems, pages 739–746, 2006. 1.1, 2.2

[72] Farzeen Munir, Shoaib Azam, Muhammad Ishfaq Hussain, Ahmed Muqeem
Sheri, and Moongu Jeon. Autonomous vehicle: The architecture aspect of self
driving car. In Proceedings of the 2018 International Conference on Sensors,
Signal and Image Processing, pages 1–5, 2018. 1.1, 2.1

[73] Anusha Nagabandi, Gregory Kahn, Ronald S Fearing, and Sergey Levine.
Neural network dynamics for model-based deep reinforcement learning with
model-free fine-tuning. In 2018 IEEE International Conference on Robotics
and Automation (ICRA), pages 7559–7566. IEEE, 2018. 3.2

[74] Ryosuke Okuda, Yuki Kajiwara, and Kazuaki Terashima. A survey of technical
trend of adas and autonomous driving. In Technical Papers of 2014 International
Symposium on VLSI Design, Automation and Test, pages 1–4. IEEE, 2014. 2.1

[75] Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J Andrew Bagnell, Pieter
Abbeel, and Jan Peters. An algorithmic perspective on imitation learning.
arXiv preprint arXiv:1811.06711, 2018. 2.2

[76] Brian Paden, Michal Čáp, Sze Zheng Yong, Dmitry Yershov, and Emilio
Frazzoli. A survey of motion planning and control techniques for self-driving
urban vehicles. IEEE Transactions on intelligent vehicles, 1(1):33–55, 2016. 2.1

[77] Yunpeng Pan, Ching-An Cheng, Kamil Saigol, Keuntaek Lee, Xinyan Yan,
Evangelos Theodorou, and Byron Boots. Agile off-road autonomous driving
using end-to-end deep imitation learning. arXiv preprint arXiv:1709.07174, 2,
2017. 1.1

87

Bibliography

[78] Anna Petrovskaya and Sebastian Thrun. Model based vehicle detection and
tracking for autonomous urban driving. Autonomous Robots, 26(2-3):123–139,
2009. 2.1

[79] Lerrel Pinto, Marcin Andrychowicz, Peter Welinder, Wojciech Zaremba, and
Pieter Abbeel. Asymmetric actor critic for image-based robot learning. arXiv
preprint arXiv:1710.06542, 2017. 8.2

[80] Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network.
In Advances in neural information processing systems, pages 305–313, 1989. 1.1,
2.2

[81] Rajesh Rajamani. Vehicle dynamics and control. Springer Science & Business
Media, 2011. 1.1

[82] Nathan D Ratliff, J Andrew Bagnell, and Martin A Zinkevich. Maximum
margin planning. In Proceedings of the 23rd international conference on Machine
learning, pages 729–736, 2006. 2.2

[83] Nicholas Rhinehart, Rowan McAllister, and Sergey Levine. Deep imitative mod-
els for flexible inference, planning, and control. arXiv preprint arXiv:1810.06544,
2018. 1.1

[84] Daniel E Rivera, Manfred Morari, and Sigurd Skogestad. Internal model control:
Pid controller design. Industrial & engineering chemistry process design and
development, 25(1):252–265, 1986. 5.1.2, 6.1.2

[85] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation
learning and structured prediction to no-regret online learning. In Proceedings
of the fourteenth international conference on artificial intelligence and statistics,
pages 627–635, 2011. 2.2

[86] Axel Sauer, Nikolay Savinov, and Andreas Geiger. Conditional affordance
learning for driving in urban environments. arXiv preprint arXiv:1806.06498,
2018. (document), 1.1, 5.1.1, 5.4.1, 5.1, 5.5.1, 5.2, 6, 6.4.1, 6.1, 6.5.1, 6.2, 6.5.2,
6.3, 6.5.3

[87] Robert J Schalkoff. Digital image processing and computer vision, volume 286.
Wiley New York, 1989. 1.1

[88] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp
Moritz. Trust region policy optimization. In International conference on
machine learning, pages 1889–1897, 2015. 1.2, 3.2, 3.4.3, 3.4.3, 3.4.4, 7

[89] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347,
2017. (document), 1.2, 3.2, 3.4.4, 3.4.4, 5.2, 5.2, 6.2, 7, 7.3, 7.3, 7.4, A.2, A.3

[90] Wilko Schwarting, Javier Alonso-Mora, and Daniela Rus. Planning and decision-

88

Bibliography

making for autonomous vehicles. Annual Review of Control, Robotics, and
Autonomous Systems, 2018. (document), 2.1, 7.5

[91] David Silver, J Andrew Bagnell, and Anthony Stentz. Learning from demon-
stration for autonomous navigation in complex unstructured terrain. The
International Journal of Robotics Research, 29(12):1565–1592, 2010. 1.1

[92] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,
George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda
Panneershelvam, Marc Lanctot, et al. Mastering the game of go with deep
neural networks and tree search. nature, 529(7587):484–489, 2016. 1.1, 7

[93] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,
Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran,
Thore Graepel, et al. Mastering chess and shogi by self-play with a general
reinforcement learning algorithm. arXiv preprint arXiv:1712.01815, 2017. 1.1,
7

[94] Santokh Singh. Critical reasons for crashes investigated in the national motor
vehicle crash causation survey. Technical report, 2015. 1.1

[95] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour.
Policy gradient methods for reinforcement learning with function approximation.
In Advances in neural information processing systems, pages 1057–1063, 2000.
3.4.2, 3.4.2

[96] Umar Syed and Robert E Schapire. A game-theoretic approach to apprenticeship
learning. In Advances in neural information processing systems, pages 1449–
1456, 2008. 2.2

[97] Lei Tai, Jingwei Zhang, Ming Liu, Joschka Boedecker, and Wolfram Burgard.
A survey of deep network solutions for learning control in robotics: From
reinforcement to imitation. arXiv preprint arXiv:1612.07139, 2016. 2.2

[98] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for
model-based control. In 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 5026–5033. IEEE, 2012. (document), 7.3, 7.3, 7.4,
A.2, A.3

[99] Marin Toromanoff, Emilie Wirbel, and Fabien Moutarde. End-to-end model-
free reinforcement learning for urban driving using implicit affordances. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7153–7162, 2020. (document), 2.3, 5.4.1, 5.1, 5.2, 5.5.1, 6,
6.4.1, 6.1, 6.5.1, 6.2, 6.5.2

[100] Richard S Wallace, Anthony Stentz, Charles E Thorpe, Hans P Moravec,
William Whittaker, and Takeo Kanade. First results in robot road-following.
In IJCAI, pages 1089–1095. Citeseer, 1985. 1.1, 2.1

89

Bibliography

[101] Yuhui Wang, Hao He, Xiaoyang Tan, and Yaozhong Gan. Trust region-guided
proximal policy optimization. In Advances in Neural Information Processing
Systems, pages 626–636, 2019. 7

[102] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8
(3-4):279–292, 1992. 3.3

[103] Ronald J Williams. Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning. Machine learning, 8(3-4):229–256, 1992. 3.4.2,
3.4.2

[104] Bernhard Wymann, Eric Espié, Christophe Guionneau, Christos Dimitrakakis,
Rémi Coulom, and Andrew Sumner. Torcs, the open racing car simulator.
Software available at http://torcs. sourceforge. net, 4(6):2, 2000. 2.3

[105] Huazhe Xu, Yang Gao, Fisher Yu, and Trevor Darrell. End-to-end learning
of driving models from large-scale video datasets. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2174–2182, 2017.
2.2

[106] Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-
to-end multi-modal multi-task vehicle control for self-driving cars with visual
perceptions. In 2018 24th International Conference on Pattern Recognition
(ICPR), pages 2289–2294. IEEE, 2018. 2.2

[107] Ekim Yurtsever, Jacob Lambert, Alexander Carballo, and Kazuya Takeda. A
survey of autonomous driving: Common practices and emerging technologies.
IEEE Access, 8:58443–58469, 2020. 1.1, 2.1

[108] Fangyi Zhang, Jürgen Leitner, Michael Milford, Ben Upcroft, and Peter Corke.
Towards vision-based deep reinforcement learning for robotic motion control.
arXiv preprint arXiv:1511.03791, 2015. 1.1

[109] Jiakai Zhang and Kyunghyun Cho. Query-efficient imitation learning for end-
to-end autonomous driving. arXiv preprint arXiv:1605.06450, 2016. 1.1

90

	1 Introduction
	1.1 Motivation
	1.2 Research Contributions
	1.3 Outline

	2 Related Work
	2.1 Modular Approaches
	2.2 Imitation Learning
	2.3 Reinforcement Learning

	3 The Reinforcement Learning Problem
	3.1 Markov Decision Processes
	3.1.1 Policy
	3.1.2 Return
	3.1.3 Value Functions
	3.1.4 Optimal Value Functions

	3.2 RL Algorithms Family
	3.3 Q-Learning
	3.4 Policy Optimization
	3.4.1 Policy Gradient
	3.4.2 REINFORCE
	3.4.3 Trust Region Policy Optimization
	3.4.4 Proximal Policy Optimization

	4 CARLA Environment
	4.1 Server-Client Interface
	4.2 Sensors
	4.3 Waypoint Planner
	4.4 Intermediate Affordances
	4.5 Benchmarks
	4.5.1 Original CARLA Benchmark
	4.5.2 NoCrash Benchmark

	5 Learning to Drive using Waypoints
	5.1 RL Setup
	5.1.1 State Space
	5.1.2 Action Space
	5.1.3 Reward Function

	5.2 Model-Free RL with Learned Representations
	5.3 Training
	5.4 Experiments
	5.4.1 Baselines
	5.4.2 Training Stability

	5.5 Results
	5.5.1 Evaluation on the Original CARLA Benchmark
	5.5.2 Evaluation on the NoCrash Benchmark

	5.6 Discussion

	6 Learning to Drive with Dynamic Actors
	6.1 RL Setup
	6.1.1 State Space
	6.1.2 Action Space
	6.1.3 Reward Function

	6.2 Model-Free RL on Low-Dimensional Affordances
	6.3 Training
	6.4 Experiments
	6.4.1 Baselines
	6.4.2 Training Stability

	6.5 Results
	6.5.1 Evaluation on the Original CARLA Benchmark
	6.5.2 Evaluation on the NoCrash Benchmark
	6.5.3 Infraction Analysis

	6.6 Discussion

	7 Exploratory Policy Search
	7.1 Motivation
	7.2 Algorithm
	7.3 Experiments
	7.4 Results
	7.4.1 MuJoCo Control tasks
	7.4.2 CARLA Driving task

	7.5 Discussion

	8 Conclusion
	8.1 Key Takeaways
	8.2 Future Work

	A Additional Experiments
	A.1 Learning to Drive with Dynamic Actors
	A.1.1 Ablation with Different Cameras

	A.2 Exploratory Policy Search
	A.2.1 Degenerate EPS

	B Supplementary Details
	B.1 CARLA Environment
	B.1.1 Hyperparameters

	B.2 Learning to Drive using Waypoints
	B.2.1 Hyperparameters

	B.3 Learning to Drive with Dynamic Actors
	B.3.1 Hyperparameters

	B.4 Exploratory Policy Search
	B.4.1 Hyperparameters

	Bibliography

