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Abstract

Many multi-agent systems in nature comprise agents that interact with, and respond to, the

dynamics of their environment. For example, fish school based on the fundamental fluid

phenomena of vortex shedding, birds shed leading-edge vortices in formation for flocking, and E.

coli bacteria secrete and push against a surrounding medium to meander in swarms. In this

thesis, we investigate the mechanics and control of three different systems having agents that

interact with a surrounding medium to affect motion. We make use of the Chaplygin beanie, a

planar underactuated nonholonomic mechanical system outfitted with a rotor atop its body and

a single wheel at its rear constraining its dynamics to the plane about which it moves. We first

consider a single passively compliant Chaplygin beanie atop a platform having translational

compliance, introduce the reduced equations for the system using the notion of symmetry and

nonholonomic momentum, and provide proof for a particular stable behavior under arbitrary

deformations of the elastic element modeling its compliance. We then direct our focus to results

concerning the frequency response and control of passive Chaplygin beanies under actuation

of the platform, discuss rich dynamical features arising from periodic actuation, and develop

rules by which control can be exerted to collect and disperse multiple such passive vehicles. We

then discuss how the latter of these results clarifies the extent to which stable behavior can be

excited in the system through exogenous control.

We then leverage our understanding of the single Chaplygin beanie model to inform a

geometric treatment of two such agents atop a compliant platform, again invoking symmetry

and nonholonomic reduction for analysis. We discuss stability, control, and an entrainment

phenomena within this multi-agent dynamical system, present results in the form of simulation,

and draw analogies between its behavior and related behaviors within biological systems.

Finally, we introduce the dynamic model for a novel fluid-propulsive aquatic vehicle in an

ideal fluid that exerts control over its motion using impulsive fluid-ejection events to move in

its environment. We present an analysis concerning the entrainment of a cylindrical-shaped

aquatic agent in flows induced by neighboring agents, present preliminary results of an agent

position-stabilizing at a desired setpoint using impulsive fluid-ejection events, and discuss the

next steps necessary to model multiple such agents in an inviscid fluid.
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Chapter 1

Introduction

1.1 Overview

In multi-agent robotic systems, it is not often that we consider the different and rich ways
in which agents interact in their environment, especially when that environment possesses
complicated dynamics of its own. In nature, however, there exist an abundance of systems which
contain agents that move about in environments that respond dynamically to the locomotion of
neighboring agents. Fish schools, bacterial swarms, and migratory cell groups are but a few,
impacting their environment, say by shedding vortices in a fluid or pushing against surrounding
compliant substrates, to affect motion. This particular class of systems exhibits the property
that agent dynamics are coupled through such substrates, motivating a deeper understanding of
the mechanics underlying multi-agent coordination when considering the impact of substrate
dynamics on agents. In this thesis, we study three example systems, two of which differ only in
the number of agents present in the environment. As we will see later, this simple difference in
the number of agents drastically increases the complexity of its dynamics.

The first two of these systems are rooted in nonholonomic mechanics, dating back to work
by Sergey Chaplygin [1] in which he introduced the simple mechanical system of a sleigh with
frictionless casters at its front and constrained at a particular point on its body by what he
called a knife-edge. This ”knife-edge” effectively permits translational motion in a particular
direction relative to a body-fixed frame, but allows no motion in the direction lateral to the
translational direction at the contact point of the knife-edge. Mechanical systems constrained in
this way are often suitable for modeling biological organisms and their locomotion, e.g., snakes
and fish, and have recently shown promise in problems involving multi-agent coordination and
control [2]. Much like Chaplygin’s sleigh, the system we use in our analysis is effectively a
Chaplygin sleigh, but with a symmetric rotor fixed atop its body, called the Chaplygin beanie.
Variations in the rotor’s angle with respect to time induces locomotion. In this thesis, we
equip the Chaplygin beanie with a linear torsional spring, coupling its body to its rotor so
that deformations in the rotor relative to the body give rise to passive dynamics and therefore
locomotion. Furthermore, we place the Chaplygin atop a platform with finite inertia capable of
translational motion, effectively modeling a medium with which the agent can interact. We use
nonholonomic reduction to obtain a reduced representation of the dynamics of this system and
prove that, given arbitrary deformations in the linear torsional spring, the Chaplygin beanie
will asymptotically locomote stably in the forward translational direction. We then present
a special case of this problem for which we assume direct control over the platform so as to
induce locomotive behaviors of Chaplygin beanies, termed exogenous control. The second of
these systems is that of two Chaplygin beanies atop a platform with translational compliance.
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We again invoke nonholonomic reduction via symmetries to obtain a reduced representation of
the dynamics and motivate its use in proving asymptotic behaviors.

Finally, we study a cylindrical-shaped agent in an inviscid flow with point vortices. This
system is distinct from the previous two in that the medium with which agents interact no
longer directly couples the motions between agents and their environment. We develop the
dynamics for the system, investigate an entrainment phenomenon, and present preliminary
results of PID control of the system through impulsive fluid-ejection events.

1.2 Prior Work

Nonholonomic mechanics and locomotion. The general analysis of mechanical systems
through the lens of geometry was discussed at length by Marsden [3, 4, 5] and Bloch [6]. We
draw inspiration from these works in our analysis of the systems of interest in this thesis.
In particular, mechanical systems exhibiting nonholonomic constraints have recently been of
utility in studying the effects of compliance in biological agents as well as the role of media
coupling the dynamics of such agents. For example, systems like the Chaplygin beanie [7],
snakeboard [8, 9], landfish [10], and various nonholonomic snake robots [11, 12], have proven to
be motivating examples in the control of biologically inspired robots. Specifically, the passive
response many biological agents exhibit due to the natural compliance of joints or connective
tissues has inspired the use of torsional springs to model compliance in mechanical systems
with nonholonomic constraints [13]. The utility in using reduced representations for proving the
stability of such nonholonomic systems was demonstrated in [7] and [10]. Additionally, recent
works in multi-agent systems which are coupled to their environment have incorporated such
compliant models [2]. This coupling is seen predominantly in natural systems, e.g., schooling
fish, swarming bacteria, or migrating cells [14, 15, 16], however, we provide evidence that an
understanding of this coupling can be exploited to achieve meaningful behaviors for robotic
systems as well. The application of geometric methods to locomotion has also proven useful in
the analysis of various other robotic systems including the three-link swimmer [17] and many
other biologically inspired systems [18, 19, 20, 21, 22]. Most of these works focus on the agent’s
locomotion through its environment, but make a reasonable choice to neglect the behavior of
the ambient media itself.

The problem of exogenous control has been investigated in the context of transporting
particles within a fluid at low Reynolds number using oscillating probes in [23]. Relatedly, [24]
used an oscillating probe to excite a substrate containing cardiac cells and showed that the
induced deformations of the substrate due to exogenous forcing led to long-term oscillatory
behavior in neighboring cardiac cells. A motion planning framework for robotic systems having
external configurations, like those moving in dynamic environments, was established in [25].

Locomotion in fluids. A variety of articulated swimming systems have been studied from
the perspective of geometric mechanics [26] as well as from a numerical perspective [27, 28, 29].
In this thesis, we study a free cylinder in the presence of point vortices, providing a rich
environment for studying agent interactions with an ambient medium. This seemingly simple
system has a broad history in the mechanics and controls community. From Kirchhoff’s studies
in [30] dating back to 1877, Tarleton’s in 1892 [31], and Föppl’s in 1913 (insert reference),
to more recent works like [32], [33], [34], [35], [36], and [37], problems involving rigid bodies
interacting with distributions of point vortices remain of significant interest. [32] elucidated
the linear and nonlinear stability of the moving circular cylinder in the so-called moving Föppl
equilibrium. [35] takes a control-theoretic approach for the system by studying the cases of a
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circular cylinder with N = 1 and N = 2 point vortices in the flow, and showing time-optimal
controllability for a bounded force acting through the center of mass of the cylinder for the
N = 1 case. [37] develops the equations of motion for a circular cylinder in the presence of N
point vortices from a geometric perspective and shows that the resulting equations of motion
obtained in [32] and [34] are equivalent.
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Chapter 2

Background

2.1 Mathematical Preliminaries

In the chapters that follow, we will utilize various mathematical tools and ideas in order to
properly describe the dynamical systems of interest in this work. We introduce the language
of manifolds, vector fields, Lie groups to more formally speak about configuration spaces of
the robotic systems we are interested in. We then go on to review some aspects of differential
geometry that play a role in our understanding of system mechanics. We then provide a basic
review of Lagrangian mechanics and Lagrangian reduction via symmetry and nonholonomic
momentum. Finally, we review the basics of inviscid fluid mechanics so we can study an ambient
medium made up of point vortices in an otherwise irrotational flow.

2.1.1 Manifolds, Vector Fields, and Differential Forms

Manifolds. The dynamics of mechanical systems evolve on manifolds, requiring that we provide
some definitions and introduce terminology so that these definitions may be unambiguously
referred to throughout the document.

Definition 2.1.1 Homeomorphism A continuous bijection f : S → T with a continuous inverse
f−1 is called a homeomorphism. If such a map exists between sets S and T , S and T are
homeomorphic.

Should there not exist a homeomorphism between the entirety of sets S and T , it is still possible
for these sets to be locally homeomorphic, meaning there exists a map f such that every point
P ∈ S has a neighborhood U ⊂ S such that f(U) is an open set in T . In this work, we are
interested in smooth manifolds. That is, we are interested in manifolds for which there exists,
at least in a local sense, a differentiable homeomorphism with a differentiable inverse. For the
purposes of this document, a manifold can be defined as follows.

Definition 2.1.2 Manifold. A manifold is a topological space that is locally homeomorphic to
Rn.

This thesis concerns itself specifically with systems for which the dynamics evolve on smooth
manifolds. This necessitates a short introduction of coordinate charts and coverings of coordinate
charts. A coordinate chart on an n-dimensional manifold M is a set in that manifold U ⊂M
together with a homeomorphism φ : U → φ(U) ⊂ Rn. An atlas on M is a collection of coordinate
charts that cover M . When two coordinate charts (u, φ) and (v, ψ) overlap, the transition
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functions ψ ◦ φ−1 : φ(u∩ v)→ ψ(u∩ v) and φ ◦ψ−1 : ψ(u∩ v)→ φ(u∩ v) are homeomorphisms
between subsets of Rn. We call a manifold with an atlas having transition functions which are
infinitely differentiable smooth. We abuse terminology and use the word manifold to mean
smooth manifold throughout this document.

Let Q be a manifold and q an arbitrary point in Q. Since we are ultimately interested in
ODEs comprising velocities at each point q ∈ Q, we require a geometric description of the spaces
home to such velocities. These velocities can be thought of as lying in a copy of Rn attached
to the manifold Q at point q. We refer to this copy of Rn as the tangent space at point q and
denote it by TqQ. The tangent space TqQ is also a real vector space.

Vector Fields. Let (q1, q2, · · · , qn) be coordinates on a configuration manifold Q. We will
denote the unit vector in the qi direction as ∂

∂qi
. Vectors v ∈ TqQ can be generally written as

v = v1 ∂

∂q1
+ · · ·+ vn

∂

∂qn
.

Additionally, we take advantage of the Einstein summation convention, where a superscripted
quantity succeeded by a subscripted quantity results in a summation. The above vector then is
written in total as

v = vi
∂

∂qi
.

Definition 2.1.3 Vector Field. A vector field W on a manifold Q is a map W : Q→ TQ at
each point q ∈ Q.

Suppose Q is n-dimensional. The tangent bundle, TQ, is the 2n-dimensional manifold comprising
the manifold Q and all the tangent spaces TqQ for all q ∈ Q.

2.1.2 Lie Groups and Lie Algebras

Lie Groups. A group is a set G together with some operation, say ·, such that

1. If a, b ∈ G, then a · b ∈ G.

2. If a, b, c ∈ G, then (a · b) · c = a · (b · c).

3. There exists an element e ∈ G termed the identity element such that a · e = e · a = a for
every a ∈ G.

4. For any a ∈ G, there exists an element a−1 ∈ G such that a · a−1 = e.

A Lie group is a manifold for which the group operation is smooth. The Lie groups of interest
in this thesis will primarily be SE(2), R2, or Cartesian products thereof, together with matrix
multiplication as the group operation. Such Lie groups are often termed matrix Lie groups. For
SE(2), matrix multiplication constitutes the composition of rigid planar motions.

If G is a Lie group and g, h are elements of G, we will sometimes use the symbol L to
mean

gh = Lgh, (2.1)

where Lg is left multiplication or left translation by g. In the above example, we say h undergoes
left translation by g. Note that we will also use the symbol “L” to denote the Lagrangian for a
mechanical system. The use of the symbol “L” in the context of left translation will always
have a subscript associated with it to denote an operation.
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Left-invariant Vector Fields. Let g, h ∈ G be group elements where G is a Lie group with
matrix multiplication as the group operation. We will say that a vector field W on G is left
invariant if

ThLgW (h) = W (gh), ∀g ∈ G. (2.2)

This just means that the vector field evaluated at the point corresponding to left translation of h
by g is equivalent to the push forward of W under Lg evaluated at h. This thesis will primarily
be interested in left-invariant vector fields on the tangent space of a system’s configuration
manifold.

Group Actions. Let Q be a manifold and G a Lie group. A left action of G on Q is a map
Φ : G×Q→ Q such that Φ(e, q) = q for all q ∈ Q and such that

Φ(g,Φ(h, q)) = Φ(gh, q) (2.3)

for all g, h ∈ G and q ∈ Q. We say that an action of G on Q is free if Φ(g, q) = q only when
g = e. An action Φ of a Lie group G on a manifold Q defines a tangent lifted action, TΦ, of G
on TQ such that

TΦ : G× TQ 7→ TQ :
(
g, (q, v)

)
7→ (Φ(g, q), TqΦ(g, q)v) (2.4)

where v ∈ TqQ. The mapping TqΦ(g, q) is the tangent map at a point q corresponding to the
action of g on q. This will be particularly important when verifying the left invariance of a
system’s Lagrangian under the action of a group.

Lie Algebras. Let G be a Lie group with matrix multiplication as the group operation. We
refer to TeG as the tangent space at the identity of the Lie group G. Endowed with an operation
termed the Jacobi-Lie bracket, we refer to TeG as the Lie algebra of G and denote it by g. The
Jacobi-lie bracket operation is defined as follows.

Definition 2.1.4 Jacobi-Lie Bracket. Let X and Y be vector fields on a manifold M . An
additional vector field, the Jacobi-Lie bracket denoted by [X, Y ], is defined by the operation

[X, Y ](f) = X(Y (f))− Y (X(f)) (2.5)

for all smooth functions f on M .

Vectors in TeG correspond to left-invariant vector fields in G. This means we can define a
bracket operation on TeG that satisfies

[ξ, η]g = [Xξ, Xη]e. (2.6)

Note that we will not directly utilize the Jacobi-Lie bracket, but include it so as to thoroughly
define the Lie algebra g. In practice, vectors lying in TeG are often thought of as coordinate
vectors corresponding to velocities in the body frame of a robotic vehicle. This is the sense in
which we will refer to elements in g.

If G is a Lie group and g the corresponding Lie algebra, the exponential map, exp : g → G,
maps each vector ξ ∈ g to the element of G obtained by flowing along the left-invariant vector
field Xξ, starting at the identity e, for one unit of time.
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Infinitesimal Generators. Let Φ : G×Q→ Q be an action of a Lie group G on a manifold
Q corresponding to each element ξ of the Lie algebra g associated with G. The infinitesimal
generator of the action Φ associated with the Lie algebra element ξ is defined as

ξQ(q) =
d

dε

∣∣∣∣
ε=0

Φ(exp(εξ), q). (2.7)

ξQ(q) is the element of TqQ corresponding to the vector field ξQ.

Orbits. The orbit of a point q ∈ Q under actions by elements g ∈ G is denoted

Orb(q) = {gq : g ∈ G}. (2.8)

In this thesis, Lie groups G are often part of the configuration space of a mechanical system.
The notation gq means that a group element g can act via matrix multiplication on elements q
in the configuration manifold and only induce a change in the G part of the manifold. We will
also be interested in the tangent space to orbit of actions of G on Q. The tangent space to the
orbit of a group through a point q is

TqOrb(q) = {ξQ(q)|ξ ∈ g}. (2.9)

The tangent space to the orbit of the group action therefore comprises the set of infinitesimal
generators on Q at point q.

Differential Forms. There exist two n−dimensional vector spaces attached to each point
q in an n−dimensional manifold Q. One of these is the tangent space TqQ and the other the
cotangent space T ∗qQ. As coordinates q1, · · · , qn on Q yield a basis { ∂

∂q1
, · · · , ∂

∂qn
} on TqQ, they

also yield a basis {dq1, · · · , dqn} for T ∗qQ. A smooth field of cotangent vectors on a manifold
is called a one-form. A one-form at any point Q accepts one tangent vector as an argument
and returns a real number. This operation is often called the natural pairing and is defined as
follows.

Definition 2.1.5 Natural pairing. The natural pairing of a one-form α and a tangent vector v
is given by

< α, v >= αiv
i (2.10)

where v = vi ∂
∂qi

and α = αidq
i, and the Einstein summation convention is assumed. This can

also be thought of in terms of column vectors and row vectors with elements in α comprising a
row vector and elements in v comprising a column vector.

For each component dqi of a one-form and each component ∂
∂qj

of a vector field, the natural
pairing is computed following

< dqi,
∂

∂qj
>= δij =

{
1 if i = j,

0 if i 6= j
. (2.11)

In this thesis, the constraints imposed on a mechanical system at a point q ∈ Q will be thought
of as one-forms lying in the cotangent space T ∗qQ.
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2.2 Mechanics

2.2.1 Lagrangian Mechanics

Given a configuration manifold Q with coordinates qi, the tangent bundle TQ is home to induced
coordinates (qi, q̇i). The Lagrangian for a mechanical system will be represented by a map
L : TQ→ R. For the purposes of this document, the Lagrangian for a mechanical system will
always equate to the difference in its kinetic energy and potential energy. We will always use
the variables T and V to represent the kinetic and potential energies, respectively.

Hamiltons Principle. Hamilton’s principle is stated as

δ

∫ tf

ti

Ldt = δ

∫ tf

ti

(T − V )dt = 0. (2.12)

In the absence of nonconservative forces on a system, the above equation must be satisfied
for time parameterized trajectories between points in a manifold Q. Curves in Q satisfy the
Euler-Lagrange equations, given by

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0. (2.13)

Note that the 2n first-order ODEs on the tangent bundle TQ correspond to the second-order
ODEs given by the Euler-Lagrange equations.

Fiber Derivative. Given a Lagrangian L : TQ→ R, the fiber derivative of the Lagrangian
is a map from the tangent bundle TQ to the cotangent bundle T ∗Q and is denoted by FL :
TQ→ T ∗Q [38]. In the context of Lagrangian mechanics, the fiber derivative is given by

FL(qi, q̇i) =

(
qi,

∂L

∂q̇i

)
. (2.14)

For purposes of this thesis, it suffices to consider the fiber derivative as a mapping from
coordinates (qi, q̇i) in the tangent bundle TQ to coordinates in the cotangent bundle, where
coordinates in the cotangent bundle are given by (qi, ∂L

∂q̇i
).

Nonholonomic Constraints. The mechanical systems discussed in this thesis exhibit con-
straints on their motion. In particular, these constraints are enforced through no-slip conditions
on wheels capable of rolling, but unable to slip in the direction lateral to their forward rolling
motion. In general, mechanical constraints on a system with a configuration q ∈ Q take the
form

w(q1, · · · , qn, q̇1, · · · , q̇n) = 0. (2.15)

This thesis concerns itself with constraints that are a function of coordinates on TQ, rather
than coordinates just on Q. Constraints with coordinates on TQ are termed nonholonomic,
while constraints with coordinates on Q only are termed holonomic.
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2.2.2 Symmetry and Nonholonomic Reduction

Identifying conserved quantities in mechanical systems lends itself to the reduction tools we are
ultimately interested in leveraging. In particular, Noether’s theorem [39] states that continuous
symmetries correspond to conserved quantities in a mechanical system. In this section, we
introduce the terminology necessary to leverage symmetries in the reduction we employ for the
mechanical systems studied later in the document.

Let G be a Lie group with a group action Φ which acts on the left of a manifold Q. A
mechanical system exhibits a continuous symmetry when the tangent lifted action corresponding
to the action Φ leaves the Lagrangian invariant. That is,

L(q, q̇) = L(Φ(g, q), TqΦ(g, q)q̇). (2.16)

Conserved quantities associated with continuous symmetries in this way are termed momentum
maps [5].

Momentum Maps. Let vq be a tangent vector at point q in the tangent space TqQ. The
momentum map corresponding to a continuous symmetry is computed thus:

< J(vq), ξ >=< FL(vq), ξQ(q) > . (2.17)

Define the ith component of the vector field ξQ as ξiQ. We compute the momentum map with
respect to coordinates qi as

J =
∂L

∂q̇i
(ξQ)i (2.18)

where a summation over i is assumed. Note every vector field ξQ on TQ is associated with
a component of the momentum map. Given the above definition, the evolution equations
corresponding to the nonholonomic momenta are computed as

J̇ =
∂L

∂q̇i

[
dξ

dt

]i
Q

. (2.19)

We will utilize Eq. 2.19 in the sections that follow in order to provide proof of particular
behaviors in this reduced space. We will ultimately be choosing the vector fields ξQ that span
the intersection of the constraint distribution Dq and the tangent space to the orbit of the group
action TqOrb(q). This means we will know how to compute the nonholonomic momentum, but
will need to compute the Lie algebra element associated with ξQ to be able to compute the
evolution equations (Eq. 2.19). Our process for determining the Lie algebra elements ξ for which
the evolution equations are computed is as follows. Any vector field in Dq ∩ TqOrb(q) must be
the ξQ for some Lie algebra element ξ. However, since the direction of the vector field varies
with the point q, the expression for this Lie algebra element may depend on the coordinates
on Q. We choose any such vector field and corresponding to it there exists a scalar quantity
J , with units of momentum, which we call a component of the nonholonomic momentum. We
choose as many independent such vector fields required to span Dq ∩ TqOrb(q). These vector
fields determine a comprehensive decomposition of the nonholonomic momentum into such
scalar components. Furthermore, if given the time histories of a comprehensive set of such scalar
quantities, it is possible to reconstruct the time histories of all of the system’s configuration
variables, such that the set of ODEs governing the evolution of these components consitutes a
reduced representation of the dynamics of the full system.
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2.3 Inviscid Fluid Mechanics

Inviscid fluid mechanics is typically well-suited for applications involving interactions of solid
bodies in incompressible fluids for which inertial forces dominate viscous forces. Such fluids
are often termed high Reynolds number flows and account for phenomena like that of vorticity.
In this thesis, we will study fluids which are incapable of exerting shear stress. Such fluids are
called inviscid fluids and will play an important role in the latter part of this thesis, when the
ambient medium with which agents interact allow for the generation of vortices. In this section,
we introduce the mathematical tools that allow us to analyze the dynamics of solid bodies in
the presence of point vortices.

Complex Potentials. For a two-dimensional inviscid fluid, a scalar-valued function exists
comprising the velocity potential and the stream function called the complex potential. At each
point z = x+ iy, such a function is defined as

w = φ+ iψ. (2.20)

We require that the complex potential be holomorphic, or complex differentiable in a neighorhood
of every point. The stream function is defined to be ψ and the velocity potential φ. The velocity
of any point in the fluid domain can be computed by the gradient of the complex potential.
That is, at any point in the fluid domain, the velocity of that point is given by

dw

dz
= u− iv, (2.21)

where u = dφ
dx

= dψ
dy

and v = dφ
dy

= −dψ
dx

. The stream function is constant along streamlines for
the flow, which are everywhere orthogonal to lines of equal velocity potential. Complex potential
functions for a desired flow can be written as a superposition of the individual flow contributions.
For a system of a cylinder in the presence of point vortices, we can consider a complex potential
function for the cylinder and a complex potential function for the point vortices separately.
Their sum will constitute the complex potential for the flow we are interested in studying.

Circular Cylinders and Image Systems. The solid bodies we will study in this thesis can
be modeled by appropriate placement of vortices that ensure the fluid flow is tangent to the
boundary of the solid body at every point along the boundary of the body. These vortices are
called image vortices. Let a complex potential for N vortices in an inviscid fluid be

wv(z) = −
N∑
i=1

Γi log(z − zi) (2.22)

where zi is the location of the ith vortex and Γi is its strength. We use the variable w to
denote a complex potential and a subscript of v to indicate a vortex. In seeking to eventually
investigate the interactions of point vortices with a circular cylinder, we model the solid body
of the cylinder by incorporating the appropriate image system. The complex potential for N
vortices in the presence of a circular cylinder is

w(z) = −
N∑
i=1

Γi log(z − zi)− Γi log(z − R2

zi
) + Γi log(z). (2.23)

The image system comprises the final two terms in the above equation and nullifies the flow in a
way that generates a circular cylinder with radius R. The image system effectively ensures the
vectors in the flow are everywhere tangent to the boundary of a circular cylinder of radius R.
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Chapter 3

The Chaplygin Beanie Atop a
Compliant Platform

We consider the Chaplygin beanie1 as our motivating example — effectively a Chaplygin
sleigh with a rotor atop its body — coupled to a translationally compliant platform through
a nonholonomic constraint on its wheel, shown in Fig. 3.1. We first consider the dynamics
of the entire system to evolve only under its passive dynamics, i.e., there is no actuation in
either the Chaplygin beanie or the platform atop which it sits. We develop the dynamics
for this system using the method of nonholonomic reduction and prove that given a nonzero
initial deformation in the spring coupling the vehicle’s rotor to its body, the dynamics are
asymptotically stable, with all of the system’s angular momentum being converted into forward
translational momentum. This stable behavior is likened to situations where a biological agent
may prefer to relieve itself of actuation, taking advantage of its compliance and interactions
with its environment to locomote.

✓

�(x, y)

xp

yp

Figure 3.1: A Chaplygin beanie atop a translationally compliant platform. The vehicle’s rotor
angle relative to the heading is shown as φ, its heading as θ, its position relative to the platform
as (x, y), and the position of the platform in a world frame, (xp, yp).

We begin by developing a dynamic model for an entirely passive system, consisting of a passive
vehicle atop a platform with finite inertia. The Chaplygin beanie will serve as our passive vehicle,

1See [7] for the appropriate etymology of the Chaplygin beanie.
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equipped with a linear torsional spring coupling its rotor to its body. Initial displacements of
the rotor relative to the body result in motion of both the passive vehicle and the platform atop
which it sits. Motions of the platform in this case are due to the forces arising through the
no-slip constraint at the wheel of the Chaplygin beanie.

3.1 Nonholonomic Reduction

Constrained to the platform via a wheel located at its rear, the Chaplygin beanie locomotes
using a rotor sitting atop its body. The total mass of the vehicle is represented by m, its
rotational inertia about the center of mass as C, rotational inertia of the rotor about the center
of mass as B, and the mass of the platform as M . The distance between the center of mass
and the contact point at the wheel is denoted by a, and the stiffness of the spring coupling the
rotor to the body denoted by k. The position of the vehicle relative to the platform is given
coordinates (x, y), its orientation θ, the rotor angle relative to the vehicle heading by φ, and
the position of the platform in a laboratory frame by (xp, yp). The evolution equations arising
from the reduction are the changes in linear and angular momentum permitted by the no-slip
constraint at the wheel and will replace the equations describing the evolution of ẋ, ẏ, and θ̇.
The presence of a platform gives rise to two additional evolution equations, one of which is
the time evolution of forward translational momentum of both the Chaplygin beanie and the
platform, the second of which is the time evolution of the momentum of both the Chaplygin
beanie and the platform in the direction orthogonal to that allowed by the no-slip consraint at
the wheel. We also refer to this momentum term as momentum lateral to the forward motion of
the vehicle. The Lagrangian for the system is given by

L =
1

2
m((ẋ+ ẋp)

2 + (ẏ + ẏp)
2) +

1

2
Cθ̇2 +

1

2
B(θ̇ + φ̇)2 +

1

2
M(ẋ2

p + ẏ2
p)−

1

2
kφ2. (3.1)

The nonholonomic constraint at the wheel is expressed as

− ẋ sin θ + ẏ cos θ − aθ̇ = 0. (3.2)

Constraints of this kind can also be thought of as one forms lying in the codistribution on the
configuration manifold Q, written equivalently as

ω = − sin θdx+ cos θdy − adθ. (3.3)

We require that the one form describing the no-slip constraint be annihilated by the system’s
generalized velocity, having coordinates (x, y, θ, φ, xp, yp), at every point q ∈ Q. For the
Chaplygin beanie on a platform with finite inertia, the manifold on which the dynamics evolve
is described by the configuration manifold Q = SE(2)× S1 × R2. Note that both SE(2) and
R2 together with matrix multiplication as the group operation are both Lie groups, and that
their Cartesian product will also yield a Lie group with matrix multiplication as the group
operation. We let G = SE(2)×R2 be the Lie group representing the group of rigid translations
and rotations of the Chaplygin beanie and rigid translations of the platform. Let an arbitrary
element of the Lie group G be described by g = (x, y, θ, xp, yp). Consider now a different element
of G with assignment g = (a, b, α, c, d) and an element q ∈ Q given by q = (x, y, θ, xp, yp, φ).
The left action of G on Q is given by

Φ :G×Q 7→ Q : (g, q) 7→ (a+ x cosα− y sinα, b+ y cosα + x sinα,

θ + α, c+ xp cosα− yp sinα, d+ yp cosα + xp sinα, φ).
(3.4)
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Figure 3.2: (Left) Two-dimensional diagram of a Chaplygin beanie on a platform with asso-
ciated coordinates. (Right) Two-dimensional diagram of a Chaplygin beanie with parameter
assignments.

The above defines a tangent lifted action, TΦ, of G on the tangent bundle TQ, given by

TΦ : G× TQ 7→ TQ :
(
g, (q, q̇)

)
7→ (Φ(g, q), TqΦ(g, q)q̇) (3.5)

where TqΦ(g, q) is given by

TqΦ(g, q) =


cosα − sinα 0 0 0 0
sinα cosα 0 0 0 0

0 0 1 0 0 0
0 0 0 cosα − sinα 0
0 0 0 sinα cosα 0
0 0 0 0 0 1

 . (3.6)

TqΦ(g, q) is also written as TqΦg. We can use the mapping of tangent vectors according to the
above Jacobian to show that the Lagrangian, Eq. 3.1, is invariant under the tangent lifted
action, Eq. 3.5. We must now verify the constraint one form, ω, is invariant under the group
action, Φ. Given a point q ∈ Q and a tangent vector q̇ ∈ TqQ, we check for left-invariance by
computing

< ωq, q̇ >=< ωΦgq, TqΦg q̇ >, (3.7)

where ωq is the constraint one form evaluated at point q and ωΦgq is the constraint one form
evaluated at point q after being mapped through the group action. The natural pairing above is
computed as

[
− sin θ cos θ −a 0 0 0

]


ẋ
ẏ

θ̇
ẋp
ẏp
φ̇

 =
[
− sin(θ + α) cos(θ + α) −a 0 0 0

]
TqΦg



ẋ
ẏ

θ̇
ẋp
ẏp
φ̇.


(3.8)

Thus, the system’s Lagrangian is invariant under the tangent lifted action, and the constraint
one form is invariant under the cotangent lifted action, making G a symmetry group. The Lie
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group G = SE(2)× R2 then acts on the G part of Q via left translation, leaving the S1 part
unchanged.

We take an approach presented in [8], involving the choosing of appropriate left-invariant
vector fields spanning the intersection of the constraint distribution and the space tangent to the
orbit of the group action, and leverage [7] in computing the components of the nonholonomic
momentum. We designate the distribution Dq as the space of all tangent vectors which annihilate
the constraint one form, ω, and is given by

Dq = span{−a sin θ
∂

∂x
+ a cos θ

∂

∂y
+

∂

∂θ
, cos θ

∂

∂x
+ sin θ

∂

∂y
,
∂

∂φ
}. (3.9)

Furthermore, we designate TqOrb(q) as the space tangent to the orbit of the group action, given
by

TqOrb(q) = span{ ∂
∂x
,
∂

∂y
,
∂

∂θ
,
∂

∂xp
,
∂

∂yp
}. (3.10)

We then choose appropriate vector fields on the configuration space, Q, to span

Sq = Dq ∩ TqOrb(q), ∀q ∈ Q. (3.11)

The intersection of Dq and TqOrb(q) constitutes the space in which a reduced representation of
the dynamics evolve. Its dimension corresponds to the number of evolution equations obtained
from the reduction. The following choice of vector fields is made to define this intersection.

Sq = span{−a sin θ
∂

∂x
+ a cos θ

∂

∂y
+

∂

∂θ
, cos θ

∂

∂x
+ sin θ

∂

∂y
,

cos θ
∂

∂xp
+ sin θ

∂

∂yp
,− sin θ

∂

∂xp
+ cos θ

∂

∂yp
}.

(3.12)

The first two vector fields correspond to rotation about the contact point at the wheel and
longitudinal translation of the vehicle, respectively [7]. Flow along the third corresponds to
forward translation of the entire system, including the platform, along the forward direction of
the Chaplygin beanie. The fourth of these vector fields represents motions of the entire system
lateral to the forward direction of the Chaplygin beanie.

We invoke the Einstein summation convention in the following definition of the momentum
map and designate qi as the ith coordinate on the configuration manifold, Q. The nonholonomic
momenta are computed following

Jnhc =
∂L

∂q̇i
(ξQ)i. (3.13)

The resulting momenta are given directly by (3.14). It is clear by inspection that JLT and
JRW correspond to forward translational momentum and angular momentum about the contact
point of the wheel, respectively. The quantities JX and JY correspond to forward translational
momentum and momentum lateral to the direction allowed by the nonholonomic constraint for
both the Chaplygin beanie and the platform.
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JLT = m(ẋ+ ẋp) cos θ +m(ẏ + ẏp) sin θ,

JRW = −ma(ẋ+ ẋp) sin θ +ma(ẏ + ẏp) cos θ

+ (B + C)θ̇ +Bφ̇,

JX =m(ẋ+ ẋp) cos θ +m(ẏ + ẏp) sin θ+

Mẋp cos θ +Mẏp sin θ,

JY =−m(ẋ+ ẋp) sin θ +m(ẏ + ẏp) cos θ−
Mẋp sin θ +Mẏp cos θ.

(3.14)

The evolution equations are computed following (3.15) and are given by (3.16), shown below.

J̇nhc =
∂L

∂q̇i

[
dξ

dt

]i
Q

(3.15)

J̇LT = −m((B + C)JY +Ma(JRW −Bα))(maJY − (m+M)(JRW −Bα))

(M(ma2 +B + C) +m(B + C))2
,

J̇RW =
aJLT (maJY − (m+M)(JRW −Bα))

M(ma2 +B + C) +m(B + C)
,

J̇X = −JY (maJY + (m+M)(JRW −Bα))

M(ma2 +B + C) +m(B + C)
,

J̇Y = −JX(−maJY + (m+M)(JRW −Bα))

M(ma2 +B + C) +m(B + C)

(3.16)

The long-term behavior for this system under arbitrary initial φ is stable, with JLT tending
to a constant value while JRW and φ tend to zero, as shown in Fig. 3.3.
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Figure 3.3: Rotational momentum about the rear wheel, longitudinal translational momentum,
and the rotor angle

3.2 Stability

In this section, we present a formal argument for stable behaviors of this kind under the
assumption that the system dynamics evolve on the zero level set of momentum, that is, any
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initial condition for which J2
X + J2

Y = 0. Defining the following variables, the nonholonomic
momenta, φ, and φ̇ can be expressed as

r =
JLT
d
, w =

JRW −Bα
d

, px =
JX
d
, (3.17)

py =
JY
d
, α = φ̇.

The constants d = m(B + C) + M(ma2 + B + C), γ1 = −m2a(B + C)/d, γ2 = (m(m +
M)(B + C) − m2Ma2)/d, γ3 = mMa(m + M)/d, λ1 = ma2, λ2 = −a(m + M), µ1 = −ma,
µ2 = m+M , ν0 = B/d, D = B(mMa2 +C(m+M)), ν1 = −dk/D, ν2 = −Bma2(m+M)/(dD),
ν3 = aB(m+M)2/(dD), ν4 = Bm2a2/(dD), and ν5 = −mBa(m+M)/(dD) fully encapsulate
the presence of system parameters in a more convenient form for analysis. The reduced dynamics
are then easier to analyze for stability. Taking the time derivatives of (3.17) and using (3.16) to
make the necessary substitutions, the evolution equations become

ṙ = γ1p
2
y + γ2pyw + γ3w

2,

ẇ = λ1rpy + λ2rw − ν0(ν1φ+ ν2rpy + ν3rw + ν4pxpy + ν5pxw),

ṗx = µ1p
2
y + µ2pyw,

ṗy = −µ1pxpy − µ2pxw,

α = φ̇,

α̇ = ν1φ+ ν2rpy + ν3rw + ν4pxpy + ν5pxw.

(3.18)

The dynamics given by (3.18) can be further simplified under assumptions of momentum
conservation. The quantity p2

x +p2
y is conserved, with all its level sets invariant under (3.18). We

wish to prove that all trajectories corresponding to p2
x+p2

y = 0 approach the r axis asymptotically.
Restricting the dynamics to this level set, (3.18) can be written as

ṙ = γ3w
2, ẇ = λ2rw − ν0(ν1φ+ ν3rw),

ṗx = 0, ṗy = 0, α = φ̇,

α̇ = ν1φ+ ν3rw.

(3.19)

The time evolution of r, w, φ, and α then fully describe the behavior of the system. By
inspection it is clear that ṙ is nonnegative, and is positive where w is nonzero. For w = 0, ẇ is
nonzero for φ 6= 0. It follows that r will increase for all time given that w 6= 0 and φ 6= 0. Thus,
r will increase for all time unless w, φ, and α, are zero for all time, requiring r to increase unless
the flow of the vector field corresponding to (3.19) is always on the r axis. All fixed positive
values of r correspond to a linear dynamical system described by ẇ, α, and α̇. For every such r,
denoted by rc, the dynamics are thenẇα

α̇

 =

λ2rcw − ν0(ν1φ+ ν3rcw)

φ̇
ν1φ+ ν3rcw

 . (3.20)

The Jacobian of (3.20) is

A =

λ2ν0ν3rc −ν0ν1 0
0 0 1
ν3rc ν1 0

 . (3.21)
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Figure 3.4: Platform actuation rotated so as to exert control in the direction orthogonal to
direction of motion allowed by the no-slip constraint at the wheel

The eigenvalues of (3.21) at (w, φ, α) = (0, 0, 0) correspond to the roots of a third order
polynomial in p with parameter-dependent coefficients, written as

p3 + (ν0ν3rc − λ2rc)p
2 − ν1p+ λ2ν1rc = 0. (3.22)

With rc > 0, the polynomial above has roots with all negative real part, showing that w, φ,
and α exponentially decrease to zero as r increases. This result suggests a stable fixed point
of (3.19) at (r, w, φ, α) = (r∞, 0, 0, 0) given knowledge of the asymptotic values of w, φ, and α.
Since the dynamics are energy-conserving, the initial and final energies of the system must be
equal, with the asymptotic value of r for the case where the system is initially at rest calculated
as

r∞ = lim
t→∞

r =
φ(0)

d

√
kmM

m+M
.

It follows that the asymptotic value of r can be determined for any initial conditions corresponding
to the system being initially at rest. Of considerable note is the linear relationship between r∞
and the initial rotor angle relative to the body of the Chaplygin beanie, i.e., the initial spring
deformation.

3.3 Exogenous Control

Coordination of biological agents in fluids or compliant substrates is often accomplished by the
agent taking actions based on locally-sensed dynamics of their environment. Though agents
take such actions, they also relieve themselves of their actuation under some circumstances,
remaining passively compliant for some time in their environment before taking up actuation
again. Such passivity has proven useful for achieving meaningful locomotive behaviors [14].
Prior works have considered this problem in the context of vibrational entrainment of passively
compliant Chaplygin beanies atop an actuated platform [2]. In this section, we study the
Chaplygin beanie atop an actuated platform and ask whether the system can be excited so as
to induce predictable locomotion. We investigate this problem from a perspective of exogenous
control, i.e., we excite the platform in an oscillatory manner, uncaring of where the control
originates, and characterize motion primitives for a passively compliant Chaplygin beanie as it
responds passively to its environment.
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3.3.1 Frequency Response Analysis

We seek to characterize locomotive behaviors when the frequency at which the environment
is stimulated varies over a range of values containing the natural frequency of the rotor and
the modal frequency of the body-rotor couple when not constrained to the platform, both
of which are dependent on the stiffness of the spring. Consider a single passively compliant
Chaplygin beanie atop an actuated platform and let its parameters, m, B, C, a, and k, be
equal to unity. Note that the platform can only be actuated in the directions (xp, yp) as shown
in Fig. 3.2. There’s no reason to assume a relationship exists between forward translational
speed, heading, or even stability, when actuating purely in the (xp, yp) directions. In fact, such
a relationship is obfuscated by dependence on the initial heading of the vehicle. However, such
a relationship could exist when considering actuation in a rotated frame of reference, orthogonal
to the allowable direction of motion required by the nonholonomic constraint at the vehicle’s
wheel.

Fig. 3.4 shows the rotated reference frame of the platform. Actuation along y∗p is not only
independent of the heading of the vehicle, but also the direction for which its passive dynamics
are most responsive. Actuation along x∗p, for example, causes no deformations of the rotor
relative to the body and therefore no passive response. Consider the natural frequency of the
rotor and the modal frequency of the vehicle when not constrained to the platform, given by

ωnat =

√
k

B
, ωmod =

√
k(B + C)

BC
. (3.23)

With a spring coupling the cart to the rotor, we sweep through a range of frequencies for a
particular set of parameters to analyze the response of the system to exogenous forcing in the
y∗p direction and use asymptotic mean forward translational velocity as a performance metric.
However, under certain periodic actuation the system will approach persistently undulatory
behavior, requiring that we consider the mean velocity for an integer number of periods of
oscillation. Forward translational velocity in the body frame of the vehicle is given by

ξx = ẋ cos θ − ẏ sin θ.

The above is equivalent to the velocity in the direction allowable by the nonholonomic constraint
on the wheel. Consider a situation that allows the orientation of the agent to be tracked in the
environment. We actuate the platform according to[

x∗p
y∗p

]
=

[
cos θ − sin θ
sin θ cos θ

] [
xp
yp

]
(3.24)

and let xp = 0 and yp = A sin(ωt). Note that this is effectively a feedback-like controller in that
it requires tracking the heading of the vehicle, which is then used to compute the control y∗p.
Setting system parameters and the amplitude A to unity, we discretize the range of frequencies
between 0.1 and 2.0 into N = 70 equally-spaced intervals. Using the final three periods of
oscillation to compute the mean forward translational velocity, denoted by ξ̄x, we obtain the
frequency response plot shown in Fig. 3.5.

In carrying out this experiment, it is clear that the natural frequency of the rotor and modal
frequency of the system in free space bound a region of high performance when considering
mean forward translational velocity as a metric. Additional questions concerning generalizability
and associated behaviors arise from this particular result. To address the first of these questions,
we vary the parameters for the vehicle, compute the corresponding frequencies given in (3.23)
and generate similar results to Fig. 3.5. The results of these experiments are shown in Fig. 3.6.

19



0.5 1.0 1.5 2.0
0

2

4

6

8

10

12

Figure 3.5: Frequency response of a passive Chaplygin beanie under external actuation in the
body frame. The parameters were set to unity to obtain this response.
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Figure 3.6: Frequency responses of a Chaplygin beanie for two different parameter combinations

The natural frequency of the rotor and modal frequency of the vehicle in free space again yield
lower and upper bounds on regions of high performance.

Of further interest are behaviors emerging from actuating within, and outside of, the
frequency bounds set by (3.23). In particular, we wish to characterize the frequencies that result
in stable dynamics and from that characterization deduce motion primitives for controlling
multiple passive vehicles. An analysis of the time evolution of θ when actuating the platform
at frequencies inside and oustide of the bands given above is shown in Fig. 3.7, clarifying the
existence of distinct dynamics in the vehicle’s heading. The blue curve visible in Fig. 3.7 is
actually a family of curves all resulting from frequencies lying within the bounds of the natural
and modal frequency of the vehicle, all resembling stable oscillatory behavior. The red and green
curves each correspond to θ dynamics of a single frequency chosen that satisfies the inequalities
shown in the legend.

3.3.2 Manipulation

The frequency characterization in 3.3.1 provides clear rules by which we can exert control over
the platform to manipulate Chaplygin beanies. Actuating the platform at frequencies within the
bounds set by the natural frequency of the rotor and the modal frequency of the vehicle in free
space allow for control primitives which induce vehicles to achieve stable undulatory locomotion
along a particular heading. We term such behavior in the context of manipulating multiple
agents as dispersion. Actuation outside of these boundaries yield trajectories corresponding to
much more complex dynamics, not as easily classified as those of stable undulatory behavior.
We discuss some of these behaviors in Section ??. Two such trajectories are shown in Fig. 3.8.

The beanie under external actuation with ω = ωnat will disperse from its initial position and
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Figure 3.7: Analysis of the asymptotic heading of a Chaplygin beanie over the actuation bounds
described in Fig. 3.5
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Figure 3.8: Trajectories of two individual simulations for actuation of the platform inside of the
bounds (blue) and outside of bounds (red) defined by ωnat and ωmod

undulate stably at a particular heading for all time. The degree to which it stably oscillates
in θ increases with increasing ω, as long as actuation stays within the bounds of the natural
frequency of the rotor and the modal frequency of the vehicle. Though no formal guarantee
is given in this work, the authors assert that trajectories corresponding to those of platform
actuation at frequencies of ω < ωnat or ω > ωmod will stay within some neighborhood of its
initial position, much like that of the red trajectory in Fig. 3.8. Such trajectories are also prone
to exhibit dynamics that reveal the presence of multi-scale time dynamics, discussed below.

This result clarifies the ability to control passive vehicles using the kind of actuation given
by (3.24). Consider a case with two identical passive Chaplygin beanies at rest atop an
actuated platform with different initial headings. Naively assuming control over the platform to
manipulate one vehicle in this sense does not guarantee a certain behavior for the other. In
the presence of other passive vehicles, however, to achieve a desired behavior, the platform can
be actuated corresponding to the desired control for that particular vehicle and its resulting
behavior remains independent of the others. Fig. 3.9 shows such a case if the desired behavior
for beanie 1 is to stay within some neighborhood of its initial position.

Though beanie 2 appears to stably locomote away in this example, there is no basis in
assuming it does so. Similarly, actuation within the frequency bands discussed above would
result in the vehicle approaching a stable oscillatory trajectory rather than oscillating about the
initial position. In this result, we emphasize the importance of exerting control over a particular
agent in a multi-agent setting given that we actuate the platform according to (3.24). The
ability to actuate the platform in this way leads to questions concerning the control of multiple
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Figure 3.9: Resulting trajectories for two Chaplygin beanie agents atop an actuated platform.
The blue trajectory corresponds to actuation of beanie 1 at a frequency lower than the natural
frequency of its rotor. The red trajectory corresponds to the dynamics induced by actuating
the platform so as to induce the behavior seen in beanie 1.

agents. Naively, one may conclude this control methodology can be targeted to one agent and
switched at any time to target another to disperse or station-keep agents as needed, but this is
nullified by each vehicle having attained nonzero momentum.

3.4 Summary and Future Work

We first developed the reduced equations for a system consisting of a passively compliant
Chaplygin beanie atop a translationally compliant platform with finite inertia and proved that
for trajectories corresponding to p2

x + p2
y = 0, the system is stable for arbitrary initial conditions

in φ. We then established a characterization for control of a multi-vehicle system coupled
dynamically to a medium that gives rise to rich dynamical behavior. Though it is clear based on
the present work that there exist parameter-invariant bounds on platform actuation frequencies
for achieving stable undulatory behavior of a passive vehicle under exogenous control, formal
proof for this result is sought. Other interesting phenomena are exhibited by the nonlinear
dynamics that warrant further exploration. Namely, certain platform actuation frequencies yield
behaviors which indicate the presence of multi-scale time dynamics, demonstrated in Fig. 3.10.
This behavior relates qualitatively to that exhibited by a three-link snake-like robot in [40].

The system was given an initial position at the origin and controlled corresponding to (3.24).
The vehicle locomotes away along some heading for some time, reverses direction, locomotes
for some time, switches its heading, and repeats this behavior. The dynamics of moving along
in some heading occur at a fast time scale, while the dynamics for switching direction occur
at a much slower time scale. Changes in the direction taken by the vehicle likely correspond
to bifurcations in the dynamics at one of these time scales, the analysis of which is a topic of
future work. The actuated system has also been shown to display stable oscillatory behavior
for frequencies within the frequency bands discussed. As such, proving stabilizability for the
controlled system will also be included in future publications.
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Figure 3.10: Trajectory resulting from actuating the platform at a frequency of ω < ωmod for a
Chaplygin beanie with parameters C = 0.5, m = B = k = 1 for a duration of 500 simulation
seconds.
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Chapter 4

Two Chaplygin Beanies Atop a
Compliant Platform

The preceding chapter developed a reduced representation for the dynamics of a single Chaplygin
beanie on a movable platform, permitting a more rigorous analysis of behaviors arising from its
passive dynamics. We then provided some preliminary results of the exogenous control of two
passive Chaplygin beanies on an actuated platform using motion primitives deduced from the
characterization of their frequency response. In this chapter, we develop the reduced dynamics
for two Chaplygin beanies on a movable platform and investigate their passive dynamics in a
reduced space.

xp

yp
(x1, y1)

✓1

�2

�1

✓1 + ✓2

(x1 + x2, y1 + y2)

Figure 4.1: Two Chaplygin beanies atop a translationally compliant platform. Vehicle rotor
angles relative to the heading are shown as φi, headings as θi, positions relative to the platform
as (xi, yi), and the position of the platform in a world frame, (xp, yp).

4.1 Nonholonomic Reduction

Like the preceding case involving a single Chaplygin beanie, each of the two Chaplygin beanies
is constrained to the platform via a wheel located at its rear, shown in orange in Fig. 4.1. Their
individual masses are denoted mi where i is used to denote the ith agent. The rotational inertia
about an agent’s center of mass is represented by Ci, the rotational inertia of its rotor by Bi,
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the distance from the wheel and the center of its body by ai, and the stiffness of the spring
coupling the cart to its rotor by ki. The mass of the platform is still given by M . The position
and orientation of the second agent is specified relative to the first agent as shown in Fig. 4.1.
The Lagrangian for this particular choice of coordinates is written as

L =
1

2
m1((ẋ1 + ẋp)

2 + (ẏ1 + ẏp)
2) +

1

2
m2((ẋ1 + ẋ2 + ẋp)

2 + (ẏ1 + ẏ2 + ẏp)
2)

+
1

2
Mẋ2

p +
1

2
Mẏ2

p +
1

2
C1θ̇

2
1 +

1

2
C2(θ̇1 + θ̇2)2 +

1

2
B1(θ̇1 + φ̇1)2 +

1

2
B1(θ̇1 + θ̇2 + φ̇2)2

− 1

2
k1φ

2
1 −

1

2
k2φ

2
2.

(4.1)

There exist two constraints on this system: one for the no-slip condition at the wheel of each
Chaplygin beanie. These nonholonomic constraints are equivalent to two one-forms on the
cotangent space

ω1 = − sin θ1dx1 + cos θ1dy1 − a1dθ1, (4.2)

ω2 = − sin(θ1 + θ2)d(x1 + x2) + cos(θ1 + θ2)d(y1 + y2)− a2d(θ1 + θ2). (4.3)

The dynamics of two Chaplygin beanies on a movable platform evolve on the mani-
fold Q = SE(2) × S1 × SE(2) × S1 × R2. We again require that the one-form describ-
ing these no-slip constraints be annihilated by the generalized velocity at every point q =
(x1, y1, θ1, φ1, x2, y2, θ2, φ2, xp, yp) ∈ Q. Much like an R2 symmetry arises from the assignment of
a single beanie relative to the platform, so too does an R2 symmetry arise from assigning the
second beanie relative to the first beanie. One might suspect another SE(2) symmetry to exist,
however, the presence of an additional orientation variable — θ2 — precludes this. Despite this
break in symmetry, we can still seek to reduce out x1, y1, θ1, x2, y2, xp, and yp, replacing them
with six momentum variables. For the Lie group G = SE(2)R2×R2, let a generic group element
be represented by g = (x̄1, ȳ1, θ̄1, x̄2, ȳ2, x̄p, ȳp). The Lie group G acts on Q via left translation,
leaving φ1, φ2, and θ2 unchanged. We write the group action Φ as

Φ :G×Q 7→ Q : (g, q) 7→ (x̄1 + x1 cosα1 − y1 sinα1, ȳ1 + y1 cosα1 + x1 sinα1, θ1 + α1,

φ1, x̄2 + x2 cosα1 − y2 sinα1, ȳ2 + y2 cosα1 + x2 sinα1,

θ2, φ2, x̄p + xp cosα1 − yp sinα1, ȳp + yp cosα1 + xp sinα1).

(4.4)

The tangent part of the lifted action corresponding to the above group action is

TqΦ(g, q) =



cosα1 − sinα1 0 0 0 0 0 0 0 0
sinα1 cosα1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0
0 0
0 0 0 1 0 0 0 0 0 0
0 0
0 0 0 0 cosα1 − sinα1 0 0 0 0
0 0
0 0 0 0 sinα1 cosα1 0 0 0 0
0 0
0 0 0 0 0 0 1 0 0 0
0 0
0 0 0 0 0 0 0 1 0 0
0 0
0 0 0 0 0 0 0 0 cosα1 − sinα1

0 0 0 0 0 0 0 0 sinα1 cosα1



. (4.5)
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The Lagrangian given by Eq. 4.1 is invariant under this tangent lifted action. We can also show,
as was done for the single beanie case, that the constraint one-forms are invariant under the
cotangent lifted action, making G a symmetry group. We refrain from including this calculation,
but can be verified following Eq. 3.7. The constraint distribution is

Dq = span{−a1 sin θ1
∂

∂x1

+ a1 cos θ1
∂

∂y1

+
∂

∂θ1

, cos θ1
∂

∂x1

+ sin θ1
∂

∂y1

,
∂

∂φ1

,

− a2 sin(θ1 + θ2)
∂

∂x1

+ a2 cos(θ1 + θ2)
∂

∂y1

+
∂

∂θ1

− a2 sin(θ1 + θ2)
∂

∂x2

+ a2 cos(θ1 + θ2)
∂

∂y2

+
∂

∂θ2

, cos(θ1 + θ2)
∂

∂x1

+ sin(θ1 + θ2)
∂

∂y1

+ cos(θ1 + θ2)
∂

∂x2

+ sin(θ1 + θ2)
∂

∂y2

,
∂

∂φ2

}.

(4.6)

The tangent space to the orbit of the group action Φ is

TqOrb(q) = span{ ∂

∂x1

,
∂

∂y1

,
∂

∂x2

,
∂

∂y2

,
∂

∂θ2

,
∂

∂xp
,
∂

∂yp
}. (4.7)

We again seek a suitable set of vector fields which span the intersection of Dq and TqOrb(q).
We choose

Sq = span{−a1 sin θ1
∂

∂x1

+ a1 cos θ1
∂

∂y1

+
∂

∂θ1

+ a1 sin θ1
∂

∂x2

− a1 cos θ1
∂

∂y2

+
∂

∂θ2

,

cos θ1
∂

∂x1

+ sin θ1
∂

∂y1

− cos θ1
∂

∂x1

− sin θ1
∂

∂y1

,

− a2 sin θ1
∂

∂x2

+ a2 cos θ1
∂

∂y2

+
∂

∂θ2

, cos θ1
∂

∂x2

+ sin θ1
∂

∂y2

,

cos θ1
∂

∂xp
+ sin θ1

∂

∂yp
,− sin θ1

∂

∂xp
+ cos θ1

∂

∂yp
}.

(4.8)

The vector fields above generate the nonholonomic momenta corresponding to 1) longitudinal
translational momentum of beanie 1, 2) rotational angular momentum of beanie 1 about the
contact point of its wheel, 3) longitudinal translational momentum of beanie 2 in the body-fixed
frame of beanie 1, 4) rotational angular momentum of beanie 2 about the contact point of its
wheel in the body-fixed frame of beanie 1, 5) longitudinal translational momentum of the entire
system in the body-fixed frame of beanie 1, and 6) momentum of the entire system orthogonal to
the forward translational direction of beanie 1. Those momenta are given in terms of variables
on TQ as

JLT,1 = m1(ẋ1 + ẋp) cos θ1 +m1(ẏ1 + ẏp) sin θ1,

JRW,1 = −m1a1(ẋ1 + ẋp) sin θ1 +m1a1(ẏ1 + ẏp) cos θ1 + (B1 + C1)θ̇1 +B1φ̇1,

JLT,2 = m2(ẋ2 + ẋ1 + ẋp) cos θ1 +m2(ẏ2 + ẏ1 + ẏp) sin θ1,

JRW,2 = −m2a2(ẋ2 + ẋ1 + ẋp) sin θ1 +m2a2(ẏ2 + ẏ1 + ẏp) cos θ1

+ (B2 + C2)(θ̇1 + θ̇2) +B2φ̇2,

JX =m1(ẋ1 + ẋp) cos θ1 +m1(ẏ1 + ẏp) sin θ1 +m2(ẋ2 + ẋ1 + ẋp) cos θ1 +m2(ẏ2 + ẏ1 + ẏp) sin θ1

+Mẋp cos θ1 +Mẏp sin θ1,

JY =−m1(ẋ1 + ẋp) sin θ1 +m1(ẏ1 + ẏp) cos θ1 −m2(ẋ2 + ẋ1 + ẋp) sin θ1 +m2(ẏ2 + ẏ1 + ẏp) cos θ1

−Mẋp sin θ1 +Mẏp cos θ1.

(4.9)
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We again compute the evolution equations as

J̇nhc =
∂L

∂q̇i

[
dξ

dt

]i
Q

.

The resulting evolution equations, in coordinates on TQ, are given by

J̇LT,1 = −m1((ẋ1 + ẋp) sin θ1 +m1(ẏ1 + ẏp) cos θ1)θ̇1,

J̇RW,1 = θ̇1((−(m1 +m2)a1(ẋ1 + ẋp) +m2a1ẋ2) cos θ1(−(m1 +m2)a1(ẏ1 + ẏp)

+m2a1ẏ2) sin θ1)

J̇LT,2 = m2θ̇1 (cos θ1 (ẏ1 + ẏ2 + ẏp)− sin θ1 (ẋ1 + ẋ2 + ẋp)) ,

J̇RW,2 = a2m2θ̇1 (− cos θ1 (ẋ1 + ẋ2 + ẋp)− sin θ1 (ẏ1 + ẏ2 + ẏp)) ,

J̇X =θ̇1(sin θ1((M +m1 +m2)ẋp + (m1 +m2)ẋ1 +m2ẋ2) + cos θ1((M +m1 +m2)ẏp

+ (m1 +m2)ẏ1 +m2ẏ2)),

J̇Y =θ̇1(− cos θ1((M +m1 +m2)ẋp + (m1 +m2)ẋ1 +m2ẋ2)− sin θ1((M +m1 +m2)ẏp

+ (m1 +m2)ẏ1 +m2ẏ2)).

(4.10)

Eq. 4.9 can be solved to write Eq. 4.10 in terms of the components of nonholonomic momenta.

Stability. In Chapter 3 we proved that given an arbitrary initial rotor angle, i.e., initial spring
deformation coupling the cart to the rotor, all of the Chaplygin beanie’s angular momentum
about the contact point at its wheel is converted into longitudinal translational momentum.
More specifically, we showed that, for all trajectories corresponding to the level set p2

x + p2
y = 0,

the longitudinal translational momentum of the agent asymptotically approaches a value that
can be computed as a function of its initial rotor angle. We naturally ask a similar question when
considering two Chaplygin beanies. Firstly, we wish to investigate the conversion of angular
momentum to longitudinal translational momentum in the system.

4.2 Dynamic Entrainment

Consider the case of two Chaplygin beanies, equipped with linear torsional springs in the manner
discussed previously, sitting atop a platform with translational compliance. Given arbitrary
initial deformations in the rotor of each agent relative to its body, the asymptotic difference
in the headings of the agents approaches a small number. This phenomena is called dynamic
entrainment and is illustrated in Fig. 4.2. For this simulation, the initial heading of the blue
agent was θ1(0) = 0, and θ2(0) = π/3 for the red agent. This entrainment of Chaplygin beanies
on a translationally compliant platform has been shown in simulation to to maintain up until a
particular value of the ratio

Mplatform

mbeanie
[2], where Mplatform and mbeanie are the total masses of

the platform and Chaplygin beanie agent, respectively.
The value at which entrainment between two Chaplygin beanies fails is best visualized by

figures showing the asymptotic heading of each beanie. Sweeping through a range of
Mplatform

mbeanie
,

we perform a simulation and from it extract the asymptotic heading of each agent. Plotting this
on a log scale shows a bifurcation-like phenomenon, first illustrated in [2], but explored again
here for thoroughness. Fig. 4.3 clarifies the asymptotic behavior of Chaplygin beanies effectively
as a function of platform mass. As presented in [2], this is reminiscent of a bifurcation where

the bifurcation, or control, parameter is
Mplatform

mbeanie
. The reduced representation of the dynamics

obtained from the evolution equations presented in the previous section will give greater insight
into proving this bifurcation-like behavior.
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Figure 4.2: (x, y) trajectories of two Chaplygin beanies after given arbitrary initial rotor angles
and different initial headings.
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Figure 4.3: Asymptotic headings of two Chaplygin beanies as a function of the parameter
Mplatform

mbeanie
.
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Chapter 5

A Cylindrical-shaped Agent in an
Inviscid Fluid with Point Vortices

We have so far introduced a multi-agent system for which the coupling between agents is
encapsulated by a platform through which agents are constrained via nonholonomic constraints
in the form of no-slip conditions on their wheels. While this model for an ambient medium
provides a basis for studying interactions and coordination among agents, many real systems
lack this direct model of coupling, necessitating the incorporation of elasticity or, in this case,
fluid dynamics to more appropriately model coupling due to the medium. In this chapter,
we introduce a dynamic model for a novel fluid-propulsive aquatic vehicle in an ideal fluid
that exerts control over its motion using impulsive fluid-ejection events. The control input
for the system is modeled as an instantaneous placement of a pair of symmetrically located
counter-rotating point vortices. A snapshot of a simulation for this system after shedding some
number of directed vortex pairs is shown in Fig. 5.1.
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Figure 5.1: A planar body in an ideal fluid shedding directed vortex pairs to achieve locomotion.

The distilled nature of this system lends itself to various investigations into how solid bodies
interact with vorticity in an inviscid fluid. This particular model also embodies the resulting
behavior of aquatic organisms that can locomote via forcing fluid through a cavity in their body,
e.g., jellyfish, squid, and salps.

5.1 Dynamic Model

The study of fluid-solid interactions in the plane has historically involved looking at the dynamics
of such systems in the complex plane as well as conformal mapping techniques for generating
interesting rigid body geometries [27], [41], [42]. Here we are interested in a simple conformal
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map that results in scaling the unit disc, or circular cylinder, to a disc of radius R. Such a map
takes coordinates in the preimage space, which we denote with coordinates ζ, to coordinates in
the scaled coordinates, which we denote by z. Such a map takes the following form.

z(ζ) = Rζ (5.1)

Since we are interested in the impulsive control of an aquatic vehicle taking on the geometry of
a circular cylinder, we won’t concern ourselves with the effects of different scaling values and let
R = 1 in our simulations, making Eq. (5.1) the identity map.

5.1.1 Vortex Velocities and the Complex Potential

In understanding the vortex velocities relative to the cylinder, it is necessary to first write the
complex potential for the system. Such a complex potential is the result of superposing the
complex potential for a freely moving cylinder with the complex potential for each vortex in the
flow.

w(z) = wB(z) +
N∑
k=1

wkv(z) (5.2)

Eq. (5.2) is the sum of the complex potential for a cylinder, wB(z), and the complex potential
for each vortex, wkv(z). The individual complex potentials are given below.

wB = ξxR
2z−1 + iξyR

2z−1 (5.3)

wkv(z) = Γki
(

log(z − zk)− log(z − R2

z̄k
) + log(z)

)
(5.4)

This ensures that the circulation introduced by a vortex at zk is nullified by the image vortices
placed at z = R2

ζ̄k
and z with strengths corresponding to Eq. (5.4). The quantity z = R2

z̄k
is

recognized as a vortex at the image point with respect to the center of the circular cylinder.
Let ξx, ξy, and ξθ be the linear and angular velocities of the cylinder in the body frame of the
cylinder. The complex potential for a circular cylinder in the presence of N point vortices is
then given by

w(z) = ξxw1(z) + ξyw2(z) +
N∑
k=1

Γki
(

log(z − zk)− log(z − R2

z̄k
) + log(z)

)
. (5.5)

Note that the complex potential w1(z) = R2z−1 and w2(z) = R2z−1i. The complex potential
for the kth vortex must exclude singular terms when computing its gradient, giving us

wk(z) = w(z)− Γki log(z − zk). (5.6)

Finally, we can compute the velocity of each vortex with respect to the body frame of the
cylinder by taking the gradient of the conjugate of Eq. (5.6) with respect to z [43].

żk =
( ¯dwk
dz
− (ξx + iξy)

)
(5.7)

Since Eq. (5.7) is written with respect to the body frame of the cylinder, its real and imaginary
parts will give the corresponding components in q̇v when added to the velocity of the cylinder
in the inertial frame. Let ẋk = Re(żk) and ẏk = Im(żk).
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5.1.2 Conservation of Total Momentum

We develop the components of Eq. (5.15) based on conservation of total momentum and express
momentum terms for the vortices using the classical approach of complex potentials. We draw
inspiration from [43], [32], and [27] in our understanding the momentum terms. Let L and A
be the total linear and angular momentum of the system, respectively, and express them as

L = c

[
ξx
ξy

]
+ P (5.8)

and
A = πk. (5.9)

P and πk represent the linear and angular momentum contribution due to the point vortices
in the flow and are computed as follows. The parameter c represents the cylinder mass plus
the added mass of the cylinder, written as c = m + πR2 where we assume the fluid to be of

unit density. We let ξ =
[
ξx ξy ξθ

]>
be the linear and angular velocities of the cylinder in

the body frame. If zk = xk + iyk is the location of the kth vortex, we can define the linear
momentum contribution due to N point vortices to be

P = −
N∑
k=1

Γk
2πR

(
zk −

R2

z̄k

)
i (5.10)

and define P =
[
Re(P ) Im(P )

]>
. After extracting the real and imaginary parts of P, we write

P =

[
Re(P )
Im(P )

]
=

[
−
∑N

k=1
Γk

2π
(−yk +R2 yk

x2k+y2k
)

−
∑N

k=1
Γk

2π
(xk −R2 xk

x2k+y2k
)

]
(5.11)

Eq. (5.11) is the final representation of the linear momentum due to N point vortices. We then
write the angular momentum as

π = −1

2

N∑
k=1

Γk(x
2
k + y2

k). (5.12)

We can finally write the conservation of total momentum and from it compute the velocity of

the cylinder in the body frame. Let M =

c 0 0
0 c 0
0 0 I

 be the mass matrix for the cylinder, where

I is the rotational inertia of the cylinder.Re(P )
Im(P )
π

+M

ξxξy
ξθ

 =

Re(P0)
Im(P0)
π0

 (5.13)

Quantities subscripted with a zero indicate the evaluation of that quantity at time t = 0. That
is, the initial momentum of the system is on the right side of Eq. (5.13). Upon rearranging
terms, the velocity of the cylinder in the body frame is expressed as

ξ =

ξxξy
ξθ

 = M−1

(Re(P0)
Im(P0)
π0

−
Re(P )

Im(P )
π

). (5.14)
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Though our aquatic vehicle sheds directed vortex pairs to achieve locomotion, the underlying
fluid-mechanical model is that of a circular cylinder in a flow of N point vortices. It is necessary
to acknowledge, however, that the number of vortices is increasing at each instance of actuation.

We let qc =
[
xc yc θc

]> ∈ SE(2) be the position and orientation of the cylinder with respect

to the inertial frame and let qv =
[
xc + x1 yc + y1 · · · xc + xN yc + yN

]>
be the positions

of the vortices in the inertial frame, where each pair (xk, yk) ∈ R2 is written in the body frame
of the cylinder. Since the number of vortices can be large, it is necessary that we establish a
designation for circulation sign. Counter-clockwise rotating point vortices are colored red and
assumed positive, and clockwise rotating point vortices are given the color blue and assumed

negative. Given qc and qv, we write q =
[
qc q̇c qv

]>
to represent the full state variables

for the system given N point vortices in the flow. Thus, we seek a form for the continuous
dynamics in the form

q̇ =

q̇c
q̈c
q̇v

 = f(q, q̇). (5.15)

5.1.3 Cylinder Dynamics in the Inertial Frame

Eq. (5.14) is the velocity of the cylinder in the body frame. To obtain the velocity of the
cylinder with respect to the inertial frame, we apply the rotation matrix

R =

cos(θc) − sin(θc) 0
sin(θc) cos(θc) 0

0 0 1

 . (5.16)

This gives us q̇c from Eq. (5.15) and can be written as

q̇c = R>ξ. (5.17)

The velocity of each vortex can be written as

q̇v =

[
ẋc + ẋk
ẏc + ẏk

]
. (5.18)

For every k ∈ 1, ..., N . Note that the velocity of each vortex is a function of the spatial derivative
of its complex potential, requiring us to recompute Eqs. (5.5), (5.6), and (5.7) at each vortex
shedding event. Given Eq. (5.17) and Eq. (5.18), all that is left to compute is the acceleration
of the cylinder. Such a task equates to simply taking time derivatives of q̇c. There are some
subtleties to this, primarily in the calculation of initial accelerations. The acceleration of the
cylinder in the body frame can be obtained by computing d

dt
ξ, but to obtain the acceleration in

the inertial frame, we must use the following identity.

dξ

dt
= Rq̈c + Ṙq̇c = Rq̈c + R(ξθk× q̇c) (5.19)

So we need only compute one term in Eq. (5.19), ξ̇, and the rest is obtained from derivatives
already computed. The relevant terms in ξ for which we must take time derivatives are P and
π. These are given in Eqs. (5.20), (5.21), and (5.22).

d

dt
Re(P ) =−

N∑
k=1

Γk
2π

(
− ẏk +R2(ẏk(2xkẋk + 2ykẏk)×

(x2
k + y2

k)
−2 + ẏkyk(x

2
k + y2

k))
) (5.20)
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Figure 5.2: Diagram illustrating the ejection mechanism for the aquatic vehicle

d

dt
Im(P ) =−

N∑
k=1

Γk
2π

(
ẋk −R2(ẋk(2xkẋk + 2ykẏk)×

(x2
k + y2

k)
−2 + ẋkyk(x

2
k + y2

k))
) (5.21)

d

dt
π = −1

2

N∑
k=1

Γk(2xkẋk + 2ykẏk) (5.22)

This allows us to fully compute ξ̇, recognizing the presence of the vector representing the initial
acceleration of the cylinder.

ξ̇ = M−1

([
Ṗ0

π̇0

]
−
[
Ṗ
π̇

])
(5.23)

With all of the relevant terms for ξ̇ computed, we can compute q̈c, Eq. (5.19), finalizing the
continuous dynamics of Eq. (5.15).

5.1.4 Impulsive Control Formulation

Given the dynamics for the aquatic vehicle, we can now define what it means to impulsively
control it. The continuous dynamics can also be seen as the drift dynamics for the system. That
is, under no control input, the dynamics obey Eq. (5.15). We wish to clarify the control input
as well as write down the full version of the dynamics given discrete-time inputs to the system.
Fig. 5.2 provides a visualization for the actuation mechanism. This can be interpreted as the
aquatic vehicle ejecting pairs of point vortices at any angle α around its boundary. This kind of
system is often described as a hybrid system, containing both continuous as well as impulsive
dynamics. Eq. (5.24) and (5.25) give a general description of the system [44].

q̈ = f(q, q̇), t 6= tj (5.24)

q(t+j ) = Cjq(t−j ) + Djvj, t = tj

∀j ∈ 1, ..., J
(5.25)

The notation ()− and ()+ denote the time before and after the impulsive control input vj is
applied, respectively. Matrices Cj and Dj ensure that only the state variables affected at time
t = tj by the impulse are updated, making them diagonal matrices, the entries for which are
either 0, if the state variable remains unaffected, or 1, if the state variable is to be updated due
to the impulse.

33



Before proceeding to the definition of vj, we note that Eq. (5.24) and Eq. (5.25) can be
reduced in that the vortex state variables are not impacted by vj, allowing us to consider only
the impact on the cylinder velocities. We leave the continuous dynamics unchanged, but rewrite
the impulsive part of the dynamics so as to only contain the cylinder velocities.

q̇c(t
+
j ) = Cjq̇c(t

−
j ) + Djvj, t = tj (5.26)

Since all of q̇c is impacted at the time of impulse, let Cj be the 3 × 3 identity matrix and
let Dj be RM−1. vj will ultimately be an addition of momentum to the system, so we must
premultiply by the inverse of the mass matrix to obtain a velocity update in the inertial frame.
Eq. (5.26) can then be written as

q̇c(t
+
j ) = q̇c(t

−
j ) + RM−1vj, t = tj.

In this work the time between ejection events, ∆tj+1,j = tj+1 − tj, is constant. That is, we do
not choose when, but at what strength, to eject a vortex pair. We leave the optimization of
time of impulse for this system to future work. We can now define the impulse vj . Before doing
so, we make note of the fact that at each discrete ejection event, the dimension of the vector in
Eq. (5.15) increases by two.

Impulsive Control Input. In this section we describe the impulse to the system, vj . Given
our description of the geometry in Fig. 5.2, we write the momentum contribution due to placing
two point vortices into the flow with opposite circulations as

vj =

 Γj

2π

(
(R + d) + R2

R+d

)(
sin(α− δα)− sin(α + δα)

)
Γj

2π

(
(R + d) + R2

R+d

)(
cos(α + δα)− cos(α− δα)

)
1
2
Γj(R + d)2

(
cos2(α− δα)− cos2(α + δα) + sin2(α + δα)− sin2(α− δα)

)
 . (5.27)

The vector vj is just the momentum of the ejected vortices in the body frame. RM−1 casts it
into the inertial frame while dividing by the mass and inertial components of the mass matrix.
Our definition of Eq. (5.27) allows us to interpret Eq. (5.1.4) in the following way. At time
t = tj, a pair of vortices is ejected with momenta corresponding to vj. Due to this discrete
event of adding momentum to the fluid, the velocity of the cylinder must be adjusted to obey
conservation of momentum.

5.2 Dynamic Entrainment

We have fully developed the dynamic model for a cylinder capable of impulsively ejecting
directed vortex pairs in an inviscid fluid. In this section, we shift our perspective from impulsive
control and first analyze the behavior of a stationary cylinder as it is impacted by directed
vortex pairs originating from an imaginary neighboring agent. Our dynamic model comprises
only a single agent impacted by vortices placed in the flow. The dynamics of multiple cylinders
capable of shedding directed vortex pairs demands tools from conformal mapping theory in
multiply-connected domains and is currently work in progress. The hope is for our analysis to
give insight into what constitutes a mutually beneficial behavior for a system comprising two
such cylindrical-shaped agents.
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5.2.1 Entrainment and Impact Angle

As an initial step toward understanding the dynamics of a cylindrical-shaped agent as it is
impacted by the incoming flow induced by a neighboring agent, we place directed vortex pairs
in the flow at various ejection angles and characterize the resulting trajectory of the cylinder.
We investigate the result of impact at ejection angles by specifying an incrementally larger α
as shown in Fig. 5.2. The ejection angles we will analyze are 0, π

30
, π

25
, and π

20
. We designate

δα = 0.1 radians and d = 0.1 for each analysis.

(a) A simulation snapshot of a cylindrical-shaped
agent ejecting vortices at t = t0 with an ejection
angle of α = 0.

(b) A simulation snapshot of a cylindrical-shaped
agent ejecting vortices at t = tf with an ejection
angle of α = 0.

Figure 5.3: Two snapshots of a simulation for an ejection angle of α = 0.

Fig. 5.3 shows a cylinder ejecting a pair of counter-rotating point vortices at an ejection
angle of α = 0. The flow field is visualized by blue vectors normalized in length to ensure a clear
understanding of flow direction. These vectors actually decrease in magnitude as the distance
from flow sources increases. Imagine now a second cylindrical-shaped agent to the right of the
one shown above ejecting a pair of vortices. We can gain an understanding of the second agent’s
approximate behavior by viewing the dynamics corresponding to impact of the vortex pair as
they flow from their final position in Fig. 5.3 to the second agent.

This initial experiment already exhibits interesting behavior. Fig. 5.4 shows that given an
impact angle of α = 0, the pair of counter-rotating point vortices adhere to the surface of the
agent and roll around its body until shedding off the opposite side of the cylinder. In their
doing so, the vortices have effectively pulled the cylinder to the left by some visibly nonzero
distance. This is clearly seen in Fig. 5.5. Note that the green circle indicates the initial position
of the cylinder and the red circle indicates its final position.

The extent to how such impacts by directed vortex shedding can aid in the locomotion of a
neighboring agent is what we seek to elucidate. In particular, we can not only induce significant
linear motion as shown in Fig. 5.4, but can also induce the cylinder to move in both the X and
Y directions by shedding a directed vortex pair at various angles toward the second cylinder.
We refrain from including images of the ejecting cylinder as its forward motion is maintained,
but altered only by the angle at which it sheds a directed vortex pair. Fig. 5.6 shows the
trajectories resulting from impact angles of π

30
, π

25
, and π

20
.
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(a) A simulation snapshot of a cylindrical-shaped
agent being impacted by a pair of point vortices
corresponding to an impact angle of α = 0.

(b) A simulation snapshot of a cylindrical-shaped
agent being impacted by a pair of point vortices
corresponding to an impact angle of α = 0.

Figure 5.4: Two snapshots of a simulation of a cylinder being impacted by vortices at an impact
angle of α = 0.

Figure 5.5: Trajectories in the world frame corresponding to the impact illustrated in Fig. 5.4.

5.3 Position Stabilization via Vortex Strength Control

We wish to choose a setpoint in the plane and impulsively eject pairs of vortices to stabilize
about that point. The means of actuation for the aquatic vehicle is described as ejecting fluid
through a cavity which generates the two-dimensional cross-section of a vortex ring, which
we model simply as placing counter-rotating vortex pairs into the flow. Such an actuator was
studied at some length in [45] and [46] for use in bioinspired thrusters for underwater robots. It
is natural to assume control over the strength of the vortex pair depicted in Fig. 5.2, meaning
we directly control how large the impulse is as a time-parameterized function of Γj. Rather
than assume control over α as well, we simply assume α to be the angle such that the ejection
event always pulls, or pushes, the system toward, or away from, the setpoint.
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Figure 5.6: From left to right: trajectories resulting from impact angles of π
30

, π
25

, and π
20

5.3.1 PD Control Law on Vortex Strength

Controlling the strength of the vortex pair at each ejection event is accomplished using a
standard proportional-derivative control law. Given a setpoint (xd, yd), we close the feedback
loop on the measured variables (xc, yc) and define the error to be

e(t) =
√
ex(t)2 + ey(t)2

=
√

(xd − xc)2 + (yd − yc)2

(5.28)

and let Γj(t) be equal to the following function.

Γj(t) = Kpe(t) +Kd
d

dt
e(t) +Ki

∫ t

0

e(t)dt (5.29)

Using the proposed control law, we let xd = 1, yd = 1 to verify its ability to stabilize about
the desired setpoint with Kp = 0.25, Kd = 1.15, and Ki = 0. Fig. 5.7 shows the trajectory of
the cylinder with initial conditions q = 0 with no initial vortices in the flow. We can see from

Figure 5.7: Trajectory of cylinder under a PD control law stabilizing about point xd = 1, yd = 1
with initial conditions q0 = 0

Figure 5.7 that the system stabilizes within some basin of attraction of the setpoint under the
PD control law. Figure 5.8 shows that the velocity of the cylinder approaches zero as the system
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Figure 5.8: Inertial velocity of the cylinder while controlling to xd = 1, yd = 1 with initial
conditions q0 = 0

approaches the setpoint. Fig. 5.8 depicts the initial velocity of the cylinder (green circle) and its
final velocity (red circle). The green circle is hardly visible as the final velocity of the cylinder is
close to zero, overlapping the green circle denoting the initial velocity. Fig. 5.7 clearly shows
undershoot, indicating further tuning of the PID controller would be necessary to close the gap
on this error. However, this example demonstrates the extent to which a PID controller can be
used with a highly nonlinear system for which the state space grows at each vortex shedding
event.
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Chapter 6

Conclusions and Future Work

We presented three dynamical systems for which agents are coupled by the dynamics of an
ambient medium. The first of these illustrates the utility of nonholonomic reduction for such
systems. We developed the reduced equations for a single Chaplygin beanie on a movable
platform and proved that, given a nonzero initial deformation in the spring coupling the vehicle’s
rotor to its body, the dynamics are asymptotically stable, with all of the system’s angular
momentum being converted into forward translational momentum. We then characterized motion
primitives for the same system when we assume actuation of the platform and demonstrated that
it is possible to station-keep and scatter passive Chaplygin beanies. The second of these systems
then illustrated the extent to which agents can be directly coupled through an ambient medium
by placing two Chaplygin beanies on a movable platform. Using nonholonomic reduction, we laid
the groundwork for proving mainly two things: 1) that both beanies will asymptotically locomote
away stably, regardless of their initial heading or initial rotor angle, and 2) the entrainment
of two Chaplygin beanies, that is, the asymptotic difference in the headings of two beanies
approaches a small number less than or equal to π/20, independent of initial heading or rotor
angle. The third of these systems graduated from an environment that directly couples the
locomotion of agents and introduced a cylindrical-shaped aquatic agent capable of shedding
directed vortex pairs discretely in time. A distinct feature of this dynamical system is its
inevitable growth in the dimension of the state space, a complexity not seen in many dynamical
systems. We first reformulated the dynamics of a circular cylinder in the presence of point
vortices in a way clarifying its impulsive way of shedding vortices. We then demonstrated that,
in the presence of oncoming vortex shedding structures, a cylinder can be pulled toward or away
from the direction in which the vortex pair was shed, effectively another example of entrainment
in a system interacting with an ambient medium. Finally, we presented preliminary results for
a position-stabilizing contoller on vortex strength, demonstrating its effectiveness on a highly
nonlinear system for which the dimension of the state space grows at each vortex shedding
event.

The single Chaplygin beanie on a platform can be further explored to classify various behaviors
as they change as a function of parameters. Another problem that warrants exploration is an
investigation into the behavior of a Chaplygin beanie when the model for this dynamical system
is modified by restricting the motion of the platform to respond elastically, for example via a
linear spring coupling the platform to the world frame. The two proofs stated above are open
problems for this work and are currently being investigated by the author. With access to a
reduced representation of the dynamics, solutions to these two problems will be much more
approachable. In this thesis we modeled a single cylindrical-shaped agent capable of vortex
shedding. Recent tools by Crowdy [47, 48, 49] have made it possible to begin modeling multiple
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such agents through use of conformal mapping techniques in multiply-connected domains.
Therefore, developing a model for multiple cylindrical-shaped agents capable of shedding vortices
in an inviscid flow would advance the studies of multi-agent interactions through ambient media.
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