
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/338736494

Hierarchical Coverage Path Planning in Complex 3D Environments

Conference Paper · May 2020

CITATIONS

0
READS

217

4 authors, including:

Some of the authors of this publication are also working on these related projects:

CPG-based articulated Locomotion View project

Virtual Slope Walking(a passive based gait generate method) View project

Ji Zhang

Carnegie Mellon University

35 PUBLICATIONS 1,526 CITATIONS

SEE PROFILE

Matthew Travers

Carnegie Mellon University

59 PUBLICATIONS 517 CITATIONS

SEE PROFILE

Howie Choset

Carnegie Mellon University

295 PUBLICATIONS 6,607 CITATIONS

SEE PROFILE

All content following this page was uploaded by Ji Zhang on 02 August 2020.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/338736494_Hierarchical_Coverage_Path_Planning_in_Complex_3D_Environments?enrichId=rgreq-f85e4bd94ff2fccbe1faedb1f82d4b05-XXX&enrichSource=Y292ZXJQYWdlOzMzODczNjQ5NDtBUzo5MTk5MDM2NzAzNzAzMDVAMTU5NjMzMzUzNDM2Ng%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/338736494_Hierarchical_Coverage_Path_Planning_in_Complex_3D_Environments?enrichId=rgreq-f85e4bd94ff2fccbe1faedb1f82d4b05-XXX&enrichSource=Y292ZXJQYWdlOzMzODczNjQ5NDtBUzo5MTk5MDM2NzAzNzAzMDVAMTU5NjMzMzUzNDM2Ng%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/CPG-based-articulated-Locomotion?enrichId=rgreq-f85e4bd94ff2fccbe1faedb1f82d4b05-XXX&enrichSource=Y292ZXJQYWdlOzMzODczNjQ5NDtBUzo5MTk5MDM2NzAzNzAzMDVAMTU5NjMzMzUzNDM2Ng%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Virtual-Slope-Walkinga-passive-based-gait-generate-method?enrichId=rgreq-f85e4bd94ff2fccbe1faedb1f82d4b05-XXX&enrichSource=Y292ZXJQYWdlOzMzODczNjQ5NDtBUzo5MTk5MDM2NzAzNzAzMDVAMTU5NjMzMzUzNDM2Ng%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-f85e4bd94ff2fccbe1faedb1f82d4b05-XXX&enrichSource=Y292ZXJQYWdlOzMzODczNjQ5NDtBUzo5MTk5MDM2NzAzNzAzMDVAMTU5NjMzMzUzNDM2Ng%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ji_Zhang50?enrichId=rgreq-f85e4bd94ff2fccbe1faedb1f82d4b05-XXX&enrichSource=Y292ZXJQYWdlOzMzODczNjQ5NDtBUzo5MTk5MDM2NzAzNzAzMDVAMTU5NjMzMzUzNDM2Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ji_Zhang50?enrichId=rgreq-f85e4bd94ff2fccbe1faedb1f82d4b05-XXX&enrichSource=Y292ZXJQYWdlOzMzODczNjQ5NDtBUzo5MTk5MDM2NzAzNzAzMDVAMTU5NjMzMzUzNDM2Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Carnegie_Mellon_University?enrichId=rgreq-f85e4bd94ff2fccbe1faedb1f82d4b05-XXX&enrichSource=Y292ZXJQYWdlOzMzODczNjQ5NDtBUzo5MTk5MDM2NzAzNzAzMDVAMTU5NjMzMzUzNDM2Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ji_Zhang50?enrichId=rgreq-f85e4bd94ff2fccbe1faedb1f82d4b05-XXX&enrichSource=Y292ZXJQYWdlOzMzODczNjQ5NDtBUzo5MTk5MDM2NzAzNzAzMDVAMTU5NjMzMzUzNDM2Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Matthew_Travers?enrichId=rgreq-f85e4bd94ff2fccbe1faedb1f82d4b05-XXX&enrichSource=Y292ZXJQYWdlOzMzODczNjQ5NDtBUzo5MTk5MDM2NzAzNzAzMDVAMTU5NjMzMzUzNDM2Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Matthew_Travers?enrichId=rgreq-f85e4bd94ff2fccbe1faedb1f82d4b05-XXX&enrichSource=Y292ZXJQYWdlOzMzODczNjQ5NDtBUzo5MTk5MDM2NzAzNzAzMDVAMTU5NjMzMzUzNDM2Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Carnegie_Mellon_University?enrichId=rgreq-f85e4bd94ff2fccbe1faedb1f82d4b05-XXX&enrichSource=Y292ZXJQYWdlOzMzODczNjQ5NDtBUzo5MTk5MDM2NzAzNzAzMDVAMTU5NjMzMzUzNDM2Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Matthew_Travers?enrichId=rgreq-f85e4bd94ff2fccbe1faedb1f82d4b05-XXX&enrichSource=Y292ZXJQYWdlOzMzODczNjQ5NDtBUzo5MTk5MDM2NzAzNzAzMDVAMTU5NjMzMzUzNDM2Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Howie_Choset?enrichId=rgreq-f85e4bd94ff2fccbe1faedb1f82d4b05-XXX&enrichSource=Y292ZXJQYWdlOzMzODczNjQ5NDtBUzo5MTk5MDM2NzAzNzAzMDVAMTU5NjMzMzUzNDM2Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Howie_Choset?enrichId=rgreq-f85e4bd94ff2fccbe1faedb1f82d4b05-XXX&enrichSource=Y292ZXJQYWdlOzMzODczNjQ5NDtBUzo5MTk5MDM2NzAzNzAzMDVAMTU5NjMzMzUzNDM2Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Carnegie_Mellon_University?enrichId=rgreq-f85e4bd94ff2fccbe1faedb1f82d4b05-XXX&enrichSource=Y292ZXJQYWdlOzMzODczNjQ5NDtBUzo5MTk5MDM2NzAzNzAzMDVAMTU5NjMzMzUzNDM2Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Howie_Choset?enrichId=rgreq-f85e4bd94ff2fccbe1faedb1f82d4b05-XXX&enrichSource=Y292ZXJQYWdlOzMzODczNjQ5NDtBUzo5MTk5MDM2NzAzNzAzMDVAMTU5NjMzMzUzNDM2Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ji_Zhang50?enrichId=rgreq-f85e4bd94ff2fccbe1faedb1f82d4b05-XXX&enrichSource=Y292ZXJQYWdlOzMzODczNjQ5NDtBUzo5MTk5MDM2NzAzNzAzMDVAMTU5NjMzMzUzNDM2Ng%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Hierarchical Coverage Path Planning in Complex 3D Environments

Chao Cao, Ji Zhang, Matt Travers and Howie Choset

Abstract— State-of-the-art coverage planning methods per-
form well in simple environments but take an ineffectively
long time to converge to an optimal solution in complex three-
dimensional (3D) environments. As more structures are present
in the same volume of workspace, these methods slow down
as they spend more time searching for all of the nooks and
crannies concealed in three-dimensional spaces. This work
presents a method for coverage planning that employs a multi-
resolution hierarchical framework to solve the problem at
two different levels, producing much higher efficiency than
the state-of-the-art. First, a high-level algorithm separates the
environment into multiple subspaces at different resolutions and
computes an order of the subspaces for traversal. Second, a
low-level sampling-based algorithm solves for paths within the
subspaces for detailed coverage. In experiments, we evaluate
our method using real-world datasets from complex three-
dimensional scenes. Our method finds paths that are constantly
shorter and converges at least ten times faster than the state-of-
the-art. Further, we show results of a physical experiment where
a lightweight UAV follows the paths to realize the coverage.

I. INTRODUCTION

We present an algorithm to determine a path for a robot

with a limited-filed-of-view sensor, e.g. a camera, to perceive

all surface areas in a target environment. Such a problem

is often called a coverage planning problem because the

“sensory footprint” covers the entire reachable areas in the

space, as if we were painting the surfaces with the sensor.

The problem seeks the shortest path, which will be followed

by the robot to realize the coverage.

Coverage planning problems have been addressed in the

plane and generally use a pattern, e.g. a raster scan [1],

and a decomposition [2] to ensure complete coverage is

obtained. Three-dimensional coverage approaches have also

been considered for applications such as three-dimensional

printing of objects [3]. Finally, 2.5-D coverage or surface

coverage has been considered for application such as paint

deposition where the challenge lies in ensuring uniform

coverage of a material on a non-flat surface embedded in

three-dimensions, hence 2.5-D [4]. At the risk of abusing

nomenclature, we define the work in this paper as three-

dimensional because the robot truly has to fly through three

dimensions to ensure coverage of the target surfaces.

The state-of-the-art methods [5], [6] in solving this type

of problems benefit from random sampling, which gives

the shortest collision-free path found within a given and

relatively short amount of time. The methods draw random

samples along the surfaces and connect the samples to form

a path, by solving a Traveling Salesman Problem (TSP) [7].

All authors are with the Robotics Institute at Carnegie Mellon
University, Pittsburgh. Emails: {ccao1, zhangji, mtravers,
choset}@andrew.cmu.edu

(a)

(b)

Fig. 1: Example result. (a) shows a photo of the environment.

The structures to cover are highlighted by the blue rectangles.

(b) presents the coverage planning result where the structures

to cover are in blue. The yellow boxes are the boundaries of

the subspaces. The orange path is the coverage path.

Due to redundant occlusion/collision checks in the sampling

process and the time on TSP solving, these methods slow

down significantly in large, complex environments.

Our method extends the state-of-the-art by employing a

multi-resolution hierarchical framework. In this framework,

a high-level algorithm separates the space into multiple

subspaces at different resolutions (see an example result in

Fig. 1). If there is a large number of structures in a given

volume, the space is further subdivided at a finer resolution.

A low-level, sampling-based algorithm solves for a path

within each subspace for detailed coverage. In experiments,

the method finds paths that are constantly shorter than the

state-of-the-art and converges at least ten times faster as

well. Further, we use a lightweight UAV to follow the paths

and record image streams to realize the coverage. We make

available a video of our experimental results1.

II. RELATED WORK

Conventional coverage planning frameworks typically em-

ploy pre-defined path patterns e.g. raster scans, to traverse the

environment [1], [8]–[10]. These primitive-based methods

1Experiment video: https://youtu.be/u6UYarMNPcA

Viewpoint

Sampling

Space

Subdivision
Global TSP

Local TSP

!Viewpoints "Octree #Traversal Order

ℳPrior Map %Coverage Path

Select viewpoints in sub-space 1

Select viewpoints in sub-space 2

Select viewpoints in sub-space 3

Local TSP

Local TSP

Fig. 2: Processing flowchart.

work well in 2D [11], e.g. for agriculture and cleaning robots,

and later are extended to surface coverage [4], [12], e.g. for

robotic painting. To deal with obstacles, the Boustrophedon

decomposition method models obstacles as polygons and

separates the space into multiple parallel subspaces at the

vertices of the polygons [2], [13]. Overall, due to the usage

of pre-defined path patterns, these methods are limited to

structured and relatively simple environments.

The coverage planning problem can also be solved as an

orienteering problem [14]. The problem solves for sensor

poses and a tour connecting the sensor poses to realize the

coverage. For example, the method of Roberts et al. solves

the problem in two steps – first compute the sensor orienta-

tion for each candidate sensor pose, then select a subset of

the sensor poses and find the order by maximizing an award

function as an integer linear programming problem [15].

Arora and Scherer propose a random sampling-based method

combining the constraint satisfaction problem and TSP [16].

In summary, these methods can handle unstructured environ-

ments. However, due to the fact that the problem does not

model occlusions and collisions, they have difficulty with

highly complex 3D structures.

The method put forward in this work is most related to

the work of Hollinger et al. [5] and Bircher et al. [6]. The

two methods share great similarity and are considered state-

of-the-art. The methods first select a set of sensor poses for

a complete coverage through a random sampling process.

Then, a tour is formed by solving TSP. This process repeats

while the cost of the tour reduces through iterations. In

addition, the method of Dornhege et al. solves the problem

as a set cover problem and TSP [17]. Because of the complex

nature of the problem, the runtime of these methods increases

drastically w.r.t. the complexity of the environment.

Our work draws inspiration from [5] and addresses issues

by adopting a hierarchical framework. The problem is solved

at two levels. The overall traversal is solved at a high level

and the detailed coverage is solved at a low level. This way,

the problems of detailed coverage planning are kept small,

improving the efficiency. The method is significantly faster

than the state-of-the-art in complex 3D environments.

III. METHODOLOGY

Our method starts with sampling camera viewpoints in

the overall environment (Fig. 2). Then, the environment is

divided into multi-resolution subspaces and a global TSP

is run to solve for a tour through the subspaces. Later,

viewpoints are selected and the detailed coverage paths are

computed in the individual subspaces to form the path.

A. Viewpoint Sampling

A viewpoint is described as a 6-tuple ~v =
[xc, yc, zc, φc, θc, ψc], where xc, yc, zc denote the camera

⃗n

D

Fig. 3: Sampling camera viewpoints. The dotted curve in-

dicates a surface. The red dots are sub-sampled points. The

grey arrows show the normal directions on the surface. The

red arrows are the sampled viewpoints which are D away

from the surface in a neighborhood region of θ∗ and ψ∗

position, and φc, θc and ψc denote the roll, pitch, and yaw

angles. Given a surface patch, the camera poses for viewing

the surface patch is set at distance D away, determined by

specifications of the camera and dimensions of the vehicle.

Let ~n = [nx, ny, nz] be the surface normal. We set the roll

angle φc = 0 in practice which limits the size of the search

space. The pitch and yaw angles oriented orthogonal to the

surface patch are given by

θ∗ = arctan(nz,
√

n2
x + n2

y)

ψ∗ = arctan(−ny,−nx)
(1)

Viewpoints are sampled in a neighborhood region of θ∗ and

ψ∗ along the surfaces, as illustrated in Fig. 3.

We use a pin-hole camera model to project the 3D points

from the surfaces onto the image plane. We explicitly reason

about the range, occlusions, and field of view of the camera.

Points that appear on the image plane are then aggregated

to calculate the coverage area of v. After sampling all

viewpoints, collision check is run to eliminate the viewpoints

colliding with structures in the environments. The collision

check considers the vehicle dimensions. The set of feasible

viewpoints is denoted as V . An example is shown in Fig. 4

where the green arrows indicate the feasible viewpoints. Note

that this is the same environment as in Fig. 1.

Fig. 4: Feasible viewpoints (green arrows) and subspaces

(yellow boxes) in the same environment as in Fig. 1.

Algorithm 1: SubdivideSpace

input : Feasible viewpoints V
1 Vsubspace ← InsertViewpointsToLeaves(V);

2 if |Vsubspace| ≤ N then

3 is leaf ← true;

4 Return;

5 else

6 is leaf ← false;

7 for i ∈ [0, 7] do

8 children[i]← new OctreeNode(i);

9 children[i].SubdivideSpace(Vsubspace);

10 end

11 end

B. Space Subdivision

The feasible viewpoints V are stored in a multi-resolution

Octree [18] which is used to divide the environment into

subspaces. Each leaf in the Octree is associated with a

local cluster of viewpoints. We adopt a multi-resolution

scheme in building the Octree because in an irregular en-

vironment, evenly dividing the environment can result in

certain subspaces to have significantly more viewpoints than

other subspaces. The Octree construction is presented in

Algorithm 1. We use N ∈ Z
+ to denote the maximum

number of viewpoints allowed in a subspace. The depth

of the Octree varies depending on the complexity of the

enclosed structures. Areas with complex structures are sub-

divided further until all subspaces contain no more than N

viewpoints.

C. Global TSP

With the environment divided into subspaces, the global

TSP seeks to solve for a tour through the subspaces. The

detailed coverage paths in the subspaces are then computed

based on the global TSP tour. Algorithm 2 presents the

coverage planning algorithm. On line 2-3, we construct an

Octree to obtain a list of non-empty leaves where each leaf

contains a set of viewpoints. On line 5, we use the TSP solver

in Google OR-Tools [19] to determine the visiting sequence

of the subspaces. The TSP solver takes as input a distance

matrix containing pairwise distances between the subspaces.

The distance matrix is calculated on line 4 where the distance

between two subspaces is the Euclidean distance between the

centroids of the enclosed viewpoints. If no feasible path is

found, however, the distance is set to infinity.

D. Local Coverage Planning

We solve a coverage planning problem within in each

subspace to find the shortest path that covers the surfaces.

Similar to [15], the problem exhibits submodularity where

the marginal reward of selecting a new viewpoint decreases

as more viewpoints have been selected. Specifically, let

Ai = {
⋃

vj∈Vi
Ai

j} be the area covered after traversing the

i-th subspace following the traversal order T . Depending on

the viewpoint distribution, part of Ai may have been covered

Algorithm 2: CoveragePlanning

input : Prior map M
output: Coverage path P

1 V ← SampleViewpoints(M);

2 O ← new OctreeNode();

3 O.SubdivideSpace(V);

4 D ← ComputeDistanceMatrix(O);

5 T ← SolveTSP(D);

6 t← T .begin();

7 while t 6= T .end() do

8 T t
best ← ∅, l

t
best ←∞;

9 i← 0;

10 while i < K do

11 V̂t
subspace ← SelectViewpoints(Vt

subspace);

12 D̂t ← ComputeDistanceMatrix(V̂t
subspace);

13 T t ← SolveTSP(D̂t);

14 if Length(T t) < ltbest then

15 T t
best ← T

t, ltbest ← Length(T t);

16 end

17 i← i+ 1;

18 end

19 P ← P .append(T t
best);

20 t← T .next();

21 end

before traversing Ai. The coverage area of the i-th subspace

is adjusted to Âi = Ai − ∪(Aj ∩ Ai), j ∈ T and j < i.

The problems inside the subspaces are solved on lines 7-

21 in Algorithm 2. The processing has two main steps: 1)

select a min-cardinality set of viewpoints on line 11, and 2)

compute a TSP tour to connect the selected viewpoints on

line 13. The first step is further explained in Algorithm 3. The

algorithm uses a priority queue to keep track of candidate

viewpoints. On line 4, when a viewpoint is pushed into

the queue, its priority is set to the size of its coverage

area. On line 6, viewpoints are selected at the probabilities

proportional to their priorities. Due to the submodularity of

this problem, when a viewpoint is selected, the rewards of

selecting other viewpoints need to be properly decreased

on lines 8-10. The processing adds more viewpoints as

neighbors of the current viewpoint on lines 11-18 until no

more viewpoint with admissible reward is available on lines

19-21. In the second step, when computing the TSP tour,

the start and end viewpoints are chosen to be the closest

to the end viewpoint of the previous subspace and the start

viewpoint of the next subspace, respectively. The two steps of

processing repeats for a number of K ∈ Z
+ iterates. Then,

the shortest paths from the subspaces are concatenated to

form the overall coverage path on line 20 in Algorithm 2.

To warrant a collision-free path, we use the insight of lazy

collision checking [20] where collision check is performed

after a path is found. If an edge connecting two viewpoints

are in collision with structures in the environment, a new

viewpoint is added at the point of collision. The process

repeats until a collision-free path is found or the maximum

Algorithm 3: SelectViewpoints

input : Viewpoints in subspace Vsubspace
output: Subset V̂subspace with a full coverage

1 Q← new PriorityQueue();

2 v ←RandomPick(Vsubspace);

3 Av ← ComputeCoverageArea(v);

4 Q.AddWithPriority(v, Av);

5 while Q 6= ∅ do

6 v,Av ← ProbabilisticPick(Q);

7 V̂subspace ← V̂subspace ∪ v;

8 for q ∈ Q do

9 Q.UpdatePriority(q, Av)

10 end

11 for u ∈ Neighbor(v) do

12 if NotSelected(u) then

13 Au ← ComputeCoverageArea(u);

14 if Au ≥ Amin then

15 Q.AddWithPriority(u, Au);

16 end

17 end

18 end

19 if Q.front().priority < Amin then

20 break;

21 end

22 end

iteration number is met. In the second case, the distance

between the two viewpoints is set to infinity.

E. On Complexity

Let us inspect the time complexity of the proposed

method. We use space subdivision to keep the coverage

planning problems in small scales. Given that each subspace

contains no more than N viewpoints, the runtime of solving

TSP in a subspace is within a constant time. With k ∈
Z
+ non-empty subspaces, the accumulative runtime of all

subspaces becomes O(k). In addition, the TSP solver based

on the LinKernighan heuristic to solve the global TSP runs

in O(k2.2) time [21]. Considering both, the time complexity

of solving all TSPs is O(k2.2). In compassion, if without

space subdivision, solving TSP with all viewpoints in the

environment takes O(n2.2) time, where n ∈ Z
+ is the

number of viewpoints, n >> k. Another consideration is that

the viewpoint selection process takes redundant occlusion

and collision checks. The process is more efficient if kept in

a small scale. In Section IV, our results show that the runtime

of our method is significantly faster than the state-of-the-art

in both the viewpoint selection and TSP solving processes.

IV. EXPERIMENTS

A. Path Generation Tests

The experiment evaluation compares the proposed method

to three other methods listed as follows.

• Baseline: This the method of Hollinger et al. [5] which

is considered the state-of-the-art.

• No Heuristic: This is a configuration of our method

that does not use the priority queue in Algorithm 3 to

associate the viewpoints with different probabilities. All

viewpoints are selected at an equal probability.

• No Space Subdivision: This is another configuration of

our method that does not use space subdivision. The

problem is solved as a whole in the entire space.

We show results of three path generation tests in Fig. 5-

Fig. 7, with a machine shop, an aircraft, and a bridge,

respectively. We set the camera field of view at 60◦ and keep

it 1m away from the surfaces. The yellow boxes represent

(a)

(b)

(c)

(d)

Fig. 5: Machine shop test result. In (a)-(c), the yellow

rectangles indicate the subspaces. The orange path is the

coverage path and the dots on the path are viewpoints. A

number of 1484 viewpoints are selected from 12160 sampled

viewpoints. The red points represent uncovered areas due to

occlusions in tight areas. (d) is runtime comparison.

(a)

(b)

(c)

(d)

Fig. 6: Aircraft test result. The figure shares the same layout

as Fig. 5. 1089 out of 3675 viewpoints are selected.

the sub-spaces. The orange paths are the coverage paths

and the dots on the paths are viewpoints. At the bottom

of each figure, we compare the runtime of our method to

the other three methods as listed above. This uses a laptop

computer with a 4.4GHz CPU running Linux. The processing

consumes a single CPU thread. Our method converges over

a magnitude faster than the baseline method and at the

same time generates shorter paths. Further, we see that using

heuristics to bias the viewpoint selection produces marginal

differences. The space subdivision creates major impacts.

B. UAV Flight Test

Our UAV platform is shown in Fig. 8(a). This is a DJI

Mavic Air UAV built with a gimbal camera that covers

the front and downward areas. Two additional cameras are

(a)

(b)

(c)

(d)

Fig. 7: Bridge test result. The figure shares the same layout

as Fig. 5. 2681 out of 6695 viewpoints are selected.

mounted on the top to cover the upward areas. During flight

tests, the positioning of the UAV is provided by a LiDAR-

based tracking system (Fig. 8(b)) based on our previous work

[22]. We first build a prior map of the environment before

the flight. The tracking system then localizes on the prior

map and subtracts the map from the scan data. The points

left are from the UAV. We apply a simple filtering process

to remove outlier points not from the UAV but other moving

objects in the environment. To facilitate tracking, a foam pole

is attached to the top of the UAV to increase the height of

the tracking target. The control commands are sent to the

(a) (b)

Fig. 8: (a) DJI Mavic Air UAV. The onboard gimbal camera

covers the front and downward areas. Two additional cameras

are mounted on the top to cover the upward area. (b) LiDAR-

based tracking system to provide positioning of the UAV

during flight tests. The system tracks the foam pole attached

to the top of the UAV in the scan data.

(a)

(b)

(c)

(d)

Fig. 9: UAV flight test result. The figure shares the same

layout and convention as Fig. 5. 290 out of 1090 viewpoints

are selected to form the coverage path. The green path and

the blue path in (a)-(c) are the trajectories of the UAV. Due

to battery limitation, the UAV flight test is conducted in two

runs starting at the two ends of the coverage path (orange).

One run covers the left side and the other covers the right

side. Both runs last for about 10 minutes. The maximum

speed of the UAV during the flight test is 0.4m/s.

UAV from a laptop computer over WiFi.

The result of the UAV flight test is shown in Fig. 9.

The green path and the blue path in Fig. 9(a)-Fig. 9(c) are

the trajectories of the UAV. Due to limitation of battery

life, the flight test is separated into two runs starting at

the two ends of the coverage path (orange). Each run lasts

for about 10 minutes. The maximum speed of the UAV

during the flight test is 0.4m/s. Fig. 9(d) gives the runtime

comparison. Further, we show three representative images

(a)

(b) (c)

Fig. 10: Representative images recorded in the UAV flight

test. (a) is from the gimbal camera on the UAV. (b) and (c)

are from the two upward cameras.

recorded by the onboard cameras during the flight test in

Fig. 10. Specifically, Fig. 10(a) is from the gimbal camera

and Fig. 10(b)-Fig. 10(c) are from the upward cameras.

Finally, let us examine the runtime breakdown for the four

tests in Table I. The runtime on space subdivision is negligi-

ble in compassion to the other tasks. Viewpoint sampling is

shared by both methods. The runtime on viewpoint selection

and TSP solving is for one algorithm iteration. Thanks to

the multi-resolution hierarchical framework, our method runs

20+x faster in both viewpoint selection and TSP solving.

V. CONCLUSION AND FUTURE WORK

The paper proposes a method solving for coverage plan-

ning with a multi-resolution hierarchical framework. Paths

are computed at two different levels – at a high level as the

order of the subspaces for traversal through the subspaces

and at a low level as detailed coverage paths within the

subspaces. The resulting method runs significantly faster than

the state-of-the-art. The current method uses geometry-based

metrics to separate the environment into subspaces without

tacking into account the semantic meanings of the objects.

In the future, we plan to employ semantic segmentation in

separating the environment. We expect the future method to

cover the environment object by object. An advantage of

such a method is that a human executive can determine the

set of objects to cover.

ACKNOWLEDGMENT

Special thanks are given to M. Mousaei for facilitating

UAV experiments.

TABLE I: Comparison of runtime breakdown. The viewpoint

sampling is for both methods. The viewpoint selection and

TSP solving are for one algorithm iteration.

Baseline Proposed

Test Viewpoint Viewpoint Viewpoint

sampling selection TSP selection TSPs

Machine shop 147.8s 163.0s 64.8s 1.9s 0.20s

Aircraft 7.5s 6.3s 7.7s 0.15s 0.37s

Bridge 12.1s 16.2s 39.1s 0.10s 0.36s

UAV flight 8.1s 1.6s 0.67s 0.044s 0.017s

REFERENCES

[1] H. Choset, “Coverage for robotics–a survey of recent results,” Annals

of mathematics and artificial intelligence, vol. 31, no. 1-4, pp. 113–
126, 2001.

[2] ——, “Coverage of known spaces: The boustrophedon cellular de-
composition,” Autonomous Robots, vol. 9, no. 3, pp. 247–253, 2000.

[3] M. K. Micali and D. Dornfeld, “Fully three-dimensional toolpath
generation for point-based additive manufacturing systems,” in Solid

Freeform Fabrication Symposium, vol. 27, 2016.
[4] P. N. Atkar, A. Greenfield, D. C. Conner, H. Choset, and A. A. Rizzi,

“Uniform coverage of automotive surface patches,” The International

Journal of Robotics Research, vol. 24, no. 11, pp. 883–898, 2005.
[5] G. A. Hollinger, B. Englot, F. S. Hover, U. Mitra, and G. S. Sukhatme,

“Active planning for underwater inspection and the benefit of adaptiv-
ity,” The International Journal of Robotics Research, vol. 32, no. 1,
pp. 3–18, 2013.

[6] A. Bircher, M. Kamel, K. Alexis, M. Burri, P. Oettershagen, S. Omari,
T. Mantel, and R. Siegwart, “Three-dimensional coverage path plan-
ning via viewpoint resampling and tour optimization for aerial robots,”
Autonomous Robots, vol. 40, no. 6, pp. 1059–1078, 2016.

[7] G. Dantzig, R. Fulkerson, and S. Johnson, “Solution of a large-
scale traveling-salesman problem,” Journal of the operations research

society of America, vol. 2, no. 4, pp. 393–410, 1954.
[8] E. Galceran and M. Carreras, “A survey on coverage path planning

for robotics,” Robotics and Autonomous systems, vol. 61, no. 12, pp.
1258–1276, 2013.

[9] L. Paull, S. Saeedi, M. Seto, and H. Li, “Sensor-driven online
coverage planning for autonomous underwater vehicles,” IEEE/ASME

Transactions on Mechatronics, vol. 18, no. 6, pp. 1827–1838, 2012.
[10] N. Gyagenda, A. K. Nasir, H. Roth, and V. Zhmud, “Coverage

path planning for large-scale aerial mapping,” in Annual Conference

Towards Autonomous Robotic Systems. Springer, 2019, pp. 251–262.
[11] M. F. Jensen, D. Bochtis, and C. G. Sørensen, “Coverage planning

for capacitated field operations, part ii: Optimisation,” Biosystems

Engineering, vol. 139, pp. 149–164, 2015.
[12] E. U. Acar, H. Choset, A. A. Rizzi, P. N. Atkar, and D. Hull,

“Morse decompositions for coverage tasks,” The international journal

of robotics research, vol. 21, no. 4, pp. 331–344, 2002.
[13] I. Rekleitis, A. P. New, E. S. Rankin, and H. Choset, “Efficient

boustrophedon multi-robot coverage: an algorithmic approach,” Annals

of Mathematics and Artificial Intelligence, vol. 52, no. 2-4, pp. 109–
142, 2008.

[14] A. Gunawan, H. C. Lau, and P. Vansteenwegen, “Orienteering prob-
lem: A survey of recent variants, solution approaches and applica-
tions,” European Journal of Operational Research, vol. 255, no. 2,
pp. 315–332, 2016.

[15] M. Roberts, D. Dey, A. Truong, S. Sinha, S. Shah, A. Kapoor, P. Han-
rahan, and N. Joshi, “Submodular trajectory optimization for aerial 3d
scanning,” in Proceedings of the IEEE International Conference on

Computer Vision, 2017, pp. 5324–5333.
[16] S. Arora and S. Scherer, “Rapidly exploring random orienteering,”

2016.
[17] C. Dornhege, A. Kleiner, A. Hertle, and A. Kolling, “Multirobot

coverage search in three dimensions,” Journal of Field Robotics,
vol. 33, no. 4, pp. 537–558, 2015.

[18] Y. You, L. Fan, K. Roimela, and V. V. Mattila, “Simple octree solution
for multi-resolution lidar processing and visualisation,” in 2014 IEEE

International Conference on Computer and Information Technology.
IEEE, 2014, pp. 220–225.

[19] L. Perron and V. Furnon, “Or-tools,” Google. [Online]. Available:
https://developers.google.com/optimization/

[20] K. Hauser, “Lazy collision checking in asymptotically-optimal motion
planning,” in 2015 IEEE International Conference on Robotics and

Automation (ICRA). IEEE, 2015, pp. 2951–2957.
[21] C. H. Papadimitriou, “The complexity of the lin–kernighan heuristic

for the traveling salesman problem,” SIAM Journal on Computing,
vol. 21, no. 3, pp. 450–465, 1992.

[22] J. Zhang and S. Singh, “Laser-visual-inertial odometry and mapping
with high robustness and low drift,” Journal of Field Robotics, vol. 35,
no. 8, pp. 1242–1264, 2018.

View publication statsView publication stats

https://www.researchgate.net/publication/338736494

	Introduction
	Related Work
	Methodology
	Viewpoint Sampling
	Space Subdivision
	Global TSP
	Local Coverage Planning
	On Complexity

	Experiments
	Path Generation Tests
	UAV Flight Test

	Conclusion and Future Work
	References

