
Learning based modular framework for
environment-adaptive planning in exploration

Sara Misra

CMU-RI-TR-20-27

July, 2020

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Matthew Travers, Co-chair

Howie Choset, Co-chair
Maxim Likachev

Shohin Mukherjee

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2020 Sara Misra

Abstract
Autonomous planning, has spawned a number of different solutions in robotics

research, using different paradigms and strategies, both generalized and specific to
certain problems, representations, and environments.

Thus, we pose the hypothesis that the hyperparameters for best performance are
dependent on the type of environment determined by its “clutteredness”. Usually,
these hyperparameters are manually tuned by trial and error for a general estimate of
the type of environments likely to be encountered by the agent, not accounting for
different environment types within the same map. While the planner may operate
within optimal bounds, the absolute best performance of the planner on every map
in the dataset is unguaranteed.

This problem becomes evident and significant in exploration tasks, where the agent
could encounter different environments during the same task. For exploration tasks,
especially search-and-rescue, efficient navigation is critical, which is to have the
highest or best performance in every portion of the map explored while looking for
objects of interest. To address this issue this work presents a modular framework
to utilize the experience of the underlying structure and the corresponding planning
strategies performances of prior environments to predict the unknown map and adapt
the planning strategy for maintaining high performance throughout the current ex-
ploration task.

In this thesis, we evaluate this framework using A* with the inflation factor hyper-
parameter being adapted to the environment in the task to see improvement over
static hyperparameters. This framework can be extended to other heuristic based
planners and even sets of planners where the adaptation is in which planner is being
used in the environment rather than the hyperparameters of the planner model.

iv

Acknowledgments
I would like to express my gratitude to everyone who directly or indirectly has

supported my master’s thesis completion in these challenging times.

I am deeply grateful to my advisors Professor Matthew Travers and Professor Howie
Choset for providing the opportunity to dive into academic research from my fresh-
man year and their solid support. These years and this thesis, on the accelerated
schedule, were only possible with their unwavering guidance. My special thanks to
the committee members, Professor Maxim Likachev and Shohin Mukerjee for pro-
viding valuable feedback in our discussions.

I cherish the time I have spent in the Biorobotics Lab, in particular with my CMU-
Boeing Collaboration teammates: Lu Li, Haowen Shi, Michael Schwerin, Albert
Xu, Daqian Cheng, Jim Picard. And my deep thanks extend to Guillaume Sar-
toretti, Shuo Yang, Daniel Vedova, Hans Kumar, Raunaq Bhirangi, Benjamin Freed,
Michael Tatum, Barbara Fecich, and many others who have worked with, inspired
and supported me throughout my journey at Carnegie Mellon University.

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Problem Statement . 2
1.3 Contribution . 3

2 Related Work 4
2.1 Map Representation . 4

2.1.1 Occupancy Grid Mapping . 4
2.2 Adaptive Motion Planning . 5

2.2.1 Black Box Adaptive Planner . 6
2.2.2 White Box Adaptive Planner . 6

2.3 Map Prediction . 7
2.3.1 CNN Model: U-Net . 8
2.3.2 InPainting Loss . 8

2.4 Goal Estimation . 10
2.4.1 Frontier-Based Exploration . 10

3 Approach 11
3.1 Mapping . 11

3.1.1 Laser RangeFinder Sensor Model . 11
3.2 Environment Datasets . 13

3.2.1 Map Generation . 13
3.2.2 PathFinding Benchmark Datasets . 14
3.2.3 Greedy Agnostic Maps . 15

3.3 System Design Overview . 16
3.4 Meta-Planner Strategy Prediction . 19

3.4.1 CNN Model: VGG16 . 20
3.5 Map Prediction . 21

3.5.1 CNN Model: UNet . 21
3.5.2 InPainting Loss . 23

3.6 Frontier-Based Goal Estimation . 23

vi

4 Experiments and Results 25
4.1 Simulation . 25

4.1.1 Planning Problems Distribution . 25
4.2 Search Based Planning Evaluation: Weighted A* 26

4.2.1 Performance Criteria . 27
4.2.2 System Evaluation . 27

4.3 CNN Models . 29
4.3.1 Meta-Planner Strategy Prediction . 29
4.3.2 Map Prediction . 30

5 Conclusions and Future Work 33
5.1 Conclusions . 33
5.2 Future Work . 33

Bibliography 35

vii

List of Figures

1.1 System Framework . 3

2.1 Adaptive Motion Planning Frameworks . 6
2.2 Adaptive Motion Planning Black Box and White Box Frameworks 7
2.3 U-Net Prediction . 10

3.1 Laser Sensor Model and Occupancy Grid Mapping 13
3.2 Maze Generation Maps . 14
3.3 Moving AI Benchmark Datasets . 15
3.4 Greedy Agnostic Maps . 16
3.5 System Framework . 18
3.6 Meta-Planner Strategy Prediction Training Pipeline 19
3.7 VGG16 Architecture . 20
3.8 VGG16 Dataset Visualization . 21
3.9 U-Net Architecture . 22
3.10 U-Net Dataset Visualization . 23
3.11 Frontier Based Goal Generation . 24

4.1 Global and Averaged Local Connectivity over Datasets 26
4.2 Environment Cost Map . 27
4.3 System Evaluation . 28
4.4 Meta-Planner Strategy Prediction Loss . 29
4.5 Maze Dataset Map Prediction Results . 31
4.6 Dataset Map Prediction Training and Validation Losses 32

viii

List of Tables

4.1 System Evaluation Performance Scores . 28

ix

Chapter 1

Introduction

Robot autonomy, to solve the problem of path planning, has spawned several different solutions
using different paradigms and strategies [17], with intense research focus on improving these
tractable algorithms by looking at the worst-case performance guarantee metric. Specifically
including metrics such as computational or asymptotic optimality [9] [15], probabilistic com-
pleteness [16] of the algorithm or its computational complexity [3].

However, these metrics capture a complex representation of algorithm performance over vari-
ations in the environment of the planning task. In this work, we focus on more fundamental met-
rics, time performance, and path quality. Prior work, Hsu et al. shows that the finite time takes
to find a path and the path quality in a simple planning problem is dependant on the connectivity
of the state-space, which is affected by various parameters such as obstacle configuration, robot
dynamics and start/goal position. Consequently, the effectiveness of the proposed planning algo-
rithms is heavily reliant on the underlying environment structure. With an increase in variability
of the type of environments the robot faces, the fluctuation in planner performance is exacerbated.

Considering the variability of encountered real-world environments, there is motivation to ask
how we can design a framework to leverage the qualities and performance of the given planner
strategies to maximize expected performance, based on the metrics mentioned prior, on the dis-
tribution of environments encountered by the robot, or agent.

Machine learning procedures have been used to develop novel algorithms to adapt both sam-
pling and search based planning algorithms to a specific environments [31] [4], where the novel
algorithm learns from previously solved planning problems. This thesis leverages this strategy
of picking the best element from a static set to design a loosely-coupled framework over a novel
algorithm. Thus, in this context we aim to use machine learning methods to learn planner perfor-
mance over planning problem distributions and their underlying environment structure to adapt
the planning strategy for better expected performance over these distributions.

1

1.1 Motivation

This thesis asks the proposed question in the context of robot autonomy in unknown or partially
known environments. Autonomous systems operating in such conditions face a variety of en-
vironments, or scenarios within the same mission and vary across different missions. Consider
the example of the DARPA Subterranean Challenge, where agents autonomously navigate and
explore unknown environments to find multiple goals or objects of interest whose locations are
unknown beforehand. The applications can vary from disaster search-and-rescue to mapping of
hazardous environments.

The encountered scenario can vary widely and change abruptly within the same mission, es-
pecially in the applications mentioned above, going from structured to unstructured, complex to
open suddenly. As the navigation environment is partially known due to limited onboard sens-
ing, there is a possibility for sudden changes to the prior belief of the environment state and as
such using a singular planning strategy with static hyperparameters becomes infeasible due to the
fluctuating navigation performance and the requirement of repeated manual tuning of algorithm
hyperparameters for every mission.

Additionally, such robots have complex state spaces and limited computation budgets. Thus
it is hard to engineer a general motion planner that has consistent performance across the dis-
tribution of planning problems. This leads us to consider an adaptive framework to answer the
initial question. That is a framework that changes its search strategy according to the expected
performance on the distribution of environments and planning problems.

1.2 Problem Statement

The path planning problem being attempted is simplified in the control space of the system by
assuming a point robot in 2D space. Then let X ∈ R2 be the state space of the robot in euclidean
space. Given the objective is to find a trajectory σ for the robot from start to goal.

Let us define the planning problem composed of the environment, start and goal as Φ, and a
planner as p then the trajectory σ = p(Φ). Each σ has a computation and path cost to it which
will form the basis of our performance metrics.

With these definitions we can describe the distribution of planning problems P (Φ) by:
1. Drawing samples of environments from a generative distribution N times to form a series

of {Φ}Ni=1 planning problems

2. Classify series of input maps and sample start and goal positions on each to form a series
of {Φ}Ni=1 planning problems

The expected performance is calculated as an expectation of the cost of the planner (defined by
the performance metric) over the planning problem distribution P (Φ).

2

1.3 Contribution
We summarize the main contributions of this work and the novel connections between the plan-
ning and learning open-loop control.

1. Adaptive prediction framework over eclectic environments: A designed framework
to leverage learning prior experiences of the agent to maximize expected performance
over the distribution of planning environments, given a set of strategies using both planner
performance and map prediction.

2. Loosely-coupled Modular system design: a modular framework for plug-and-play appli-
cation over multiple onboard sensor configurations, different exploration tasks and adap-
tive over different planner(s) or hyperparameter(s) of one planner for their standard imple-
mentations as shown in Figure 1.1

Figure 1.1: Visualization of the system framework

3

Chapter 2

Related Work

In this section we detail out prior methods and work done in map representation, adaptive motion
planning, map prediction and frontier-based exploration.

2.1 Map Representation

In the scope of this thesis, the agent operates in a static 2D map is standardly represented in
robotics literature [32] as a discrete or an occupancy grid where each cell contains an occupancy
probability. We take the cell probability of one to mean occupied space (wall), of zero to mean
free space (traversable), and of 0.5 to mean unknown or unexplored area throughout this paper.
Occupancy grid maps are useful representations for sensor mapping and combining different
sensor modalities. So an occupancy grid map representation for the proposed system enables
modularity concerning the sensor systems carried by the agent.

2.1.1 Occupancy Grid Mapping

Now that we have an occupancy grid map to navigate in and an onboard sensing array, we need
an algorithm to transmute the sensor measurements into the observed map. The agent initially
starts with a 2D pose xt=0 = [x, y, θ] describing the coordinates and angle of the agent. Note in
the scenario of our research we assume a 2D point holonomic robot with 360◦ coverage as such
θ becomes redundant.
For the occupancy map m containing cells mi, the goal is to find the posterior occupancy prob-
ability of the cell, that is, p(mi|z1:t, x1:t) given the prior occupancyp(mi) and sensor measure-
ments zt. We use the binary Bayes filter to find the posterior probability and update the occupancy
grid map [32].
We transform the occupancy map into it’s log-odds form for each of calculation as shown in
Equations 2.1. The pseudocode is shown in Algorithm 1

4

lt,i = log
p(mi|z1:t, x1:t)

1− p(mi|z1:t, x1:t)

l0 = log
p(mi)

1− p(mi)

INVERSESENSORMODEL(mi, xt, zt) = log
p(mi|zt, xt)

1− p(mi|zt, xt)
(2.1)

The INPERCEPTUALFIELD function uses the Breshnam line algorithm to evaluate whether
the cell is touched by any of the sensor beams of the model. If so, then the cell is said to be in
the perceptual field of the The INVERSESENSORMODEL function is defined in Section 3.1.1.

Algorithm 1 Occupancy Grid Mapping
Input: {lt−1,i} is the occupancy log-odds for cell mi, xt is the pose of the agent and zt is the

array of sensor measurements
1: function OCCUPANCYGRIDMAPPING({lt−1,i}, xt, zt)
2: for all cells mi do
3: if INPERCEPTUALFEILD(mi, zt) then
4: lt,i = lt−1,i − l0 + INVERSESENSORMODEL(mi, xt, zt)
5: else
6: lt,i = lt−1,i
7: end if
8: end for
9: return lt,i

10: end function

2.2 Adaptive Motion Planning
As the autonomous agent encounters a wide range of scenarios in the real world, they are ex-
pected to have a constant performance according to some performance metric, usually path qual-
ity or search time. Since even general planners Choudhury [6] 2018 proposes that the planning
module for the robot must adapt its search strategy to achieve real-time performance across a
distribution of planning scenarios. There are two methodologies proposed visualized in Figure
2.1:

1. Black-box adaptive motion planner

2. White-box adaptive motion planner

5

Figure 2.1: The above image visualizes the initial planning problem(Left) and the two proposed
systems of blackbox (Top) and whitebox (Bottom) adaptive planners

2.2.1 Black Box Adaptive Planner

Since we know that the planner performance is dependant on the obstacle configuration and we
have a series of planners that leverage different assumptions on different environments, the ques-
tion to ask naturally becomes: can we build a meta-planner that selects a planning strategy from
a set of potential strategies, such that we can maximize it’s expected performance on the context
of the planning problem?

The proposed algorithm by Choudhury, visualized in Figure 2.2, uses list prediction [30] [31] to
train a series of predictors over an planning problem distribution to predict seed trajectories for
trajectory optimizers, heuristics for search-based planning and planner prediction for 2D and au-
tonomous helicopter planning which are either fixed for all time steps or dynamically changing.
The focus of this work is on known maps, goals, and start positions of the agent. Even in the
tests of planner prediction with helicopter planning in the case of partially unknown maps, the
goal position is known [31]. The body of work extends into exception handling using an online
exception planner. That is in case of failure to find a path the agent queries an optimal planner
with which has been trained on a multitude of planning problems.

This body of work is closest in idea to the work in this thesis; however, it differs in being a
tightly coupled framework with limited modularity, and further, the scope of this thesis specifi-
cally focuses on exploration tasks where the goal location is unknown.

2.2.2 White Box Adaptive Planner

Another method to adapt the planning strategy to the environment while conserving the effort
to extract context is to adapt the search strategy during a planning cycle by taking a sequential
approach. Now the planning problem is seen as a planning policy that maps a sequence of actions
and states as visualized in Figure 2.2.

6

A novel imitation learning-based framework is proposed [7] to train adaptive search heuristics
for information and search based planning.

The scope of this thesis, while leveraging ideas about data-driven learning from the proposed
novel algorithm for exploration, we focus on providing a modular framework to leverage the
qualities of existing planning strategies to improve expected performance during exploration
tasks.

Figure 2.2: (a) In the white-box paradigm, the adaptive aspects happens inside the planner,
similar to reinforcement learning. The adaptation is the policy that looks at history of decisions
made and outcomes received in order to make the next decision. (b) In the black-box paradigm,
the planner expends effort to extract context from the problem to select a black box planner to be
executed.

2.3 Map Prediction
As the agent explores the map, searching for the goal(s), the planner set element chosen for path
planning has access to the local map explored till that time-step. This means the choice of the
planner set element chosen for path planning is biased by the past explored map, over the current
map. For example, when the agent passes through a transition between different types of envi-
ronments, for example and open space and a maze, then until the maze has been explored to the
point where the maze portion of the map dominates over the open space the system will choose
the planner set element biased to the open space.

To cut down on this transition period where the system works at sub-optimal performance,
we aim to use map prediction to predict the future map, based on the local map explored. The
paradigm applied is that the usually encountered environments some underlying structure which
can be exploited to predict a belief over the unexplored region.

7

Map prediction literature focus on many applications of this concepts, in the scope of plan-
ning and navigation, from leveraging different techniques and assumptions about the environ-
ment to machine learning techniques aiming to improve performance. In the scenario of the
research, we look at machine learning approaches as they are primed to model the map distribu-
tion over the variety of environment. Specifically deep neural network architectures have been
used for solving this problem. Caley et al., for example utilizes the CNN architecture to predict
exits of a building, given 2D floor plan images, In the scope of path planning, Elhafsi et al. uses
deep learning architecture combined with A* frontier exploration for adaptive motion planning.
This body of work demonstrates the benefits using deep neural networks for map prediction over
a variety of maps. Specifically looking at CNN architectures, we use the U-Net CNN architecture
with Map In-Painting losses [27] [18]

2.3.1 CNN Model: U-Net
The U-Net is most suitable CNN architecture as it used for both image classification and segmen-
tation tasks. Segmentation provides the location of elements in an image, in other words, solving
a localization tasks of image elements which is a necessary component of map prediction. The
U-Net is comprised of a downsampling pathway, of a standard CNN, and an upsampling path-
way of deconvolutions that allows the network to perform these tasks. The localization of the
elements in particular occurs when a upsampling layer or decoder layer is concatenated with the
feature map of the corresponding downsampling layer, improving the output in the next layer.
The U-Net is flexible in accepting any input size as the architecture is void of both dense and fully
connected layers, thus specifying the segmentation to use the valid portions of the convolution.

2.3.2 InPainting Loss
Image in-painting is the task of filling in holes of images, that is filling in unknown areas based
on context of the known area which is analogous to map prediction. As such we leverage the
loss used in this method for the map prediction for smoothing out the predicted map into the
surrounding. The overall loss function is a weighted average of of multiple loss functions that
focus on different metrics for this problem, that are discussed in this section. For the calculation
of all these loss functions, an ImageNet trained VGG-16 is used to extract features and project
them into a higher feature space

In the equations described below we use the following notations, Igt is the ground truth image,
Iin is the image with the hole that is sent into the network, Icomp [14] is the image that contains
the ground truth of the explored area, or known areas in Iin, Iout is the predicted map and M
is the binary mask sent to the network, that is it contains the sent in image Iin it along with the
walls, or occupied space discovered by the exploration. The binary map with the occupied space
encoding is used for better understanding for traversable areas, improving map prediction.
The per-pixel lossesLhole and Lhole are defined below. These losses form the metric for under-
standing the pixel-level difference between the ground truth and the predicted image. Specifically
L〈ole and Lval〉d are the L1 losses for the hole and non-hole pixels.

8

Lhole = ‖(1−M)× (Iout − Igt)‖1 (2.2)

Lvalid = ‖M× (Iout − Igt)‖1 (2.3)

Since we also want to be aware of spatial features, Lperceptual and Lstyle are used.
The perceptual loss Lperceptual on the other hand measures the L1-Norm of the per-pixel differ-
ence between ground truth and the image, and in this context it combines the perceptual loss of
the predicted image and Icomp. This method take a looser approach to the per-pixel difference,
avoiding grid-artifacts from recreation. Thus, ideally the weight of this loss should be low.

Lperceptual =
K−1∑
k=0

∥∥∥ΨIout
k −Ψ

Igt
k

∥∥∥
1

+
K−1∑
k=0

∥∥∥Ψ
Icomp

k −Ψ
Igt
k

∥∥∥
1

(2.4)

For computing the other spatial features metric Lstyle, L1-loss is computed after applying an
auto correlation, by taking the L1 norm after applying the Gram matrix Ck×Ck, where Ck is the
number of channels of the high level features Ψ(x)k, and the normalization factorKk = 1

CkHkWk
,

where Hk,Wk is the image shape, on the kth layer.

Lstyleout =
K−1∑
k=0

∥∥∥Kk

((
ΨIout
k

)ᵀ (
ΨIout
k

)
−
(

Ψ
Igt
k

)ᵀ (
Ψ

Igt
k

))∥∥∥
1

(2.5)

Lstylecomp =
K−1∑
k=0

∥∥∥Kk

((
Ψ

Icomp

k

)ᵀ (
Ψ

Icomp

k

)
−
(

Ψ
Igt
k

)ᵀ (
Ψ

Igt
k

))∥∥∥
1

(2.6)

The final loss function we need to consider is Ltv, which is the total variation loss which is
the smoothing penalty. It leads to neighbourhood smoothing by averaging, or taking the L1 norm
of the cell and its neighbours in the x, y directions.

Ltv =
∑

(i,j)∈A,(i,j+1)∈A

∥∥Ii,j+1
comp − Ii,jcomp

∥∥+
∑

(i,j)∈A,(i+1,j)∈A

∥∥Ii+1,j
comp − Ii,jcomp

∥∥ (2.7)

9

Figure 2.3: The ground truth image Igt in the top left, the top middle is the image input to the
U-Net Igt, on the top right the binary mask M. On the bottom left is the output from the U-Net
using soft-max is in the bottom middle and to the bottom right is the predicted output map Iout
which is added to the bottom middle

2.4 Goal Estimation

2.4.1 Frontier-Based Exploration
For the agent to find the goal(s), the paradigm is that they must exist in the areas unexplored by
the agent. Exploiting this paradigm: the frontier-based exploration algorithm proposed by Ya-
mauchi also guarantees complete exploration and will be used in this work to provide temporary
goals to the planner set.
The map representation is a belief space of occupancy, that is, a probability map of occupancy
where each cell holds a probability that the corresponding region in space is occupied.

In this paper, a value of 0.5 defines the probability of an unknown or unexplored cell. By that
definition, open cells have an occupancy probability of less than 0.5 and occupied have an occu-
pancy probability greater than 0.5.

The algorithm defines frontiers as the transitions between open space and unknown areas and
frontier regions as distance-based clusters of the frontiers pruned for computation. The centroids
of these regions act as temporary destinations for the agent to increase map knowledge until the
complete map or the goal(s) is found. A representation of the terms defined above is shown in
Figure 3.11

10

Chapter 3

Approach

This section describes the map representation used in the for the proposed system and subse-
quently discusses the mapping strategy and specific sensor models that are used in this research.
We discuss the CNN frameworks used for predicting the best performance epsilon in a map and
for map prediction. Detailing out the frontier based approach of temporary goal estimation until
the true goal(s) is found. Finally we describe the proposed system framework.

3.1 Mapping
As the agent navigates the map with onboard sensing it needs to maintain a map of its surround-
ing. Since we are using the occupancy grid map representation of the environment, in this section
we discuss the mapping methodology for occupancy maps and the simulated sensor model for
the agent.

3.1.1 Laser RangeFinder Sensor Model

Laser rangefinders are simple, common and inexpensive sensors, as such modeling them is also
simple. For occupancy grid mapping the inverse sensor model [32] is implemented as in the
pseudocode in Algorithm 2.

The INVERSESENSORMODEL function given the map cell mi in the agent’s perceptual view
determines the log-odds form of the occupancy probability of the cell, conditioned on the posi-
tion of the agent and the measurement the measurement of the kth laser beam that passes through
it. If the cell is out of range of the laser beam, lies behind the measurement zkt + α

2
, where α

is the thickness of the walls or is out of the width of the sensor beam (β) then simply return the
prior otherwise update the cell probability. The paradigm used is that if the beam passes through
the cell, that is the distance from robot pose to the cell is less than the sensor measurement then
the cell occupancy probability is lower, otherwise if the beam endpoint lies with the cell then the
cell occupancy probability is higher.

Since, the testing and evaluation is simulated, we simulated the measurements of laser range

11

Algorithm 2 Inverse Sensor Model
Input: mi is the cell position, xt is the pose of the agent and zt is the array of sensor

measurements
1: function INVERSESENSORMODEL(mi, xt, zt)
2: Let xi, yibe the center-of-mass of mi

3: r ←
√

(xi − x)2 + (yi − y)2

4: φ← atan2(yi − y, xi − x)− θ
5: k ← arg minj |φ− θj,sens|
6: if r > min(zmax, z

k
t + α

2
) or |φ− θk,sens| > β

2
then

7: return l0
8: end if
9: if zkt < zmax and |r − zkt | < α

2
then

10: return locc
11: end if
12: if r ≤ zkt then
13: return lfree
14: end if
15: end function

finder array of 36 lasers uniformly placed, with 360◦ coverage. The measurements are simulated
from the environment by using raycasting to find the occupied cell colliding with the laser beam,
which then becomes the measurement for that laser beam. find the collision point of an occupied
cell and the laser bean in the environment.
The measurements have white noise sampled from a Gaussian ˜N (0, σ) [13]. Note that as we have
a 360◦ field of view, the angle of the agent is redundant to occupancy grid mapping algorithm.

12

Figure 3.1: (Left) The simulated laser rangefinder array is shown in the a random obstacle and
maze map. (Top Right) The groundtruth occupancy map and the robot path (green) is shown, note
the colorbar shows black for occupied and white for free cells. (Bottom Right) The cumulative
occupancy mapping of the robot using the sensor model along the path is shown. The colorbar
shows the associated color to the probability of occupancy, for example yellow is occupied cells,
p(mi)= 1, blue is unknown p(mi)= 0.5, and purple is free space, p(mi)= 0.

3.2 Environment Datasets

In this section we discuss the 2D environment datasets used to form the planning problem distri-
bution P (Φ).
The maps are of eclectic shapes ranging from (32x32) to (1024x1024). The environments dis-
played below are full maps for each dataset however since the planner only sees a local map of
approximately (32x32) we split these maps into local areas of (32x32) for evaluation.

3.2.1 Map Generation

Mazes are a standard testing environment for path planning problems, as such we use them as
one of the environment datasets for evaluating our system. The maze generation algorithms used

13

graph-based were: Eller’s, Wilson’s, Kruskal’s, Randomized Prim’s and Aldous-Broder’s maze
generation algorithms [23]
We use a number of maze generation algorithms to downweigh any inherent bias of the algo-
rithms to prefer to certain elements of the planner set. The above algorithms generate ’perfect
mazes’, that is any point in the maze can be reached by any other point which makes the analysis
in Section 3.4 easier as there are no absolutely unreachable targets in these maps.

Figure 3.2: (Clockwise) The maze maps shown above showcase different maze generation algo-
rithms with different hyperparameters

3.2.2 PathFinding Benchmark Datasets
While mazes are a good benchmark for testing path planning algorithms, they are not representa-
tive of map environments potentially experienced by field robots. To increase the variety of maps
in our database, we look at Nathan Sturtevant’s Moving AI Lab’s 2D PathFinding Benchmark
maps [29]. These are generated from a variety of sources, such as multiple video game dungeon
maps as well as real city street maps, as shown in Figure 3.3. The dungeon maps resemble cave
or tunnels environments, depending on the video game, that a field robot could experience as
well as real-world street maps, thus forming a dataset similar to the real-world for evaluating the
performance of the proposed system.
From the raw map file format the environments are converted into binary maps where zeros
represent free cells and ones represent occupied cells.

14

Figure 3.3: (Top to Bottom) The top and bottom row showcases dungeons maps from Baldur’s
Gate and Dragon Age: Origins video games respectively, the middle row showcases street maps
from around the world

3.2.3 Greedy Agnostic Maps
Generally heuristic-based planner, for example A* with an euclidean heuristic behaves like a
’best first’ or greedy planner when inflation factor ε > 1. ’Best First’ planner tend to have low
performance in case of obstacle placement that causes them to plan suboptimal paths to navigate
around the obstacle. Such maps are called greedy agnostic maps, and we integrate the dataset of
such maps, described in [22], into the database of maps being used.

15

Figure 3.4: Subset of maps contained in the Greedy Agnostic map dataset.

3.3 System Design Overview
We consider a single agent exploring an initially unknown static 2D map M using the laser
ranger-finder array system detailed in Section 3.1.1. The initial assumptions of this framework
are:

1. The shape, or size of the environment (m× n) is available to the agent

2. The agent’s starting position rp is in a free cell whose position is known

The framework pseudocode and visualization are shown below in Algorithm 3 and Figure 3.5
respectively. It is comprised of multiple modular components following these steps: given the
starting agent pose rp, while the true goal(s) gtrue are unknown:

1. The agent uses the SENSORMODEL of the onboard laser rangefinder sensing array to ob-
serve the true environment Mtrue and simulate the sensor measurements zT from the cur-
rent pose rp.

2. Update the observed map Mobs, with the sensor measurements zt using UPDATEMAP

16

Algorithm 3 System Framework
1: function SYSTEM(rp, (m,n))
2: Mobs ← [0.5]m×n
3: while True do
4: zt ← SENSORMODEL(rp)
5: Mobs ← UPDATEMAP(Mobs, zt)
6: if FOUNDGOAL(Mobs) then
7: break
8: end if
9: Mpred ← PREDICTMAP(Mobs)

10: gfront ← YAMAUCHI(Mobs)
11: p← PREDICTPLANNERELEMENT(Mpred)
12: rp∗ ← p(rp, gfront)
13: rp ← rp∗
14: end while
15: end function

which is wrapper for Algorithm 1 .

3. The agent uses Algorithm 4 to get a temporary goal gfront of the nearest frontier region
centroid from YAMAUCHI.

4. The agent based on the local explored map, uses PREDICTMAP to predict a window of the
unexplored area, which forms Mpred

5. Using the predicted map PREDICTPLANNERELEMENT predict the best planner set ele-
ment p ∈ PN , where PN = {p1, p2...pN} is the planner set.

6. Using the planner set element p for navigation to gfront, the agent arrives at the next pose
rp∗ and repeats from (1).

Figure 3.5, shown below is a visualization of this framework.

17

Figure 3.5: Visualization of the system framework

18

3.4 Meta-Planner Strategy Prediction

To utilize prior performance information of planner strategies over the distribution of planning
problems, we need a learning model to learn the association between the best performing plan-
ning strategy and the respective context. In this scenario, the context is the local map sampled
from the planning problem distribution. Note that the local map refers to a (32x32) window of
the observed map around the agent position extended using map prediction. This task is equiva-
lent to image classification where the image is the binary map of the environment and the label
is the planner set element with best performance.

To learn the association between the map and the planner set element with the best performance
in it, we decided to use a CNN architecture, due to high performance in similar image classifica-
tion tasks, high scalability and does not rely on preprocessing of images for feature selection.

In the context of this thesis, the map is sent as an image to the CNN architecture; the corre-
sponding label is the planner set element with the best performance in that map.
To associate the map to label, we take a Monte Carlo Expectation approach of generating random
start and destinations for the agent to traverse through the map, and evaluating the performance
of all the planner strategies in planner set, that is pi ∈ Pn. Using the performance criterion on
the performance expectation on the environment for each planner, the best planning strategy pbest
is chosen as the label for the respective environment. Figure 3.6 provides a visualization of this
process.

Figure 3.6: Model Training and Usage Pipeline

19

3.4.1 CNN Model: VGG16
The CNN architecture used in this scenario is the VGG16 CNN architecture, in particular for its
high performance in image classification and its usage for high-level feature representation for
maps in the datasets.

Figure 3.7: VGG16 architecture for an image size of 224x224x3 pixels. The encoder (left) aims
to capture spatial context and the decoder (right) accurately localise these features

The VGG16 architecture is comprised solely of a downsampling pathway (encoder) to extract
the image features. The initial convolution layers use 3x3 kernel convolutions with a stride of 1,
followed by 2x2 kernel max pooling layers with a stride of 2. Following the initial stack of con-
volutional layers, which are adjusted to the specific image size, are three Fully-Connected (FC)
layers: the first two have 4096 channels each and the third performs 1000- way ILSVRC classi-
fication. This is the standard format of the VGG16 network, and for our purposes we change the
last layer to the size of the number of elements in our planner set.
All the hidden layers are composed with Rectified Linear Units (ReLU). The function, F =
max {0, x} introduces non-linearity into the model reducing vanishing gradients and has supe-
rior computation speed compared to other activation functions such as the sigmoid or hyperbolic
tangent function.
The dataset sent to this network is composed of the local map of (32x32) converted to RGB im-
ages of size (224x224x3) with the soft labels of the planner set element. We use soft labels as the
best performance planner set element is determined as an expected value that has variance across
the other elements as well. Since we use soft labels we use softmax loss or cross-categorical

20

entropy loss to predict a probability over the classes.

Figure 3.8: Input maps of size (32x32) resized and colored to (224x224x3) for the VGG16
network. The yellow color represents open or traversable space and black represents occupied
space

3.5 Map Prediction
Map prediction utilizes a combination of the U-Net CNN architecture and image inpainting,
that given a percentage of the map that is known, we can predict the unknown map. The U-
Net CNN architecture used assumes a pre-defined image size of H ×W pixels or cells, where
H = W = 32, forming the window of the area of map-prediction. We choose this image size
due to the limitations of the onboard sensing and having a sizeable explored area for the U-Net to
confidently predict the remaining area without biasing towards the previous type of environment
the agent was in. Note that this thesis uses map prediction to extend the perception of the robot in
terms of the observed local map and predict the unknown regions in the window. Since the global
map can have varying complexity, and the agent operates in the local map it doesn’t effectively
utilize the map prediction to
The network predicts an occupancy probability for each cell in the map based on training which
is incorporated with the explored map for as input for further modules in the system.

3.5.1 CNN Model: UNet
The multilayer CNN used for map prediction specifically uses the U-Net architecture, based on
[27], chosen for high levels of performance in generalizability for image processing contexts and
it’s speed.

The U-Net architecture is a special form of CNN as in addition to the encoder path, or the
contracting path of downsampling layers, on the left it is comprised of the decoder path or the
expansive path of upsampling layers, on the right in Figure 3.10.
The encoder path follows a traditional CNN architecture that repeatedly applies 3x3 kernel con-
volutions followed by a Rectified Linear Unit (ReLU) activation function. The ReLU function,

21

Figure 3.9: U-Net architecture for an image size of 3232 pixels. The encoder (left) aims to
capture spatial context and the decoder (right) accurately localizes these features

F = max {0, x} introduces non-linearity into the model reducing vanishing gradients and has
superior computation speed compared to other activation functions such as the sigmoid or hy-
perbolic tangent function. After passing through the ReLU, a 2x2 kernel max pooling operation
with a stride of 2 is applied, doubling the number of features at each layer.
The first layer of the encoder is unique as the 3-channel RGB image is mapped to 64 feature
channels.
The U-Net decoder, composed of upsampling layers, captures the locations of the features from
the encoder. In addition to the upsampling at each decoder layer using 2x2 transposed convolu-
tions, the tensor is concatenated to the corresponding cropped feature map from the encoder path
for localizing the features in the spatial context followed by a 3x3 convolution and ReLU.

22

Dataset Generation

The dataset shape is (N, 3, x, y), where N is the number of samples in the dataset, x × y is the
size of the image. For each sample, three input images: Ground Truth, Image and Mask as in
Section 2.3.2.
The Ground Truth is the true map of the environment with zeros representing free cells and ones
representing occupied cells, and is used for calculating the losses. The Image (Iin) contains the
explored free cells encoded as zeros and the unexplored cells as ones. For training, we randomly
chose a ratio between 0.1 and 0.7. The Mask (M) is equivalent to the Image with the addition of
using ones to encode the walls that have been discovered by the exploration. We split the dataset
for training, testing and validation in the ratios of 0.8, 0.1, 0.1 respectively.

Figure 3.10: (Left to right) Ground truth map, Image and Mask. The Image contains the portion
of the map explored and the Mask encodes the known walls in the explored region

3.5.2 InPainting Loss
According to the formulae and the loss terms discussed in Section 2.3.2 we calculate the defined
losses, as we assumed the image, or map of size Hp×Wp = H×W to be predicted. Specifically
for the scenario proposed of this thesis the Ltotal is defined as the weighted average of the other
spatial losses given in Equation 3.1 with weights a, b, c, d, e.

Ltotal = aLvalid + bLhole + cLperceptual + d
(
Lstyleout + Lstylecomp

)
+ eLtv (3.1)

3.6 Frontier-Based Goal Estimation
This research uses the Yamauchi frontier-based exploration for a single agent to estimate tem-
porary goal(s) while the true goal(s) are unknown as mentioned in Section 2.4.1. In our imple-
mentation of the algorithm, whose outline is shown in Algorithm 4, we use the A* algorithm to
find the closest frontier region centroid and the chosen planner set element to navigate to this

23

frontier. The ISFRONTIERCELL function determines that if the cell is: unvisited by the agent
and is an open(free) cell with at least one adjacent unknown cell, then it is a frontier cell. The
CLUSTER function takes the frontier and computes the centroids of frontier regions, clustered
using connected-component labelling. The DIST function uses the A* algorithm to find the dis-
tance between the current robot position and the frontier region centroids. The closest cluster
centroid f now becomes the temporary goal (gest) for the planner set element to navigate the
agent to while searching for the true goal (gtrue). The algorithm terminates once there are no
frontier found or when all the cells have been visited.

Algorithm 4 Yamauchi’s Frontier Based Exploration
1: function YAMAUCHI(M)
2: f ← [0, 0] . Initialization
3: frontiers← ∅
4: for all cells c in M do
5: if ISFRONTIERCELL(c) then
6: frontiers.append(c)
7: end if
8: end for
9: clusterCentroids← CLUSTER(frontiers)

10: f ← min (DIST(clusterCentroids))
11: return f
12: end function

Figure 3.11: The above image visualizes the concepts of open(free space), occupied space, un-
known areas and frontiers

24

Chapter 4

Experiments and Results

To demonstrate the effectiveness and trade-offs of the proposed system design, we developed
simulation environments for 2-D grid worlds to test and evaluate the performance. This section
demonstrates the results of testing the system on the datasets described in 3.2

4.1 Simulation
The simulation was run on an Intel Core i7-8750H CPU. The evaluations presented in this section
are focused on adapting the hyperparameters of the given planning method to the environment
based on the defined performance metric.

4.1.1 Planning Problems Distribution
Since we are using a series of already known inputs maps for the distribution we need a method
to classify them. In this thesis we use two criteria:

1. Global Connectivity: The global connectivity of the map is defined based on it’s graph
representation connectivity. That is, it is a normalized measure of the valid edges of the
graph representation of the map.

2. Local Distance Field: The local connectivity is defined as local distance field, that is a
averaged distance between each point on the user-defined sized local lattice between start
and goal locations on the map. A user-defined sized local lattice is formed by using the
straight line joining the start and goal positions and considering a fixed area around the
line.

These two metrics encapsulate the planning problems encountered in each map and obstacle
configuration, estimating the obstacle configuration and density. An analysis of these metrics are
shown in Figure 4.1.

25

Figure 4.1: (Top) We have the metric analysis on the Video game maps, as sample of which is
shown to the left, and (Bottom) of the greedy agnostic maps, as sample of which is shown to the
left.

4.2 Search Based Planning Evaluation: Weighted A*

We test the system on a combination of different maps from the datasets defined in Section 3.2.
In the context of this thesis, we work with A*, controlled by the heuristic inflation factor, ε. Pairs
of starting position of the agent and the true goal (unknown to the agent) are chosen randomly on
the map to evaluate the expected performance of the adaptive heuristic. For each of these start
and goal positions, the proposed planner set is a set of n inflation factor values (m values sampled
from ε < 1 and n −m values sampled from ε > 1) for the A* Manhattan distance heuristic on
these 8-connected grids. From prior knowledge, we are aware that as ε < 1, the search behaves
more like Dijkstra’s shortest path algorithm and as ε > 1, the search behaves more like a Greedy
best-first search.

26

4.2.1 Performance Criteria
The performance criteria defined for the task, is the search time t to find a path σ, normalized
by the path quality of the found path from start to goal. The path quality is assessed as the path
cost (c) of the trajectory calculated from the cost map of the maze sent to the planner. The cost
map encodes the obstacle configuration with a high cost to ensure they are untraversable, and the
neighbouring cells are encoded with a clearance cost. An example is show in Figure 4.2.

Figure 4.2: The yellow area represents the obstacle configuration with a high cost, the light
purple represents the clearance cost cells, and the dark purple represents the free space

The performance score for a strategy p, in a map is calculated as the expectation of the criteria
applied on the strategy over a set of N start and goal pairs in the map as shown in Equation 4.1

score(p,M) = E

[
t(σi)

c(σi,M)

∣∣∣∣N
i=0

]
(4.1)

Note, that by this definition the score is inversely proportional to the performance.

4.2.2 System Evaluation
For expected performance evaluation we take three maps, of different combinations of the en-
vironments existing in the database defined in Section 3.2 as shown in Figure. 4.3 and samples
using the planning problem distribution classification defined in Section 4.1.1. The planning
strategies are the values for the inflation factor ε. We create this set of strategies by sampling 10
values in the interval [0, 1) for ε < 1 and 10 values in the interval [20, 25] for ε > 1.
The evaluation is carried out by a uniform random selection of 100 start and goal pairs in the
environment. Over these pairs, the performance of the adaptive system on the heuristic hyperpa-
rameter is calculated by running the exploration task. Then for comparison of performance, the
exploration task is run over those same start and goal positions, however now for each start and
goal a heuristic inflation factor is randomly sampled from the set and kept static throughout the
procedure.

27

Figure 4.3: On the left, from top to bottom are sets of combined maps that this proposed adaptive
system was tested upon, on the bottom right are the results of the increase in expected perfor-
mance on these maps calculated from Table 4.1. In the maps, the yellow areas represent occupied
space and purple areas represent unoccupied(free) space.

Environment Average Performance Scores (×10−3) Avg. Perf. Increase Ratio
Random Static Planner Adaptive Planning System

Map 1 39.705 39.685 0.0001
Map 2 54.970 54.915 0.005
Map 3 49.764 45.833 0.08

Table 4.1: Table of averaged performance scores on the environments, or planning problem
distributions, in Figure 4.3 over 100 start-goal point pairs. It also contains ratio of performance
increase when using the proposed adaptive system over a random-static planner.

The calculated expected performance of the adaptive system is compared to that of the ran-
domly chosen static planner by the percentage increase of the expected performance of the adap-
tive system over the random-static system shown in Figure 4.3 and the data in Tabel 4.1. We
can see that an adaptive heuristic hyper-parameter has a higher expected performance on adap-

28

tive heuristics in the context of the planning problem distribution over the planning benchmark,
randomized and greedy agnostic datasets compared to the maze dataset. This could be due to
the high level of confined structure of the maze which constrains the perception of the robot, and
even with the addition of map prediction to extend the local perception of the agent the adaptive
system’s expected performance is almost comparable to using a random-static heuristic hyper-
parameter. However, as we relax this tight constraint in Map 3 of the results, we can see the
expected performance of the system is much better than using a random-static heuristic hyperpa-
rameter. Also note that Map 3 has a higher number of different environments sampled from the
planning problem distribution, compared to the maze datasets.

4.3 CNN Models

4.3.1 Meta-Planner Strategy Prediction
The VGG16 architecture is fed with training images as detailed in Section 3.4 and soft labels
of the classes, that is over the set of planning strategies, which in this case refer to the inflation
values. We leverage transfer learning to pre-train the VGG16 model with ImageNet weights,
similar to the strategy for the feature extraction in map prediction, so that training on our dataset
of 300 images with respective labels could be computationally and timewise efficient.

Figure 4.4: Visualization of Meta-Planner Strategy Prediction loss

The model after training and validation has an accuracy of 72% and 61% respectively, however,

29

looking at the training loss and the short amount of epochs it takes to the plateau it could be
a case of over-fitting to the dataset. Thus, while this predictor will work well on the type of
distributions it has already seen, it is likely to fail on distributions it hasn’t seen before.
As a part of future work, one solution to this problem is to use the planning problem distribution
classification metrics as features and replace the VGG16 model with the Random Forests model
for the classification of those features with the labels of the planning strategies.

4.3.2 Map Prediction
The UNet Architecture is fed with training images as detailed in Section 3.5 of size (32x32). The
network is trained for 1.8×106. After 1.02×106 iterations as seen in Figure 4.5 given a percent-
age explored area over varied types and distributions of maps the map prediction network is able
to predict the complexity of the unknown map to an extent over two different distributions. Since
the goal for the map prediction is to inform the meta-planning strategy selection by extending the
boundaries of the explored local region and filling in the unknown spaces, this level of prediction
over the entire database serves the purpose of the map prediction module.

Training and Validation Losses

In this section we look at training results in Figure 4.6 which shows the losses of training the map
prediction network over a combined dataset from Section 3.5 for 1.8× 106 training epochs. This
includes the individual and combined inpainting loss. The weights for the combined inpainting
loss equation as defined in Section 3.5.2, are calculated by a hyperparameter search on 100
validation images as per [18] [27]. They are inflated to prevent overfitting, and tuned on the
considered environment database. The final values are as below:

a = 120, b = 20, c = 0.05, d = 120, e = 2 (4.2)

For the dataset we can see that the losses except Lhole start to plateau around 600,000 training
iterations, and the validation loss doesn’t differ too much. However there is a large amount of
variance per-pixel of the map since the dataset was generated using several different algorithms
and datasets and is of different topologies and clutteredness, as such Lhole and Lvalid’s behaviour
and the noise in the other losses is expected. After multiple tests the weights referenced in Sec-
tion 3.5.2 give the best losses.
Since there is high variability in the maps of the dataset, there is a large enough amount of vari-
ance per-pixel that it is reflected in the L1 norm, as such Lhole and Lperceptual’s behaviour is
expected. Since we are not expecting a perfect map from the prediction, but rather an under-
standing of the complexity or clutteredness of the environment, these results fit the requirements.

30

Figure 4.5: Visualization of Map Prediction results after training on combined datasets

31

Figure 4.6: Losses for training data (orange) and validation data (blue) over 1.8× 106 iterations
over 8000 training and 1000 validation maps from the Maze datasets

32

Chapter 5

Conclusions and Future Work

5.1 Conclusions
The results of the simulations show that the proposed adaptive planning system for path planning
strategies has an expected performance better than that of a randomly-chosen static path planning
strategy to perform exploration task over an environment composed of a distribution of planning
problems using A* with the inflation factor as the path planning strategy.

The proposed adaptive approach leverages the observation that planners can employ different
planning strategies that can leverage the context of the planning problem, that is in this case
the obstacle configuration. However, mapping from obstacle configuration to effective planning
strategy is non-trivial. The proposed framework uses machine learning methods in meta-planner
strategy prediction and map prediction to provide an understanding of the obstacle configura-
tion, or planning problem context, that can be leveraged to adapt prior implemented planning
strategies in contexts where they have the higher performance, thus on average the performance
of the agent remains high and consistent across the distribution of planning problems P (Φ) en-
countered during exploration tasks without need for regular tuning or novel adaptations from
the human designer. This in turn means for applications such as search-and-recuse missions we
can have high consistent performance autonomous agents to carry out essential tasks of finding
survivors and other objects of interest in disaster zones without operator intervening for adapting
to changes in environments.

5.2 Future Work
Currently, the system is focused on the navigation aspect in the scope of exploration, the next
steps would be to improve the goal estimation. For example, switching from frontier based ex-
ploration to information-gain based exploration, as the objective of the exploration is two-fold,
to navigate efficiently and find the goal(s) as quickly as possible. While the latter is not covered
by the scope of this thesis, it is a natural extension to the problem.

Goal estimation is another area of interest to explore within this framework. Currently, in the

33

exploration task, we have no prior information about the goal and assume a uniform probabil-
ity of goal location in unknown space until it is found. It would be interesting to explore how
adding a prior on the goal location could be leveraged by modules of the current framework. For
example, we receive the local area map of the goal, then using map prediction we can estimate
the goal location and drive our exploration towards those areas.

The current map representation is of an occupancy grid representation that adds the constraint
of a fixed size map onto the problem. However, in real-life, map sizes are usually unknown or
grow with exploration. It would be beneficial to this research to consider graphs instead of
grid maps for environment representation as graphs are easily scalable. For simplicity, consider
a graph representation of a grid map where each cell is a vertex and is only connected to its
neighbors. Then we can expand the graph as needed. Map prediction and meta-planner strategy
prediction would need some tweaks in their loss function and feature representation. Since we
tend to overfit over images using the current VGG16 framework for the meta-planner strategy
prediction, an extension would be to replace the model with Random Forests, or Decision Trees
based on the planner distribution metrics define in Section: 4.1.1. One solution to capture the
situation where the start and goal are in different connected components of the free space is to
use the search-based planner’s expanded area to find a path from the start and goal as a metric.

For testing, in the scope of this thesis we focused primarily on A* as the base planner and the
planner set comprised with a range of inflation factor values, the next step would be to integrate
and test with:
• Heuristic planners with a planner set of multiple heuristics or hyperparameter values that

are dependant on the environment.
• Planner set of multiple planners with separable performance in different environments
• Tuning hyperparameter of a different set of planner, for example RRT from sample-based

planning
In terms of the whole system, an interesting method to learn by experience could be by self-
learning from past mistakes or less optimal planner strategy selections made in the past. Similar
to how AlphaGo trains itself, an extension of this framework would be to train its adaptivity
through prior experience.

34

Bibliography

[1] Jeffrey A Caley. Deep learning for robotic exploration. 2019.

[2] Jeffrey A Caley, Nicholas RJ Lawrance, and Geoffrey A Hollinger. Deep learning of struc-
tured environments for robot search. Autonomous Robots, 43(7):1695–1714, 2019. 2.3

[3] John Canny. The complexity of robot motion planning. MIT press, 1988. 1

[4] S. Choudhury, S. Arora, and S. Scherer. The planner ensemble: Motion planning by ex-
ecuting diverse algorithms. In 2015 IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 2389–2395, 2015. 1

[5] S. Choudhury, A. Kapoor, G. Ranade, and D. Dey. Learning to gather information via
imitation. In 2017 IEEE International Conference on Robotics and Automation (ICRA),
pages 908–915, 2017.

[6] Sanjiban Choudhury. Adaptive Motion Planning. PhD thesis, Pittsburgh, PA, February
2018. 2.2, 2.2.1

[7] Sanjiban Choudhury, Mohak Bhardwaj, Sankalp Arora, Ashish Kapoor, Gireeja Ranade,
Sebastian Scherer, and Debadeepta Dey. Data-driven planning via imitation learning, 2017.
2.2.2

[8] Sanjiban Choudhury, Ashish Kapoor, Gireeja Ranade, and Debadeepta Dey. Learning to
gather information via imitation. In 2017 IEEE International Conference on Robotics and
Automation (ICRA), pages 908–915. IEEE, 2017.

[9] Rina Dechter and Judea Pearl. Generalized best-first search strategies and the optimality of
a. Journal of the ACM (JACM), 32(3):505–536, 1985. 1

[10] Debadeepta Dey, Tian Yu Liu, Martial Hebert, and J Andrew Bagnell. Contextual sequence
prediction with application to control library optimization. Proceedings of robotics: Sci-
ence and systems VIII, 2013.

[11] Amine Elhafsi, Boris Ivanovic, Lucas Janson, and Marco Pavone. Map-predictive motion
planning in unknown environments. arXiv preprint arXiv:1910.08184, 2019. 2.3

[12] David Hsu, J-C Latombe, and Rajeev Motwani. Path planning in expansive configuration
spaces. In Proceedings of International Conference on Robotics and Automation, volume 3,
pages 2719–2726. IEEE, 1997. 1

[13] Shikha Jain, S Nandy, G Chakraborty, CS Kumar, R Ray, and SN Shome. Error modeling
of laser range finder for robotic application using time domain technique. In 2011 IEEE In-
ternational Conference on Signal Processing, Communications and Computing (ICSPCC),

35

pages 1–5. IEEE, 2011. 3.1.1

[14] Xinyue Kan, Hanzhe Teng, and Konstantinos Karydis. Online exploration and coverage
planning in unknown obstacle-cluttered environments, 2020. 2.3.2

[15] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal motion plan-
ning. The international journal of robotics research, 30(7):846–894, 2011. 1

[16] Steven M LaValle. Rapidly-exploring random trees: A new tool for path planning. 1998. 1

[17] Steven M LaValle. Planning algorithms. Cambridge university press, 2006. 1

[18] Guilin Liu, Fitsum A Reda, Kevin J Shih, Ting-Chun Wang, Andrew Tao, and Bryan Catan-
zaro. Image inpainting for irregular holes using partial convolutions. In Proceedings of the
European Conference on Computer Vision (ECCV), pages 85–100, 2018. 2.3, 4.3.2

[19] Matteo Luperto, Luca Fochetta, and Francesco Amigoni. Exploration of indoor environ-
ments predicting the layout of partially observed rooms. arXiv preprint arXiv:2004.06967,
2020.

[20] Ratnesh Madaan, Sam Zeng, Brian Okorn, and Sebastian Scherer. Learning adaptive sam-
pling distributions for motion planning by self-imitation.

[21] Marco Morales, Lydia Tapia, Roger Pearce, Samuel Rodriguez, and Nancy Amato. A Ma-
chine Learning Approach for Feature-Sensitive Motion Planning, volume 17, pages 361–
376. 10 2005. doi: 10.1007/10991541 25.

[22] Aleksandr I Panov, Konstantin S Yakovlev, and Roman Suvorov. Grid path planning with
deep reinforcement learning: Preliminary results. Procedia computer science, 123:347–
353, 2018. 3.2.3

[23] Walter D. Pullen. Perfect maze creation algorithms, 2015. URL http://www.
astrolog.org/labyrnth/algrithm.htm. 3.2.1

[24] Barak Raveh, Angela Enosh, and Dan Halperin. A little more, a lot better: Improving
path quality by a path-merging algorithm. IEEE Transactions on Robotics, 27(2):365–371,
2011.

[25] Charles Richter, William Vega-Brown, and Nicholas Roy. Bayesian learning for safe
high-speed navigation in unknown environments. In Robotics Research, pages 325–341.
Springer, 2018.

[26] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In International Conference on Medical image computing
and computer-assisted intervention, pages 234–241. Springer, 2015.

[27] Manish Saroya, Graeme Best, and Geoffrey A. Hollinger. Online exploration of tunnel
networks leveraging topological cnn-based world predictions. In Under Review, 2020. 2.3,
3.5.1, 4.3.2

[28] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[29] N. Sturtevant. Benchmarks for grid-based pathfinding. Transactions on Computational
Intelligence and AI in Games, 4(2):144 – 148, 2012. URL http://web.cs.du.edu/

36

http://www.astrolog.org/labyrnth/algrithm.htm
http://www.astrolog.org/labyrnth/algrithm.htm
http://web.cs.du.edu/~sturtevant/papers/benchmarks.pdf
http://web.cs.du.edu/~sturtevant/papers/benchmarks.pdf
http://web.cs.du.edu/~sturtevant/papers/benchmarks.pdf

˜sturtevant/papers/benchmarks.pdf. 3.2.2

[30] Abhijeet Tallavajhula and Sanjiban Choudhury. List prediction for motion planning: Case
studies. Robotics Institute, Pittsburgh, PA, Tech. Rep. CMU-RI-TR-15-25, 2015. 2.2.1

[31] Abhijeet Tallavajhula, Sanjiban Choudhury, Sebastian Scherer, and Alonzo Kelly. List
prediction applied to motion planning. In 2016 IEEE International Conference on Robotics
and Automation (ICRA), pages 213–220. IEEE, 2016. 1, 2.2.1

[32] Sebastian Thrun. Probabilistic robotics. Communications of the ACM, 45(3):52–57, 2002.
2.1, 2.1.1, 3.1.1

[33] Brian Yamauchi. A frontier-based approach for autonomous exploration. In Proceedings
1997 IEEE International Symposium on Computational Intelligence in Robotics and Au-
tomation CIRA’97.’Towards New Computational Principles for Robotics and Automation’,
pages 146–151. IEEE, 1997.

37

http://web.cs.du.edu/~sturtevant/papers/benchmarks.pdf
http://web.cs.du.edu/~sturtevant/papers/benchmarks.pdf
http://web.cs.du.edu/~sturtevant/papers/benchmarks.pdf

	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Contribution

	2 Related Work
	2.1 Map Representation
	2.1.1 Occupancy Grid Mapping

	2.2 Adaptive Motion Planning
	2.2.1 Black Box Adaptive Planner
	2.2.2 White Box Adaptive Planner

	2.3 Map Prediction
	2.3.1 CNN Model: U-Net
	2.3.2 InPainting Loss

	2.4 Goal Estimation
	2.4.1 Frontier-Based Exploration

	3 Approach
	3.1 Mapping
	3.1.1 Laser RangeFinder Sensor Model

	3.2 Environment Datasets
	3.2.1 Map Generation
	3.2.2 PathFinding Benchmark Datasets
	3.2.3 Greedy Agnostic Maps

	3.3 System Design Overview
	3.4 Meta-Planner Strategy Prediction
	3.4.1 CNN Model: VGG16

	3.5 Map Prediction
	3.5.1 CNN Model: UNet
	3.5.2 InPainting Loss

	3.6 Frontier-Based Goal Estimation

	4 Experiments and Results
	4.1 Simulation
	4.1.1 Planning Problems Distribution

	4.2 Search Based Planning Evaluation: Weighted A*
	4.2.1 Performance Criteria
	4.2.2 System Evaluation

	4.3 CNN Models
	4.3.1 Meta-Planner Strategy Prediction
	4.3.2 Map Prediction

	5 Conclusions and Future Work
	5.1 Conclusions
	5.2 Future Work

	Bibliography

