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Summary

Geometric mechanics offers a powerful mathematical framework for studying lo-
comotion for mobile systems. Despite the well-established literature, challenges
still remain when using geometric mechanics to design gaits for robots made of
multi-link chain, and in this thesis, we will look at two of them. First, for a
large class of nonholonomic systems, singular configurations appear when con-
straints are violated, resulting in infinite quantities in the equations of motion that
govern the motion of the robot. Second, most geometric mechanics models rely
heavily on system symmetry in SE(2) (i.e. invariance of system dynamics and
constraints with respect to the system orientation) to simplify motion analysis. As
a result, locomotion is rarely studied on non-flat surfaces which break the symmetry
assumption.

In this work, we take initial steps in establishing a formal understanding of those
two fundamentally different challenges under a common framework of three-link
kinematic system. The thesis is organized in two parts. The first part focuses on
addressing the effect of singularities when designing gaits for a 3-link kinematic
snake in SE(2). We show how to combine our singularity treatment with an adapted
variational optimizer to find high-efficiency gait under the defined cost metrics.
The second part focuses on understanding the geometric properties of a novel 3-link
kinematic system on curved position space, specifically on the cylindrical surface.
Interesting features arise when the surface curvature imposes additional mechanical
constraints on the system, thereby making the locomotion analysis, such as the
local connection and total lie bracket, dependent on system orientation.
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Chapter 1

Introduction

Many biologically-inspired robots composed of multi-link chain utilize undulatory
motion to move through challenging terrains. We view those robots as having
internal degrees of freedom which, when controlled strategically, result in desired
displacement. Those internal shape changes, when periodic, are called gaits, and
the geometric mechanics provides theoretic foundation to analyze and select good
gaits. Understanding how the internal shape change of these systems transfer to
useful body motions has led to many important insights on robot designs that
mimic biological organisms.

Despite the rich body of literature, challenges still remain when employing
geometric mechanics tools to design desirable gaits for the link-like robots. First of
all, for a large class of link-like systems with nonholonomic constraints, singular
configurations appear when nonholonomic constraints are violated (e.g. one or
more of the constraint equations becomes a linear combination of the others), at
which point infinite qualities occur in the equations of motion. The singularity
poses challenges to the use of many classical geometric tools, and thus is often
simply avoided without much exploration. Secondly, current research in geometric
mechanics models relies heavily on system symmetry SE(2) (i.e. invariance of
system dynamics and constraints with respect to coordinate choice) to simplify
motion analysis. As a result, locomotion is rarely studied on non-flat surfaces that
break the symmetry assumption, which is usually what robots will encounter in
the real world environment. In this thesis, we take first steps in establishing formal
understanding of those two challenges and develop corresponding solutions to them.

In the grander scheme of geometric mechanics, the singularity problem and the
symmetry-breaking problem evolve around fundamentally separate topics, with the
former appearing primarily in nonholonomic kinematic snake models and the latter
extending to a much broader spectrum of mobile systems. Because of this, we divide
our work in this thesis into two disjointed parts. Nevertheless, due to the scope of
our study, we connect our approaches and intermediate solutions of those problems
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Introduction

through the common framework of three-link kinematic nonholonomic systems.
In the first part, we show that rather than avoiding singularity, gait designs for
kinematic snake in SE(2) that purposefully enclose the singularity region can
produce high efficient gaits. In the second part, we present a new mechanical
model of the 3-link nonholonomic kinematic system that works with a cylindrical
surface. We show that, through derivation of the reconstruction equation and total
Lie brackets of the new system, the effect of surface curvature towards locomotion
manifest through an dependency on body coordinate orientation.
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Chapter 2

Background

Much of the geometric locomotion framework for the multi-chain systems can be
traced back to Walsh and Sastry [1], who pioneered the work of planar three-link
systems. They derived a specific form of the Lagrangian to generate gaits for
snake-like robots. Ostrowski and Burdick et al. [2] took advantage of the idea
of translational symmetry from physics and projected the entire dynamics of the
system onto the joint space; this relates system control inputs and the corresponding
body position changes. Additionally, they combined the reconstruction equation
with Lie bracket theory to generate sinusoidal gaits. Using this approach, they
intuitively developed and analyzed gaits for kinematic systems with nonholonomic
constraints. Shammas et al [3] and other researchers [4] combined the idea of Stokes’
theorem with the reconstruction equation to define “height functions” - the curl
of the connection vector field - on the shape space of the three-link robots. This
opened up opportunities to design visual tools to select desirable system locomotion
patterns. Hatton and Choset [5] addressed the limitation of the “height functions”
that makes them only useful when designing small cyclical gaits. They introduced a
choice of coordinates that reduced the approximation error by making appropriate
choices of system parameterization. More recently, Ramasamy and Hatton [6, 7]
developed a gradient-based optimizer for drag-dominated systems. The cost metric
used in the optimizer, which measures locomotion efficiency, is in line with Hatton’s
work on kinematic cartography and uses curvature of system constraints for the
power dissipation metric[8]. By using the gradient-based optimizer, Faraji et al.[9]
developed a framework for motion planning in inertia-dominated systems. A new
inertial cost metric is designed to better account for the energy dissipated through
the robots actuators.

Building on top of the aforementioned theoretical foundation, in this thesis
we focus on establishing geometric understanding of locomotion for the three-link
kinematic systems, both in SE(2) and on the surface of a cylinder. Hence, we
provide a brief overview of geometric mechanics concepts that are essential to
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analyzing and designing gaits, such as the reconstruction equation and the Lie
bracket technique. Having established the mathematical preliminaries, we will
also look at recent developments in gait optimization using a variational optimizer.
Specifically, we discuss the gradient components of the developed optimizer and
the efficiency metric used for performance evaluation.

2.1 Geometric Motion Planning

2.1.1 Reconstruction Equation
For mobile systems, the configuration space Q is naturally composed of the position
space G and shape space M , such that the position g ∈ G locates the system
in the world, and the shape r ∈ M tells the relative arrangements of each
component of the system. Q = M × G is a trivial principal fiber bundle, where
M is the base space, and G is the fiber space [3]. When describing the system
locomotion in body coordinates, the body representations of the robot dynamics
and constraints formulate a connection on configuration space Q, which describes
allowable combinations of body and shape velocities to locomote.

The geometric mechanics community has exploited this connection structure with
the development of the kinematic reconstruction equation[1, 2, 3]. For principally
kinematic systems, where the holonomic constraints are invariant to the system
position and orientation, the kinematic reconstruction equation takes the following
form:

g̊ = −A(r)ṙ (2.1)
where g̊ represents the system body frame velocities. and the local connection A(r)
maps the system shape velocities ṙ to those body velocities. The biggest advantage
of formulating the kinematic reconstruction equation is that it reduces control of
the whole system to control of the system’s shape.

2.1.2 Connection Vector Field
In the reconstruction equation, the local connection A(r) acts as a Jacobian-like
matrix linking shape velocity and position velocity, thus capturing the relationship
between shape and position changes. Hatton and Choset[10] further expanded the
geometric meaning of A(r) and created connection vector fields, which can be used
to identify the translation and rotation components of a shape space trajectory.
Mathematically, the connection vector field are the covectors in the ith row of
−A(r), where the ith component of the system position space velocity is Ai(r).

g̊i = Ai(r) · ṙ (2.2)

4



Background

where the superscript i is the ith row of the local connection −A(r). By representing
the local connection as sets of vector fields on the shape space, motion planners
can more easily identify useful shape changes that generate forward, lateral or
rotational system motion.

2.1.3 Lie Bracket Techniques and the Importance of Coor-
dinate Choice

Lie-bracket theory has long be identified as a useful tool to design gaits for mobile
systems. Ostrowski and Burdick[4, 11] combined the reconstruction equation with
Lie bracket and Stokes’ theorem to generate sinusoidal gaits that translate and
rotate a variety of snakelike systems. However, only gaits with very small amplitude
in the shape space can be considered as a infinitesimal oscillation of the shape, so
the Lie bracket was only used to explain net motion resulting from small cyclical
shape inputs. Explaining the motion of a large amplitude gait was challenging
because, in their work, the approximation accuracy of the translational motion
depends on different choices of body coordinates.

In Hatton and Choset[12], they separated out the non-conservative and the
noncommuntative components from the Lie bracket derivation. They showed that
with appropriate choice of body coordinate, the non-communtative effect can be
diminished and thus geometric integration via Stoke’s theorem gives good approx-
imation of the system true displacement over big-amplitude gaits. The optimal
choices of such body coordinate, called the minimum perturbation coordinate,
minimizes the rotation of the body frame in response to changes in system shape.
We refer the readers to [12, 13] for detailed information.

2.2 Variational Gait Optimizer
Using Lie brackets of the system dynamics can help engineers to empirically select
gaits that that yield large net forward displacement. However, two obstacles
hinder more versatile gait designs. First, the noncommutativity in the equations of
motion means that Lie brackets averaging provides only an approximation of the
displacement induced by a gait, and the error increases with the amplitude of the
shape input. Second, the traditional “hand-drawn” gaits are not guaranteed to be
anywhere near the optimal solution under sophisticated evaluation metrics.

To mitigate these problems, Ramasamy and Hatton[7] developed a variational
optimizer which encodes the previously developed geometric insights into a gradient-
descent solver. In their work, analytical expressions are replaced by numerical search
along a potentially high-dimensional space of gait parameters, thereby speeding
up the gait design process and resulting in gaits with improved performance. For
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the sake of completion, the next two subsections provide a brief summary of cost
function as well as the optimization gradients. We refer the readers to [7, 6] for a
comprehensive discussion of optimizer design details.

2.2.1 Efficiency Cost Function
When considering locomoting robots, it is often useful to observe the efficiency
of locomotion such that the energy expended to produce a given displacement is
minimized. The the efficiency of locomotion can thus be calculated by dividing the
net displacement of the gait by the cost to execute the gait:

η = gΩ

s
(2.3)

We assign gΩ to be the net displacement over the gait, and cost s to be the
system effort to compete the gait. For locomotion system with inertial effect,
Hatton et al. [9] devised an alternative cost sT , which is a function of combined
torque exerted by the system joint motors to execute a specific gait in unit time T

sT =
(∫ 1

0
τ 2
)1/4

(2.4)

The equivalent cost function sT constrains the total gait execution time and
this makes the system to move as fast as it can while operating under finite power.
Therefore, η = gΩ

sT
is used as the efficiency cost function of the optimizer.

2.2.2 Gradient Components of the Optimizer
The gradient of the locomotion efficiency η with respect to a gait parametrization
p can be written as:

∇pη = ∇p
gΩ

sT
= 1
sT
∇pgΩ −

gΩ

s2
T

∇psT (2.5)

The differential equation in Eqn[2.5] shows an analogy to the formation of a soap
bubble: the first term, which contains ∇pgΩ, seeks to expand the gait trajectory in
order to achieve more gait displacement, and the second term, which contains ∇ps,
seeks to constrain the growth of the bubble [7]. To search for the maximally-efficient
gait, we perform gradient descent on Eqn[2.5]. The locally optimal result is found
when the gradient of the local efficiency ∇pη equals to 0:
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Chapter 3

Part I: Gait Optimization
with Singularity Treatment
for Three-Link Kinematic
Snake in SE(2)

The three-link nonholonomic kinematic system, or the kinematic snake robot, is a
multi-body locomotion system. Each link of kinematic snake can only move in its
longitudinal direction but not the lateral direction due to the presence of passive
wheels. Those constraints on link-wise velocity are called nonholonomic constraints,
and they dictates the motion of the kinematic snake to be purely governed by its
shapes changes. Cyclical shape changes, called gaits, are developed to produce
useful system body motion, and choosing appropriate gaits are important to improve
the locomotion performance of the kinematic snake robot.

One of the challenges in designing desirable gaits for the kinematic snake is
that the system can enter singular configurations, or singularity. Mathematically,
the local connection matrix becomes rank-deficient at singularity and its inverse
is analytically unsolvable. The singularity poses challenges to the use of many
geometric motion planning tools and thus is often deliberately avoided. In this work,
we propose a new singularity treatment method that numerically approximates the
effect of the singularity on the system locomotion. We implemented our method
within an adapted framework of a variational gait optimizer to find the locally
optimally efficient gait for the three-link kinematic snake. We show that, rather
than avoiding singularity, gait designs that purposely enclose the singularity region
can ultimately produce the best results given specified cost functions.
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Part I: Gait Optimization with Singularity Treatment for Three-Link Kinematic Snake in SE(2)

Figure 3.1: The geometric configuration of the three-link kinematic snake robot
in SE(2), adapted from Ross et al[10]. Passive wheelsets on the links of the system
prevent lateral slippage while freely allowing longitudinal translation. The control
inputs are the joint angles, and though system body frame is shown on the middle
link, it could be chosen differently

3.1 System Model

The framework of the three-link, nonholonomic kinematic snake is presented in
[3]. Here, we briefly discuss key concepts and equations for completeness. The
configuration of the kinematic snake denoted by q = (g, r) ∈ Q = G×M , where
Q is the configuration composed by position space G and shape space M . Fig.3.1
shows an example of the kinematic snake model. The position and orientation of
the system is denoted as g = (x, y, θ) ∈ G = SE(2) and is placed at the center of
the middle link. The shape of the system is parametrized by the two joint angles,
r = (α1, α2). The separation of position space G and shape space R is beneficial:
the position g ∈ G locates the system in the world, and the shape r ∈M gives the
relative arrangements of its bodies.

For kinematic snake, the wheels at the centers of the links create a set of
nonholonomic constraints that confine the system’s motion. The constraints can
be written in the form

0
0
0

 =

ẋẏ
θ̇

 = A(q)
[
α̇1
α̇2

]
(3.1)

Normalized for unit body-length, the reconstruction equation for kinematic
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Part I: Gait Optimization with Singularity Treatment for Three-Link Kinematic Snake in SE(2)

Figure 3.2: From left to right, kinematic snake connection vector fields and
constraint curvature functions (CCFs) of the three position space components x, y
and θ, all in optimized body coordinates. each CCF corresponds to a row in the
system’s local curvature D(−A) defined in [12]. The value of the CCF at each
point correspond to the local curvature at the shape space location [12]. Red
regions of the CCFs are positive and black regions are negative. The singularity
configuration of the system correspond to the α1 = α2 line in the plots above, as
the singularity effect causes discontinuities in function values.

snake can be explicitly written as the following:g̊xg̊y
g̊θ

 = − 1
D

(1 + cosα2)/6 (1 + cosα1)/6
0 0

sinα2 sinα1

 [α̇1
α̇2

]
(3.2)

where D = sinα1 − sinα2 + sin(α1 − α2)

3.2 Singular Configurations
In mechanical systems, singular configurations are those where the required body
velocities and other physical quantities become infinite due to the loss of a degree
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Part I: Gait Optimization with Singularity Treatment for Three-Link Kinematic Snake in SE(2)

of control freedom. Motion planning for those mechanical systems usually stays
away from such configurations to avoid infinite operation cost[14]. For the nonholo-
nomic kinematic snake robot, singular configurations appear when the mapping
between joint and system body frame velocity becomes rank insufficient, resulting
in discontinuities in calculations. This corresponds to situations where α1 = α2
An example of the singularity configuration of the kinematic snake is shown in
Fig(3.3). Geometrically, the directions of the three constraint forces all intersect at
a common point, meaning that one constraint is redundant given the other two
[15]. When this happens, the local connection matrix becomes singular. However,
it is possible for the system to transition through the singular configuration while
respecting the nonholonomic constraint. Plugging α1 = α2 into Eqn[3.2] yields
a shape velocities constraint such that α̇1 = −α̇2. When representing the shape
space as a 2D space spanned by α1 and α2, the system will need to go across the
α1 = α2 line at a right angle.

The idea of smoothly guiding the two joint velocities α̇1 and α̇2 to be equal
and opposite as the system approaches singularity has been briefly explored in
[15, 14]. Tony Dear devised a hybrid kinodynamic model that pulls the system
into zero joint velocities for singularity crossing, which allow the system to exhibit
transient dynamic properties. However, this kinodynamic method requires joints to
be locked (α̇1 = −α̇2 = 0) at singular configuration and that the system requires
external forcing to exit the dynamic mode.

In our work, we assume singularity crossing is transient, and thus joint locking
is not required as long as α̇1 = −α̇2. Our assumption corresponds to the physical
intuition that an instantaneous “drift” happens to the kinematic snake when one
control input becomes compliant while the whole system velocity is non-zero.
Moreover, the system continues to behave kinematically after this instantaneous
drift. Because singularity treatment is often specific to the chosen motion planning
strategy, our analysis of system locomotion at the singularity is presented with
combination of the gait-optimization framework recapped below.

3.3 Optimization for High-Efficiency Gaits
The gradient-descent based gait optimizer has the benefit of automatically converg-
ing to local optimal results that are challenging to discover by traditional methods.
The efficiency cost of the optimizer is represented as net gait displacement gΩ
divided by gait execution cost T For a gait parametrization p, the maximum
efficiency occurs when gradient of efficiency gΩ

T
becomes zero as in Eqn[2.5].

An important design factor of the optimizer is gait parametrization. In order
to easily derive the gait displacement and cost as well as their gradients with
respect to the gait parametrization variables, we use two parallel methods, first
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Figure 3.3: An example of three-link kinematic snake in singular configuration.
The directions of the three constraint forces acting on the wheel set of each link
intersect at a common point, meaning that one is redundant given the other two.

developed by Ramasamy and Hatton [7], to describe the shape of the gait. The
first method is called the direct waypoint parametrization, which assign points
to shape space trajectory equally spaced in time. The second method is called
the Fourier parametrization, which uses low-dimensional Fourier series to capture
the gait’s cyclical nature. The synergy of the two parallel gait parametrizations
is crucial. Whereas the direct way points provide convenient, discrete method to
calculate the surface integral, the Fourier functions make it possible to impose
constraints necessary to preserve the system’s kinematic properties at the singularity
configuration.

In Eqn[2.5], we have written the gradient of gait efficiency in two components,
which together bear similarity to the growth of the soap bubble. In terms of
numerical calculation, the ∇ps term can be calculated by finding the partial
derivatives of the cost with respect to the gait parametrization. Derivation details
of ∇ps are discussed in [9], and are not repeated here. However, the calculation of
∇pgΩ term potentially involves surface integral of singularity-enclosing area, and
therefore it deserves careful treatment discussed in the next section.

3.3.1 Approximating the ∇pgΩ term at Singularity

Considered independently, the gradient term ∇pgΩ pushes the gait towards the
shape that yields the maximal displacement. In shape space regions where the
body velocity integral approximate the true system displacement well, the net
displacement gΩ of a given gait Ω is approximately the line integral of the body
velocity along the gait cycle [5]. This line integral can be approximated by an area
integral of total Lie Bracket D(−A) of the local connection over the surface Ωa
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bounded by the cycle [12].

gΩ ≈
∫

Ω
A(r) dr ≈

∫∫
Ωa
D(−A) dr1dr2 (3.3)

To examine how variations in gait parametrization p changes the net displacement
gΩ, we calculate the gradient term ∇pgΩ via an application of the Leibniz integral
rule. This allows us to re-write the gradient of the area integral gΩ in Eqn[3.3] as
the interior product of the integral’s boundary gradient with its integrand.

∇p

∫∫
Ωa

D(−A) =
∮

Ω
(∇pΩ)yD(−A) (3.4)

where D(−A) is the local curvature of the connection and can be visually repre-
sented in the surface plot in Fig(3.2) [12]. The right-hand side of Eqn[3.4] can be
discretely approximated by summing up the variations of gait-enclosed area induced
by the waypoint movements along the gait multiplied by the corresponding D(−A)
values at corresponding waypoints. In terms of implementation, the variations of
the gait-enclosed area induced by each waypoint is captured by a triangle formed
by the waypoint to-be-moved and its two neighbors [7]. Since the value of D(−A)
is finite everywhere but the singularity, this discrete approximation method is
applicable to all waypoints except for those at or adjacent to the shape space
singularity line.

As shown in Fig.(3.2), values of D(−A) go to infinity at the singularity, and
therefore multiplying this unbounded D(−A) to a finite quantity will produce an
infinite value. To tackle this problem, we introduce a new method to infer the
infinite values while properly preserving the effect of singularity to the system.
Instead of calculating D(−A) directly at singularity, we numerically approximate
this value from discrete waypoints immediately adjacent to the singularity. To
do this, we find the four closest points near singularity, two on each side of the
singularity line. We define two local directions: e‖ = pi − pi−1 and e⊥ ⊥ e‖, as
shown Fig.(3.4), where pi and pi+1 form a pair of waypoints which immediately
neighbor the singularity line from both side. Closely following the method in [7],
this pair of waypoints is moved together in the e⊥ direction to ensure the line
segment pi − pi−1 crosses the singularity line perpendicularly. Movements of those
points induce a change in the waypoint-enclosed area, which we will refer to as the
“generalized chevron”.

As before, the optimization gradient component ∇pgΩ at the pair of waypoints pi
and pi−1 can be calculated by multiplying the change in waypoint-enclosed area by
the corresponding D(−A) values. Whereas the D(−A) value corresponding to the
two triangular regions on either side of the generalized chevron are finite and can be
used directly, the D(−A) value corresponding to rectangular region in the middle
sits directly at singularity and needs to be treated specially. Special treatment has
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Figure 3.4: This figure illustrates the change in area caused by points immediate
adjacent to the singularity line moving in directions orthogonal to the local curvature.
The two points on either side of the singularity line move in pairs to respect the
system nonholonomic constraints.

to take place at singularity because, ideally, the waypoints pi and pi−1 are infinitely
close to each other to accurately represent the shape of the gait. In that case,
the segment pi − pi−1 produces 0 length and so is the area of the rectangle region.
Therefore, simply multiplying the 0-area of the rectangle to an infinite D(−A)
value gives an indeterminate answer. However, we can numerically approximate
the indeterminate answer by a two-step method; first we approximate the D(−A)
by the curl of the system connection vector field[12], and then we approximate the
curl using a microscopic circulation. Referring back to the definition of the Green’s
Theorem, the sum of all the differentially small circulation that is inside the closed
boundary equates the macroscopic circulation around the boundary:∫

Ω
A(r) =

∫∫
Ωa

curl A(r)· n̂ (3.5)

Since the co-vectors Ax(r) of the kinematic snake are equal and opposite on
either side of the singularity line (and no vector component goes perpendicularly
across singularity) a microscopic circulation sitting across singularity line can be
represented as:

microscopic circulation ≈ Axpi(r)− A
x
pj

(r) (3.6)

In this way, the effect of surface integral of an infinitely slim region around the
singularity, can be represented as adding up those “microscopic circulation” along
e⊥. Consequently, the internal pressure associated with the rectangular region can
be calculated as:

∇pφrectangle = 1
N

N∑
k=1

Axpki
(r)− Axpkj (r) (3.7)
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Figure 3.5: The volume of constraint curvature function within boundary is
approximately the sum of microscopic circulation, shown in the graphs above. For
boundary enclosing infinitesimally narrow strip, the circulations stack up along the
singularity line.

where k is the number of query points sampled along e⊥. In implementation,
the effect ∇pφrectangle is shared by both of the way points at either side the of
singularity.

3.3.2 Singularity Crossing Constraints

As discussed in the previous section, for gaits passing through singularity and at
the same time respecting nonholonomic constraints, the trajectory curvature in
shape space has to cross the singularity line at a right angle. This is equivalent to
maintaining joint angular velocities of α̇1 = −α̇2, which forms a special velocity
constraint on the system. Any other pair of joint velocities that are not equal and
opposite will violate the wheel set “no slip” condition at the singular configurations.
It is therefore important for gait parametrization methods to incorporate this
velocity constraint to model the locomotion of kinematic snake correctly.

In our implementation, the optimization gradient is applied to the Fourier
transcription of the gait, which is composed of two low-order Fourier functions
which individually describes each of the joint angles. The gait can be represented
as follows:

Ω(t) =
[
α1(t)
α2(t)

]
=
∑k

j=1

[
aα1
j cos(iωt) + bα1

j sin(iωt)
]

+ cα1 ]∑k
j=1

[
aα2
j cos(iωt) + bα2

j sin(iωt)
]

+ cα2 ]

 (3.8)
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aαi , bαi , and cα are Fourier coefficients, and k is the order of the Fourier functions.
The presence of Fourier frequency ω = 2π guarantees that the gait is closed and
that the shape formed by the first Fourier components loops around exactly one
time give a time period of T = 1. We can arrange those gaits such that they
pass through singularity at t1 = 1/2 and t2 = 1. Correspondingly, we impose the
“crossing singularity line at right angle” constraint such as shape velocity at t1, t2
is orthogonal to the direction of the singularity line.

dα1(t)
dt
|(t1, t2) = −dα2(t)

dt
|(t1, t2) (3.9)

Using the Fourier parametrization of the gait, Eqn[3.9] yields:
k∑
i=1

(
aα1
j jω sin(jωt) + bα1

j jω cos(jωt) + aα2
j jω sin(jωt) + bα2

j jω cos(jωt)
)
|(t1, t2) = 0

(3.10)
With t1 = 1/2 and t2 = 1, and plug in ω = 2π, the equation can be further

simplifed as:

k∑
j=1

ωj
(
bα1
j + bα2

j

)
= 0 (3.11)

Eqn[3.11] is valid when the gait passes through singularity exactly at t1 = 1/2
and t2 = 1. To ensure this happens, we impose a second constraint on joint angles
such that:

α1(t)|(t1, t2) = α2(t)|(t1, t2) (3.12)
Parametrize α1(t), α2(t)using fourier functions, we have

k∑
j=1

[(
aα1
j cos(jωt) + bα1

j sin(jωt)
)
−
(
aα2
j cos(iωt) + bα2

j sin(iωt)
)]
|(t1, t2)+cα1−cα2 = 0

(3.13)
*

With the same conditions t1 = 1/2 and t2 = 1, ω = 2π, we arrive at:

k∑
j=1

(
aα1
j − aα2

j

)
+ cα1 − cα2 = 0 (3.14)
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3.3.3 Optimizer Implementation Details

3.3.4 Choice of Seed Gait
The aforementioned optimizer uses Body Velocity Integral (BVI) as an approxima-
tion of system displacement over gait. BVI is a reliable measurement of displacement
over a gait if the system rotation during the execution is small at all time [5]. This
is given by the error εζ between the BVI and displacement over an arbitrary gait:

εζ =
∫

Ω

1− cos θ sin θ 0
− sin θ 1− cos θ 0

0 0 0


g̊xg̊y
g̊θ

 (3.15)

Since BVI and the later developed corrected body velocity integral (cBVI) are
building blocks of height-function-based visual gait designs, identifying situations
where εζ is small is instrumental to discover desirable gaits that produces forward
displacement as expected [12]. The optimizer operates in regions with large rotations
will not only generate incorrect optimization gradient, but also risk being trapped
in undesirable local minimum.

To ensure that the gait optimization process converges to the desired optimum,
we carefully choose initial shape space trajectory input, called seed gait, from the
best-performing seed gaits obtained from an exhaustive search in a low-dimensional
Fourier parametrization space. Since the lowest frequency sinusoidal waves of
Fourier functions are dominant and largely determines the size and the shape of
the composed gait, we can simplify Eqn[3.8] to arrive at the form:

Ω′(t) =
[
α1(t)
α2(t)

]
=
[
cα1 + aα1

1 cos(ωt) + bα1
1 sin(ωt)

cα2 + aα2
1 cos(ωt) + bα2

1 sin(ωt)

]
(3.16)

In addition, We are interested in gaits with small net rotations, both to reduce
εζ and to encourage large forward motion with respect to the system’s body frame.
To this end, we focus on the behaviour of symmetrical gaits that are centered in
shape space, which leads to simplified parametrization.

Ω′(t) =
[
α1(t)
α2(t)

]
=
[
a1 cos(ωt) + b1 sin(ωt)
a1 cos(ωt) + b1 sin(ωt)

]
(3.17)

The Fourier functions above generate elliptical gaits with various principal axis
lengths and align with the singularity line. The simplified parametrization has
the additional benefit of easy visualization. With only two free variables a and b,
we can identify regions with high displacement, and subsequently, gait efficiency
directly on plot shown in Fig(3.6).
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Figure 3.6: a) the best local minimums in terms of locomotion efficiency when
using eqn[3.17] to describe the seed gait. The plot is axis symmetric around
origin. Red regions corresponds to positive efficiency and black values correspond
to negative efficiency. The green circles shows the best A,B values. b) the figure
shows the corresponding shape space trajectory corresponding to the green circles
in a). The trajectory is overlaid on connection vector field in body frame forward
direction.

Notice that multiple efficiency optimums appear near the singularity configura-
tion, but only some optimums lie in the region where εζ is small. Since the best
efficiency optimums are fortunately associated with small εζ , we choose them to
form the seed gait for our optimization process.

3.4 Results and Discussion
Fig.(3.7) shows the final result of the optimized gait for forward-moving motion of
the nonholonomic kinematic snake. Notice that two longer sides of the the optimal
gait track very close to the singularity line [α1 = α2]. The narrow shape gives high
forward displacement because it encompasses much negative sign-definite volume
on the x constrained curvature function. Moreover, the optimized gait has two
important shape characteristics: 1) it cross singularity in almost a straight-line. 2) it
has rounded corner before and after crossing singularity. Both of the characteristics
help avoid large joint velocity changes and corresponding reduce the inertial cost.

Comparing to the previously hand-selected gaits that avoid singular configuration,
the optimal gait found by the developed optimizer is intuitively advantageous in
both forward travel and cost of transport. Our result also has very little net
rotation over gait cycle, which we expect due to its symmetry about the shape
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Figure 3.7: Snapshots of 3-link kinematic snake locomotion corresponding to
different timesteps during the optimzied, high-efficinecy gait. The timesteps are
linearly sampled over the entire gait and thus show the slower system movement
when passes the singular configuration.

space origin, resulting in zero or minimum net volume on the θ component of
constrained curvature function.

3.4.1 Gait optimality
While the proposed method yields a high-efficiency gait for kinematic snake, it
is possible that the result is a local optimum, as the gradient-descent based
optimizer does not guarantee convergence to global optimum. Additionally, since
we parametrize the gait using low-order Fourier functions, which has limited
expressiveness, gaits with more complicated shape could possibly produce even
higher displacement-to-cost ratio. In general, however, it is up to the designer to
decide what specific goals to achieve and criteria to satisfy. Our group is interested
in optimal gaits that are of high efficiency, self-intersection free, and have zero or
low net rotation over each gait cycle. The resulting gait therefore represents the
best result that meets our specifications.

3.4.2 On-singularity and Off-singularity gaits
Although gaits that follow very closely to the singular configuration benefit from
large forward displacement, they also suffer from rather relatively large inertial
cost. In contrast, gaits that are centered far away singularity have lower inertial
cost, due to their smaller fiber space velocity change per shape space velocity
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Figure 3.8: Performance comparison of selected gaits. a) gaits visualized in
shape space. b) position space trajectories from executing the gaits. c) normalized
efficiency of the gaits. The selected seed gaits are: i) & ii) on-singularity and
off-singularity circular gaits that are often selected due to their low net rotation;
iii) optimizer input gait selected via exhaustive search; and iv) optimally efficient
gait from the variational optimization.

change when away from singularity configuration. Potentially, the reduced inertial
cost can also lead to high efficiency, even when the gait displacement is low (e.g.
the system moves forward in small but easy “wiggles”).

To examine the possibility that additional local optimum of gait efficiency would
appear in gaits centered away from singularity, we perform experiments on selected
circular seed gait on α1 = −α2 line. The particular choice of seed gait location is
to include zero or minimum rotation over gait cycle, and hopefully set the start of
the optimization process close to its local optimum.

From Fig.(3.8), we can observe the off-singularity gait has lower efficiency, and
the displacement performance is poorer than that of the on-singularity optimal
gait. Moreover, the sub-optimal gait gives rise to the “cusp” - quick zig-zag motion
that shows up in sharp turning in the fiber space trajectories. The “cusp” appears
when the gait aligns with zero magnitude forward-direction connection vector field
and large magnitude rotational connection vector field, and are rather undesirable
in application as it diverts motion and energy in counter-productive directions.

3.4.3 Relaxing the No-slip Constraint
Until now, we have proposed and implemented an optimization strategy that
centers around handling the singularity of kinematic snake. Nevertheless, in real
life, locomotion systems such as the n-link snake robot will often slip as it passes
singular configuration. The slippage could happen when the ground surface provides
insufficient traction. To examine how slippage would affect the gait optimization,
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Figure 3.9: Optimally efficent gaits of using low Reynolds number swimmer with
various drag ratio to approximate the effect of kinematic snake with relaxed “no
slip” assumption. From left to right, the longitudinal-to-lateral drag ratio are 2,
103, and 108. Notice that singularity crossing constraints are not needed for the
gait optimization result shown here.

we relax the kinematic snake “no-slip” assumption and approximate its system
locomotion using an adapted low Reynolds (quasistatic) system model.

While it seems that locomotion of nonholonomic kinematic snake is governed by
geometric constraints and thus different from that of the low Reynolds swimming
systems, there are in fact strong underlying similarities. Previous literature has
shown that, with two small changes, low Reynolds number swimmer can be
converted into the three-link kinematic snake [13]. First, concentrating the lateral
force at the link centers and assign zero rotational moment to the force acting
points simulates the ground forces acting on the wheels. Second, adjusting the
lateral-to-longitudinal drag ratio to ∞ approximates the “no-slip” condition on the
wheels of the nonholonomic kinematic snake. Overall, two systems resemble each
other at the limit due to the similar composition of their system Pfaffian constraints:
both multiplying the body and shape velocities to produce a zero vector. We can
thereby exploiting this similarity and approximate the slipping behavior of an
otherwise nonholonomic system by varying the lateral-to-longitudinald drag ratios
of a quasistatic swimmer. This correspond to a kinematic snake with wheels that
will give away to strong external force, much the same as what would happen in
the physical world.

Fig.(3.9) shows the result of applying the same optimization procedure to the
aforementioned, adapted low Reynolds number system. We can see that as the
drag ratio increases, the gait optimization result for three-link low Reynold number
swimmer becomes more similar to that of the kinematic snake. However, the
approximated optimal gait is rounder at the ends, suggesting that violating the
now non-existent nonholonomic constraint may not incur as big a cost penalty.
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3.5 Section Summary
In this work, We incorporated tools from geometric mechanics into the developed
gradient-descent solver and created special procedures to capture the effect of
singularity for the 2D nonholonomic kinematic snake. We summarized the singu-
larity crossing condition as the equal and opposite movement of the input joint
right before and after reaching the singular configurations, and we implemented
this condition in tune with our Fourier gait parametrization. Furthermore, we
adapted the variational gradient descent optimizer to find the high-efficiency gait
for the kinematic snake. Our results show that high-efficiency gaits for kinematics
snake tracks close to the singular configuration for higher displacement and forms
a straight line when crossing singularity for lower cost. We also examined the effect
of relaxing “no-slip” assumption and showed the evolution of the optimal results
with respect to varying degrees of this relaxation.

Looking forward, we plan to further our singularity treatment for the kinematic
systems to work with general motion planning methods. For example, future
work has been planned to develop more expressive gait parametrizations, such as
piecewise linear spline, in order to fine-tune the shape of optimal gaits. Making
our singularity treatment adaptable to different gait design tools will lay a strong
foundation for future research.
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Chapter 4

Part II: Towards Motion
Planning for Three-link
Kinematic System on
Cylindrical Surface

The kinematic snake robot is a canonical example of a principally kinematic
system, one whose motion is governed by nonholonomic constraints[1, 2]. Much
of the mathematical elegance of the three-link kinematic snake arise from its
inherent symmetry, which correspond to the fact that the system dynamics and
constraints are invariant to changes in the system’s position or orientation in space.
Therefore, we can express the system velocity in body coordinates instead of inertial
coordinates. Early work by Kelly and Murray[16] established the reconstruction
equation for the nonholonomic systems, which relates body velocity to changes in
internal shape. Hatton and Choset later formulated the concept of the body-velocity
integral (BVI) and identified coordinate choices that minimizes the body frame
rotation in response to shape changes[13].

The use of system symmetry means that most studies of kinematic snake models
are dedicated to locomotion in SE(2) without any external actuation. However,
real-world robots often move on non-flat terrains or are under the influence of
directional forces; thus there is a lack of gait design frameworks for symmetry-
breaking systems. Recently, Dear took a step towards part of the problem by
introducing the stratified fiber function, which split the original local connection
into internal and external components[17]. Nevertheless, the strategy was tailored
to the kinematic snake moving under external actuation and is difficult to extend to
other cases. In this work, we take a different approach and examine how curvature
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Figure 4.1: Configuration of the three-link kinematic snake system on cylinder,
which utilizes 3D joints to conform to the curvature of the locomotion surface.
The system moves on the inner wall of the cylinder, and the wheelsets contact the
surface with strictly enforced mechanical constraints.

of the locomotion surface (or parametrized position space) breaks symmetry. To
do so, we study a newly designed three-link kinematic system model on cylinder.
This new model allows us to explore to what extent the traditional geometric
concepts, such as the local connection and the lie bracket techniques, can be used in
motion planning on curved position space. Utilizing visualization tools commonly
employed by the geometric mechanics community, we show the relationship between
system motion and its body frame orientation. Furthermore, we build upon the
gradient-descent gait optimizer and present a complete strategy to optimize a gait
for the system on cylinder.

4.1 System Model
To study the effect of position space curvature on a locomotion system, one intuition
is to add in directional curvature along a single coordinate basis component. For
example, if we take a 2D plane and bend the x axis with constant curvature, we will
effectively create a cylindrical surface. Mobile systems that realistically locomote
on such surfaces are met with new concerns. Not only do they need to overcome
gravity, but they also need to have mechanical structures which conform to the
curvature. In situations where gravity can be ignored (i.e. the elevation loss/gain
is negligible), a system still needs to ensure locomotion is collision-free. It is thus
useful to create a well-defined system that addresses the aforementioned concerns.
To this end, we create what we refer to as the system on cylinder, a kinematic
model designed to constrain its motion on cylindrical surfaces yet simple enough
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Figure 4.2: System on cylinder fiber space setup. θ is the azimuth angle between
the reference direction X on the cylinder cross-sectional plane and the line from the
centerline to the projection of wheel-cylinder contact point p; Z is the direction along
the centerline, and φ is the angle between the link and the cylinder cross-section,
projected onto the tangent plane located by the p

for generalized geometric mechanics analysis.

4.1.1 System Mechanical Constraints
Similar to the kinematic snake robot, the proposed system on a cylinder consists of
three rigid links, each of unit length and with wheelsets located at the link center.
The wheels contact the inner wall of the cylinder and can roll forward but are
forbidden to slip sideways. The links in the system are connected by 3D joints
which have full yaw (α), pitch(β) and roll(γ) degrees of freedom.

Using cylindrical coordinates, each contact point between the wheel and the
cylindrical surface defines a local tangent plane with position [θ, R, z]. Furthermore,
we specify the orientation of the link by the angle φ between the link itself and
the cross-section of the cylinder, projected onto the local tangent plane. For a
cylindrical surface with a constant radius R, the position and orientation of each
link i can be uniquely defined by the set of position variables [θi, zi, φi]. We thus
define the θo, zo, positions and φo orientation of the middle link of the system as its
position variables. Correspondingly, we define the system body frame to be located
at the center of the middle link and whose orientation φo is in the tangential plane

To succinctly describe the system configurations, we impose two important
mechanical constraints such that:
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Figure 4.3: Geometric relationship between control angle α and compliant angles
β, γ. a) The control angles α1, α2 shown on the local tangent plane defined by
the wheel-cylinder contact points. b) The yaw (α), pitch(β) and roll(γ) of the 3D
joints, with the local frame x, y and z in SE(3) defining the rotational axes. The
relationship between the angles is presented in Eqn[4.1]and[4.1.2]

• Constraint 1: Each wheel has one and only one contact point with the inward
cylindrical surface at all time, and the discs of the wheels are perpendicular
to the local tangent planes of the cylinder at the contact points.

• Constraint 2: Both ends of the middle link have the same distance to the
cylinder center line, preventing it from tilting.

Constraint 1 essentially specifies how the 3D joints can controlled. We propose
one feasible mechanical scheme of the 3D joint, shown in Appendix A, to utilize
the reduced joint angle space. Suppose each 3D joint is composed by a serial chain
of three rotation joints that controls the yaw (α), pitch(β), roll(γ) Euler angles in
sequence. When one of the three joint angles is being actively controlled, the other
two become functions of the active joint angle and the middle link orientation φo
in order to satisfy constraint 1. In the following section, we choose the two yaw
angles [α1, α2] as our control inputs. that pitch and yaw angle pairs are calculated
accordingly to in order satisfy constraint 1. Accordingly, we call [α1, α2] as our
shape variables as they describe the links relative positions of the links.
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4.1.2 Control and Compliant Angle Relationship
The relationship between the compliant angles [β, γ], and the control angle α and
orientation variable φo are purely geometric and can be represented in the following
equations.

(2(R − r)+lsinβ)2 +l2 (cosφo+ cosβcos(α− φo))2 −4(R − r)2= 0 (4.1)

l(sin(φo + α) cos γ − cos(α + φo) sin β sin γ)(cosφo + cos(φo + α) cos β) + · · ·
cos β sin γ(2r − 2R + l sin β) = 0 (4.2)

Where R is the cylinder radius and r is the wheel radius. The two equations
above calculate the α and β angles for the distal link (i.e. link i + 1) in the
system but can be adapted for the proximal link (i.e. link i− 1) without the loss
of generality. Additionally, even though the above equations are for the system
moving on inward surface of the cylinder, the relationship between α, β, γ and φo
can be generalized to systems moving on the outward cylindrical surface with a
just few swaps of signs the equations above.

The complexity of Eqn[4.1]and Eqn[4.1.2] makes it hard to obtain analytical
solutions whenever β and γ are involved. For this reason, we choose to represent
many of the variables in the following sections in their partial derivatives forms
and solve the values from a numerical approach.

4.1.3 Choice of System Parameters
The aforementioned mechanical constraints as well as the control/compliant angle
relationships allow us to establish a complete kinematic model of the system. The
system configuration space can be written as Q = M ×G, where g = (θo, zo, φo)T ∈
G encodes the position and the orientation of the middle link in the inertial frame.
The active joint angles r = (α1, α2) ∈ M determines the shape of the system by
specifying the links’ relative orientations.

Since the system geometry determines its kinematics, we provide the specific
values we choose for some of the geometric parameters. We set the links to be unit
length such that l = 1andthewheelradiusr=0.2.

In the real world, the cylinder radius R is a given parameter by the environment.
But physically, there is a minimal R for every system on cylinder below which
the links would penetrate the cylinder wall at certain configurations. In fact, if R
satisfies:

R >
l2

4r + r

2 (4.3)

26



Part II: Towards Motion Planning for Three-link Kinematic System on Cylindrical Surface

Figure 4.4: The special configuration of system on cylinder in which the ends
of the distal and proximal links are the closest to, but not going through, the
cylindrical surface. a) cross-sectional view of the cylinder. b) side view of the
cylinder.

then the system is collision-free, given it meets the two constraints in the previous
section. To study how the effect of the curvature of cylindrical surface affects
the system locomotion to its extreme, we choose R = 1.35, which is the smallest
cylinder radius that is allowed.

4.1.4 Nonholonomic Constraints
The proposed system on a cylinder has passive wheelsets on the links, which prevent
lateral translation while freely allowing rotation and longitudinal translation. Those
constraints on link-wise velocity, called nonholonomic constraints, determine the
allowable combination of inertial frame position and shape velocity and can be
written as the following

−Rθ̇l sinφl + żl cos θl = 0
−Rθ̇o sinφo + żo cos θo = 0 (4.4)
−Rθ̇r sinφr + żr cos θr = 0

where Rθ̇i is the linear velocity tangential to the curvature at the wheel-cylinder
contact point pi. Given the system geometry, we can formulate relationships
between link-wise position and orientation and the control angles α1, α2. Detailed
derivations of those relationships, as well as the solution of intermediate variables,
are provided in Appendix A.
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The linkwise position velocity θ̇i, written in inertial frame, can be represented
as:

θ̇i = ∂

∂t
θi (θo, φo, αi) = ∂θi

∂θo
θ̇o + ∂θi

∂φo
φ̇o + ∂θi

∂αi
α̇i (4.5)

Multiplying the cylinder radius to get the tangential linear velocity xi = Rθ̇i at
link i

ẋi = R

(
∂θi
∂θo

θ̇o + ∂θl
∂φo

φ̇o + ∂θl
∂αl

α̇i

)
=
(
∂θi
∂θo

(
Rθ̇o

)
+
(
R
∂θi
∂φo

)
φ̇o +

(
R
∂θi
∂αi

)
α̇i

)
(4.6)

The same process can be repeated for calculating total differential of zi, which
is a function of zo, φo and αi.

żi = ∂

∂t
zi = ∂zi

∂zo
żo + ∂zi

∂φo
φ̇o + ∂zi

∂αi
α̇i

(4.7)

Substitute expressions in Eqn[4.5] and [4.1.4] into Eqn[4.1.4], we arrive at the
equation of the form:

− sinφl
(
ẋo + ∂xl

∂φo
φ̇o + ∂xl

∂αl
α̇l

)
+ cosφl

(
żo + ∂zl

∂φo
φ̇o + ∂zl

∂αl
α̇l

)
= 0

− sinφo (ẋo) + cosφo(żo) = 0

− sinφr
(
ẋo + ∂xr

∂φo
φ̇o + ∂xr

∂αr
α̇r

)
+ żr cosφr

(
żo + ∂zr

∂φo
φ̇o + ∂zr

∂αr
α̇r

)
= 0

(4.8)

4.1.5 Reconstruction Equation

Reforming the nonholonomic constraints in Eqn[4.1.4] in linear form yields:
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ω(̊g)︷ ︸︸ ︷
−sinφl cosφl −sinφl· ∂xl∂φo

+cosφl· ∂zl∂φo

−sinφo cosφo 0
−sinφr cosφr −sinφr·∂xr∂φo

+cosφr· ∂zr∂φo


ẋożo
φ̇o

 +...

ω(r)︷ ︸︸ ︷−sinφl· ∂xl∂αl
+cosφl· ∂zl∂αl

0
0 0
0 −sinφr· ∂xr∂αr

+cosφr· ∂zr∂αr

[α̇l
α̇r

]
=

0
0
0

 (4.9)

Moving the matrix sub-blocks ω(̊g) and ω(r) to the same side, we have

ġ = ω(̊g)−1ω(r) (4.10)

We construct such matrix Aw(g,r) such that ġ = −Aw(g, r) ṙ ; the minus sign is
there to be consistent with the notation used in the literature.

The tangent plane defined by the middle-link contact point is locally SE(2).
Therefore, the mapping that takes inertial (world frame) velocity to body velocity
is given by

TgLg−1 =

 cosφo sinφo 0
− sinφ cosφo 0

0 0 1

 (4.11)

And so,

g̊︷ ︸︸ ︷g̊ug̊v
g̊θ

 =

TgLg−1︷ ︸︸ ︷ cos θo sin θo 0
− sin θo cos θo 0

0 0 1


ġ︷︸︸︷ẋż
φ̇

 = TgLg−1Aw(g,r)︸ ︷︷ ︸
Ab(g,r)

[
α̇1
α̇2

]
(4.12)

g̊ = −Ab(g,r) ṙ (4.13)

In terms of notation, we will use ġ =
[
ẋ ż φ̇

]T
to represent the inertial frame

position space velocity, and g̊ =
[̊
gx g̊z g̊φ

]T
to represent the body frame position

space velocity written in exponential coordinates. Notice that we replaced the
position space parameter θ with x = Rθ which give cleaner equation forms without
the loss of generality.
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Figure 4.5: The change in connection vector field of the system on cylinder with
respect to initial orientation φ0. a) φ0 = −π/2; b) φ0 = −π/3; a) φ0 = −π/4; a)
φ0 = 0. The shape space singularity line is overlaid on top of the surface plot to
indicate the quiver plot change.

Eqn[4.13] above is known as the reconstruction equation, with −Ab being the
local form of the kinematic connection and serves as a Jacobian-like matrix that
relate a system’s internal shape to its external body positions. In the section below,
we will be drop the dependency of the matrices on the shape and position variables,
so that Aw(g,r) will be Aw and Ab(g,r) will be Ab

Notice that, different from the three-link kinematic snake in SE(2), the connec-
tion Ab which maps system shape velocity to body frame velocity acquires an extra
dependency on the body frame orientation φo. From the derivation above, it is
clear that the dependency on φo originates in the derivation of the nonholonomic
constraints, and so it implicitly reflects how curvature change in different direction
of the cylinder surface affects allowable system motion.

30



Part II: Towards Motion Planning for Three-link Kinematic System on Cylindrical Surface

Figure 4.6: Visualization of how the local connection vector fields Ab change
with respect to different system orientation φ0. Red color indicates regions where
connection vectors rotate counterclockwise with increasing value of φ0, and black
otherwise.

4.2 Lie Bracket Averaging

In their work, Hatton and Choset developed in-depth analysis on Lie bracket
techniques that explores how the system constraints vary over shape and position
space components[12]. The core principal of their work is that the net displacement
of a gait can be approximated - although the accuracy of the approximation depends
on the choice of the system body frame - by a surface integral of the constraint
curvature D(−A) of the local connection.

gΩ =
∮

Ω
−TeLgAb dr ≈

∫∫
Ωa
D(−Ab) (4.14)

Where D(−A) is also referred to as the total lie bracket, and the integral

ζ =
∫∫

Ωa
D(−Ab) (4.15)

is formally named as the corrected body velocity integral (cBV I) and used
frequently in averaging locomotion literature[12]. For the sake of completion, we
briefly recap the formulation of Lie bracket and the constraint curvature D(−A) as
a result of Lie bracketing on the system full configuration space. However, readers
are encouraged to review [12] for detailed derivation.

The Lie bracket of two vector fields X and Y is also a vector field defined as:

[X, Y ] = (∇Y ·X)− (∇X · Y ) (4.16)
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or component-wise as:

[X, Y ]i =
∑(

xj
∂yi

∂uj
− yj ∂x

i

uj

)
(4.17)

In se(2), which is the Lie algebra of SE(2), the lie bracket of two vectors x and
y shows the effect of making infinitesimal moves in x, y, −x, −y in sequence. On
a planar surface for example, this captures the “parallel parking” effect, where a
rigid body draws infinitesimal parallelograms and use oscillating translation and
rotation to produce net translation in an orthogonal direction.

Similarly, a gait with very small amplitude in the shape space of the system can
be considered as a infinitesimal oscillation, and the resulting motion is captured
by the use of Lie brackets. For a specified input shape velocity ṙ, the system on
cylinder at configuration q = (r, g) has position velocity ġ = TeLgAb ṙ within
the local tangent plane. Moving with velocity ṙ can be interpreted as flowing
along the vector field X (q) defined over the full configuration space

X(q) = q̇ =
[
ṙ
ġ

]
(4.18)

If we define two unit-magnitude input shape velocities ṙ1 = [α̇l1, ˙αr1]T = [1, 0]T
and ṙ2 = [α̇l2, ˙αr2]T = [0, 1]T then the following Lie bracket gives the average
velocity vector achieved by infinitesimally flowing along the vector fields, evaluated
at the initial configuration q0 = (r0, g0)

[q̇1, q̇2] =
[(
ṙ1
ġ1

)
,

(
ṙ2
ġ2

)]
=

(∂ṙ2∂r ṙ1 − ∂ṙ1
∂r
ṙ2
)

+
(
∂ṙ2
∂g
ġ1 − ∂ṙ1

∂g
ġ2
)(

∂ġ2
∂r
ṙ1 − ∂ġ1

∂r
ṙ2
)

+
(
∂ġ2
∂g
ġ1 − ∂ġ1

∂g
ġ2
)

(q0)

(4.19)

The following derivation shows how we separate out and identify three of the
major components of the local curvature D(−{Ab). We show that, rather than
consisting of only the exterior derivative dA and the local lie bracket [A1, A2],
which is the case for three-link kinematic snake in SE(2), for system on cylinder a
third term shows up due to the orientation-dependent local connection Ab(r, g).

4.2.1 Derivation of Local Curvature
Because we define the the input shape velocities ṙ1 and ṙ2 are constant fields, their
partial derivatives with respect to the both the shape and position fields are zero.

∂ṙi
∂r

= 0,
∂ṙi
∂g

= 0 (4.20)
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(
∂ṙ2

∂r
ṙ1 −

∂ṙ1

∂r
ṙ2

)
+
(
∂ṙ2

∂g
ġ1 −

∂ṙ1

∂g
ġ2

)
= 0 (4.21)

In constrast, the partial derivtives of the position velocity fields with respect
to the shape fields take more complex forms. To simplify notation, we use A to
represent the local connection Ab for simplification. Using the product rule, we
have:

−∂ġi
∂r (r0, g0) = ∂ (TeLgAi)

∂r
=
(

∂ (TeLg)
∂r ( g0)

Ai(r0, g0)

)
+
(
TeLg0

∂Ai

∂r (r0, g0)

)

Since TeLg is independent of shape r

−∂ġi
∂r (g0) = TeLg0

∂Ai

∂r ( (r0, g0)) (4.22)

Furthermore, since we have chosen ṙ1 = [1,0]T and ṙ2 = [0,1]T

−∂ġi
∂r

ṙj (r0, g0) = TeLg0
∂Ai

∂rj (r0, g0)
(4.23)

For system in SE(2), the system nonholonomic constraints are invariant to
the orientation of the defined body frame and thus the system constraints are
independent to the choice of coordinates. As a result, the local connection Ab also
becomes invariant to the choice of coordinates, which simplifies geometric analysis.
But because the curvature of the cylinder surface creates inherent relationship
between position space velocity and middle link orientation, the local connection Ab
becomes a function of position space variable φo. This affects the result of the total
lie bracket. whereas in SE(2), the partial derivatives of the position velocity fields
with respect to the shape fields goes to 0, on cylindrical surface the derivatives are
not. We explore the difference through the following derivation.

−∂ġi
∂g (r0, g0)

= ∂ (TeLgAi)
∂g

=
(

∂TeLg
∂g ( g0)

Ai(r0, g0)

)
+
(
TeLg0

∂Ai

∂g (r0, g0)

)
(4.24)

Using the relationship: ġi = TeLg (−A · ṙi) = −TeLgAi

−∂ġi
∂g

ġj (r0, g0)= −T eLg0
(

∂(Tg0Lg0−1TeLg)
∂g g0Ai(r0, g0)(T eLg0Aj(r0, g0) )

)
· · ·
(4.25)

−T eLg0
(

∂Ai

∂g (r0, g0)T eLg0Aj(r0, g0)
)

(4.26)
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where (Tg0Lg−1)−1 = TeLg0. Finally, substituting equations above to our original
evaluation of the total lie bracket [q̇1, q̇2] yields:

[q̇1, q̇2] ( r0, g0) =



~0
−TeLg0

(
∂A2
∂r1 ( r0, g0) −

∂A1
∂r2 ( r0, g0)

)
︸ ︷︷ ︸

exterior derivative

+TeLg0
(

∂(Tg0Lg0−1 ·TeLg)
∂g (r0, g0)

A2(r0, g0)
(
TeLgA1 r0, g0

) )
· · · − TeLg0

(
∂(Tg0Lg0−1 ·TeLg)

∂g (r0, g0)
A1(r0, g0)

(
TeLgA2 r0, g0

))
︸ ︷︷ ︸

local lie bracket

+ TeLg0

(
∂A2
∂g (r0, g0)

TeLgA1 r0, g0

)
· · · − TeLg0

(
∂A1
∂g (r0, g0)

TeLgA2 r0, g0

)
︸ ︷︷ ︸

the rotational asymmetry term


(4.27)

The total Lie bracket is evaluated at the initial configuration of the system
q0 = (r0, g0). Taking g0 = e (setting the origin of the position space at this
initial configuration) effectively eliminates the TeLg0 factor, and so Eqn[4.2.1]
gives the average body velocity, and the integration of the corresponding total
lie bracket becomes the corrected body velocity integral (cBV I). With properly
chosen coordinates, cBV I can approximate the true net displacement with minimal
error.

However, replacing the initial configuration with the system identity configura-
tion presents one complication. For gaits that start at non-identity configuration,
the local connection Ab will be different with respect to system starting orientation
φo. To make sure the correct Ab is calculated correctly, we introduce a new variable
ω to track the amount of rotation between the system initial configuration g0 to the
system identity configuration e. Correspondingly, Eqn[4.2.1] can be represented as:
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[q̇1, q̇2]
r0, g0=e =



~0
−
(

∂A2
∂r1 (r0, ω) −

∂A1
∂r2 (r0, ω)

)
︸ ︷︷ ︸

exterior derivative

+
(

∂(TeLg)
∂g (r0, g0)

A2(r0, ω)
(

A1 (r0, ω)
) )
· · ·

−
(

∂(TeLg)
∂g (r0, g0)

A1(r0, ω)
(

A2 (r0, ω)
))

︸ ︷︷ ︸
local lie bracket

+
(

∂A2
∂g (r0, ω)

A1 (r0, ω)

)
· · ·

−
(

∂A1
∂g (r0, ω)

A2 (r0, ω)

)
︸ ︷︷ ︸

the rotational asymmetry term


(4.28)

The combinatory effect of the exterior derivative (−dA), local lie bracket
[A1, A2] and the rotational asymmetry term gives D(−A). Therefore, D(−A)
gains another mathematical meaning as the local curvature of the connection r0,
evaluated at system identity configuration.

D(−A) = −dA + [A1, A2] + the rotational asymmetry term (4.29)

In essence, the exterior derivative represents how the system dynamics change
with the shape, and local Lie bracket and the rotational asymmetry term together
represent how the system dynamics change with motion through the position space.

The effects of the exterior derivative and local lie bracket have been carefully
reviewed in [12] for kinematic snake in SE(2) and are not repeated here. it is
importan to notice that there exist underlying parallelism between the local Lie
bracket and the rotational asymmetry term. Whereas the local Lie bracket fixes
the effect of local connection Ab and explains the Lie bracket non-commutativity
induced by TeLg (the amount of rotation between the world frame and system body
frame), the rotational asymmetry term fixes the effect of TeLg and explains the
Lie bracket non-commutativity induced by the different values of Ab at different
position g.

To summarize, the rotational asymmetry term measures the rates of change of
Abṙ1 = A1

b and Abṙ2 = A2
b with respect to each other at different points in position

space G. Flowing infinitesimally along the lie bracket formed by the rotational
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Figure 4.7: The change in the local curvature D(−A), now composed of three
components, with respect to system initial orientation φ0. a) φ0 = −π/2; b)
φ0 = −π/3; a) φ0 = −π/4; a) φ0 = 0. For easier visualization, the values are
applied through the atan function are between [−π/2, π/2]. The shape space
singularity line is overlaid on top of the surface plot to indicate the surface plot
change.

asymmetry term is equivalent to flowing infinitesimally along A1
b , A2

b , −A1
b , and

−A1
b in sequence on different starting point g on G. If the A1

b A
2
b are constant

fields on G , which is the case for 3-link kinematic snake robot in SE(2), then the
rotational asymmetry term is 0 everywhere. For the system on cylinder, however,
A1
b , Ab2 are vector fields dependent on different choice of g, and thus non-zero.
.

4.3 Section Summary
Through the derivation of the reconstruction equation and the total Lie bracket, we
examined how position space curvature affects the motion of a kinematic system
on cylindrical surface, specifically through the derivation of local connection and
the constrained curvature function. We showed that the position space curvature
induces a change of the local connection co-vector fields with respect to the system
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Figure 4.8: This figure shows the effect of initial orientation φ0 of the system
on cylinder on the position space motion. a) the five shape space trajectories
(gaits) have the same circular profile when projected in α1, α2 plane. b)three-
dimensional visualization of the the shape space trajectories, starting at φ0 =
[−π/2,−π/4, 0, π/4, π/2]. c) position space trajectories of each of the five gaits,
indicated with their respective orientation. Depending on φ0, the net displacement
and rotation of those gaits are different.

body frame orientation, which then propagates through Lie bracket averaging. As
a result, we recovered an additional term that appears in the total Lie bracket of
the system, which encodes information of the position space curvature.

In addition to the classical geometric analysis, we proposed a gait design scheme
utilizing the gradient-descent optimizer to find the optimally efficient gait. Although
we do not provide gait optimization results in this thesis, future work has already
been planned to detail the optimization process.

As an example of symmetry-breaking systems whose nonholonomic constraints
are dependent on coordinate choice, the studied system on cylinder sheds new light
on motion planning for systems on a more diverse set of surfaces. Specifically,
surfaces that exhibits features periodicity (i.e. surfaces composed of sinusoidal
functions) are of high interest as the cyclical surface pattern can be leveraged in
open-loop gait design.
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Figure 4.9: The comparison between how initial orientation of the system affect
position space locomotion in b) kinematic snake in SE(2) and c) system on cylinder.
The red solid lines show the position space trajectories of the respective systems in
different initial orientation. All resulting trajectories are from the same gait shown
in a).
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Chapter 5

Conclusion and Future
Work

In this thesis, we explored geometric motion planning for two types of three-
link, nonholonomic kinematic snake systems: one moves in SE(2), the other on
the surface of a cylinder. Although these two systems are connected by their
similar geometric properties, in this work we emphasized different elements of their
respective gait design strategies. In the first part, we looked at the singularity
problem in 2D kinematic snake, which long poses challenge to empirical gait selection
methods. At singular configurations, the locomotion system instantaneously loses
one degree of control freedom, thereby making the kinematic local connection
invalid. However, we identified the allowable shape space motion that respects the
nonholonomic constraint and incorporated it into a “right angle crossing” curvature
constraint. Furthermore, in combination with the developed gradient-descent gait
optimizer, we captured the effect of singularity on system locomotion through a
reverse application of Stokes’ theorem, and we generated optimally gait under the
efficiency metric. In the second part, we investigated how curvature in the position
space of the system affects system locomotion. We analyzed how information on
surface curvature manifests through a dependency on body coordinate orientation
by deriving the reconstruction equation and the total Lie brackets of this newly
designed system on cylinder. Because the system on cylinder is a symmetry-breaking
model, geometric gait design tools that rely on invariance in system dynamics and
constraint start to break down. For this reason, we proposed a corresponding gait
optimization strategy utilizing the aforementioned gradient-descent optimizer that
has potential of automatically generating high-efficient gaits.

Looking forward to the immediate next step, we expect to bring geometric
concepts of the two systems together in closer inspection. In fact, by choosing
a cylindrical surface with zero curvature, the system on cylinder effectively the
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Conclusion and Future Work

kinematic snake robot in SE(2). Studying the gradual transition between the two
system can potentially reveal different aspects of the position space curvature that
can be utilized or ignored for efficient gait design.

In the future, we are interested in expanding our geometric analysis of system
locomotion on curved position space to cover a wider range of non-flat surfaces.
In particular, there are two interesting directions we want to pursue. First of
all, the system on cylinder is a rather simple model, and we can potentially
generalized our discovery to other link-like systems, such as low Reynolds and high
Reynolds swimmers. Furthermore, at this stage we only studied contact surfaces
that manifests constant curvature in a single direction. Investigating the effect of
more complex surface curvatures (e.g. curved surfaces represented by combination
of sinusoidal waves) may lead to exciting engineering applications that produces
efficient robot gaits on truly uneven terrain. Last but not least, we hope to search
for a unifying framework that systematically summarizes locomotion strategies for
the symmetry-breaking systems. Such framework should ideally explains symmetry
breaking phenomenon induced not only by position space curvature but also by
non-conservative external actuation, such as directional force acting on the system.
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Appendix A

Appendix

A.1 Pathlength Cost Metric
A differential arclength ds traveld by the system in Euclidean space is usually
represent as:

ds =
√
dx2 + dy2

As in [8], ds is the line element of unit infinitesimal length element by the
differential geometry community. Its square is the first fundamental form of the
space can represented quadratically in Euclidean space as:

ds2 =
[
dx dy

] [1 0
0 1

]
︸ ︷︷ ︸
M

[
dx
dy

]
(A.1)

where M is the Riemmanian metric tensor. When examining distances on
the shape space of the three-link kinematic system, an identity metric tensor
only considers joint motion, not the effort to produce the motion. It is therefore
beneficial to define specific distance metricsM specific to measure such effort.

Since the kinematic snake models considered in this thesis accumulate and
release their kinetic energy through the system action, we explore the connection
between the kinetic energy KE and shape space path-length starting from the
equation

KEi = 1
2ξ

T
i miξi
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Appendix

Each link i is modeled as an elongated ellipse with unit density. Therefore:

mi =

πab 0 0
0 πab 0
0 0 πab · a2+b2

4


The mass matrix acts as a quadratic map from body velocity of a link to the

kinetic energy required to maintain that velocity. To isolate the effect of shape
space velocity to the system energy, we can pull the mass matrix Mi of the configu-
ration space back to an effective mass matrix for that link on the shape space by
pre-multiplying and post-multiplying a set of link jacobians Ji. Those jacobians
maps from joint velocities α̇ to body velocities of the links.

KEi = 1
2 ṙ
(
JTi miJi

)
ṙ

The total kinetic energy of the system is the sum of the kinetic energies associated
with each individual link:

KEsys =
∑
i

KEi = 1
2 ṙ

T

M︷ ︸︸ ︷(∑
i

JTi miJi

)
ṙ (A.2)

Notice that Eqn[A.2] above bears resemblance to Eqn[A.1].

ds2
p = KEpdt

2 = drTMdr

dsp =
√

KE dt

where KEp = ṙp
TMrp is scaled kinetic energy of the system at a certain way

point p.
Eqn[A.2] has an unusual form of square-root of kinetic energy multiplied by

time, but it does offer physical intuition. Reaching points further away in fixed
time span requires moving at increased speed, and Eqn[A.2] ensures that the energy
is proportional to velocity squared. In this sense, the metric tensor M can be
viewed as a Riemannian metric on the joint space that encodes the effort for the
kinematic snake to move through space.

Notice that in the equations above are composed differently than that of previous
work [6] for low Reynolds number swimmer. Whereas the metric tensor M for
low Reynolds swimmer maps shape velocity to power dissipation into surrounding
medium, the metric tensor used here maps shape velocity to system kinetic energy.
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Therefore, the weighted path-length under this metric describes the square root of
energy required to execute it in unit time.

A.2 Inertial Cost Metric
Inertia is the resistance of any physical object to any change in its state of mo-
tion, including changes to its speed and direction. For most of the systems with
acceleration, the cost function can be defined as torque squared, that usually takes
the physical meaning as the system energy cost. For nonholomic kinematic snake
driven by rotational joints, energy is spent by the joint motors to propel the system
forward. Since Ohm’s power law equation states:

P = I2R (A.3)

The wattage power is thus proportion to the current squared. Moreover, because
the output torque of a DC motor is directly proportional to the current through
the windings:

τ ∝ I (A.4)

we can combine the relationship above to define our cost of motion to be
proportional the square of torque acting on the joints.

cost = ‖τ‖2, (A.5)

where τ is the torques on joints and can be found from system dynamic equation,

τ = Mq̈ + Cq̇(q̇, q), (A.6)

where q is the generalized coordinates, and C is the centrifugal and Coriolis matrix.
Assuming the system does not store potential energy and is isolated from external
forces, the Lagrangian of the system can be reduce to purely kinetic. The inertial
cost of motion is thus based on the kinetic energy needed for a given gait to be
execute in unit time. The kinetic energy as a function of shape variable and their
velocities can be written as:

T (r, ṙ) = KEsys = 1
2 ṙ

TMṙ

whereM is the 2× 2 "pulled back" mass metric that captures the accumulative
effect of the system’s masses. The “pull back” mass matrix gives us an easier way
to apply the Euler-Langrange method to the system, where the torques τ felt at
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all the joints becomes:

τ = d

dt

(
∂T (r, ṙ)
∂ṙ

)
− ∂T (r, ṙ)

∂r

and r = [α1, α2]T for the kinematic snake
We can re-write the Euler-Lagrange equation above with global equations of

motion abstracted:

τ =Mr(r)r̈ + Cr(ṙ, r)

where the matrix Cr(ṙ, r), which represent the Coriolis and centrifugal forces
induced by instant joint movement, is given by:

Cr(ṙ, r) = 1
2

(
ṙT
(
∂Mr(r)
∂ṙ

)
ṙ −

(
ṙT
∂Mr(r)
∂r

ṙ

))

Details derivation is provided in details in [9].

A.3 The Geometry of System on Cylinder
The system on cylinder is a unique kinematic system. Its motion on a cylindrical
surface is in 3D and thus seemingly require 6 DOF to describe, but its mechanical
constraints reduce the degrees of freedom down to the three (i.e. θ, z, φ in the
system position space). Despite the simplification, it is still useful to use both the
3D coordinates and the reduced position space to describe the system position and
orientation, Recognizing the various relationship these two system position space
parametrization leads us into deeper understanding of how curvature of the cylinder
surfaces affects the mechanical constraints, and eventually the system locomotion.

In this section, we use trigonometry to solve for the relationships between some
key variables used in our work. Specifically, we show the derivation of the link wise
position space variables θi, zi and φi, and an intermediate, 3D orientation variable,
ψi

A.3.1 Calculation of ψi

In three dimensional space, any 3D vector forms an angle between itself and an
arbitrarily defined ground plane. Using the cylinder cross-sectional plane as the
groudn plane, ψi ∈ [0, π/2] describe the angle between link i and the cross-sectional
plane of the cylinder. Given the system orientation φo as well as the control and
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Figure A.1: Variables needed for calculating the geometric relationship between
link orientation and the yaw, pitch roll angles via trigonometry

Figure A.2: Simple sketch showing one of the feasible mechanical design for the
3D joint, composed of three one-dimensional rotational joint controlling yaw(α),
pitch(β), roll(γ) individually

compliant angles α, β, ψi can calculated by finding the orientation vector of link i
using transformations in SO(3), where the final rotation matrix is calculated as:

Rrot =

cosφo −sinφo 0
0 0 −1

sinφo cosφo 0


︸ ︷︷ ︸
world to local axes rotation

cosα − sinα 0
sinα cosα 0

0 0 1


︸ ︷︷ ︸

Rotation around local z axis

 cos β 0 sin β
0 1 0

− sin β 0 cos β


︸ ︷︷ ︸

Rotation aroudn local y axis

Since we initial position of the middle link, before rotating φo, α, β around their
respective axes, is defined to be parallel to the ground, the Orientation vector Li
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Figure A.3: Intermediate variables need to calculate projection of link i from
SE(3) to the local tangent plane defined the ith wheel-cylinder contact point

in 3D is thus

Li = Rrot ·

1
0
0

 (A.7)

ψi = cos−1( Li · LiXY proj

||Li|| · ||LiXY proj||
)

where in eqn(?), LiXY proj is the projection of Li on to the cylinder cross sectional
plane.

A.3.2 Calculation of θi

For system on cylinder with wheel radius r and cylinder radius R, define interme-
diate variable q such that

q = R − r

We can then work out the analytical expression of φl (corresponding to the left
link) using trigonometry:

dl = l

2cosψl

s =
√
d2
o + q2 =

√
( l2 cosψo )2 + q2
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Therefore, ρo and ρl, shown in Fig(?), can be calculated as:

ρo =cos−1
(
s2+q2 −d2

o

2sq

)
=cos−1

 q√
( l2 cosψo)2

+q2


And

ρl =cos−1
(
s2+q2−d2

l

2sq

)
=cos−1

2q2+( l2 cosψo )2
−( l2 ·cosψl)2

2q
√

( l2 cosψo )2
+q2


Notice that the relationship θl = θo−ρ0−ρl, the left link orientation, projected

onto the local tangent plane, can be calculated as:

θl = θo −cos−1

 q√
( l2 cosψo )2

+q2

−cos−1

2q2+( l2 cosψo )2
−( l2 cosψl)2

2q
√

( l2 cosψo)2
+q2

 (A.8)

Similarly, we have θr = θo+ρ0+ρ l , which can be eventually written as:

θr = θo+cos−1

 q√
( l2 cosψo )2

+q2

+cos−1

2q2+( l2 cosψo )2
−( l2 cosψr)2

2q
√

( l2 cosψo)2
+q2

(A.9)
Eqn() and () uses arc-cosine functions and thus are correct up to the positive minus
sign. Correct sign can be by inferred by neighboring values.

A.3.3 Calculation of φi

Moreover, θi is the projected vector of the corresponding ψi onto the local tangent
plane, which can be found be first determining φi. The relationship between φi
and ψi can be captured in the following steps

let variable ui be the tangent vector at the wheel-cylinder contact point.

ui =

 sin θi
− cos θi

0


Project the 3D link orientation vector Li onto the local tangent plane gives

Lit proj = Li −
Li · ui
||ui||2

· ui

Where Lit proj is a 3×1 vector denoting the projected vector in 3D.
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Within local tangent plane, Lit proj can be separated into two components, the
first one tangent to the curvature of the cylinder, and the second one orthogonal
to the first one. We use variables et‖ and et⊥ to represent the two components on
the local tangent plane. Therefore:

et⊥ = LT proj(z)

et‖ = sign

(
Lit proj · ui

||Lit proj|| · ||ui||

)
· (Lit proj(x) + Lit proj(y))2

and so the link-wise orientation in the local tangent plane is

φi = tan−1
2

(
et⊥
et‖

)

A.4 Average Body Frame for System on Cylin-
der

We started with the kinematic snake constraint equation:

ω(ξ)︷ ︸︸ ︷
−sinφl cosφl −sinφl· ∂xl∂φo

+cosφl· ∂zl∂φo

−sinφo cosφo 0
−sinφr cosφr −sinφr·∂xr∂φo

+cosφr· ∂zr∂φo


ẋożo
φ̇o

 +...

ω(r)︷ ︸︸ ︷−sinφl· ∂xl∂αl
+cosφl· ∂zl∂αl

0
0 0
0 −sinφr· ∂xr∂αr

+cosφr· ∂zr∂αr

[α̇l
α̇r

]
=

0
0
0

 (A.10)

Lets re-write to:

w11 w12 w13 w14 w15
w21 w22 w23 w24 w25
w31 w32 w33 w34 w35



ẋo
żo
φ̇o
α̇1
α̇2

 = ~0
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Using the average orientation frame, we fixed the origin of the body frame as it
is (at the center of the mid link), but rotate the frame such that the new orienation
of the body frame represents the average orientation of the 3 links.

Thus,

φ̇ave = φ̇l + φ̇0 + φ̇r
3 =

(
φ̇0 − α̇1

)
+ φ̇0 +

(
φ̇0 + α̇2

)
3 = φ̇0 + α̇2 − α̇1

3

Therefore,

φ̇0 = φ̇ave −
α̇2

3 + α̇1

3
So if we re-arrange the linear equation of the constraints, we will get:

w11 w12 w13 w14 w15
w21 w22 w23 w24 w25
w31 w32 w33 w34 w35




ẋ0
ż0

φ̇ave − α̇2
3 + α̇1

3
α̇1
α̇2



=

w11 w12 w13 w14 + w13
3 w15 − w13

3
w21 w22 w23 w24 + w23

3 w25 − w23
3

w31 w32 w33 w34 + w33
3 w35 − w33

3



ẋ0
ż0
φ̇ave
α̇1
α̇2


This will be our new constraint matrix, with average orientation. We can

seperate the 3×5 matrix again into 2 parts again, yielding:

W (ξ)︷ ︸︸ ︷[
− sin θl cos θl − sin θl ·

∂φl
∂θo

+ cos θl ·
∂yl
∂θo

− sin θo cos θo 0
− sin θr cos θr − sin θr · ∂φr∂θo

+ cos θr · ∂yr∂θo

] [
Rφ̇o
ẏo
θ̇o

]

... +

W (r)︷ ︸︸ ︷
(
−sinθl·

∂φl
∂αl

+cosθl·
∂yl
∂αl

)
+

(
− sin θl·

∂φl
∂θo

+cos θl·
∂yl
∂θo

)
3 −

(
− sin θl·

∂φl
∂θo

+cos θl·
∂yl
∂θo

)
3

0 0(
− sin θr· ∂φr

∂θo
+cos θr· ∂yr

∂θo
3

) (
−sinθr· ∂φr∂αr

+cosθr· ∂yr∂αr

)
−

(
− sin θr· ∂φr

∂θo
+cos θr· ∂yr

∂θo
3

)
[α̇lα̇r]=~0

Where Aavew = −W (ξ)−1W (r) , and Aaveb= T gLg−1·A(r)w so that:
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ξφξy
ξθ

 = Aaveb

[
α̇1
α̇2

]
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