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Abstract

Modern autonomous driving systems continue to face the challenges of
handling complex and variable multi-agent real-world scenarios. Some
subsystems, such as perception, use deep learning-based approaches to
leverage large amounts of data to generalize to novel scenes. Other
subsystems, such as planning and control, still follow the classic cost-based
trajectory optimization approaches, and require high efforts to handle the
long tail of rare events. Deep Reinforcement Learning (RL) has shown
encouraging evidence in learning complex decision-making tasks, spanning
from strategic games to challenging robotics tasks. Further, the dense
reward structure and modest time horizons make autonomous driving a
favorable prospect for applying RL.

As there are practical challenges in running RL online on vehicles and most
self-driving companies have millions of miles of collected data, it motivates
the use of off-policy RL algorithms to learn policies that can eventually
work in the real world. We explore the use of an off-policy RL algorithm,
Deep Q-Learning, to learn goal-directed navigation in a simulated urban
driving environment. Since Deep Q-Learning methods are susceptible to
instability and sub-optimal convergence, we investigate different strategies
to sample experiences from the replay buffer to mitigate these issues. We
also explore combining expert agent’s demonstration data with the RL
agent’s experiences to speed-up the learning process. We demonstrate
promising results on the CoRL2017 and NoCrash benchmarks on CARLA.

v



vi



Acknowledgments

I would foremost like to express my sincere gratitude to my advisor
Prof. Jeff Schneider for his extraordinary guidance and constant support
throughout my research work. It was under his supervision that I
developed a profound interest in the domain of reinforcement learning
and the field of academic research at large. I would also like to thank Prof.
David Held and Ben Eysenbach for their valuable feedback as members
of my thesis committee.

I am also grateful to my colleague and close friend, Tanmay Agarwal, for
being a great collaborator, and particularly recognize his contributions
in the work presented in Chapters 3 and 4. I would like to thank my
amazing lab members Adam, Audrey, Christoph, Mayank, Shuby, Tanvir,
Theophile and Vinay for their consistent and useful feedback on my
research. I am also immensely grateful to my friends Aditya, Sarthak,
Talha, Harjatin, Siddharth, Alex, Gautham, Tithi and Darshi for their
help and support throughout these last couple of years. A special shoutout
to Nidhi and Vishali for helping me in this journey despite being half way
across the globe.

Lastly, I am forever indebted to my family for their sacrifices and commitment
towards my education and growth. None of this would have been possible
without their love and encouragement.



vii



viii



Funding

We thank the CMU Argo AI Center for Autonomous Vehicle Research1

for supporting the work presented in this thesis.

1https://labs.ri.cmu.edu/argo-ai-center/

ix



x



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Related Work 5
2.1 Modular Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Imitation Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1 Stability in Deep Q-learning . . . . . . . . . . . . . . . . . . . 7

3 CARLA Environment 9
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Waypoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Dynamic Obstacle and Traffic Light Detection . . . . . . . . . . . . . 11
3.5 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.5.1 CoRL2017 Benchmark . . . . . . . . . . . . . . . . . . . . . . 12
3.5.2 NoCrash Benchmark . . . . . . . . . . . . . . . . . . . . . . . 12

3.6 Benchmark Differences across CARLA Versions . . . . . . . . . . . . 13

4 On-Policy Learning 15
4.1 Reinforcement Learning setup . . . . . . . . . . . . . . . . . . . . . . 15

4.1.1 State Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.1.2 Action Space . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1.3 Reward Function . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Off-Policy Learning 25
5.1 Reinforcement Learning Formulation . . . . . . . . . . . . . . . . . . 25

5.1.1 State Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

xi



5.1.2 Discrete Action Space . . . . . . . . . . . . . . . . . . . . . . 27
5.1.3 Reward Function . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.1.4 Episode Termination . . . . . . . . . . . . . . . . . . . . . . . 29

5.2 Preliminary Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2.1 RL Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2.2 Experiment Setup for Preliminary Analysis . . . . . . . . . . . 30
5.2.3 Observations and Analysis . . . . . . . . . . . . . . . . . . . . 32

5.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3.1 Double DQN with Backward-Sampling . . . . . . . . . . . . . 35
5.3.2 Clipped Double DQN . . . . . . . . . . . . . . . . . . . . . . . 41

5.4 Reinforcement Learning with Expert Demonstrations . . . . . . . . . 42
5.4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.4.2 Expert Agent Details . . . . . . . . . . . . . . . . . . . . . . . 43
5.4.3 Expert Agent Demonstration Data Generation . . . . . . . . . 43
5.4.4 Using Expert Agent Demonstration Data . . . . . . . . . . . . 44

5.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 45
5.5.1 Agent Training and Evaluation . . . . . . . . . . . . . . . . . 45
5.5.2 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.6 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.6.1 DDQN Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.6.2 Clipped-DDQN Agent . . . . . . . . . . . . . . . . . . . . . . 48
5.6.3 DDQN Agent with Expert Demonstrations . . . . . . . . . . . 53

6 Conclusion 57
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Bibliography 59

xii



List of Figures

3.1 Waypoints (shown in red) are intermediate 3D-directed points containing
location and orientation between a source and a destination location. 11

4.1 Average Waypoint orientation . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Proposed Architecture: The inputs to the above architecture are
semantically segmented (SS) images and intermediate waypoints that
are obtained from the CARLA simulator. The SS images are encoded
using a pretrained auto-encoder whose bottleneck encoding alongwith
waypoint features forms input to the policy network. The policy
network outputs the control actions (ŝ, v̂) where ŝ is the predicted
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Chapter 1

Introduction

1.1 Motivation

There has been substantive recent progress towards solving the long-standing goal

of autonomous driving [4, 16, 25, 32, 44, 56]. The complexity of the problem ranges

from learning to navigate in constrained industrial settings, to driving on highways,

to navigation in dense urban environments. Simpler tasks within autonomous driving,

such as lane following and cruise control on highways, naturally allow for simpler

models. However, navigation in dense urban settings requires understanding complex

multi-agent dynamics including tracking multiple actors across scenes, predicting their

intended future trajectories, and adjusting agent behavior conditioned on history.

Additionally, the agent must be able to generalize to novel scenes and learn to

take ‘sensible’ actions for observations in the long tail of rare events such as a deer

running onto a road, a woman in an electric wheelchair chasing a duck on road [38],

and unanticipated behavior of vehicles violating traffic rules. These factors provide

a strong impetus for the need of general learning paradigms that are sufficiently

‘complex’ to take these factors into account.

Current state-of-the-art systems generally use a variant of supervised learning

over large datasets of collected logs to learn driving behavior [4, 16]. These systems

typically consist of a modular pipeline with different components responsible for

perception, mapping, localization, actor prediction, motion planning, and control [24,

31, 36, 50, 53]. The advantages offered by modular systems are ease of interpretation

1



1. Introduction

and ability to optimize subsystem parameters in an understandable way. However,

in practice, it is challenging to tune these subsystems and replicate the intended

behavior leading to poor performance in new environments.

Another approach that has recently become popular is exploiting imitation learning,

where we aim to learn a control policy for driving behavior by observing expert

demonstrations [4, 7, 37, 39, 42, 43, 58]. The advantage of these methods is that the

agent can be optimized using end to end deep learning to learn the desired control

behavior which significantly reduces the effort of tuning each component that is

common to more modular systems. The drawback, however, is that these systems are

challenging to scale and generalize to novel situations, since they can never outperform

the expert agent and it is impractical to obtain expert demonstrations for all the

scenarios that we may come across.

Deep reinforcement learning (RL) has recently made large strides towards solving

sequential decision-making problems, including learning to play Atari games and

solving complex robotic manipulation tasks. The superhuman performance attained

using this learning paradigm motivates the question of whether RL can be leveraged

to solve the prevailing goal of creating autonomous vehicles. This has encouragingly

inspired some recent works to use reinforcement learning in autonomous driving

[12, 25, 26, 32]. It is challenging to use RL directly for autonomous driving in the

real world, primarily due to safety considerations and poor sample complexity of the

state-of-art RL algorithms leading to costly and arduous training. Hence, most of

the current research in the domain is increasingly being carried out on simulators,

such as TORCS [57] and CARLA [12], which can eventually be transferred to real

world settings.

We believe autonomous driving could be among the first few domains where RL

can successfully achieve impact in the real world. One of the obvious challenges,

common to broader RL research, is designing more sample-efficient algorithms to

learn from the limited samples, especially to handle the critical long tail of rare events.

The upside is that the autonomous driving problem has better structure, viz. dense

rewards, and shorter time horizons, which makes it an easier prospect for applying

RL as compared to the hard-exploration problems. Many self-driving companies,

2



1. Introduction

such as Argo AI1 and Waymo2, now have millions of miles [55] of collected data (logs)

annotated with readings from a comprehensive sensor suite, high-definition maps and

human drivers’ optimal actions. This opens up a tremendous opportunity to design

off-policy RL algorithms which can leverage from the already available data. There

is an increasing interest in this direction with Offline RL [30] to utilize previously

collected data without additional online data collection, which is in the early phases

of research. Many self-driving car companies also have a Log-Replay system for their

testing and evaluation, which replays the real-world collected logs, where they can

update their agent with improved driving policy and test the new behavior in different

situations. Although, this is not completely interactive as compared to the standard

RL environments, since the other actors’ behaviors remain the same, it is reasonable

to utilize Log-Replay for short snippets of time, collect some on-policy data and

combine with the existing data for improved training. This motivates us to design

off-policy RL algorithms, to utilize both the limited amounts of on-policy data and

large amounts of expert data, to extract policies with the maximum possible utility

which can work in the real world [15, 21].

1.2 Contributions

The main contributions of this thesis are listed as follows:

• We formulate the problem of goal-directed navigation in the reinforcement

learning (RL) framework and build the RL-environment on the CARLA simulator

which is planned to be shared with the research community.

• We propose the use of waypoints as the navigation input and design an

architecture to learn planning and control directly from semantically segmented

images and waypoints using the model-free on-policy RL algorithm of Proximal

policy optimization (PPO) [47].

• We explore the use of off-policy RL algorithm of Deep Q-Learning [33] for

learning goal-directed navigation in the presence of other dynamic agents, present

an analysis of the various issues in training instability and share techniques to

1https://www.argo.ai/
2https://waymo.com/
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address them including n-step returns, dueling network architecture and clipped

Double DQN [52].

• We propose Backward-Sampling, an intuitive sampling strategy to sample

transitions close to episode termination more frequently from the replay buffer

and augment it with uniformly sampled transitions and evaluate its effects on

training.

• We present an analysis on how combining expert driving policy data along with

RL driving agent’s experiences can aid in faster learning.

1.3 Organization

The thesis is organized as follows:

• Chapter 2 discusses the related work to this thesis, focusing on recent research

using imitation and reinforcement learning for autonomous driving.

• Chapter 3 contains the relevant details about the CARLA simulator used in

our work including waypoints, sensors, detectors for dynamic obstacles, and

traffic lights. We also describe the official CARLA benchmarks used to evaluate

our agent’s performance.

• Chapter 4 explains the architecture design to learn planning and control directly

from semantically segmented images and waypoints using an on-policy RL

algorithm (PPO).

• Chapter 5 contains our work on using the off-policy RL algorithm of Deep

Q-Learning for learning goal-directed navigation in the presence of other

dynamic agents. We present an analysis of the various issues in training

instability and share techniques to address them including clipped Double DQN,

Backward-Sampling, and combining expert driving policy data along with RL

driving agent’s experiences.

• Chapter 6 lists the summary of our work and possible directions for future work.

4



Chapter 2

Related Work

Autonomous driving is a well-studied problem with a long history of different

paradigms and approaches that have been attempted to solve the problem. Broadly,

these approaches can be divided into three categories, namely Modular Systems,

Imitation Learning and Reinforcement Learning. In this chapter, we discuss existing

research in these categories in the following sections. Additionally, we discuss research

related to the instability issues observed in Q-learning and the techniques to address

them.

2.1 Modular Systems

These techniques are characterized by a modular pipelines which have a well-marked

distinction between the various phases associated with autonomous navigation [24,

31, 36, 53]. These include perception, mapping & localization, prediction, motion

planning, routing, and vehicle control. They are the most widely used approach for

building state of the art autonomous vehicles. The advantage they offer is the ease of

interpretation and ability to optimize subsystem parameters in an understandable

way.

However, this ease of subsystem optimization is also a drawback, since in practice,

these systems require a massive engineering effort to tune, which results in issues

during scaling to more complex driving situations. Though these systems are the

current focus of most real world self-driving car deployments, they present an enormous
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engineering challenge to understand tuning behavior and system interdependencies.

2.2 Imitation Learning

Imitation learning provides a paradigm to produce a policy that will mimic the

expert’s actions given corresponding input [3, 8, 37, 39, 42]. These demonstrations

are obtained offline (either in the real world or through simulation), and consist

of a sequence of state observations and corresponding expert actions. Most of the

baselines on the CARLA benchmark use this approach and hence, we describe them

below.

In Learning by Cheating [6], authors provide an architecture for vision-based

navigation via imitation learning. They have a two-step training protocol with two

agents, Privileged agent and Sensorimotor agent. The privileged agent is trained

with human expert’s trajectories and has full state access. This agent is then used to

generate data to train a Sensorimotor agent, which just uses images as observations.

In Conditional Affordance Learning [45], authors propose an architecture where

they generalize direct perception approach to the urban setting. From the convolution

features of the image, they develop intermediate representations in the form of

affordances, suitable for urban navigation. These affordance models are conditioned

on high-level directional commands. They report an improvement of up to 68% in

goal-directed navigation on the challenging CARLA simulation benchmark.

2.3 Reinforcement Learning

There are few works that use reinforcement learning from scratch for learning to drive.

An initial work is presented in the original CARLA paper [12] where the authors

use asynchronous advantage actor-critic (A3C) algorithm [34], and train it for 10

million simulation steps, which corresponds to roughly 12 days of driving at 10 frames

per second (fps). While they achieve decent performance in the straight task, they

perform poorly in all other navigation tasks for the RL agent. A follow-up work,

Controllable Imitative Reinforcement Learning (CIRL) [32], first trains the agent

by imitation learning with the ground-truth actions from recorded human driving
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videos, and then fine-tunes it further using reinforcement learning optimized via Deep

Deterministic Policy Gradient (DDPG). However, most of the performance gains

seem attributable to the pre-training stage using imitation learning and it is unclear

about the performance rate that can be achieved using RL-based policy learning from

scratch.

Kendall et al. [25] show the first application of RL for autonomous driving on a

real car, where they are able to learn the simple task of lane-following using DDPG

RL algorithm and then, a VAE to encode input camera images. They use a sparse

reward structure that can make it challenging to learn, and focus on a constrained

environment.

IA [51] is a very recent work that learns a ResNet encoder to predict relevant

features, referred as implicit affordances and uses the encoding as the state-input

to learn a driving policy using recent advancements in the DQN algorithm, namely

Rainbow IQN Ape-X [20].

2.3.1 Stability in Deep Q-learning

We also discuss related research to the issues we see in off-policy Q-learning and

our proposed Backward-Sampling approach. In DisCor [28], authors demonstrate a

similar issue in bootstrapping-based Q-learning algorithms due to close interactions

between the distribution of experience collected by the agent and the policy induced

by training on that experience, referring to it as the absence of “corrective feedback”.

The authors share that these methods regress onto bootstrapped estimates of the

current Q-value function, rather than the true optimal Q-value function (which is

unknown). Thus, naively visiting states with high TD-error and updating the Q-value

function at those states does not necessarily correct those errors, since high TD-target

errors might be due to upstream errors in Q-value estimates of other states that are

visited less often. They define an upper bound on the estimated error between the

bootstrapped target Q-value estimate and optimal Q∗-value (this error is referred as

the target value error), and use it to propose a sampling strategy to down-weight the

transitions with high target value error. This results in sampling transitions with

more accurate target values, that are expected to maximally improve the accuracy of

the Q function.
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Additionally, we add recent works which provide extensions to DQN such as

prioritized experience replay (PER) [46], Dueling networks [54], Noisy DQN [13] and

Multi-step DQN [35]. Each of these us aimed to improve different parts of DQN. PER

tries to use a heuristic while sampling, rather than the traditional uniform sampling

in DQN. It assigns high importance to samples which have high TD error and the

ones which are pushed recently to the replay buffer hypothesizing that these samples

will facilitate faster learning. Noisy DQN tries to address better exploration in DQN.

Dueling networks factorize the Q function into value and advantage functions. They

argue that in some states, it is sufficient to learn only the state value function rather

than state action value function. Multi-step DQN points out that using the bias

variance trade-off in N-step returns is worth considering, as TD learning (1-step

return) might not be optimal for all the tasks. All these extensions are proposed

independent of one another. Rainbow [20] does a comprehensive study on which

modifications and extensions are complementary and lead to a significant improvement

in performance by combining all these approaches.
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Chapter 3

CARLA Environment

In this chapter, we describe the CARLA simulator [12], its relevant components, and

the additions required to use it in our reinforcement learning framework. Next, we

also describe the official CARLA benchmarks, namely CoRL2017 and NoCrash, used

in the experimental evaluation of the agent’s performance.

3.1 Introduction

CARLA (Car Learning to Act) is an open-source simulator based on Unreal Engine 4

for Autonomous Driving research [12]. It is designed as a Server-Client system, where

the server runs the simulation based on commands from client and physics engine,

and renders the scene. The python-API based client sends control commands (of

steer, throttle, brake) to the server and receives sensor readings. The steer control

ranges between [-1.0, 1.0] whereas the throttle and brake commands range between

[0.0, 1.0].

Since most of the prior works carried out using CARLA do not share their codebase,

we build a CARLA-RL environment on top of the CARLA API’s to have reset() and

step() methods to design an OpenAI gym-like RL environment in CARLA which is

not natively supported. An important thing to be noted is that we run the simulator

at fixed time-step in the synchronous mode, which means the simulator halts each

frame until a control message is received. This ensures that the generated data of

every sensor is received in every frame by the client irrespective of client speed.
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3. CARLA Environment

3.2 Sensors

CARLA provides a diverse set of sensors that can be attached to the driving agent

and the sensor readings are received at each timestep.

We use the Semantic Segmentation Camera sensor, which provides 12 semantic

classes for each pixel: road, lane-marking, traffic sign, sidewalk, fence, pole, wall,

building, vegetation, vehicle, pedestrian, and other. We remap the semantic class

labels to 5 relevant classes: Vehicle, Pedestrian, Road, Lane-marking, and Everything-Else.

We use the Lane-Invasion sensor to detect if the driving agent crosses any lane

marking or enters side-walk. It uses road data provided by the OpenDRIVE1

description of the map, and not the visible lane markings, to determine whether

the parent vehicle is invading another lane by considering the space between wheels.

We use the Collision sensor to detect if the driving agent collides with any static or

dynamic objects in the world. Both these sensors register an event each time their

triggering condition is fulfilled, and that event is further handled appropriately.

3.3 Waypoints

Waypoints in CARLA can be described as 3D-directed points, which contain the

location on the map and the orientation of the lane containing them, as shown in

3.1. These are useful for navigation as they help to mediate between the world in the

simulator and the OpenDRIVE definition of the road.

Given a source and a destination location, we compute intermediate waypoints at

a fixed spatial resolution (2m) along the optimal path using A∗ search algorithm [18]

with distance heuristic. We note that this does not take into account any potential

dynamic actors (other vehicles/pedestrians) along the optimal path.

In the goal-directed navigation tasks, we compute the trajectory waypoints at

the beginning of the navigation from source to destination, and as the driving agent

moves, we use the next n waypoints ahead of the agent as waypoints feature input,

further detailed in Section 4.1.1. We compute the signed perpendicular distance

of the driving agent from the line connecting the next 2 trajectory waypoints, and

1OpenDRIVE R© is an open file format for the logical description of road networks. Refer
http://www.opendrive.org/ for details.
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Figure 3.1: Waypoints (shown in red) are intermediate 3D-directed points containing
location and orientation between a source and a destination location.

use it as Distance-From-Trajectory input. We also use these waypoints to compute

the remaining distance to reach the goal along the trajectory, and refer to it as

Distance-To-Goal input.

3.4 Dynamic Obstacle and Traffic Light

Detection

To compute low dimensional inputs containing information about other dynamic

obstacles (vehicles/pedestrians) and traffic light, we add a rule-based detector for

vehicle and traffic light state using information from the CARLA simulator. We find

the distance and speed of the vehicle right in front of the driving agent in the same lane

within the vehicle-proximity-threshold (15m) distance. Since the CARLA benchmark

towns contain only single-lane roads, detecting only the vehicle right in front of the

driving agent is sufficient in the current setup. We query the state of the nearest

traffic light in front of the driving agent within traffic-light-proximity-threshold (10m)

distance from the simulator.
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3.5 Benchmarks

In this section, we describe the two published autonomous driving benchmarks on

the CARLA simulator, viz. CoRL2019 and NoCrash benchmarks.

3.5.1 CoRL2017 Benchmark

The CARLA CoRL2017 Benchmark [12], also referred as the Original CARLA

Benchmark, consists of evaluating a driving agent on four goal-directed navigation

tasks. In each task, the agent is initialized at a source location and needs to reach a

destination location. Town 01 is used for training and Town 02 for testing. Each of

the four tasks has 25 scenarios in each town. The tasks are described below.

1. Straight: Destination is straight ahead of the source location with no dynamic

obstacles. Average goal distance is 200 m (Town 1) and 100 m (Town 2).

2. One Turn: Destination is one turn away from the source location with no

dynamic obstacles. Average goal distance is 400 m (Town 1) and 170 m (Town

2).

3. Navigation: Destination can be anywhere relative to the source location with

no dynamic obstacles. Average goal distance is 770 m (Town 1) and 360 m

(Town 2).

4. Navigation with dynamic obstacles: Same as the Navigation task, but

with dynamic obstacles (vehicles, pedestrians).

3.5.2 NoCrash Benchmark

As the original CARLA CoRL2017 benchmark does not consider collisions as failures,

it is insufficient to realistically evaluate agent’s driving behavior especially in scenarios

with other dynamic actors. To address this, NoCrash benchmark [9] was proposed

that considers collisions with both static and dynamic actors as failures. Note, it

does not consider other infractions such as traffic light infractions, lane-invasion and

off-road infraction as failures. The benchmark consists of goal-directed navigation

tasks in three increasing levels of difficulty in terms of dynamic actors. The tasks are
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Task Description
Number of

vehicles in Training
Town (Town 01)

Number of
vehicles in Testing
Town (Town 02)

Empty Town No dynamic objects Cars: 0 Cars: 0

Regular Traffic
Moderate number of
cars and pedestrians

Cars: 20 Cars: 15

Dense Traffic
Large number of

cars and pedestrians
Cars: 100 Cars: 70

Table 3.1: Description of CARLA NoCrash Benchmark.

Empty Town, Regular Traffic and Dense Traffic, which are described in Table 3.1.

Town 01 is used for training and Town 02 is used for testing.

3.6 Benchmark Differences across CARLA

Versions

The above benchmark scenarios are defined on the older CARLA version 0.8.4 and

we port them in the recent version CARLA 0.9.6 for evaluation in. Also, the CARLA

0.9.6 version has support for pedestrians to move only on the side-walks, and not

across the road, in contrast to the older version which had support for pedestrian

crossing. Hence, we are not able to evaluate with pedestrians crossing the road in the

recent version CARLA 0.9.6.
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Chapter 4

On-Policy Learning

In this chapter, we discuss our first work on formulating the problem of goal-directed

navigation using reinforcement learning on the CARLA simulator [12]. We use

Proximal policy optimization (PPO) [22, 47], an on-policy model-free RL algorithm

to train the driving agents in this setup. First we describe the reinforcement learning

setup, followed by the training methodology and proposed architecture. Then we

describe the experimental setup and present results on the CARLA benchmarks.

4.1 Reinforcement Learning setup

In this section, we describe the reinforcement learning formulation for our problem of

goal-directed navigation. This includes the definition of the state space, action space,

and reward function.

4.1.1 State Space

We use the top-down semantically segmented image encoding and waypoint features

as the state inputs for the RL agent. These are described in detail below.

Semantically Segmented Image

We choose the encoding of a top-down Semantically Segmented (SS) image as

one of our state inputs. The SS image is easily obtained from the CARLA’s
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Semantic Segmentation Camera Sensor described in Section 3.2. Given the current

state-of-the-art architectures in perception, we believe segmentation as a task can be

trained in isolation and hence we focus on learning control agents using DRL directly

from SS images. We use convolutional neural network based Auto-Encoder (AE) to

reduce dimensionality of our SS image and use the bottleneck embedding as one of

the inputs to the agent policy network (Figure 4.2). We refer to the AE bottleneck

embedding as h̃, and define it in Equation (4.1) with g being the encoder function of

our AE.

h̃ = g(SSimage) (4.1)

Trajectory Waypoints

Apart from the SS image input, the agent also requires an input to guide its navigation.

Previous approaches [12, 32] use high level commands for navigation viz. straight,

turn-right, turn-left, lane-follow. Instead, we propose to use trajectory waypoints to

guide navigation, as they are readily available in real world autonomous vehicles with

GPS and map information, and can provide a more precise signal to the learning

agent for navigation. We describe the trajectory waypoints generation logic in Section

3.3. We note that the waypoints are statically generated at the beginning of the

navigation, and do not take into account any potential dynamic actor along the

optimal path.

The waypoint features w̃ can be computed using a generic function f defined by

the next n waypoints (w1,w2, ...,wn) and agent’s current pose p. These features w̃

form the second input to our agent policy network as defined in Equation (4.2).

w̃ = f(p,w1,w2, ...,wn) (4.2)

In our setup, we define the the waypoint feature function f as the mean waypoint

orientation between the agent’s current pose and the next n = 5 waypoints for

simplicity, but it can extended to work with other functions as well. It is mathematically
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defined in Equation 4.3 and shown in Figure 4.1.

w̃θ =
1

n

n∑
i=1

(
θp − θwi

) (4.3)

θ

Waypoints

Orientation

Agent (vehicle)

Figure 4.1: Average Waypoint orientation

4.1.2 Action Space

In CARLA, the control actions for the driving agent are defined by (s, t, b) where s is

the steer, t is the throttle and b is the brake action. The s action ranges between

[-0.5, 0.5], and the t and b actions range between [0.0, 1.0].

The input representation is then fed into our policy network π(ŝ, v̂|[h̃ w̃]) (Figure

4.2) which consists of a multi-layer perceptron and outputs (ŝ, v̂), where ŝ is the

predicted steer action and v̂ is the predicted target velocity for that timestep. To

ensure better stability, we utilize a PID controller that computes the predicted throttle

t̂ and brake b̂ actions.

4.1.3 Reward Function

We design a simple and dense reward function R that incentivizes our agent Rs based

on its current speed u, penalizes Rd based on the perpendicular distance d from the

nominal trajectory and incurs Rc if it collides with other actors or goes outside the

road, denoted by indicator function I(c). Mathematically, our reward formulation
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Figure 4.2: Proposed Architecture: The inputs to the above architecture are
semantically segmented (SS) images and intermediate waypoints that are obtained
from the CARLA simulator. The SS images are encoded using a pretrained
auto-encoder whose bottleneck encoding alongwith waypoint features forms input to
the policy network. The policy network outputs the control actions (ŝ, v̂) where ŝ is
the predicted steer, v̂ is the predicted target speed which is then mapped to predicted
throttle and brake (t̂, b̂) using a PID controller.

can be described by Equation 4.4.

R = Rs +Rd + I(c) ∗Rc

Rs = α ∗ u;Rd = −β ∗ d;Rc = −γ ∗ u− δ
(4.4)

4.2 Methodology

We use state-of-the-art on-policy reinforcement learning algorithm of Proximal policy

optimization (PPO) [47] to train our RL agent. This is done for each of the four

18



4. On-Policy Learning

driving tasks - (a) Straight, (b) One Turn, (c) Navigation and (d) Navigation with

dynamic obstacles, which are part of the CARLA1 benchmark [12]. For each of the

defined driving tasks, we set up each training episode as goal-directed navigational

scenario, where an agent is initialized at a source location in town and has to reach

to a destination location. The episode is terminated as a success case if the agent

reaches within 10 m of the destination, while it is terminated as failure case if the

agent faces a collision, or does not reach near the destination within the maximum

number of timesteps (10,000).

In our setup, Town 1 is used for training and Town 2 for testing. Since the

semantically segmented (SS) images contain a class label per pixel, the convolutional

auto-encoder (AE) is trained to predict class label per pixel using reconstruction loss

as the multi-class cross-entropy loss. The AE is pre-trained on SS images collected

using an autonomous oracle agent in the training town to speed up agent policy

training. The AE’s bottleneck embedding (h̃) and waypoint features (w̃) are then

fed into the agent policy network.

We found that fine-tuning AE on the diverse SS images seen during training helps

in learning a better input representation, enabling the agent to learn a better policy.

The agent policy network and AE are trained simultaneously and independently. For

a fixed number of timesteps (nsteps), the AE is kept fixed and the agent policy is

trained on transitions collected during those timesteps. Then, the AE is fine-tuned by

optimizing on the most recent nsteps SS images collected in a buffer, and the training

continues.

Figure 4.3 shows the mean cumulative reward and success rate achieved by our

agent when validated in fixed intervals as the training progresses. We observe from

this plot that our agent is able to learn the task in around 1.5M timesteps of training

as it converges to the optimal policy.

4.3 Experimental Evaluation

For the experimental evaluation of our agent on the CARLA benchmarks, we use

the following baselines available on the CARLA benchmarks. We directly report the

1The existing benchmark suite is on CARLA version 0.8.4 and we ported the same benchmark
scenarios for evaluation in CARLA 0.9.6.
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Figure 4.3: Mean reward and success metric reported on training our proposed setup
on the Navigation task of the CoRL 2017 benchmark.

baseline numbers from their papers as most of the works do not open-source their

implementations.

We acknowledge that the baseline methods use RGB images and high-level

navigation features as input, in contrast to the semantically segmented images and

richer low-level waypoint features used as input in our approach. The use of waypoint

information is motivated by the fact that real-time waypoint and GPS information is

readily available in real-world autonomous vehicles and hence, can be combined with

other visual features for training agents using DRL. We use state-of-the-art baselines

as a reference to evaluate our work.

• Modular Pipeline Approaches: CARLA MP [12] uses a vision-based module, a

rule-based planner, and a classical controller. Automatic Control (AT ) baselines

refers to the CARLA built-in autopilot control that has access to simulator

states and uses a classic rule-based approach to determine optimal control. CAL

[45] uses a separate visual encoder to predicts low-dimensional representations,

referred as Affordances, that are the relevant features for driving.

• Imitation Learning Approaches: CARLA IL [12] is a standard IL approach using

a deep network to map sensor inputs to driving commands. CIL [8] and CILRS

[9] use a conditional imitation learning pipeline to learn a driving policy from

expert demonstrations of low-level control inputs, conditioned on the high-level

navigation commands. LBC [6] uses a privileged agent to learn driving from

privileged information (simulator states). The sensorimotor agent then learns
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CARLA CoRL2017 Benchmark (% Success Episodes)
Task Training Conditions (Town 01 )

MP IL RL CIL CIRL CAL CILRS LBC IA Ours
Straight 98 95 89 98 98 100 96 100 100 100

One Turn 82 89 34 89 97 97 92 100 100 100
Navigation 80 86 14 86 93 92 95 100 100 100

Dyn. Navigation 77 83 7 83 82 83 92 100 100 100

Task Testing Conditions (Town 02 )
MP IL RL CIL CIRL CAL CILRS LBC IA Ours

Straight 92 97 74 97 100 93 96 100 100 100
One Turn 61 59 12 59 71 82 84 100 100 100
Navigation 24 40 3 40 53 70 69 98 100 100

Dyn. Navigation 24 38 2 38 41 64 66 99 98 100

Table 4.1: Quantitative comparison with our chosen baselines that solve the four
goal-directed navigation tasks using modular, imitation learning or reinforcement
learning approaches on the CARLA CoRL2017 Benchmark [12]. The table reports the
percentage (%) of successfully completed episodes for each task and for the training
(Town 01 ) and testing town (Town 02 ). Higher is better. The baselines include MP
[12], IL [12], RL [12], CIL [8], CIRL [32], CAL [45], CILRS [9], LBC [6] and IA [51]
compared with our PPO + AE method. The results reported are the average over 3
seeds that are evaluated on 5 different runs of the benchmark.

to drive from sensor inputs using supervision by the privileged agent.

• Reinforcement Learning Approaches: CARLA RL [12] is the first RL approach

on the CARLA benchmark which uses the A3C algorithm to do end-to-end RL

on sensor inputs. CIRL [32] uses a pre-trained imitation learned policy and

then improves it further using the DDPG algorithm. IA [51] is very recent work

that learns a ResNet encoder to predict relevant features, referred as implicit

affordances and uses encoding to learn a driving policy using an advanced

variant of DQN algorithm, namely Rainbow IQN Ape-X.

4.4 Results

We observe from our results (Table 4.1) on the CARLA CoRL2017 Benchmark that

the RL agent is able to learn all the tasks on both the towns, Town 01 and Town

02. Further, we note from the table that the success metric achieved by our agent is
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CARLA NoCrash Benchmark (% Success Episodes)
Task Training Conditions (Town 01 )

CIL CAL CILRS LBC IA AT Ours
Empty 79± 1 81± 1 87± 1 97± 1 100 100± 0 100± 0
Regular 60± 1 73± 2 83± 0 93± 1 96 99± 1 52± 6
Dense 21± 2 42± 1 42± 2 71± 5 70 86± 3 19± 2

Task Testing Conditions (Town 02 )
CIL CAL CILRS LBC IA AT Ours

Empty 48± 3 36± 6 51± 1 100± 0 99 100± 0 100± 0
Regular 27± 1 26± 2 44± 5 94± 3 87 99± 1 45± 5
Dense 10± 2 9± 1 38± 2 51± 3 42 60± 3 12± 1

Table 4.2: Quantitative comparison with the chosen baselines that solve the three
goal-directed navigation tasks using modular, imitation learning or reinforcement
learning approaches on the CARLA NoCrash Benchmark [9]. The table reports the
percentage (%) of successfully completed episodes for each task and for the training
(Town 01 ) and testing town (Town 02 ). Higher is better. The baselines include CIL
[8], CAL [45], CILRS [9], LBC [6], IA [51] and CARLA built-in autopilot control
(AT ) compared with our PPO + AE method. The reported results are the average
over 3 seeds that are evaluated on 5 different runs of the benchmark.

higher than all baseline methods that we use for comparison. This increase in success

on the benchmark task can be attributed to our simplified input representation.

Next, we want to also add that the CARLA CoRL 2017 benchmark does not

terminate the episode on collision, using which our agent achieves almost 100% success

rate even on the Task (d) (Navigation with dynamic obstacles) where it keeps on

colliding with other vehicles, but finally reaches the destination. Hence, we chose

to evaluate on a more realistic setting of CARLA NoCrash Benchmark in which we

terminate the episode on collision and count it as a failure case.

As we see from our results on the CARLA NoCrash Benchmark (Table 4.2), we

observe that we get perfect performance on the Empty town task whereas on the

Regular and Dense traffic tasks we observe a drop in performance due to the effect of

not learning the brake. We find that the agent does not learn to stop in presence of

dynamic actors, and the marginal success rate achieved in Regular and Dense traffic

tasks are in cases where any dynamic actor does not come in front of our agent.
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4.5 Discussion

In this chapter, we present an approach to use waypoints as the navigation input

and design an architecture to learn planning and control directly from semantically

segmented images and waypoints using an on-policy RL algorithm (Proximal policy

optimization). The agent successfully learns to navigate, except in the presence of

dynamic actors. It is unclear whether the issue lies in learning a good representation

from the semantically segmented image or in learning a good policy despite a good

representation. To decouple these issues in representation and policy learning, we

focus on learning from a simple low-dimensional input space to understand the

challenges in learning to drive with dynamic actors. The follow-up to this work on

using on-policy reinforcement learning with low-dimensional state space is presented

in [1]. We focus on using off-policy reinforcement learning with low-dimensional state

space in the next chapter.
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Chapter 5

Off-Policy Learning

In this chapter, we describe our work on using an off-policy reinforcement learning

algorithm, Deep Q-Learning (DQN), to learn goal-directed navigation in the presence

of dynamic actors using low-dimensional state representation. We first present

the reinforcement learning (RL) formulation for our problem setup. Then we

discuss preliminary experiments and analysis on simplified tasks, which highlights

the issues in learning with dynamic actors and motivates our proposed approaches

of Backward-Sampling and Clipped Double DQN which are further explained in

the following section. Next, we describe our preliminary work to combine expert

agent demonstrations with the RL agent experience to help in faster learning. This

is an initial step towards our long-term goal to utilize large amounts of existing

experts’ driving data and limited amounts of on-policy data to learn policies with

the maximum possible utility. Thereafter, we introduce our experimental setup and

present results on the CARLA benchmarks.

5.1 Reinforcement Learning Formulation

In this section, we describe the reinforcement learning formulation for our problem of

goal-directed navigation. This includes the definition of the state space, action space,

reward function and episode termination conditions.
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5.1.1 State Space

Here, we describe the state space of the RL agent. We use a low-dimensional state

space to focus on policy learning in the presence of dynamic actors. We use the

waypoint features as the navigation input, and add additional input to capture the

agent’s current state, viz. current speed, previous steer action and distance from the

trajectory. To handle dynamic actors, we add inputs of front dynamic actor distance

and speed, and traffic light state. These are described in detail below.

1. Waypoints Orientation

We continue to use the trajectory waypoints as the navigation input. Specifically,

we use the average waypoint orientation (in radians) of the next n = 5 waypoints

as explained earlier in Chapter 4. It ranges from [-4.0, -4.0].

2. Agent’s Current Speed

The current speed of the agent in m/s normalized to be in the interval [0, 1] by

dividing by 10.

3. Agent’s Previous Steer Action

The steer action taken by the agent in the previous timestep. Since the CARLA

simulator does not provide the current steer value of the agent, we use the last

steer action as a proxy to provide current state information related to steering.

It ranges from [-0.5, 0.5].

4. Signed Distance From Waypoints Trajectory

We use the signed perpendicular distance of the driving agent from waypoints

trajectory, described as Distance-From-Trajectory input in Section 3.3. This

provides information on the agent’s position relative to the optimal waypoint

trajectory, where the negative sign indicates the agent is on the left side of

trajectory and the positive sign indicates that it is on the right side. Its value

ranges from [-1.0, 1.0] when the agent is moving on the straight road, and gets

larger on turns ranging from [-2.0, 2.0]. If the agent moves far away from the

trajectory, its value can get further large, and it can be used to identify that

the agent has drifted far from the trajectory.

5. Front Obstacle Distance

We detect the obstacle in front of the driving agent within the obstacle-proximity-threshold
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distance (15m) and use the normalized distance as the input such that its range

is [0.0, 1.0]. If there is no obstacle within the obstacle-proximity-threshold, we

set the value as 1.0 to ensure monotonic input space. The computation logic is

described in Section 3.4.

6. Front Obstacle Speed

This is similar to the Front Obstacle Distance input. If there is an obstacle

within the obstacle-proximity-threshold, we take its normalized speed in m/s,

otherwise set the value as 1.0. It ranges from [0.0, 1.0].

7. Traffic Light State/Distance

We encode the nearest traffic light distance and state in this state input. If the

traffic light state is RED and within the traffic-light-proximity threshold (10m),

we set the input’s value as the normalized distance to traffic light with value

range as [0.0, 1.0]. If there is no traffic light within the proximity threshold, or

the traffic light state is GREEN or YELLOW, we set the input’s value as 1.0.

The CARLA benchmark tasks do not require the driving agent to follow traffic

light rules as per the success definition in the benchmark. However, we find that

it becomes difficult for the driving agent to cross road-intersections without

collision, if the agent does not have the knowledge of the traffic light state.

This is because the other automatic agents in CARLA cross the intersections

following traffic light rules.

5.1.2 Discrete Action Space

Similar to the RL setup in Chapter 4, the action space consists of steer and target

speed. Since DQN works with discrete action space, we discretize the continuous

control space into 12 discrete actions. We use 7 steering values [-0.5, -0.3, -0.1, 0.0,

0.1, 0.3, 0.5], which we find are sufficient to take turns in the CARLA towns. We

use two values of target speed, 0 and 20 kmph for all the steer values, except for

[-0.5, 0.5] for which we use only 20 kmph. All the actions are listed in Table 5.1. The

actions could be discretized further using more number of steering and target speed

values to allow finer control.
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Action 0 1 2 3 4 5 6 7 8 9 10 11
Target-Speed 0 0 0 0 0 20 20 20 20 20 20 20
Steer -0.3 -0.1 0.0 0.1 0.3 -0.3 -0.1 0.0 0.1 0.3 -0.5 0.5

Table 5.1: Discrete Action Space: The continuous control action space is discretized
into the above discrete actions to work with DQN. The Target-Speed (in kmph) and
Steer values (in normalized units in the range [-1.0, 1.0]) corresponding to each action
are listed.

5.1.3 Reward Function

We design a simple and dense reward function extending the reward function defined

previously in Section 4.1.3, defined in equation 5.1.

R = RSpeed +RSteer +RTrajectoryDist +RInfraction +RSuccess (5.1)

We define each of the reward components below:

• RSpeed incentivizes the agent to move at high speed by giving a reward proportional

to its current speed.

• RSteer penalizes the agent to high steer values by giving a penalty proportional to

its current steer. This is added to address the observed shaky driving behavior

caused alternating between high values of steer, specifically in case of discrete

action space.

• RTrajectoryDist incentivizes the agent to follow the optimal trajectory from goal

to the destination by giving a penalty proportional to perpendicular distance

from the trajectory. A constant reward is added to keep the TrajectoryDist

reward positive in most cases, such that the agent does not keep accumulating

negative rewards over time when it is stopped very close to the trajectory.

• RInfraction refers to the penalty provided in case of different infractions, namely

collisions, lane-invasions, off-road infractions, and traffic light infractions. In

case of infractions, a constant penalty and a penalty proportional to the speed

of the agent at the time of the infraction is provided to incentivize the agent to

gradually learn to slow down and eventually stop before causing infractions.

• RSuccess refers to the success reward provided to the agent on reaching the goal.
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Since the agent’s state space does not include any goal state information, adding

a success reward based on the discount factor accounts for the correct expected

reward for the state if it was not the goal state.

5.1.4 Episode Termination

Each episode is set up as a goal-directed navigation scenario, where the agent is

initialized at a source location in town and has to reach to a destination location.

The episode is terminated as a success case if the agent reaches within 10 m of the

destination. It is terminated as a failure case if the agent faces any infraction (collision,

lane-invasion, off-road infraction, traffic light infraction). It is also terminated as

a MaxSteps failure case if it does not reach near destination within the maximum

threshold (5000 in our setup) of total episode timesteps.

The recent work of time limits in RL [40] suggests bootstrapping the value of

the state at the end of the episode terminated due to max steps, as time limits are

not part of the environment and are only used to facilitate learning. We note that

in our setup we rarely observe termination due to max steps in training due to the

epsilon-greedy exploration policy, so we do not need to explicitly account for this.

Nonetheless, we recommend use of this strategy for correct estimates of the terminal

states.

5.2 Preliminary Analysis

In this section, we discuss preliminary experiments and analysis on simplified tasks,

which highlights the issues in learning with dynamic actors and motivates our proposed

approaches of Backward-Sampling and Clipped Double DQN, that are explained in

the next section.

5.2.1 RL Algorithm

We use Double DQN [52], which applies the Double Q-learning technique [19] to

the original DQN [33] to reduce the over-estimation bias in DQN. Additionally, we

use dueling neural network architecture [54] which factorizes the Q function into
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state-value function and state-dependent action advantage function. This can enable

the RL agent to learn which states are valuable or not, without having to learn the

effect of each action for each state, which has shown improved performance in various

settings.

5.2.2 Experiment Setup for Preliminary Analysis

In the initial experiments using DQN, we observe that the agent learns to navigate

in scenarios without the dynamic actors, where it learns the steer action and outputs

the maximum target-speed at all times, which is optimal in that setting. However,

it fails to learn to stop in scenarios with dynamic actors and collides with them.

For understanding and analysis of this issue with fast learning iterations, we design

simplified tasks described below.

Simplified Task 1 - Straight-Dynamic: In this task, the agent’s goal is to

drive within-lane on a fixed long straight road and reach the end of the road without

colliding with the other dynamic actors and causing traffic light infractions. The 300

m straight road consists of 3 traffic-light intersections and dense traffic to ensure the

agent can learn to stop before other actors and the RED traffic light. We refer to this

as the Straight-Dynamic task as shown in Figure 5.1. For this task, we could have

the agent only learn the target-speed action to move or stop, and fix steer action to

zero as it needs to drive straight. However, there is some inherent noisy drift in the

CARLA simulator, where the steer of zero would sometimes end up drifting to the

other lane or the curb. Hence, we choose a reduced set of steering values of [-0.1, 0.0,

1.0] within the action space to drive straight successfully. The reduced action space

consists of six actions listed in table 5.2.

Simplified Task 2 - Straight-Dynamic-TJunction : After the agent learns

to drive on a straight road in the Straight-Dynamic task, we extend the task by

adding two more scenarios at a T-junction, where the agent needs to learn to take

left and right turns while respecting the traffic lights at the junction. We believe that

these 3 scenarios (straight-dynamic, left turn and right turn) are representative of

the broader navigation with dynamic actors task, where the agent needs to learn to
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Figure 5.1: The simplified tasks, Straight-Dynamic (left) and
Straight-Dynamic-TJunction (right) shown on the map of Town01 in CARLA.

Action 0 1 2 3 4 5
Target-Speed 0 0 0 20 20 20
Steer -0.1 0.0 0.1 -0.1 0.0 0.1

Table 5.2: Reduced Discrete Action Space: The continuous control action space
is discretized into the above reduced discrete actions to work with DQN in the
Straight-Dynamic task. The Target-Speed (in kmph) and Steer values (in normalized
units in the range [-1.0, 1.0]) corresponding to each action are listed.
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Figure 5.2: The left figure shows the Q-values and Discounted Returns for the states
observed and actions taken by the agent in an episode. This shows that there is a
wide difference in the Q-values and discounted returns, specifically for the terminal
state-action pair. The right figure shows the replay buffer distribution of the DDQN
agent showing the that terminal states constitute only 0.3% of all the transitions.

control both steer and target-speed correctly. Hence, the agent uses the complete

action space in this task as described in Section 5.1.2. The motivation for this task is

to iterate faster on different design choices and hyperparameters to find an optimal

setting, which can be then used in the benchmark tasks. We refer to this task as the

Straight-Dynamic-TJunction task, and it is shown in Figure 5.1

5.2.3 Observations and Analysis

Here, we discuss the issues seen on the simplified tasks, and our approaches to address

them.

Straight-Dynamic Task: In this task, we observe that the agent does not learn

to stop and collides with other dynamic actors despite a collision penalty proportional

to the agent’s speed, which we would expect to provide a signal to the agent to slow

down and eventually stop before other actors to get higher rewards. To analyze

this, we look at the agent’s Q-values for the state-action pairs (states observed and

actions taken by the agent) and the cumulative discounted returns during an episode,

as shown in Figure 5.2. We observe that there is a wide gap in the Q-values and

discounted returns, specifically for the terminal state-action pair. This is concerning

since the TD-target for the terminal transition depends only on the observed reward

and is free from any potential errors due to bootstrapping. In bootstrapping-based
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Q-learning algorithms, it is imperative for the terminal states to have correct Q-values

to propagate the corrected TD-target estimations to the upstream states, which would

lead to eventual convergence to optimal Q-values. To understand this further, we

look at the distribution of transitions in the replay buffer, shown in Figure 5.2, where

we see that there are only 0.3% terminal transitions in 1M sized replay buffer, which

although reasonable for the average episode length of 300, leads to limited sampling

of these terminal transitions. We also observe that all the terminal states have a fair

distribution of different actions, which suggests that exploration may not be the issue

in this setup.

We explore the following approaches to address the issue:

• We experiment with Prioritized Experience Replay (PER) [46], which samples

transitions proportional to their TD-error with importance sampling correction

for introduced bias. In general, PER has shown faster learning and improved

performance on various benchmarks, however, it does not seem to help significantly

in our setup as shown in Figure 5.3. PER prioritizes sampling the state-action

pairs with high TD-error, but the high error values might be due to upstream

errors in bootstrapped Q-value estimates of other states, in which case, it may

not help to correct those errors.

• As PER does not seem to mitigate the issue, we try to address this issue

by proposing an intuitive sampling strategy to sample terminal transitions

and those close to episode termination more frequently and augment it with

uniformly sampled transitions. We refer to this as Backward Sampling, and

explain it algorithmically in the next section. It is encouraging to see that recent

concurrent works of DisCor [28] and EBU [29] also discuss similar issues and

propose sampling strategies to address them as explained in the related works

section. We observe that Backward-Sampling seems to help in this simplified

Straight-Dynamic task as shown in Figure 5.3, as the agent learns to stop and

avoid collisions with other dynamic agents. We evaluate and compare it with

uniform and PER sampling strategies on the comprehensive benchmarks tasks

and share findings in section 5.5.

Straight-Dynamic-TJunction Task: We observe that the agent learns to

perform the Straight-Dynamic task, and the T-Junction task independently. However,
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Figure 5.3: The figure shows the training performance for the DDQN agent on
the Straight-Dynamic Task. We observe that the agent learns the task using
Backward-Sampling, but does not learn using Uniform-Sampling and PER.

when we combine them in the Straight-Dynamic-TJunction task, surprisingly the

agent does not learn all of them. In most cases, we observe that the agent learns to

stop for dynamic actors and traffic light, and learns to take the right turn, but fails to

take the left turn stably. In some cases, the agent learns all the tasks being stable for

around 100-200K training steps, and thereafter, forgets to take the left turn pointing

to some instability in the policy training, as shown in Figure 5.6. We experiment

with deeper neural networks to increase the capability of the network, and slower

training (slower target network update frequencies and lower learning rates), which

seem to help marginally, but the instability issue remains.

We analyze this by looking at the agent’s average episodic Q-value and discounted

returns across training, depicted in Figure 5.4. We observe that Q-values for the

states with dynamic actors diverge drastically as the training proceeds. Although the

agent policy with diverged Q-values works optimally for the dynamic actor case as

the agent learns to stop before them, the Q-values are orders of magnitude higher

than the expected returns in those states. We suspect that Q-values divergence in

these states could be affecting Q-values for correlated states and making it difficult

to learn a stable policy. This is a known issue in Q-learning due to the inherent

overestimation bias [49], and thus we use the Double DQN variant as the initial

baseline, but that does not seem to solve this issue. To address it, we add the

Clipped Double Q-learning (clipped-DDQN) formulation from TD3 [14] in our

DQN setup as explained in Section 5.3. We find that clipped-DDQN does not seem
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to help address the Q-value divergence issue as shown in Figure 5.5. The training

performance comparison of DDQN and clipped-DDQN agents is shown in Figure 5.6,

where both the agents report high performance for around 100-200K training steps,

and thereafter become unstable. Although clipped-DDQN seems to marginally slow

down the rate of Q-value divergence, it does not address the underlying issue causing

the divergence. Nonetheless, to evaluate the agent’s performance on the benchmarks,

we experiment training the DDQN agent on the complete Dynamic Navigation task

of the CARLA CoRL2017 benchmark. Interestingly, we observe that somehow the

DDQN agent does not face the Q-value divergence issue in this case as shown in

Figure 5.7. It is possible that training on a larger number of scenarios adds as a

form of regularization which prevents or delays the Q-value divergence. The agent

achieves high performance across all sampling strategies without the need for clipped

formulation as shown in Figure 5.9, later in the results section. We also evaluate and

compare clipped-DDQN with DDQN on the comprehensive benchmarks tasks and

share findings in the results section.

5.3 Methodology

5.3.1 Double DQN with Backward-Sampling

As motivated in the previous section, we propose Backward-Sampling, an intuitive

sampling strategy to sample terminal transitions and the transitions close to episode

termination more frequently and augment it with uniformly sampled transitions. It

is based on the idea that it is important for terminal states to have correct Q-value

estimates to propagate corrected TD-target estimations to the upstream states, which

would potentially lead to faster convergence to optimal Q-values. It is explained

pictorially in Figure 5.8.

The pseudocode for the integration of Backward-Sampling in DQN is presented in

Algorithm 1. For each transition, we compute the remaining timesteps to termination

and refer them as StepsToTerm. For example, StepsToTerm is zero for all terminal

transitions, 1 for the transitions just before the terminal and so on. StepsToTerm can

be computed only after an episode terminates either inherently by the environment

or terminated due to MaxSteps. Hence, we modify the DQN algorithm to store
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Figure 5.4: Q-value divergence in DDQN agent on Straight-Dynamic-TJunction task.
The left figure shows the Q-values and Discounted Returns for the states observed
and actions taken by the agent at each timestep in an episode. The high Q-values
shown by peaks in between timesteps [90-200], [280-410] and [490-510] correspond
to the states where a dynamic obstacle is present in front of the agent. The right
figure shows the average episodic Q-values and Discounted Returns for the states
observed and actions taken by the agent during training. The solid lines show the
average values, while the shaded region shows the minimum and maximum values.
It is important to consider the maximum Q-value as the Q-values are observed to
diverge only for states where a front dynamic obstacle is visible for the agent as seen
in the left figure. We observe the maximum Q-value keeps on increasing and diverging
from the returns as the training proceeds which leads to instability.
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Figure 5.5: Q-value divergence in DDQN and Clipped-DDQN agents on
Straight-Dynamic-TJunction task. The figure shows the average episodic Q-values
and Discounted Returns for the states observed and actions taken by the agent during
training. The solid lines show the average values, while the shaded region shows
the minimum and maximum values. The left sub-figure is for the DDQN-Backward
agent and the right sub-figure corresponds to the Clipped-DDQN-Backward agent.
We observe that using Clipped-DDQN seems to be marginally slow down the rate
of Q-value divergence but it does not address the issue as the Q-values continue to
diverge as the training proceeds.

Figure 5.6: Training Success Rate plot for DDQN and clipped-DDQN agents on
Straight-Dynamic-TJunction task. We observe both the agents report high
performance for around 100-200K training steps initially during training, and
thereafter become unstable. Although clipped-DDQN seems to marginally slow down
the rate of Q-value divergence, it does not address seem to address the underlying
issue causing the divergence.
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Algorithm 1 Deep Q-Learning with Backward Sampling.
The Backward-Sampling related changes in the original DQN algorithm are shown in
red.

1: Initialize replay memory D capacity = N
2: Initialize Buffer.MaxStepsToTerm = K
3: Initialize the list of sampling proportions for the k steps-to-termination values to

L = [P0, P1, ..., Pk]
4: Initialize action-value function Q with random weights θ
5: Initialize target action-value function Q̂ with weights θ′ = θ
6: Initialize a local Episode Transitions List, E as an empty list
7: for episode = 1,M do
8: Reset E = [ ]
9: for t = 1, T do

10: //Note: T denotes the end of episode, and its value can vary across episodes
11: Select a random action at with probability ε
12: Otherwise, select at = arg maxaQ(st, a; θ)
13: Execute action at, collect reward rt+1, observe next state st+1, done dt
14: Store the transition (st, at, rt+1, st+1) in E
15: // Sample using BackwardSample
16: Sample a mini-batch of size M of transitions (sj, aj, rj+1, sj+1, dj) from D

using Buffer.BackwardSample(M, L)

17: Set yj =

{
rj+1, if sj+1 is terminal

rj+1 + γmaxa′ Q̂(sj+1, a
′; θ′), otherwise

18: Perform a gradient descent step using targets yj with respect to the online
parameters θ

19: Every C steps, set θ′ ← θ
20: end for
21:

22: // Compute Steps-To-Termination for each transition after the episode
termination and Add to replay buffer D

23: Reset steps-to-termination variable, h = 0
24: for i = T, 1 do
25: (st, at, rt+1, st+1, dt) = E[i]
26: if h < K then
27: Store the transition (st, at, rt+1, st+1, dt, StepsToTerm = h) in D
28: else
29: Store the transition (st, at, rt+1, st+1, dt, StepsToTerm = −1) in D
30: end if
31: Increment h by 1
32: end for
33: end for
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Figure 5.7: Episodic Average Q-values and Discounted Returns on
Dynamic-Navigation task. We observe that somehow the DDQN agent does
not face the Q-value divergence issue when training on a larger number of scenarios
in the Dynamic-Navigation task.

Algorithm 2 Replay Buffer: BackwardSample

1: Initialize Buffer.MaxStepsToTerm = K
2: procedure BackwardSample(N,L)
3: Inputs: BatchSize, N
4: L : List of sampling proportions for theK StepsToTerm values = [P0, P1, ..., PK ]
5:

6: // Sample based on Steps to Termination (StepsToTerm)
7: Initialize SamplesCount, s = 0
8: for i = 0 to K do
9: Ni = Pi ∗N

10: Samples, Si = Buffer.Sample(Ni, StepsToTerm=i)
11: s += Ni

12: end for
13:

14: // Sample remaining transitions uniformly
15: Suniform = Buffer.Sample(N - s, StepsToTerm= -1)
16:

17: return All Samples: [S0, S1, ..., SK , Suniform]
18: end procedure
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Figure 5.8: Pictorial Explanation of Backward Sampling Approach: Episode rollouts
are shown in the left figure where each line graph corresponds to an episode and each
node corresponds to a transition in the episode. These transitions are color-coded as
red nodes (Terminal), orange nodes (Terminal-1), yellow nodes (Terminal-2) and so
forth. Grey color corresponds to all the nodes including the terminal nodes. The idea
behind Backward Sampling is to sample the transitions close to the termination state
more frequently from the replay buffer. An example of sampling proportion used in
Backward Sampling is shown on the right, where the transitions close to termination
depicted by red, orange and yellow nodes are sampled in proportions of 12.5%, 6.25%,
6.25% respectively. This is augmented with uniform sampling from all the transitions,
depicted by 75% sampling proportion of all the nodes denoted by grey border.
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the observed transitions in a temporary Episode Transitions List during the episode

rollout (line 9), and after the episode terminates, we compute the StepsToTerm for

each transition and add it to the Replay Buffer (lines 22-32 in Algorithm 1). We define

MaxStepsToTerm = K as the maximum steps before termination which we would like

to sample more frequently, and need to choose sampling proportions for each of the K

values as [P0, P1, ..., PK ], based on which they are sampled in a mini-batch from replay

buffer along with the uniform samples comprising the remaining proportions. We

also add support for Backward-Sampling in replay buffer, for which the pseudocode

is shown in Algorithm 2. The main support added is the ability to sample transitions

with a particular StepsToTerm value. For this, we maintain additional reverse index

lists to store indices of the transitions for each of the K StepsToTerm values (less than

MaxStepsToTerm), so that it is computationally efficient to backward-sample the

transitions at runtime. We use the value of StepsToTerm = -1 to refer to transitions

further than MaxStepsToTerm which are not required to be stored in the reverse

index lists. We also use the value of StepsToTerm = -1 to sample uniformly from all

transitions in the buffer.

5.3.2 Clipped Double DQN

To reduce overestimation bias in Double DQN, we formulate and use the clipped

Double Deep Q-Learning (clipped-DDQN) formulation, which extends from clipped

Q-learning formulation in actor-critic setup in TD3 [14].

We use two networks each for the current (Q) and target (QT ) action-value

functions: Q1, Q2, Q
T
1 , Q

T
2 . s, a denote the current state and action, and s′, a′ denote

the next state and action. γ refers to the discount factor and done refers to boolean

variable denoting if s′ is a terminal state. The targets (yi) for each of the Q-value

functions are defined in the following equation 5.2:

y1 = r(s, a) + (1− done) ∗ γ ∗ min
i∈[1,2]

QT
i (s′, a

′

1)

y2 = r(s, a) + (1− done) ∗ γ ∗ min
i∈[1,2]

QT
i (s′, a

′

2)

where a
′

i = arg max
a′

Qi(s
′, a′)

(5.2)
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We use the Q1 action-value network for the agent’s policy for training and QT
1

target action-value network for the final agent’s policy for evaluation.

5.4 Reinforcement Learning with Expert

Demonstrations

5.4.1 Motivation

Many self-driving car companies have millions of miles of collected data (logs) [55]

annotated comprehensively with sensor inputs, system states and the driver’s (human

or self-driving car) actions. The sensor inputs typically consist of readings from

a diverse set of sensors, including cameras, LiDARS, RADARS, GPS, IMU and

Encoders. The system states include state-variables from different subsystems in

the self-driving car pipeline, including localization, perception, prediction, planning

and control. The driver actions comprise the high-level decision making such as

lane-change, merging, turning, and also the low-level control actions such as throttle,

brake and steer.

Also, many self-driving car companies have a system of Log-Replay in their

simulators for testing and evaluation. Log-Replay is a system to replay the real-world

collected logs, where it is possible to update the self-driving agent with a new version

of driving policy and test the same. Although Log-Replay is not completely interactive

when compared to standard RL environments as the other actors’ behaviors remain

the same during the replay, it is reasonable to utilize it for short snippets of time,

and collect some on-policy data for training.

This motivates the design of off-policy RL algorithms to utilize both the limited

amounts on-policy data and large amounts of existing expert’s driving data to extract

policies with the maximum possible utility which can work in the real world. There

is existing work in the domain of learning from demonstration [15, 21], and a recent

thrust in Offline RL research [30].

We explore a preliminary idea in this direction by collecting driving policy data

from an expert agent including the rewards in the CARLA environment and augment

it with the agent’s experiences in the replay buffer and train using the RL objective.
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5.4.2 Expert Agent Details

We build an expert agent in CARLA using the existing automatic agent control logic.

For the goal-directed navigation task, the expert agent first generates an optimal path

of waypoints from the source to the destination. It then estimates the steer action

value using a PID controller with input as the angle between the current vehicle

orientation and the next waypoint. It detects a stopping condition due to presence of

dynamic actors or a traffic light using information from the simulator, and outputs

a target speed of 0 kmph in those cases. In all other cases when it needs to keep

driving, it outputs a fixed target speed of 20 kmph. Another PID is used to compute

throttle and brake actions from the target speed.

Addressing Action-Space Mismatch

We need to match the action space of the expert and the RL agent to use expert

agent’s policy data. Given our RL agent uses a discrete action space, as listed in

Table 5.1, there is a mismatch with the expert agents which outputs continuous steer

values from [-1.0, 1.0] and discrete target-speed action values [0, 20]. To address this,

we map the expert agent’s continuous steer actions to discrete steer actions using the

mapping described in Table 5.3. We use a conservative mapping scheme such that

steer values are mapped towards lower steer values such that the expert agent also

works with frame-skip. We use the same PID controller parameters for both the RL

agent and the expert agent to match the action of throttle computed using target

speed. Also, we have the same proximity thresholds for other dynamic actors and

traffic light for both the agents.

5.4.3 Expert Agent Demonstration Data Generation

The expert agent is run in the same RL-environment setup as the RL agent such that

the state space, action space, reward function and episode termination are exactly

same for both the agents. This enables us to use the experiences collected using the

expert agent policy directly while training the RL agent. Although the expert agent

internally uses more state information from the simulator for its policy, we save only

the state information accessible to RL agent in the expert demonstration data.
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Expert-Agent Continuous
Steer Values Interval

RL-Agent Discretized
Steer Values

[-1.0, -0.49) -0.5
[-0.49, -0.29) -0.3
[-0.29, -0.05) -0.1
[-0.05, 0.05) 0.0
[-0.05, 0.29) 0.1
[0.29, 0.49) 0.3
[0.49, 1.0] 0.5

Table 5.3: The mapping function to map expert agent’s continuous steer actions to
discrete steer actions to match the action space of the expert and the RL agent.

The expert agent is run multiple times on the 25 scenarios corresponding to the

Dynamic Navigation task in Town01 as part of the CARLA benchmark, explained

in Section 3.5.1. A total of 100K experiences are collected and stored in an expert

agent replay buffer. The average success rate of the expert agent in these scenarios

is 73.3%, which corresponds to average success episodes of 18.33 out of 25. The

success rate is computed using the definition of success in Section 5.1.4 which is used

during training. We note that this differs from the success definition in the CARLA

benchmarks as it counts lane-invasion, off-road and traffic light violations also as

failure cases. The majority failure cases are lane-invasions and off-road infractions,

which perhaps can be addressed with finer discretization of steer-values and further

tuning of PID parameters. We believe the expert-agent has a reasonably good policy

to evaluate the benefit of combining expert agent demonstration data in training an

RL agent.

5.4.4 Using Expert Agent Demonstration Data

We use the Reinforcement Learning with Expert Demonstrations (RLED) framework

[5, 27, 41], where the rewards are also available in the demonstration data along with

states and actions. We follow a similar approach to Human Experience Replay [23],

where we maintain two replay buffers, one containing expert agent demonstration

data, and the other containing the RL agent’s experience. During training, we sample

a minibatch comprising both expert agent and RL agent transitions. We evaluate with
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different ratios [0%, 25%, 50%, 100%] of expert to agent transitions in a minibatch

and report our findings.

There are improved recent approaches that combine imitation learning and

reinforcement learning to further improve performance such as DQfD [21]. There are

other approaches like Normalized Actor-Critic (NAC), that effectively normalizes the

Q-function, reducing the Q-values of actions unseen in the demonstration data robust

to sub-optimal demonstration data. We acknowledge that ours is a preliminary step,

and should be extended to evaluate with the improved approaches.

5.5 Experimental Evaluation

The performance of RL agents trained with the different approaches described in the

previous Sections 5.3 and 5.4 is evaluated on the CARLA CoRL2017 and NoCrash

benchmarks. The details of the benchmarks can be referred from Section 3.5. In the

following sub-sections, we discuss the details on the agent training, and the baselines

used for evaluation.

5.5.1 Agent Training and Evaluation

All the agents are trained on the Dynamic Navigation Task of the CARLA CoRL2017

benchmark. During training, a random scenario is sampled from the 25 benchmark

scenarios in the training town (Town 01), which is used to set the source and

destination location for the agent in an episode. A randomized number of dynamic

actors are spawned in each episode to help train the agent in both regular and dense

traffic scenarios. During training, the agent is evaluated on all the 25 scenarios of the

Dynamic Navigation Task after every 40K training timesteps. For evaluation, the

epsilon-greedy exploration is disabled so that the agent uses a deterministic greedy

policy, thereby removing variability in evaluation due to exploration. The average

success rate over 3 seeds is shown in the Training Success Rate plots (Figures 5.9,

5.10, 5.11 and 5.12) for each agent. The training success rate plots are added to show

the stability and time-complexity of learning, along the variability in performance

observed across different seeds.

For quantitative comparison on the benchmarks, the best agent model over the
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course of training is chosen based on the average success rate during training. The

best model is evaluated 4 times on the benchmark scenarios, and the final mean and

standard errors for the success rate from 3 different seeds are reported as the metrics

for comparison.

5.5.2 Baselines

We compare the performance of RL agents trained with our different approaches and

group them in 3 categories listed below.

• DDQN Agent : Agents trained using Double DQN (DDQN) with different

replay buffer sampling strategies: Uniform Sampling (DDQN-U), Backward

Sampling (DDQN-B), Prioritized Experience Replay (DDQN-P).

• cDDQN Agent : Agents trained using Clipped-Double DQN (cDDQN) with

different replay buffer sampling strategies: Uniform Sampling (cDDQN-U),

Backward Sampling (cDDQN-B), Prioritized Experience Replay (cDDQN-P).

• DDQN-Expert Agent : Agents trained using Double DQN along with the

expert agent demonstration data. We compare agents trained with different

percentages of the expert demonstration data [0%, 25%, 50%, 100%].

We note that the existing state-of-the-art baselines on the benchmarks use different

state inputs, viz. RGB images as sensor input and high level navigation commands

as routing input, in contrast to the low-dimensional state input and precise low-level

waypoint features as routing input in our approach. Since the published works do

not open-source their implementations, we are unable to evaluate them on our state

inputs. We acknowledge these differences and nevertheless add the published numbers

from the baselines as a reference to compare our agent’s performance. The baselines

used are listed below and their details can be referred from Section 4.3.

• Modular Pipeline Approaches: CARLA MP [12].

• Imitation Learning Approaches: CARLA IL [12].

• RL Approaches: CARLA RL [12], CIRL [32], IA [51].
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Figure 5.9: Training Success Rate plot for DDQN agent : The figure shows the
average success rate during training for the DDQN agent using different methods to
sample from the replay buffer: Uniform Sampling, Backward Sampling, Prioritized
Experience Replay (PER). The solid lines show the average success rate and the
shaded regions show the range spanning minimum and maximum success rates over 3
seeds. Comparable performance is observed across all the sampling approaches. PER
is the fastest to achieve a high success rate (around 80%) within 2 M simulator steps,
while Uniform Sampling takes longer and reaches a higher performance of 88% in 6 M
simulator steps and shows some instability initially in training. Backward Sampling
approach seems to learn faster than Uniform Sampling and reaches marginally higher
success rate (90%) eventually.

5.6 Results and Discussion

In this section, we present the results of the agents on the experimental setup

described in the previous section. The results are divided into 3 subsections for each

of our approaches: DDQN agent, Clipped-DDQN agent, DDQN agent with Expert

Demonstrations.

5.6.1 DDQN Agent

Looking at the success rate plot for DDQN agent in Figure 5.9, we observe that

the agent learns to navigate with comparable performance across all the sampling

approaches. PER is the fastest to achieve a high success rate (around 80%) within
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2 M simulator steps after which its performance becomes somewhat unstable. Uniform

Sampling takes longer and reaches a higher performance of 88% in 6 M simulator

steps and shows some instability initially in training. Backward Sampling approach

seems to learn faster than Uniform Sampling and reaches marginally higher success

rate (90%) eventually. The variability in all the agents is shown by the shaded regions

spanning the minimum and maximum success rate values across 3 seeds.

The quantitative evaluation for the DDQN agent is reported in Tables 5.4 and 5.5.

Looking at the CARLA CoRL2017 benchmark results in Table 5.4, we observe that

the DDQN agent with all the sampling strategies reports near-perfect performance

in the training town (Town01). It implies that the agent has reliably learned the

task of navigation (without considering collision with dynamic actors as a failure)

on the training town (Town 01). We see a performance drop on the testing town

(Town 02), showing the gaps in generalization. Some of the error cases in the test

town corresponds to the agent failing to take unseen sharp turns and colliding with

the curb. The performance within all the three sampling strategies is comparable,

with backward sampling showing marginally worse performance in the test town.

Looking at the NoCrash benchmark results in Table 5.5, we observe that the

DDQN agent achieves comparable performance to the existing RL baseline of IA [51].

Although the comparable performance is possibly due to the simplified low-dimensional

input representation in our approach compared to the baseline, it validates that our

approach enables the agent to learn to navigate with dynamic actors with a reasonable

performance. Although we observe better performance than the baseline on the Dense

task, there is a scope for improvement. Some of the error cases with dynamic actors

are due to the limitations in the hand-engineered front obstacle detector which fails

at certain intersections and sometimes leads to creating a traffic jam.

5.6.2 Clipped-DDQN Agent

The average success rate during training for the clipped-DDQN (c-DDQN) agent

using different replay buffer sampling strategies is shown in Figure 5.10. We observe

that the c-DDQN agent shows comparable performance with Uniform and Backward

sampling approaches reaching around 75%, while it achieves a lower performance of

56% with PER early in training after which its performance degrades. The variability
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CARLA CoRL2017 Benchmark (% Success Episodes)
Task Training Conditions (Town 01 )

MP IL RL CIRL IA DDQN-Uniform DDQN-Backward DDQN-PER
Straight 98 95 89 98 100 100± 0 99± 1 100 ±0

One Turn 82 89 34 97 100 100± 0 96± 3 100± 0
Navigation 80 86 14 93 100 100± 0 95± 2 99± 1

Dyn. Navigation 77 83 7 82 100 100± 0 97± 2 99± 1

Task Testing Conditions (Town 02 )
MP IL RL CIRL IA DDQN-Uniform DDQN-Backward DDQN-PER

Straight 92 97 74 100 100 100± 0 95± 1 100± 0
One Turn 61 59 12 71 100 94± 2 93± 1 96± 1
Navigation 24 40 3 53 100 89± 6 83± 3 98± 0

Dyn. Navigation 24 38 2 41 98 91± 3 79± 6 99± 1

Table 5.4: Quantitative comparison of DDQN agents on the CARLA CoRL2017
Benchmark [12]. The comparison between DDQN agents using different replay buffer
sampling strategies (Uniform, Backward, PER) is shown. The published numbers
from the baselines, MP [12], IL [12], RL [12], CIRL [32], and IA [51], are also included
for reference, acknowledging the input differences in baselines compared to our method.
The table reports the percentage (%) of successfully completed episodes for each task
for the training (Town 01 ) and testing town (Town 02 ). The results reported for the
DDQN agents are the mean and standard errors of the success rate from 3 different
seeds that are evaluated 4 times on the benchmark scenarios. The agents with the
highest mean value of success episode percentage are shown in bold.
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CARLA NoCrash Benchmark (% Success Episodes)
Task Training Conditions (Town 01 )

IA DDQN-Uniform DDQN-Backward DDQN-PER
Empty 100 98± 1 94± 4 98± 2
Regular 96 97± 2 92± 5 92± 6
Dense 70 83± 9 83± 7 80± 8

Task Testing Conditions (Town 02 )
IA DDQN-Uniform DDQN-Backward DDQN-PER

Empty 99 88± 5 81± 7 98± 1
Regular 87 79± 9 73± 6 86± 9
Dense 42 71± 6 56± 7 70± 11

Table 5.5: Quantitative comparison of DDQN agents on the CARLA NoCrash
Benchmark [9]. The comparison between DDQN agents using different replay buffer
sampling strategies (Uniform, Backward, PER) is shown. The published numbers from
the available RL-based baseline IA [51] are also included for reference, acknowledging
the input differences in baselines compared to our method. The table follows the
same notation and metrics as Table 5.4.

in all the agents is shown by the shaded regions spanning the minimum and maximum

success rate values across 3 seeds. We see a large variability in the backward sampling

agent due to poor performance of one of the seeds. Also, there is a possibility that

c-DDQN agent requires many more timesteps to achieve a reasonable performance.

We are able to report training results upto 5 M timesteps due to compute and time

constraints. It requires further analysis to understand the cause of lower performance

in the c-DDQN agents compared to DDQN agents with longer training.

The quantitative evaluation of the c-DDQN agent on the benchmarks is presented

in Tables 5.6 and 5.7. We observe that c-DDQN agent achieves comparable performance

to DDQN agent on the CoRL benchmark training town, while lower performance

on most other tasks in the NoCrash benchmark. These benchmark results are in

agreement with the observed low training performance of c-DDQN agent. Also, we

note that the c-DDQN agent with backward sampling achieves higher performance

than uniform sampling and PER across most tasks on both the benchmarks. Hence,

it is not conclusive if there is a sampling strategy which performs the best across

scenarios, and further experimentation and analysis across diverse scenarios are

required.
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Figure 5.10: Training Success Rate plot for cDDQN: The figure shows the average
success rate during training for the clipped-DDQN agent using different methods to
sample from the replay buffer: Uniform Sampling, Backward Sampling, Prioritized
Experience Replay (PER). The solid lines show the average success rate and the
shaded regions show the range spanning minimum and maximum success rates over
3 seeds. We observe that the c-DDQN agent shows comparable performance with
Uniform and Backward sampling approaches reaching around 75%, while it achieves
a lower performance of 56% with PER early in training after which its performance
degrades.

51



5. Off-Policy Learning

CARLA CoRL2017 Benchmark (% Success Episodes)
Task Training Conditions (Town 01 )

DDQN-U DDQN-B DDQN-PER cDDQN-U cDDQN-B cDDQN-PER
Straight 100± 0 99± 1 100 ±0 98± 1 100± 0 96± 2

One Turn 100± 0 96± 3 100± 0 96± 2 99± 0 96± 2
Navigation 100± 0 95± 2 99± 1 94± 2 98± 2 92± 2

Dyn. Navigation 100± 0 97± 2 99± 1 96± 1 97± 1 92± 3

Task Testing Conditions (Town 02 )
DDQN-U DDQN-B DDQN-PER cDDQN-U cDDQN-B cDDQN-PER

Straight 100± 0 95± 1 100± 0 99± 1 98± 2 95± 4
One Turn 94± 2 93± 1 96± 1 91± 4 93± 2 82± 9
Navigation 89± 6 83± 3 98± 0 80± 13 82± 0 68± 11

Dyn. Navigation 91± 3 79± 6 99± 1 82± 13 82± 0 69± 10

Table 5.6: Quantitative comparison of Clipped-DDQN (cDDQN) agents on the
CARLA CoRL2017 Benchmark [12]. The comparison between cDDQN and DDQN
agents using different replay buffer sampling strategies (Uniform, Backward, PER) is
shown. The table follows the same notation and metrics as Table 5.4.

CARLA NoCrash Benchmark (% Success Episodes)
Task Training Conditions (Town 01 )

DDQN-U DDQN-B DDQN-PER cDDQN-U cDDQN-B cDDQN-PER
Empty 98± 1 94± 4 98± 2 92± 4 93± 4 91± 2
Regular 97± 2 92± 5 92± 6 87± 4 92± 4 87± 6
Dense 83± 9 83± 7 80± 8 85± 0 77± 17 81± 5

Task Testing Conditions (Town 02 )
DDQN-U DDQN-B DDQN-PER cDDQN-U cDDQN-B cDDQN-PER

Empty 88± 5 81± 7 98± 1 73± 13 84± 1 66± 12
Regular 79± 9 73± 6 86± 9 74± 10 76± 5 66± 12
Dense 71± 6 56± 7 70± 11 67± 6 46± 14 54± 9

Table 5.7: Quantitative comparison of Clipped-DDQN (cDDQN) agents on the
CARLA NoCrash Benchmark [9]. The comparison between cDDQN and DDQN
agents using different replay buffer sampling strategies (Uniform, Backward, PER) is
shown. The table follows the same notation and metrics as Table 5.5.
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Figure 5.11: Training Success Rate plot for DDQN-Expert agent: The figure shows
the average success rate during training for the DDQN agent using different amounts
of expert demonstration data [0%, 25%, 50%, 100%]. The solid lines show the average
success rate and the shaded regions show the range spanning minimum and maximum
success rates over 3 seeds. We observe that the agent does not learn at all using 100%
expert data. Left figure: Agent uses uniform sampling and it is observed that using
25% or 50% expert agent data does not help in faster or improved training. Right
figure: Agent uses backward sampling and it is observed that adding 25% or 50%
helps to reach higher initial success rate faster (within 1M timesteps).

5.6.3 DDQN Agent with Expert Demonstrations

We evaluate the DDQN agent using different amounts of expert demonstration data

[0%, 25%, 50%, 100%] as shown in Figure 5.11. We observe that the agent does not

learn at all using 100% expert data, which is expected given the state-space and

action-space distribution mismatch between the RL agent and the expert agent. With

uniform sampling, it is observed that using 25% or 50% expert data, the agent achieves

similar performance to the baseline of 0% expert data. With backward sampling we

observe that adding 25% or 50% expert demonstrations seems to help reach higher

initial success rate close to the expert agent performance. However, adding expert

demonstrations does not seem to help improve the eventual performance or stability

of learning.

We note that in the current setup, when we add the expert agent data along

with the RL agent experience in a minibatch for training, we end up using reduced

amounts of experience collected by the RL agent compared to the baseline in the same

number of timesteps. For a fair comparison, it is reasonable to use the same amount

of experience collected by the RL agent and evaluate how the additional expert
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Figure 5.12: Training Success Rate plot for DDQN-Expert agent with different number
of optimizations: The figure shows the affect of increasing number of optimization
steps on the DDQN-Expert agent. The solid lines show the average success rate and
the shaded regions show the range spanning minimum and maximum success rates
over 3 seeds. In the left figure, we observe that the DDQN-B-Expert25 agent with
NumOpt=5 reaches high performance in around 3M steps, while the baseline DDQN-B
agent (0% expert data) takes around 5M steps to reach similar performance. Similary,
in the right figure, DDQN-Expert-50 agent with OptEpochs=2 and OptEpochs=5
shows faster learning and reaches near the success rate of DDQN-B agent. This shows
the addition of expert data helps in faster learning. We also observe that increasing
the optimization epochs helps in faster learning without hurting the stability.

demonstrations help. To address this, we increase the number of optimization steps

(referred as NumOpt) at each training step such that we use the same amount of RL

agent experience as the baseline and add additional expert agent data. We evaluate

this approach with different number of optimization steps ([1, 2, 5]). We maintain that

the target Q-network is updated after 10K gradient steps in the current Q-network

across the different optimization step settings. The training results of this approach

are shown in Figure 5.12. We observe the addition of expert demonstrations with the

similar amount of RL agent experience helps in faster learning compared to baseline.

The DDQN-B-Expert25 agent with NumOpt=5 reaches high performance in around

3M steps, while the baseline DDQN-B agent (0% expert data) takes around 5M steps

to reach similar performance. Similary, in the bottom figure, DDQN-Expert-50 agent

with OptEpochs=2 and OptEpochs=5 shows faster learning and reaches near the

success rate of DDQN-B agent.

We report the quantitative evaluation of the DDQN-B-Expert25 (with NumOpt=5),

DDQN-B-Expert50 (with NumOpt=2) agents with the baseline of DDQN-B (0%
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CARLA CoRL2017 Benchmark (% Success Episodes)
Task Training Conditions (Town 01 )

DDQN-B DDQN-B-Expert25 DDQN-B-Expert50
Straight 99± 1 100± 0 98± 2

One Turn 96± 3 94± 1 93± 3
Navigation 95± 2 93± 4 89± 7

Dyn. Navigation 97± 2 96± 2 85± 3

Task Testing Conditions (Town 02 )
DDQN-B DDQN-B-Expert25 DDQN-B-Expert50

Straight 95± 1 99± 1 96± 2
One Turn 93± 1 88± 4 87± 5
Navigation 83± 3 75± 0 72± 6

Dyn. Navigation 79± 6 78± 4 67± 5

Table 5.8: Quantitative comparison of DDQN-Expert agents on the CoRL2017
CARLA Benchmark [12]. The comparison of DDQN-B-Expert25 (with NumOpt=5)
and DDQN-B-Expert50 (with NumOpt=2) agents with the baseline of DDQN-B (0%
expert data, NumOpt=1) agent is shown. The table follows the same notation and
metrics as Table 5.4.

CARLA NoCrash Benchmark (% Success Episodes)
Task Training Conditions (Town 01 )

DDQN-B DDQN-B-Expert25 DDQN-B-Expert50
Empty 94± 4 91± 2 82± 6
Regular 92± 5 95± 2 80± 2
Dense 83± 7 89± 3 74± 5

Task Testing Conditions (Town 02 )
DDQN-B DDQN-B-Expert25 DDQN-B-Expert50

Empty 81± 7 79± 3 62± 4
Regular 73± 6 75± 4 61± 3
Dense 56± 7 62± 6 50± 3

Table 5.9: Quantitative comparison of DDQN-Expert agents on the CARLA NoCrash
Benchmark [9]. The comparison of DDQN-B-Expert25 (with NumOpt=5) and
DDQN-B-Expert50 (with NumOpt=2) agents with the baseline of DDQN-B (0%
expert data, NumOpt=1) agent is shown. The table follows the same notation and
metrics as Table 5.5.
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expert data, NumOpt=1) agent on the benchmarks in Tables 5.8 and 5.9. We observe

that the DDQN-B-Expert25 agent achieves comparable performance to the baseline

DDQN-B agent on the CoRL2017 benchmark and marginally better performance

on the NoCrash benchmark. This suggests that adding expert demonstrations can

help achieve comparable performance in less number of simulator timesteps. The

performance of DDQN-B-Expert50 agent is worse than DDQN-B-Expert25 and

DDQN-B agents on both the benchmarks which motivates further analysis into the

optimal amount of expert demonstrations performance.
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Chapter 6

Conclusion

6.1 Summary

In the first part of the thesis, we present an approach to use waypoints as the

navigation input and design an architecture to learn planning and control directly

from semantically segmented images and waypoints using an on-policy RL algorithm

(Proximal policy optimization). The agent successfully learns to navigate, except in

the presence of dynamic actors. To analyze this further and decouple the issue in

representation and policy learning, we propose to use low-dimensional features to focus

on policy learning. We use the off-policy RL algorithm of Deep Q-Learning (DQN) for

learning goal-directed navigation in the presence of other dynamic agents, present an

analysis of the various issues in training instability and explores techniques to address

them including n-step returns, dueling network architecture, clipped Double DQN

and Backward-Sampling. We demonstrate the agent achieves comparable performance

to the state-of-the-art baselines using low-dimensional state input representation. We

also present a preliminary analysis on how combining expert driving policy data along

with RL driving agent’s experiences can aid in faster learning.
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6. Conclusion

6.2 Future Work

There are multiple directions in which this work can be extended in the future. It

would be worthwhile to investigate further and identify the root cause of the observed

Q-value divergence in the Straight-Dynamic-TJunction task, and understand why

clipped DDQN agent does not address the issue. One direction could be to explore the

recent distributional RL extensions of DQN, such as C-51 [2], QR-DQN [10], and IQN

[11], and evaluate if they address the stability issue and improve performance. Another

direction is to understand the generality and limitations of the Backward-Sampling

approach and identify the scenarios in which it would be helpful. It would be

interesting to combine Backward-Sampling with PER, and also compare it with the

recent related approaches of DisCor [28] and EBU [29]. It is also worth experimenting

with other state-of-the-art off-policy algorithms that work in the continuous domains

and are more robust to hyper-parameters such as TD3 [14], Soft-Actor-Critic [17]

and DDPG [48].

It would be useful to extend the work on using expert demonstrations by evaluating

existing state-of-the-art approaches in the domain of learning from demonstration

such as DQfD [15]. It is also worthwhile to address the open questions to achieve

optimal performance, such as how good should an expert agent be, how much expert

demonstrations data to use, and how to formulate the optimization problem using

reinforcement learning and imitation learning objectives.
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