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Abstract

Unmanned Aerial Vehicles (UAVs) operating in dense urban areas need
the ability to generate wind-aware collision-free, smooth, dynamically
feasible trajectories between two locations. The complex and high-rise
structure of the modern urban landscape affects the wind flow around it
which has a pronounced effect on the UAVs operating within the urban
canopy. In this work, we propose a wind-field estimation method that
uses in-situ onboard wind measurements from a UAV operating within
the flow-field to solve the problem of predicting the inlet conditions for a
Computational Fluid Dynamics simulation. Gaussian Process Regression
is used as a surrogate forward propagation function to achieve onboard
computation. Real flight test results using an onboard anemometer verify
the efficacy of the wind-field estimation algorithm. The flight test shows
that the 95% confidence interval for the difference between the mean
estimated inlet conditions and mean ground truth measurements closely
bound zero, with the difference in mean angles being between −3.680◦

and 1.250◦ and the difference in mean magnitudes being between −0.206
m/s and 0.020 m/s.

Given the knowledge of a spatially-varying but temporally-static wind
field, we formulate a two point boundary value problem (BVP) that
uses piece-wise continuous polynomial curvature spirals to connect states
in a sampling based planner. Rather than solving the BVP nonlinear
constrained optimization problem online, we propose the use of a trajectory
library of precomputed solutions that may act as surrogate solutions for
the underlying planner. We provide an empirical analysis to verify the
feasibility of our approach. Comparative simulation results with a trochoid-
based BVP planner in a realistic urban setting are used to showcase the
competitive performance of the proposed path planning method. For the
given simulation scenario, we could demonstrate a 93% success rate for
the algorithm in finding a valid trajectory.
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Chapter 1

Introduction

This chapter presents the motivation for this thesis, gives the outline of the following

chapters, and provides an acknowledgement of the contributions.

1.1 Motivation

The recent COVID-19 pandemic saw an increase in the use of robotic technologies.

From crowd monitoring to medical and groceries deliveries, ground and aerial robots

were seen plying city streets in an effort to control the pandemic and mitigate its

effects on daily life [2]. While this exercise did provide a glimpse into a future where

autonomous agents have an increased presence in our life, it also exposed many

deep-seated flaws in the design of these agents. As robots left the factory and research

floors, and were placed on the streets, many of the assumptions that work well within

these controlled environments did not translate well in the real world [3]. Looking

ahead, as the robots make this shift into the real world, the technological focus has

steadily shifted from proof-of-concept prototypes to a public policy domain. Issues

like safety of robots and humans need special consideration to enable widespread

adoption of autonomous agents. One key idea is to adapt the algorithms and policies

in a domain specific manner to ensure that as robots navigate specific arenas they are

aware of the possible dangers and have tools and methods to handle these situations.

One arena under focus, which is also the focus of this study, are the dense urban

areas which account for 55 % of the world’s population [4]. Specifically, the study
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CHAPTER 1. INTRODUCTION

focuses on the use of Unmanned Aerial Vehicles (UAVs) flying at low altitudes in dense

urban canopies. Modern cityscapes provide a unique set of challenges for unmanned

aerial vehicles. The presence of tall buildings on both sides of the streets creates

a canyon-like situation inside urban areas. Generating feasible trajectories within

these urban canyons is challenging because a) urban canyons are often densely packed

with narrow passageways between adjacent buildings b) urban canyons affect the flow

of air, and this leads to complicated and often dangerous wind patterns that may

adversely affect UAV operations [5]. Both problems need to be explicitly addressed

to generate feasible trajectories that ensure reliable and safe aerial operations. We

thus wish to address the problem of wind-aware path planning for UAVs flying low

altitude delivery or surveillance missions inside the urban canopy.

1.2 Outline

The thesis is organised as follows:

Chapter 2 defines the problem and provides details on various assumptions.

Chapter 3 has a literature survey on the state-of-the-art methods. Section 3.1 covers

the literature for estimating wind-fields and Section 3.2 covers wind-aware path

planning. The Chapter also identifies research gaps and how the thesis contributes to

the current research.

Chapter 4 focuses on the proposed wind-field estimation methodology. Section

4.2 provides details on the proposed methodology along with the mathematical

formulations. Section 4.3 provides details on the field trials and the results. Section

4.4 presents the discussions and insights.

Chapter 5 focuses on developing a wind-aware path planning method. Section

5.2 formulates the broader path planning problem and introduces the symbols and

kinematic model. Section 5.3 details the wind-aware BVP formulation. Section 5.4

focuses on the global sampling-based planner and Section 5.5 provides implementation

details and a feasibility study. Section 5.6 provides simulation results and comparative

results with a baseline. Section 5.7 presents the discussions and insights.

Chapter 6 identifies shortcomings in the current approaches and details some

future improvements. Finally Chapter 7 presents overall conclusions.
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CHAPTER 1. INTRODUCTION

1.3 Declaration of Contributions

The work in Chapter 4 was carried out in collaboration with Brady Moon. The work

in Chapter 5 was carried out in collaboration with Vishal Dugar and Vaibhav Arcot.

The work in this thesis has large overlaps with two accepted original contributions by

these authors in conferences. The author of the thesis is also the first author on both

the manuscripts.

1. Patrikar, Jay, Vishal Dugar, Vaibhav Arcot, and Sebastian Scherer. “Real-

time Motion Planning of Curvature Continuous Trajectories for Urban UAV

Operations in Wind” 2020 International Conference on Unmanned Aircraft

Systems (ICUAS). IEEE, 2020.

2. Patrikar, Jay, Brady Moon, and Sebastian Scherer. “Wind and the City:

Utilizing UAV-Based In-Situ Measurements for Estimating Urban Wind Fields.”

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS). IEEE, 2020.
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Chapter 2

Problem Characterization

This chapter provides a high-level view of the specific problem we wish to address in

this work and also identifies the key assumptions of our approach.

2.1 Problem Statement

Based on the motivations outlined in Section 1.1, we define our problem statement as:

Given a non-holonomic UAV with a start and goal location, plan a optimal

collision-free, smooth, dynamically feasible path in a dense, cluttered, and windy

urban environment in real-time.

The following subsections explore the reasoning behind the different parts of this

problem statement.

2.1.1 Why consider a UAV to be non-holonomic?

It is trivial to see why a fixed-wing UAV or a Vertical Take-off and Landing (VTOL)

UAV in cruise configuration can be treated as non-holonomic system but multi-rotors

or VTOLs in hover configuration can exhibit both holonomic and non-holonomic

behaviour depending on the path following strategy. Multirotors consume the most

energy when they are hovering and as such a stop-to-turn strategy can easily become

an inefficient method of path following. Hence, in the problem statement we choose

to treat all the UAVs as a non-holonomic system.

4



CHAPTER 2. PROBLEM CHARACTERIZATION

2.1.2 What constitutes a smooth dynamically feasible

path?

In their seminal work Lavalle et al. [6] defined the kinodynamic planning problem as

“.. design a feasible open-loop trajectory that satisfies both global obstacle constraints

and local differential constraints.”. Over the years, the field has seen significant growth

as detailed in Section 3.2 but achieving real-time performance from a kinodynamic

planner that allows aggressive motions has been elusive.

Over the years, what constitutes “smoothness” has been revised. How smooth

should a path be so that a non-holonomic system with a nominal tracking algorithm

can follow it? This depends on the order of the differential constraints that the

planner can respect. Dubins [7] identified that for a car that can only move forward

with a given turn radius constraint, the shortest path between any two states belongs

to one of six kinds of curves consisting of straight lines and constant curvature arcs.

While such a simplified approach can generate paths that look feasible, these paths

are in fact discontinuous in curvature space. This leads to large cross track errors as

soon as the tracking speed increases beyond a certain threshold because realistically

systems need a finite time to transition from one curvature state to the other. Recent

works have pushed the definition of smoothness by constructing paths in “snap” space

[8]. Such algorithms leverage the differentially flat dynamics of a multi-rotors to

generate analytical expressions for control inputs that are used to propagate forward

dynamics. But these algorithms rely on predefined waypoints which does not make

them purely real-time and collision-free planners.

As a middle ground, we propose in our problem statement generating a smooth

path that respects constraints on curvature and curvature-rate for a generic unicycle

non-holonomic system. By constructing curvature continuous paths we can decrease

the cross-track errors while following the path at higher speeds. We argue that these

constraints lead to a path that is smooth enough for the kind of operations that are

in the purview of this work.

5



CHAPTER 2. PROBLEM CHARACTERIZATION

2.1.3 Why should we care about wind in path planning?

As previously mentioned, wind in urban canopies can have adverse effects on the

UAV operations. More specifically, wind affects the practically achievable curvature

rate of a UAV. Consider a case of a fixed-wing UAV that is following a Dubins-type

optimal path with maximum curvature turns. This maximum curvature can only be

achieved if the UAV holds its maximum safe roll attitude. Now, in a situation that

the UAV is turning into headwind, if it holds the same maximum safe roll attitude,

the achievable maximum curvature in inertial space is lower than what is needed

to follow the wind-agnostic curvature optimised path. This will lead to a larger

than expected tracking error. On the other hand, in a situation that the UAV is

turning into tailwind, the maximum curvature can be archived without hitting the

maximum safe roll attitude, thus under-utilizing the system capability to achieve

higher than expected curvature in inertial space. With obstacles so close to the flight

paths, a large unexpected tracking error can result in unsafe paths. Thus, in our

problem statement we explicitly incorporate the effect of wind on the turn radius of

the system thereby reducing the burden on the path following algorithm to maintain

a low tracking error in the presence of wind while maximising utility.

For the scope of this work we consider the wind to be known precisely as spatially

varying but temporally static map. Future work will look into addressing these

assumptions.

2.2 Solution Strategy

We choose an solution strategy in which we identify two challenges that need to be

tackled to address the problem statement.

Challenge 1. Urban Wind-Field Estimation: In order to solve a wind-aware

path planning query, the UAV needs to have the knowledge of the underlying wind

conditions in the city. We explore the use of in-situ wind measurements from a UAV

to predict this spatially-varying but temporally-static wind field.

Challenge 2. Wind-Aware Curvature Continuous Path Planning As-

suming a known wind-field, we use it to solve a path planning query in realtime that

produces smooth, curvature continuous, collision-free, dynamically feasible paths.

6



CHAPTER 2. PROBLEM CHARACTERIZATION

We formulate a two-point boundary value problem (BVP) to be used in nonlinear

optimization routine that can connect states in a sampling-based planner.

2.3 Key Assumptions:

Following are the prominent assumptions of the approach:

1. We assume that a fairly accurate high resolution static map of the city envi-

ronment is available. The assumption holds as the urban landscape does not

change drastically and that LiDAR maps are available for most cities.

2. Fairly accurate wind measurements are available from onboard sensors. We use

an onboard ultrasonic anemometer to satisfy this assumption but any algorithm

that provides a good estimate can be used.

3. Wind-field is spatially-varying but temporally static. Such a quasi-static ap-

proximation holds when the wind conditions do not change rapidly.

7



Chapter 3

Background

Wind-field estimation and wind-aware path planning have been previously studied in

literature. This chapter provides a literature review on the current methods and also

explores the gaps and drawbacks in state-of-the-art methods.

3.1 Wind-field Estimation

UAVs are uniquely positioned to act as a source of in-situ wind measurements. It has

been shown that UAVs, using only their onboard attitude and position sensors, may

serve as a source of reliable local wind measurements [9, 10] . Our work explores the

possibility of using these local wind estimates to predict a global wind field. Wind flow

estimation to enable autonomous dynamic soaring [11] has predominantly focused on

estimating high altitude, clutter-free wind fields. Methods using Gaussian Process

Regression [11], polynomial parameterization of the wind field [12], and Weibull

probability density function with Prandtl’s power law relationship [13] have been

presented. Low altitude urban wind fields by comparison are more complicated and

difficult to predict.

Computational Fluid Dynamics (CFD) has been presented as a promising solution

to calculate the low altitude urban wind flow patterns. Techniques using Reynolds-

Averaged Navier–Stokes (RANS) solvers have gained prominence over others, mainly

due to their computational advantage. Using CFD results for UAV path planning

has been explored in some works [14, 15], but they lack a comprehensive analysis

8



CHAPTER 3. BACKGROUND

on how close the simulation models match the real world conditions. One notable

effort is made by Ware et al. [16] who validated the CFD simulation results using

in-situ measurements from ground stations. The work however uses historical data

for estimating the boundary conditions which may not lead to sufficiently accurate

wind field predictions.

Improving the predictive accuracies of CFD simulations is an active field of

research [17]. Previous work on Uncertainty Quantification (UQ) [18] has proven

that uncertainties in inlet conditions have a higher effect on the accuracy of CFD

results than other parameters such as aerodynamic roughness. Other works [19] that

compared CFD results with real world data have argued that even for minor changes

in the inlet wind direction the simulated flow patterns can change considerably, to

the extent that planning decisions might be influenced. It is thus important to have a

reliable estimate of the inlet conditions. One obvious solution is to use wind sensors

at the periphery of the urban area or a tall structure within the city. However,

measurements from these sources can introduce considerable error as often times it

is difficult to determine the errors between the incoming wind at the boundary and

measured wind conditions. Jorge Sousa et al. [20] have addressed this problem of

predicting the distribution of the boundary conditions (inlet speed and angle) by

solving a inverse problem of estimating inlet conditions using an ensemble Kalman

filter (EnKF) and given in-situ measurements from static sensors. Their subsequent

work provides real world validation [21] of the methods.

Our approach builds on the previous work by Jorge Sousa et al. [20] and extends

it to incorporate dynamic sensors. While their approach relies on an EnKF to solve

the inverse problem, we propose using a Particle Filter. While both approaches

are shown to achieve similar performance given a large enough ensemble size [22],

EnKFs are often more suitable for problems with high dimensionality. But EnKF

has a tendency to provide approximations to the posterior that are too close to a

Gaussian distribution and as such Particle Filters which directly sample from the

exact posterior distribution can lead to better accuracies [23]. One other point of

difference is that while Sousa’s approach used a polynomial chaos expansions as a

surrogate function, we use Gaussian Process Regression models as they were found

to be more appropriate for the spatially varying distributions.

9



CHAPTER 3. BACKGROUND

Figure 3.1: Trochoidal path and trochoidal frame. [1]

3.2 Wind-Aware Path Planning

Wind-aware path planning has a rich history with mutiple school of thoughts. One

possible way to address the issue is to perform wind-agnostic path planning but

design a controller that is capable of handling wind disturbances [24][25]. While

these may be intuitive solutions, the systems may produce a large cross-track error

if the wind on the planned route leads to actuator saturation. Recent works [26]

have tried to address these issues by incorporating actuator saturation in the path

following algorithms. One recent approach [27] uses a strategy that switches to a

provably-safe controller if the vehicle violates a pre-calculated tracking error bound.

This bound captures all possible deviations due to external disturbances like the wind

but may lead to a conservative solution. Another approach [28] uses an estimate of

the wind and the corresponding drag forces to generate trajectories given a set of

waypoints. All of these approaches assume a path planning algorithm for waypoint

generation. Our work explores the possibility of explicitly including wind in the

path planning phase, thereby reducing the burden on the lower level controller. The

current approach derives its focus from two broad areas: path planning in vector

fields and kinodynamic path planning.

Path planning in a vector field like ocean currents or wind is an established

problem in robotics. Subramani et al. [29] used level-set PDEs to find a time-optimal

path in ocean current but ignore explicit vehicle dynamics as underwater operations

10



CHAPTER 3. BACKGROUND

are often at lower speeds. There exists a large body of work [30, 31] for calculating

energy-optimal paths for autonomous dynamic soaring, but the considered arena

is often high altitude obstacle-free airspace. There is a recent interest in solving

for drone trajectories in low altitude cluttered urban environments [16, 32, 33, 34].

However, none of the methods take into account wind and dynamic feasibility.

In the context of kinodynamic path planning for mobile robots, recent popular

approaches use a probabilistically complete sampling-based planner like BIT* [35]

or RRT* [36] that provide asymptotic optimality guarantees. All of these planners

need to solve a two-point boundary value problem (BVP) to connect pairs of states

with dynamically feasible trajectories. Solving BVPs is often too slow for real-time

performance. Methods like neighborhood classification [37], Sequential Quadratic

Programming (SQP) formulation [38] , bang-bang control based trajectory generation

procedure [39] or resolution-complete online-offline trajectory library pre-computation

[40] are used to achieve a speed-up in the planning process but none of them take

into account wind. One approach is to avoid solving the BVP by using a forward

propagation model [41] but execution times are arguably too slow for real-time.

Trochoids are the natural wind-aware extension of Dubins-type paths and have

been explored in literature as a BVP solution to connect two states in the presence

of wind [1, 42, 43, 44]. While an intuitive solution, trochoids are discontinuous in

curvature space. Following a curvature discontinous path at high speeds may lead to

excessive path tracking errors owing to the fact that dynamical systems like UAVs

require a finite time interval to achieve constant curvature trim states. With this

limitation in mind but given their wide usage, in the current work, we use trochoids

as a baseline BVP solution for comparison.

In our work, we build on the previous approaches that aim to solve a BVP to

connect states in a sampling based planner. We formulate the BVP as a wind-aware

non-linear constrained optimization problem by using polynomial spirals [45] with

constraints not only on curvature but also curvature rate.
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Chapter 4

Wind-Field Estimation

A high-quality estimate of wind fields can potentially improve the safety and per-

formance of Unmanned Aerial Vehicles (UAVs) operating in dense urban areas.

Computational Fluid Dynamics (CFD) simulations can help provide a wind field

estimate, but their accuracy depends on the knowledge of the distribution of the inlet

boundary conditions. This Chapter presents a real-time methodology using a Particle

Filter (PF) that utilizes wind measurements from a UAV to solve the inverse problem

of predicting the inlet conditions as the UAV traverses the flow field. A Gaussian

Process Regression (GPR) approach is used as a surrogate function to maintain the

real-time nature of the proposed methodology. Real-world experiments with a UAV

at an urban test-site prove the efficacy of the proposed method.

4.1 Approach

Enabling autonomous unmanned aerial vehicles (UAVs) to estimate wind patterns

is crucial if they are to realize their potential in goods mobility, monitoring, and

surveillance tasks in dense urban landscapes. Owing to their small size, low speeds,

and close proximity to obstacles, the safety and operational performance of UAVs

flying within cities is significantly affected by the prevailing wind conditions [5, 15].

An estimate of the wind field can provide planning and decision algorithms with

necessary information to compute safer [46] and energy efficient paths [16].

While CFD is used to solve the forward problem of estimating wind conditions

12



CHAPTER 4. WIND-FIELD ESTIMATION

Figure 4.1: A CFD wind field using the estimated inlet boundary condition at the
test location, along with the path of the UAV (green), and the corrected wind
measurements (magenta) from the onboard anemometer.

given the knowledge of boundary conditions, this work explores the possibility of

using UAV-based sequential local wind measurements using an onboard anemometer

to solve the inverse problem of estimating the inlet boundary conditions using a

particle filter (PF) based approach. A PF is known to provide a better estimate of the

posterior belief if the relationship between the state and observed data is nonlinear,

for which the application of the EnKF is not appropriate [47]. UAVs have an ability to

fly in the roughness layer [14] that is just above the Urban Canopy Layer (UCL) and

thus can potentially give a much better estimate of the inlet conditions affecting the

UCL. Our setup also avoids the need of setting up a static wind measurement network,

which may prove prohibitive because of cost and maintenance hurdles. As wind enters

the city, it flows between structures and form a distinctive pattern. The core idea of

our approach is to identify this pattern using the onboard measurements and then

solve the inverse problem to estimate the inlet conditions. If the estimated boundary

conditions are used as an input for running the CFD simulation, the resulting field

should most closely resemble the actual wind field. In lieu of onboard measurements

from the UAV using standard onboard sensors (GPS, IMU, ..), we use an ultrasonic

anemometer. The contributions of this chapter are three fold:

1. We present a particle filter approach to solve the inverse problem of estimating

the boundary conditions given sequential in-situ wind measurements from a

UAV.

13
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Figure 4.2: Overview: Wind measurements from an onboard anemometer are corrected
for motion and bias. These measurements are then used in a Particle Filter framework
to provide a posterior distribution on the inlet conditions by comparing with estimates
from a Gaussian Process based forward propagation model.

2. We present a domain specific treatment to circumvent the problem of running

multiple forward simulations using Gaussian process regression to maintain the

real-time onboard nature of the methodology.

3. We present real world test results that prove the efficacy of the presented

methodology.

The chapter is organized as follows: Section 4.2 provides details on the proposed

methodology along with the mathematical formulations. Section 4.3 provides details

on the field trials and the results. Section 4.4 presents the discussions and insights.

4.2 Methodology

This section details the methodology to estimate the boundary conditions given

measurements from the UAV. Care was taken that the onboard algorithms are

computationally tractable for any onboard computer with modest specifications. We

assume the UAV to be operating at a constant altitude, but the presented method

can be generalised to accommodate a variable altitude. The goal is to find the

distribution on the wind inlet angle Θ and wind inlet magnitude U . For the case

under consideration, the local wind angle θ and the local reduced velocity ur = u
U

are

14



CHAPTER 4. WIND-FIELD ESTIMATION

only a function of the inlet wind angle where u is the local wind magnitude. The

methodology is summarized in Figure 4.2.

4.2.1 Mathematical Formulations

Mathematically, the problem can be stated as: Given a set of measurements zi =

{θi, ui} for i ∈ [0, N ] from the UAV such that θi represents the local wind angle,

and ui represents the local wind magnitude at the ith data-point, find the belief

bel(Θ0:i, U0:i) = p(Θ0:i, U0:i | z1:i) for i ∈ [0, N ] where Θi is the wind inlet boundary

angle and Ui is the wind inlet magnitude after i measurements. To solve for this

belief, we will perform a domain specific derivation of a particle filter approach [48].

Using the Bayes Rule we can write:

bel(Θ0:i, U0:i) = p(Θ0:i, U0:i | z1:i)

= ηp(zi | Θ0:i, U0:i, z1:i−1)p(Θ0:i, U0:i|z1:i−1)
(4.1)

Using the Markov property for conditional independence:

bel(Θ0:i, U0:i) = ηp(zi |Θi, Ui)p(Θ0:i, U0:i|z1:i−1)

= ηp(zi |Θi, Ui)p(Θ0:i−1, U0:i−1|z1:i−1)

p(Θi, Ui|Θ0:i−1, U0:i−1, z1:i−1)

= ηp(zi |Θi, Ui)p(Θ0:i−1, U0:i−1|z1:i−1)

p(Θi, Ui|Θi−1, Ui−1)

(4.2)

Thus, for the mth particle, the weight can be calculated as

wm = ηp(zi | Θi, Ui) (4.3)

This probability distribution can be represented as a multivariate normal distribution:

p(zi | Θi, Ui) =
exp−1

2
(zi − z̄i)

TΣ−1(zi − z̄i)√
(2π)2 | Σ |

(4.4)

Where

z̄i = f(Θi, Ui,Xi) (4.5)
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where Xi = {xi, yi} are the coordinates of the UAV when the measurement zi

was taken. This function is the forward model and requires running the CFD

solver, but given that it is a computationally expensive operation, we instead use a

computationally cheaper but less accurate surrogate function. The details are further

discussed in Section 4.2.3

4.2.2 Particle Filter

The particle filter implementation is detailed in Algorithm 1. M particles are

initialized from a uniform distribution UniSample between minimum and maximum

values. Each particle is a tuple of inlet angle and magnitude. The algorithm has

three major components. The propagation step is the first step (Line 3), which in

this case only involves adding zero mean Gaussian noise to the particles. This helps

to avoid premature convergence. The next step (Line 5) involves calculating the

weight of each particle based on how likely the particle represents the actual value of

the inlet conditions. This weight is calculated for each particle using Equations 4.5

& 4.4. Finally based on the calculated weights, a re-sampling algorithm ReSample

chooses particles for the next iteration based on the weighted probability distribution.

The resampling process accounts for the difference of the target and the proposal

distribution. To improve performance, we use a low-variance resampling strategy

[48] to sample the distribution, as it helps preserve the diversity if samples have

same importance factors and is a more systematic way for re-sampling than the

independent random sampler. The sampler operates by choosing a random number

between [0,M−1] and then repeatedly adds M−1 to the random number while selecting

particles that correspond to the resulting summation. For the sake of brevity, the

complete algorithm is not presented, and the reader is directed to Table 4.4 [48] for a

detailed explanation.

4.2.3 Surrogate function

Calculating Equation 4.5 can prove to be a computationally expensive process, as

it involves running a forward pass of the CFD simulation for the particular inlet

condition and probing the location for the wind angle and magnitude. One way to

avoid this issue, is to use a surrogate function to approximate these values. Jorge Sousa
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Algorithm 1 Particle Filter

1: function PF(z1:N, [{x1, y1}, . . . , {xN , yN}],M)

2: (U
[0]
0:M ,Θ

[0]
0:M)← UniSample([0,Umax],[0,2π],M)

3: for all n ← 1:N do
4: (Ū

[n]
0:M ,Θ̄

[n]
0:M) = (U

[n−1]
0:M ,Θ

[n−1]
0:M ) + N (0, σ)

5: for all m← 1:M do
6: wm = ηp(zn | Ū [n]

m , Θ̄
[n]
m )

7: (U
[n]
0:m,Θ

[n]
0:m)← ReSample(Ū

[n]
0:m,Θ̄

[n]
0:m, w0:m)

8: end for
9: end for
10: return (UN

0:M ,Θ
N
0:M)

11: end function

Figure 4.3: Data points (locations and inlet angles) for GPR training.
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et al. [20] use a set of CFD simulations to construct polynomial chaos expansions

(PCE) for the quantities of interest. For our use case, the PCE method gave a less

accurate result, as the function variables also include the location along with the

inlet angle. We decided to use a Gaussian Process Regression (GPR) to model the

surrogate functions, as they have been shown to better represent spatial data. Two

GPR models are trained: one for the local wind angles f̂θ and one for local wind

reduced velocity f̂ur . Both are functions of the inlet angle and probe location. Thus

Equation 4.5 is replaced by:

ūi = f̂ur(Θi,Xi)Ui

θ̄i = f̂θ(Θi,Xi)
(4.6)

The datapoints used to train the GPR models were obtained by running multiple

CFD simulations with regularly spaced inlet angles and recording data on an equally

spaced grid. The data-points are visually represented in Figure 4.3. The performance

of the GPR models is discussed in Section 4.3.2.

4.2.4 Wind Measurements and Correction

Wind measurements are obtained from an ultrasonic anemometer onboard the UAV.

The anemometer records the wind angle and magnitude with respect to the moving

drone. Previous works that have used anemometers for onboard wind measurements

[49, 50, 51] have reported that while the wind angle measurements were found to

be accurate for all flight conditions, the magnitude measurements show a bias that

reports a higher wind magnitude than expected. We found that the effect is more

pronounced at lower UAV speeds. Thus, in order to record reliable wind measurements

we need to remove the magnitude bias in addition to correcting for the UAV motion.

In order to remove the magnitude bias we use the data collected by Brushi et al. [50]

of a quadrotor flying with a ultrasonic wind sensor inside a wind tunnel. Given the

similarity between the setup, the results in [50] are used to construct a polynomial

mapping between measured and actual wind speeds. As the data lacks points in the

lower range of values, it is augmented with results from our own setup. The UAV was

flown in hover and constant ground speed mode for an extended amount of time in

near-zero wind conditions. The final correction polynomial and ego-motion correction
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Figure 4.4: Figure shows the measured wind magnitude data-points and the fitted
calibration curve.

is given by:

w[actual]
m = −0.002(w[raw]

m )4 + 0.052(w[raw]
m )3 − 0.421(w[raw]

m )2 + 1.917w[raw]
m − 2.7

wN = (w[actual]
m − α) cos(w

[raw]
θ )− VN

wE = (w[actual]
m − α) sin(w

[raw]
θ )− VE

w[corrected]
m =

√
w2
N + w2

E

w
[corrected]
θ = arctan(wE, wN)

(4.7)

where VN and VE represent the inertial speed of the UAV in North and East directions,

and wN and wE represent the corrected wind components in North and East directions.

4.2.5 Summary

The methodology assumes that an accurate 3D model of the environment is available,

and the UAV has a sensor suite capable of reliably measuring the local wind angle

and magnitude. The steps are as follows:
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(a) (b)

Figure 4.5: (a) Image of the field validation test site. (b) 3D model of test site. Yellow
star represents the location of the ground truth weather station on the top of the
building.

1. Given the 3D model, run multiple forward RANS CFD simulations to collect

data points (Fig. 4.3) for training the surrogate GPR models represented in

Equation 4.6.

2. As the UAV is flying in the flow field, collect the raw wind measurements and

correct them using Equation 4.7.

3. Use the offline trained surrogate models and the corrected wind measurements

to estimate the inlet conditions using Algorithm 1.

4.3 Field Validation

This section gives details on the test setup and the hardware used for field validation

of the algorithm. Discussion on the experiments and results follows. Field trials

involve autonomously flying a predetermined sequence of waypoints and estimating

the inlet conditions. For validation, the estimated inlet conditions are compared to a

static wind sensor mounted on a rooftop nearby. The static wind sensor is measuring

the free-stream wind magnitude and direction.
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4.3.1 Setup

Test site

Our chosen test site is located on an elevated piece of land with around ten buildings,

all ranging in heights of 5 to 35 meters (Hmax). The buildings are abandoned and only

authorised personnel are allowed within the area. The complex of buildings effectively

replicates a typical urban environment and will allow for complex interactions of

the wind and buildings. Because the test site is elevated from the surroundings, it

provides an ideal environment to minimize disturbances to the inlet conditions.

An image and model of the test site are seen in Figure 4.5a and 4.5b respectively.

The size of the site is roughly 300× 250 meters. To serve as a ground truth for the

inlet conditions, a weather station was placed in the location marked with a star in

Figure 4.5b on top of the tallest building, .

Hardware setup

Our UAV test platform is a DJI M100 quadrotor with a FT Technologies FT205EV

Lightweight Ultrasonic Wind Sensor. This wind sensor is ideal for mounting on a

flying platform because of its low weight and integrated magnetometer. To minimize

disturbances from the quadrotor propellers, the sensor is mounted on a 40 cm long

carbon fiber pole. Figure 4.6 shows the UAV with the sensor. The DJI SDK fuses

GPS and IMU data to provide the position and velocity estimates.

For our static weather station we used a Maximet GMX500 which has a resolution

of 0.01 m/s and an accuracy of ±3%. From the station we recorded wind heading and

wind magnitude, as well as the UTC time, using a single board computer. The inlet

estimates from the UAV and the static measurements are synced using the GPS time

on the static sensor. To reduce the high frequency noise, all the sensor measurements

are passed through a median filter before using them in the algorithms.
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Figure 4.6: The test UAV with the ultrasonic wind sensor.

4.3.2 Preprocessing

GPR Models

In order to successfully test the methodology, GPR models need to be trained to

estimate the wind angles and reduced velocities given the inlet angles for the area

under consideration. To generate the training data, we run CFD simulations on

regularly spaced inlet angles spanning from 0◦ to 360◦ with a step size of 10◦. To

sample points spatially, a regularly spaced 20 m resolution grid in X and Y was

used as probe locations. Figure 4.3 shows these points in red. Care was taken to

remove points that fall within structures. CFD simulations were carried out using the

OpenFoam SIMPLE solver [52]. The mesh was created using SnappyHexMesh. The

CFD assumes in-compressible flows, and the values are recorded at steady state. A

standard κ− ε model is used to model the turbulence characteristics.

The GPR models use a radial basis function (RBF) with a length scale of 10 as the

kernal function. The training is carried out using the sklearn library [53]. To test

the model performance, we plot both the angle and reduced magnitude predictions

against CFD results in Figures 4.9 and 4.11 respectively.

Correlation analysis

To identify which areas in the map are the most informative, the correlation between

local wind angles and inlet angles was evaluated across the test space. For each point
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Figure 4.7: Correlation between local wind angles and inlet wind angles.

in a five-meter spaced grid, a Pearson correlation coefficient was calculated between

the local wind angles and inlet angles. Figure 4.7 shows the correlation coefficients

across the test space. This shows how areas which are often blocked from the wind

will not correlate well to the inlet angle, and taking measurements there would not be

as beneficial for inlet condition estimation. In contrast, there are also areas with high

correlation, which are usually areas where the wind will be less hindered regardless of

the inlet conditions. In the case of our test site, the center has the highest correlation,

as well as the spaces farther out from the buildings.

4.3.3 Experiments

Experiments were carried out over a month, and test days were chosen based on the

wind forecasts. A set of waypoints for the UAV path were selected based on the

correlation graph. The resulting path can be seen in Figure 4.8. The commanded

altitude of the path was 20 meters AGL, and it was flown at a commanded inertial

speed of 2 m/s. The path was flown autonomously, and the corrected wind angle

and speed are shown in Figures 4.9 and 4.11 respectively. The data from the the

weather station was recorded concurrently for comparison. In order to match the

training of the surrogate function, the wind measurements while the UAV was on the

ground, taking off, and landing were not used in the particle filter, but rather only
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the measures when the UAV was at the commanded flight path altitude.

Figure 4.8: The path followed autonomously by the UAV at the test site. The
waypoints are numbered in the order they were visited.

4.3.4 Results

The estimated inlet angle and magnitude from one of the test runs are plotted in

Figures 4.10 and 4.12 respectively. The figures show that the estimated inlet conditions

are in agreement with the values seen by the onboard anemometer. The figures also

show the mean and one standard deviation of the ground truth measurements. As

comparison, the cumulative means and one standard deviation of the PF output

is plotted. It is clear that the mean of the PF outputs converge to the mean of

the ground truth measurements. The 95% confidence interval for the difference

between the mean estimated inlet angle and mean ground truth angle is −3.680◦ and

1.250◦. The 95% confidence interval for the difference between the mean estimated

inlet magnitude and mean ground truth magnitude is −0.206 m/s and 0.020 m/s.

Zero lies within the bounds of both confidence intervals, thus showing the statistical

significance of these results.
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Figure 4.9: The motion and bias corrected local wind angle readings for the test run.
Also shown is the CFD and GPR output for the same locations as the test run using
the mean of the inlet ground truth measurements.

Figure 4.10: The wind inlet angle (and one std. deviation) estimated from the particle
filter and the mean inlet angle (and one std. deviation) measured by the ground
truth weather station.
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Figure 4.11: The motion and bias corrected local wind magnitude readings for the
test run. Also shown is the CFD and GPR output for the same locations as the test
run using the mean of the inlet ground truth measurements.

Figure 4.12: The wind inlet magnitude (and one std. deviation) estimated from the
particle filter and the mean inlet magnitude (and one std. deviation) measured by
the ground truth weather station.
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4.4 Chapter Insights

A Particle Filter based method to use onboard wind measurements from a UAV to

solve the inverse problem of estimating the inlet conditions to improve CFD-based

wind field estimation is presented. Following are the major insights:

1. The work shows that it is possible to reliably use an anemometer on a moving

UAV platform as sources of local wind measurements.

2. A Gaussian Process Regression model can be used as a surrogate function in-lieu

of a CFD forward propagation to achieve real-time performance.

3. The results are shown to be consistent with the measurements from a static

roof mounted weather station.
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Chapter 5

Wind-Aware Curvature

Continuous Path Planning

A key challenge in enabling autonomous Unmanned Aerial Vehicles (UAVs) to operate

in cluttered urban environments is to plan collision-free, smooth, dynamically feasible

trajectories between two locations with the wind in real-time. This chapter presents

a novel path planning strategy using sampling-based planning that uses a two-point

boundary value problem (BVP) to connect states in the presence of wind. Unlike

most approaches that use a curvature discontinuous solution, the proposed BVP

is formulated as a nonlinear constrained optimization problem with curvature and

curvature-rate continuous profile to generate smoother trajectories. To achieve real-

time performance, our method uses surrogate solutions from a pre-calculated library

while solving the planning problem and then runs a repair routine to generate the

final trajectory. To validate the feasibility of the offline-online strategy, simulation

results on a 3D model of an actual city block with a realistic wind-field are presented.

Results with a trochoid-based BVP solver are also presented for comparison.

5.1 Approach

In this chapter, we present a novel real-time method to solve wind-aware curvature-

smooth two-point boundary value problems to connect states in a sampling-based

global planner. The planner assumes a known map and a known spatially varying but
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Figure 5.1: Figure shows a representative path planning scenario where blue lines
indicate the BVP surrogate solutions chosen from the precomputed library, red
indicates the wind-corrected solutions used for sampling-based planning algorithm
(BIT*) and black lines represent the repaired final trajectory.

temporally static wind field. We present a BVP formulation that contains segments

of higher-order polynomial spirals that can possess as many degrees of freedom as

necessary to meet any number of constraints. For the offline phase, wind-agnostic

solutions to pre-determined BVPs are used to populate a trajectory primitives library.

These library primitives serve as surrogate solutions when the planner requests BVP

solutions in the online phase. The requested BVP solutions are modified, assuming

locally uniform wind. Once a solution is generated using these approximate primitives,

we repair the path online using the actual nonlinear optimization BVP routine. As

the repairs are only carried out on the final path, the number of actual BVPs solved is

equal to the number of distinct edges in the final path. The final path is a wind-aware,

smooth, collision-free sequence of states between a start and goal location. The

approach is detailed in Figure 5.2

The main contributions outlined in this chapter are as follow:

• We formulate a novel wind-aware two-point boundary value problem that

produces curvature, and curvature-rate constrained trajectories using piece-wise

continuous curvature polynomials.
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Figure 5.2: Overall Approach: Offline, we generate a trajectory library of precomputed
wind-agnostic BVP solutions on a predefined grid. Online, we use the trajectory
library to provide wind-aware surrogate solutions to perform real-time planning. Only
the surrogate solutions that are part of the final path are repaired to provide smooth
collision-free wind-aware path.

• We present an offline-online strategy using the surrogate-repair paradigm that

uses a pre-computed trajectory library as surrogate solutions to provide real-time

performance from a sampling-based planner.

5.2 Problem Definition

We define the UAV state space C = R3 × S1 where x ∈ C is the state of the robot.

If we define (x, y, z) as the position coordinates of the robot in inertial space and θ

as the heading angle, then x = (x, y, z, θ)T is the vehicle state vector. Throughout

the paper we assume a zero side-slip condition. Wind is assumed to be known

and spatially-variant but temporally static in the horizontal x-y dimension with the

vertical z component assumed to be zero. We further define Cfree as the obstacle

free state space of the robot. For this work, we use the vehicle kinematics model [54]
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defined using trajectory distance variable s ∈ [0, Sf ] as follows:

x(s) =

∫ s

0

(cosθ(s) +
wx
Va

)ds (5.1a)

y(s) =

∫ s

0

(sinθ(s) +
wy
Va

)ds (5.1b)

z(s) =

∫ s

0

g(s)ds (5.1c)

θ(s) =

∫ s

0

κ(s)ds (5.1d)

(5.1e)

where Va is the airspeed, wx and wy represent the x and y components of the

wind vector in the inertial frame respectively1, κ is the curvature and g is the

glideslope. The input space is u(s) = (g(s), κ(s))T . Let σ(s) = (x(s),u(s), Sf)
T

define a path parameterized with s ∈ [0, Sf ]. The choice of this non-holonomic system

representation is used as it is consistent with many of the current UAV systems.

We may now formally define the problem. Given a start location xs ∈ Cfree and

a goal location xg ∈ Cfree, find the optimal path,

min
σ(·)

Sf

s.t. ∀s ∈ [0, Sf ]

x(s) ∈ Cfree, x(0) = xs, x(Sf ) = xg

|g(s)| ≤ gmax, |κ(s)| ≤ κmax, |κ̇(s)| ≤ κ̇max

(5.2)

5.3 Wind-Aware Boundary Value Problem

This section details our approach to formulate a BVP that gives a smooth, dynamically

feasible wind-aware solution to exactly connect any states within Cfree. Traditionally,

trochoids have been a popular candidate as a BVP solution for many of the wind-based

path planners [1, 42, 43], because they intuitively represent the transformation due

to wind. However, trochoids are discontinuous in curvature space which invalidates

1Here both wx and wy are functions of x and we use locally uniform values when solving the
equations.
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their use in our setup. We can still use the same idea and extend trochoids by using

polynomials to represent the trochoidal curvature. Using a piece-wise continuous

construction of these polynomials, it is possible to get curvature and curvature-rate

limited paths that satisfy the boundary conditions. While the global planner is

designed to deal with spatially nonuniform wind, for any two-point query we assume

a local uniform wind profile by averaging the wind states between the two points.

This approximation holds if the sampled states are spatially close assuming that the

wind doesn’t change drastically over relatively smaller distances (approx. 50m in our

setup). The aforementioned sub-problem of finding a smooth trajectory between two

states ignores any collision checks, as the global planner, BIT* in our case, handles

these. Additionally, the only restriction on z-dimension is the maximum glideslope,

and this is taken into consideration in the full planner. The BVP solution is generated

in a SE2 space with x̃ = (x, y, θ)T with κ as control input. This solution is then

superimposed on a linear z-profile to connect the states in the actual C space.

5.3.1 BVP Formulation

Given an initial state x̃0 = (x0, y0, θ0)T , a final state x̃f = (xf , yf , θf )T and a uniform

wind field (wx, wy)
T between them, find a path Φ(s) = (x̃(s), κ(s), sf) parameterized

with s ∈ [0, sf ], where sf is path length such that it gives a Φ∗(·)

min
Φ(·)

sf

s.t. ∀ 0 ≤ s ≤ sf

κ(s) ≤ κmax, κ′(s) ≤ κ′max, κ(0) = 0, κ(sf) = 0

x̃(0) = x̃0, x̃(sf) = x̃f

(5.3)

In order to solve this nonlinear optimization problem, we build on previous work

[45] that uses polynomial spirals and extend it to generate three piece-wise continuous

spirals of lengths sf1, sf2 and sf3 to solve the problem. This formulation is based on

Dubins formulation which uses a set of 3 curves with a bang-straight-bang strategy

to connect two points [55] optimally. Such strategies have been shown to give optimal

paths under the assumption that the distance between points is large enough. Thus

the path Φ in Problem 5.3 can now be formulated as finding a continuous piece-wise
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path Φ(·) of length sf = sf1 + sf2 + sf3 ,

Φ(s) =


φ1(s) 0 ≤ s < sf1

φ2(s) sf1 ≤ s < sf1 + sf2

φ3(s) sf1 + sf2 ≤ s ≤ sf

(5.4)

The ith path where i = {1, 2, 3} is defined as

φi(s) = (x̃(s), κi(s), sfi)

where

κi(s) = ai + bis+ cis
2 + dis

3 + eis
4 (5.5)

Keeping the curvature of the middle segment constant and simplifying using

conditions in Eq. 5.3, we get

κ1(s) = b1s+ c1s
2 + d1s

3 + e1s
4 (5.6a)

κ2(s) = κ1(sf1) (5.6b)

κ3(s) = κ2(sf2) + b3s+ c3s
2 + d3s

3 + e3s
4 (5.6c)

These formulations give us the following set of 11 variables for the nonlinear

optimization problem.

p = [b1, c1, d1, e1, b3, c3, d3, e3, sf1, sf2, sf3]
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5.3.2 Nonlinear Optimization

The nonlinear optimization formulation is given as

minimize: J(p) = sf1 + sf2 + sf3 (5.7a)

such that,

||∆L|| ≤ ε (5.7b)

for 0 ≤ s < sf1

|κ1(s)| ≤ κmax |κ̇1(s)| ≤ κ̇max (5.7c)

for sf1 ≤ s < sf1 + sf2

|κ2(s)| ≤ κmax |κ̇2(s)| ≤ κ̇max (5.7d)

for sf1 + sf2 ≤ s ≤ sf

|κ3(s)| ≤ κmax |κ̇3(s)| ≤ κ̇max (5.7e)

where,

∆L =


x(sf)− xf
y(sf)− yf

L(θ(sf)− θf )
L2κ(sf)

 (5.8)

and ε is the error tolerance. The scaling factor L is used to weigh the angle and

curvature error against positional error [45]. The terminal values are calculated using

Equations 5.9.

x(sf) =
∑

i={1,2,3}

xi(sfi) +
wx
Va

(5.9a)

y(sf) =
∑

i={1,2,3}

yi(sfi) +
wy
Va

(5.9b)

θ(sf) = θ3(sf3) (5.9c)

κ(sf) = κ3(sf3) (5.9d)
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where for i ={1,2,3},

xi(sfi) =

∫ sfi

0

cos(θi(s))ds

yi(sfi) =

∫ sfi

0

sin(θi(s))ds

θi(s) =

∫ s

0

κi(s)ds

5.3.3 Initial guess

The nonlinear solver is sensitive to initial guess, and hence an informed initial guess

that satisfies all the constraints is critical. Because we use 3 curvature-polynomials

for the 3 segments, we may use a Dubins path to seed each of the 3 segments. To

do this, we take each curve and first calculate the change of heading that each

curve provides along with the direction of curvature (R or L). Using this, we solve a

least-squares optimiser that outputs an initial vector based on the Dubins solution.

Care is taken that the initial vector satisfies curvature and curvature rate constraints

while formulating the least-squares problem. This process is only used to produce

seeds for a subset of the paths after which solutions in the library may act as seeds

to generate rest of the library.

5.4 BIT* Planner

This section details the domain-specific treatment of the BIT* path planning algorithm.

BIT* is a class of tree-based incremental asymptotically optimal path planners. BIT*

combines the use of heuristically ordered searches in a batch-wise fashion with the

ability to focus the search on a sub-problem once the initial solution is available.

These attributes significantly reduce the number of queries to find the actual cost

function as opposed to RRT* making BIT* an attractive candidate for integration

with BVPs [38, 39]. For a detailed explanation of the algorithm, we direct readers to

the original paper[35].
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Figure 5.3: Representation of a section of the trajectory library with a 90◦ terminal
angle

Figure 5.4: Paths before (left) and after (right) repairing the path
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Algorithm 2 GetPrimitive( )

1: function GetPrimitive(xs,xf ,w)
2: [xt,wt]← FwdTransform(xs,xf ,w)
3: c←∞
4: for all L ∈ TrajLib do . Loop over the library
5: [xL,pL]← L . Extract end point and primitive
6: ∆x← xL − xt . Spatial error
7: sf ← |pL(end− 3 : end)|1 . Path length
8: c′ ← |∆x− wtsf

Va
|2 . Wind-corrected error norm

9: if c′ ≤ c then
10: p← pL
11: c← c′

12: end if
13: end for
14: return p
15: end function

5.4.1 Trajectory Library in lieu of BVP computations

As mentioned earlier, BIT* relies on the BVP solution to give exact connections

between the states. While the performance of our proposed solution to the BVP is in

100s of milliseconds (see Section 5.5), it is still not fast enough to be directly used to

calculate cost functions and perform collision checks in real-time thus motivating the

creation of a trajectory library containing pre-calculated primitives that can be used

instead of solving the BVP. These solutions are modified in real-time using the wind

conditions from the BIT* query. The trajectory library has precomputed solutions

for a set of BVPs using a predetermined discretization of the state space. Without

loss of generality, the start point of the BVP is kept at the origin, while the endpoint

is varied inside the set bounds. Each solution containing the vector of optimization

variable p is recorded along with the endpoint state. The BVPs are solved for a zero

wind case. The level of discretization determines how close the actual solution will

be from the query.
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5.4.2 Algorithm Details

To successfully execute an instance of the planner, the planner needs the ability to

query the cost and validity of a path between any two states {xs,xf} ∈ Cfree. For

both these queries, it is important to find a primitive from the trajectory library that

is spatially closest to the final path. A method to perform this search is captured

in Algorithm 2. For every two-point query from the planner between states {xs,xf}
and the uniform wind w between them, we call the GetPrimitive() function. Using

FwdTransform() [Line 2] the problem is first transformed into a frame of reference of

the trajectory library. For this transformed problem, we iterate through the library

[Line 4] to get the end point and the primitive for each member. The function then

finds a member in the trajectory library [Line 5] which, when modified with the wind

[Line 8], gives the spatially closest primitive to the transformed problem. The planner

uses this surrogate solution to calculate the cost and perform collision checking.

The procedure for validity checking is detailed in Algorithm 3. To check if a path

between two states is valid, i.e. ∈ Cfree, we first call GetPrimitive() [Line 2] to get

the closest primitive. Then the spatial path is calculated from the primitive using

GetPath() (refer Eq. 5.1 and 5.6). The path is then transformed back to the original

frame using BkdTransform() [Line 4]. The function CollisionAndGlideSlopeCheck()

[Line 5] validates if the states in the path are in free space, and also checks if the

paths are within a glideslope threshold. When these checks pass, a path is returned

as valid.

Once the planner returns a final path, we use the end-points of each section to

construct the BVP and use the corresponding primitives as seeds to the nonlinear

constrained optimization problem detailed in Equation 5.7 to give out the final

solution. The repair process for creating a smooth continuous path can be seen in

Figure 5.4.

5.5 Implementations and Feasibility Study

The BVP solver and global planner are implemented and tested in C++ to verify

their real-time performance. In order to solve the nonlinear constrained optimization

problem, we use COIN-OR’s IPOPT solver [56]. We use the BIT* implementation in
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Algorithm 3 MotionValidator( )

1: function MotionValidator(xs,xf ,w)
2: q← GetPrimitive(xs,xf ,w)
3: Φt ← GetPath(q,w)
4: Φ← BkdTransform(Φt,xs)
5: if CollisionAndGlideSlopeCheck(Φ) then
6: return Φ
7: else
8: return NULL
9: end if
10: end function

Figure 5.5: Representation of ε-ratio between any two paths. Figure also shows that
path Φ1(·) is δ-close to path Φ2(·)
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OMPL [57] to generate a plan for every query. A custom validity checker and cost

generator is implemented. The trajectory library is generated for a ±600m range on

both x and y with 5x5m resolution and a 10◦ resolution on θ.

In order to use the primitives as surrogates to the BVP solutions for the planner,

we need to characterize how closely the primitives represent the actual solution. To

do this, we find empirical bounds on metrics that quantify the difference between

primitive and the corresponding repaired BVP solution.

5.5.1 Cost Metric

The cost metric is the percentage change in the cost between the seed and the solution.

This metric quantifies how far from the actual cost is the surrogate cost used by

the planner. In order to find this metric bound, we ran the BVP solver for 10,000

randomly sampled points within the bounds of the trajectory library with a varying

wind of unit magnitude. The path lengths before and after repair were compared,

and the percentage change is plotted in Figure 5.7 with a 95% confidence interval.

5.5.2 ε- metric

The ε- metric measures how much the path can spatially move after repairing. In

order to define this metric, we need the following definitions.

Definition 1 δ-clear state

Any state x ∈ Cfree is said to be a δ-clear state if all the states within a δ euclidean

distance from x are also in Cfree

Definition 2 δ-clear path

Any path Φ(·) is said to be δ-clear path if all the states x ∈ Φ(·) are δ-clear states

Definition 3 δ-clear space

Any space within a δ euclidean distance of a δ-clear path Φ(·) is said to be the δ-clear

space of that Φ(·) path.

Definition 4 δ-close

Given two paths Φ1(·) and Φ2(·), Φ1(·) is said to be δ-close to Φ1(·) if ∀x ∈ Φ1(·) , x

are in δ-clear space of Φ2(·).
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Figure 5.6: Histogram of time taken to solve the BVP based on 3000 samples drawn
randomly from the state space.

Figure 5.7: The percentage change in cost between the surrogate solution from the
library and its corresponding repaired solution. Angles show the direction of incoming
wind. As seen, the change hovers around a mean of 6.5%.

41



CHAPTER 5. WIND-AWARE CURVATURE CONTINUOUS PATH PLANNING

Figure 5.8: ε-ratio between the surrogate solution from the library and its correspond-
ing repaired solution. Angles show the direction of incoming wind.

(a) 3D map of a city block (b) Octomap representation of the city block
used for planning

(c) Wind Field in the city

Figure 5.9: Urban environment used for simulation results

42



CHAPTER 5. WIND-AWARE CURVATURE CONTINUOUS PATH PLANNING

Definition 5 ε-ratio

Given two paths Φ1(·) and Φ2(·) with the same start states and path parametrization

t ∈ [0, τ ], an ε-ratio is defined:

ε =
maxt∈[0,τ ](||Φ1(t)− Φ2(t)||)

||Φ1(τ)− Φ2(τ)||

Here we carry out a change of parametrization from s to t using t(s) = sτ
sf

for both

the paths.

Intuitively speaking, if we can put an empirical bound on the value of ε-ratio,

then we can put a bound on how much a path is likely to diverge after it is repaired.

This bound is a function of how far the endpoint of the surrogate is from the actual

boundary condition, i.e. a solution is less likely to deviate from the surrogate if the

boundary condition is almost satisfied. If the repaired path is δ-close to the surrogate

solution, we can guarantee that the repaired path does not collide with any obstacles.

Consider Φ2(·) in Figure 5.5 to be the selected surrogate solution and Φ1(·) be the

corrected one. As the value of b is known, we may choose a δ inflation factor for the

obstacles such that δ > εb. For such a choice of δ, any repaired path will not collide

with obstacles, and a collision check on the surrogate is equivalent to a collision check

for the repaired path. In practice, getting a strict bound on the ε-ratio might be

difficult, so we approximate the value by running multiple simulations and recording

the value. In order to find the value, we ran the BVP solver in the same manner as

for calculating the path length changes. The resulting value with a unit-magnitude

wind direction and a 95% confidence interval is represented as radial plots in Figure

5.8.

5.5.3 Computation Time

Analysis of computation time required to find and repair a primitive is essential

to prove the feasibility of the planner. Figure 5.6 shows a histogram of the time

required to solve BVPs for 3000 randomly sampled points in the state space. A

varying wind with unit magnitude is also applied. The mean time to solve a BVP

is 484.6 milliseconds. The primitive lookup for the precomputed trajectory library
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Figure 5.10: Figure shows a section of the calculated path in the simulation environ-
ment before (green) and after (red) repair

(Algorithm 1) can be slow if we iterate through the full library. One way to reduce

this computation is to restrict the search in the trajectory library to an area which

when transformed with wind is most likely to yield an optimal solution. Using this

method we could achieve a lookup function that has a mean computation time of

0.256 milliseconds which is 3 orders of magnitude faster than the BVP computation

time. All computations are performed on an Intel NUC8i5BEK with a processor base

frequency of 2.30 GHz.

5.6 Numerical Results

In order to validate the efficacy of the proposed algorithms, we use a 3D model of

an actual city block in a major metropolitan city. The city block is 3300 × 2130

meters and consists of several high rise structures. The maximum and minimum

flight altitudes are restricted to 100m and 20m, respectively. Figures 5.9a and 5.9b

show the actual city and its Octomap [58] representation with the same view. The

3D model of the city block is fed into a comprehensive high-fidelity CFD simulator to

generate a temporally-static but spatially non-uniform wind field. The wind enters

the city from the positive X direction with unit magnitude. The interactions between

the wind and structures form interesting wind patterns, as shown in Figure 5.9c.
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Figure 5.11: Figure shows the simulation results with the wind-aware and wind-
agnostic BVP solver. Comparative results with trochoids show the competitive
performance of our approach.

To verify the convergence properties of the planner, path planning queries are

generated to construct trajectories from one location of the environment to the other.

In order to compare the performance of the algorithm, we also present results using

trochoids as a connector in the BIT*. Figure 5.10 shows results from one run. A run

is successful if the algorithm can find a path using surrogate solutions, can repair all

the segments in the path and the final repaired path is collision-free. The repairing

routine is run with multiple initializations to improve BVP performance. Wind

agnostic results are also shown for completeness. Two types of benchmark tests

are performed: For the first set of runs, a start and goal location was selected, and

the algorithms were tested with 100 different pseudo-random seeds for each. The

trochoids based planner could successfully find a valid trajectory 98% of the time,

while our proposed algorithm could find a feasible solution with a success rate of

96% for wind-agnostic and 84% for wind-aware cases. The path costs vs time for the

test runs with 95% confidence bounds are shown in Figure 5.11. As trochoids can

take curvature discontinuous turns, they generate lower-cost solutions. Our approach

provides curvature continuous paths that are longer because they are smoother and
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hence more feasible. Between wind-aware and wind-agnostic case, the costs are

determined by the underlying flow field and in this specific case, the wind-aware

costs are higher. While our approach does pay a penalty in success rate, the final

costs and convergence rates are competitive against even curvature discontinuous

trochoid based connectors. To further verify the performance of the planner, 100 sets

of two points were randomly selected from Cfree space, and path planning queries

were generated. 93% of the queries were able to produce trajectories that were fully

repaired and did not result in a collision.

5.7 Chapter Insights

A novel method for producing collision-free dynamically feasible trajectories in a

known wind field is presented. Following are the major insights:

1. A BVP formulation using polynomial spirals to represent piece-wise continuous

curvature is presented. The formulation uses a nonlinear optimization routine

that respects constraints on curvature, curvature rate and glide-slope.

2. It was found that the optimization routine could not achieve competitive real-

time performance and thus a method using a trajectory library of precomputed

solutions that act as surrogates for the sampling based path planning algorithm

is presented.

3. A feasibility study that defines and quantifies metrics to verify the applicability

of the proposed method is undertaken. Empirically derived values for the

metrics suggest that the method can strike a balance between speed and quality

of solution.

4. Comparative results with trochoid BVPs in a similar setting shows the efficacy

of the overall pipeline.
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Future Work

While we could address the problems discussed in the study to a degree, many

challenges remain to realise the complete potential of UAVs flying low in cities.

This chapter discuses the limitations and possible improvements of the proposed

approaches.

For the wind estimation strategy, while the current flight test results show that

the proposed methodology has potential to provide globally accurate wind field, a

more comprehensive test routine will provide a clearer idea on the robustness of the

algorithms to different atmospheric conditions and wind magnitudes. Targeted testing

for estimating lower and higher magnitude wind will help better analyse the efficacy

of algorithms. Our tests suggested that at lower wind magnitudes, the boundary value

estimation errors are more pronounced. This may be attributed to two factors: a) the

underlying CFD simulation loses its accuracy at lower wind speeds. b) the onboard

wind measurement becomes less reliable at lower wind speeds. While the first issue

can be addressed by using better high-fidelity CFD tools, the latter involves a deeper

dive into characterizing the influence of propellers on the onboard anemometer. A

wind tunnel test with the setup can provide valuable data on the relation between

measured and actual wind speeds which may improve the overall efficiency of the

algorithm.

For the wind planning setup, while the results are encouraging, more can be

done to improve the robustness of the proposed methodology. Two drawbacks

were identified. Firstly, while the use of surrogate solutions improves the real-time
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performance of the sampling-based planner, it leads to a final sub-optimal solution.

Secondly, there is no guarantee provided in the strategy that the chosen primitive

will lead to convergence when attempting to repair the generated plan. Our tests

suggested that the convergence rates for repairs are unfavourably affected by higher

wind magnitudes. While a straightforward workaround is to try with multiple

primitives while repairing, a more structured and possibly predictive approach can

improve the system performance. Non-convergence may also result from the BVP

trying to find solutions to dynamically unreachable states, as the planner has no

information about the forward reachability of the state it is trying to expand. Most

of these issues can be addressed by incorporating a more comprehensive strategy for

choosing primitives from the trajectory library. One possible approach is to assign a

probability distribution on the trajectory library conditioned on the query at hand.

Such a distribution can encode how likely is a particular primitive to converge on a

given query. One other drawback of the current work is the lack of field test results

with a real multirotor UAV. These will be added in subsequent work.

One other possible direction of work would be to develop more informative

objective functions. The proposed methodology uses minimizing path length as an

objective. While following the shortest length path seems like a plausible objective

given a constant ground-speed, the effects of wind would lead us to the fact that

a shorter path objective might not translate well as meaningful metric in the real

windy world. A time-based metric is the next possible candidate. A UAV that can

tap into the underlying flow-field can reach its destination faster by avoiding areas of

headwinds and actively looking for tailwind. So even though a path might be spatially

longer, the presence of an underlying flow-field necessitates the use of an objective

function that generates a shorter time path. Taking this a step further, we may want

to construct an energy-based metric. With a UAV operating at a constant power,

the time and energy based metrics will align. While an energy-based metric might

be more accurate in some cases (eg. crosswinds), it is also useful in predicting the

overall energy consumption. Given the relatively short battery capacities, optimizing

directly for energy consumption and providing an estimate of the energy usage for

following a path can provide the system with critical information that dictates the

operational envelope and the safety characteristics of UAVs.

Overall the complete estimation-planning strategy still needs to be verified end-
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to-end in practice. While both the blocks by themselves are tested in this work,

studying the interaction between them while running a complete dummy mission and

investigating their ability to support each other would be an interesting direction for

future research.
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Conclusions

The aim of this thesis is to identify the challenges of operating UAVs at low-altitude

dense urban environments and propose methods to address these challenges. The

focus is on UAV operations in windy conditions. This thesis identifies two research

gaps that need to be addressed to overcome the challenges.

The first is the lack of a comprehensive approach to estimate the complex un-

derlying flow field in a urban setup which may enable wind-aware planning over

longer horizons. A method to use onboard wind measurements from a UAV to solve

the inverse problem of estimating the inlet conditions to improve CFD-based wind

field estimation is presented. The work shows that it is possible to reliably use an

anemometer on a moving UAV platform as sources of local wind measurements. The

measurements are then used in a particle filter to provide a posterior distribution

of the inlet conditions. A Gaussian Process Regression model is used as a surrogate

function to achieve real-time performance. The method is implemented on a multiro-

tor platform and the results are shown to be consistent with the measurements from

a static roof-mounted weather station.

The second gap is the lack of a planning solution that finds curvature continuous

and wind-aware paths in cluttered spaces in real time. While there is some work in

finding curvature continuous and wind-aware paths, no previous work has a unified

approach to address both these issues. A novel method for producing collision-free

dynamically feasible trajectories in a known wind field is presented. To the best of

authors’ knowledge, this is the only real-time near-optimal BVP-based implementation
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for curvature continuous wind-aware path planning. The proposal uses a library of

precomputed two-point boundary value problem solutions as connectors in sampling-

based planners. The final path was produced by repairing the surrogate solutions

to produce a smooth continuous path. Benchmark tests in a realistic simulation

environment are performed, and comparative results with a trochoid-based BVP

planner are used to showcase the performance of the proposed strategy. The algorithm

was able to produce wind-aware curvature-continuous paths in competitive time frames

and cost ranges.
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