
Communications Coverage in
Unknown Underground

Environments

Michael Tatum

CMU-RI-TR-20-19

May 2020

The Robotics Institute

Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Thesis Committee:

Matthew Travers, Chair

Sebastian Scherer

Micah Corah

Thesis proposal submitted in partial fulfillment of the requirements
for the degree of Master’s of Science in Robotics

Abstract

In field robotics, maintaining communications between the user at a stationary
basestation and all deployed robots is essential. This task’s difficulty increases
when the test environment is underground and the environment is unknown to
the operator and robots. A common approach is to place a breadcrumb trail
of communications nodes, or radio transceivers, from the deployed robots back
to the basestation, autonomously if possible. Current communications network
creation approaches fail to implement a near-optimal, if not optimal, approach
to communications coverage in unknown environments and fail to maximize
communications coverage when the number of radios is limited. We propose a
node placement method that takes advantage of robot observations and existing
sensor coverage solutions to optimize node location in unknown environments
under sensor range and robot connectivity restrictions. In addition, this novel
method for communications coverage is based on a method that approaches
optimal coverage within 1− 1

e of the true optimal coverage in polynomial time,
with the added complexity of obeying the parameters of the environment and
maintaining communications between the robot and basestation.

i

Contents

1 Introduction 2

2 Related Work 8
2.1 Sensor Coverage . 8

2.1.1 Set Cover Problem . 9
2.1.2 Maximum Coverage Problem 9
2.1.3 Greedy Maximum Coverage Algorithm 10

2.2 Map Prediction . 11
2.2.1 U-Net . 11
2.2.2 Inpainting Loss . 12

2.3 Frontier Exploration . 14

3 Approach 15
3.1 Hardware & Software . 15
3.2 Radio Performance . 17
3.3 Map Generation . 18
3.4 Map Prediction . 19

3.4.1 U-Net Architecture . 20
3.4.2 Inpainting Loss . 21

3.5 Frontier Exploration . 22
3.6 Node Placement Approaches . 22

3.6.1 Greedy Connected Solution 23
3.6.2 Prediction Approach . 24
3.6.3 Maximum Coverage (Without Prediction) Approach . . . 25
3.6.4 Naive Approach . 26

4 Results 27
4.1 Training & Validation Data Losses 27
4.2 Simulation . 28

4.2.1 Maps . 29
4.2.2 Greedy Connected Solution (Gridworld) 31
4.2.3 Prediction Approach (Gridworld) 32
4.2.4 Maximum Coverage (Without Prediction) Approach (Grid-

world) . 34

ii

4.2.5 Naive Approach (Gridworld) 35
4.3 Prediction vs. No Prediction Simulations 35
4.4 Prediction vs. Naive Simulations 37
4.5 Cell Coverage Comparison . 41

5 Conclusions and Future Work 43
5.1 Conclusions . 43
5.2 Future Work . 43

Appendices 45

A Hardware 46

iii

List of Figures

1.1 Team Explorer’s Robot Hardware 3
1.2 Node Piling Example . 4
1.3 Rajant Data (Field Testing) . 5
1.4 Robot Locations (Field Testing) 6
1.5 Nope Dropping Block Diagram 7

2.1 Maximum Coverage Problem . 10
2.2 U-Net Output . 12
2.3 Map Prediction Output Grid . 14

3.1 Team Explorer’s Communications Hardware 16
3.2 Urban Circuit Map . 18
3.3 Map Generation Steps . 19
3.4 U-Net Architecture . 20
3.5 Map Datasets . 21

4.1 Training and Validation Losses 28
4.2 Tunnel Circuit Map . 30
4.3 Simulation Map Types . 31
4.4 Greedy Connected Simulation Node Placement 31
4.5 Prediction Approach Simulation (Initial) 32
4.6 Greedy Connected and Prediction Comparison 33
4.7 Maximum Coverage (Without Prediction) Simulations 34
4.8 Naive Approach Simulation . 35
4.9 Cells Covered Box-and-Whisker Plots 38
4.10 Cells Covered Bar Plot . 39
4.11 Cells Explored Bar Plot . 39
4.12 Node Distance Bar Plot . 40
4.13 Time Bar Plot . 41

iv

List of Tables

4.1 Prediction and No Prediction Data 37
4.2 Map Type and Network Confusion Matrix 42

A.1 Ubiquiti and Rajant Radio specifications. *Max Range is for
optimal environments. 46

v

Acknowledgements

I would like to thank all those who have made the past two years at Carnegie
Mellon University possible. I am thankful God has given me the opportunity to
study and work at this prestigious university with people at the top of their field.
Thank you to Matt Travers for giving me the opportunity to play an important
role with Team Explorer in the DARPA Subterranean Challenge. Thank you
Sebastian Scherer for giving me my first tasks in the Subterranean Challenge
that allowed me to spearhead our communications efforts. To Micah Corah,
thank you for continually challenging me in my thesis work, encouraging me to
dive deeper into my research.

In Team Explorer, I want to specifically thank Rohit Garg, Katarina Cujic,
Chao Cao, Ryan Darnley, Ian Higgins, Anthony Rowe, Bill Drozd, Graeme Best,
Bob Debortolli, Nora Kazour, Manish Saroya, John Keller, Matthew Dworman,
Vasu Agrawal, Mohammad Mousaie, and Vai Viswanathan, to name a few. You
have all helped me on my journey, put up with my antics, and made the past two
years more than simply another line on my resume. To all my housemates over
the past two years, Dhruv Saxena, Thomas Weng, Tim Mueller-Sim, Jon King,
Hunter Goforth, Scott Moore, Joseph Aroh, and Sam Nelson, thank you for
being friendly faces and people to share life with. Thank you to the Zappas, the
Schnecks, Rachel Weisz-Kaufman, Katie Kuhn, Keith Evans, Ashlyn Landrum,
Madison Moitoso, Adam Prather, Don Gilbreath, Howie Choset, Sara Misra,
Seth and Josh Austin, and the Sweeneys for being a constant encouragement
and support. You all reminded me why I am here.

Thank you Kevin Pluckter for introducing me to the Robotics Institute and
being a rewarding role model through this journey. Without you, the #kevmike-
travelblog would not have been possible. Finally, thank you to my family, Mike
Tatum, Tamara Tatum, Madelyn Tatum, Megan Tatum Miller, and Ben Miller.
You all saw me through the ups and downs of the past two years and never gave
up on me. Without you, this thesis would not be possible.

1

Chapter 1

Introduction

In field robotics applications, the goal is often to sense the environment, plan a
course of action, and then take act. These tasks are often treated disparately,
but ideally they would all occur together for a fully integrated system. This
work focuses on one specific aspect of the problem of creating a fully integrated
system: communications. In field robotics applications that are above-ground
and localized to a specific area, communications are often taken for granted be-
cause radio transceivers and stationary networks can be fixed in one location and
reliably reach all necessary agents, not to mention access to a global positioning
system (GPS) above-ground. In applications underground with a stationary op-
erator and basestation and agents that can traverse complex tunnel, urban, and
cave environments, communications are more challenging. This work addresses
this challenge with the added practical application of Carnegie Mellon Univer-
sity’s current involvement in the Defense Advanced Research Projects Agency
(DARPA) Subterranean Challenge [3], competing as Team Explorer. Specifi-
cally, we investigate how different types of prior observations can be leveraged
to solve sensor coverage in a priori unknown environments.

Motivation

In light of recent events, such as the Chilean mining accident in 2010 and the
Tham Luang cave rescue in 2018, field robotics research initiatives, such as
the DARPA Subterranean Challenge, are putting increased focus on mapping,
navigating, and searching underground environments autonomously. Specifi-
cally, the DARPA Subterranen Challenge calls competitors to deploy teams of
unmanned vehicles in tunnel, urban, and cave environments to identify and lo-
calize specified artifacts, such as backpacks, fire extinguishers, and survivors,
to name a few. The DARPA Subterranean Challenge consists of three prelim-
inary Circuit events (Tunnel, Urban, Cave) and a final Grand Challenge that
combines all three. At each Circuit, teams compete in one-hour long full-scale
deployments in two separate courses representative of the environment type be-
ing tested to map the environment and identify and localize as many artifacts as

2

possible. Sending out teams of mobile robots in underground environments is a
major engineering achievement, but operator interaction and, therefore, mission
success is nearly impossible without effective communications from the operator
to all deployed robots. Effective communication is dependent upon sensor cover-
age in these unknown environments, specifically using communications nodes, or
radio transceivers, to send and receive messages. Current approaches to solving
this problem have been seen in the DARPA Subterranean Challenge’s Tunnel
Circuit in Summer 2019 and Urban Circuit in Winter 2020. These approaches
include tethering the user’s ground robot to their basestation to keep constant
wired communications, using a separate robot to act as a data mule between
the deployed robots and the basestation, and dropping communications nodes
throughout the environment to create a mobile ad-hoc network (MANET) from
the basestation to all deployed robots.

Background

Team Explorer is using the MANET approach, as it, if implemented properly,
will allow for constant communication between the basestation and all deployed
robots within range of these dropped nodes. Communications through tether-
ing and data muling have their own challenges, but this work focuses on the
challenge of dynamically constructing a network, requiring a method for deter-
mining where to place a limited number of nodes. Team Explorer places nodes
in their testing environments by dropping them out of the node droppers on
the back of their unmanned ground vehicles (UGVs), pictured in Figure 1.1.
Currently Team Explorer’s two largest ground robots are limited to carrying
nine nodes each. Therefore, dropping nodes optimally is essential to success-
ful communications and ensuring the longevity of a successful test. Placing
nodes sub-optimally in tight corners and against walls leading to dead ends
can severely limit communications, limiting the operator’s interaction with the
robots throughout the test. Placing nodes optimally, in free spaces that lead
to unexplored areas, allows operator interaction throughout testing and ensures
all artifact detections return to the basestation, leading to better overall perfor-
mance.

(a) Team Explorer’s UGV and UAV (b) Node Dropper

Figure 1.1: Team Explorer’s robot hardware used in the Urban Circuit.

3

For all events thus far in the DARPA Subterranean Challenge, the SubT
Integration Exercise (STIX), the Tunnel Circuit, and the Urban Circuit, Team
Explorer’s node dropping approach has been as follows: a node is dropped
from a robot if the Received Signal Strength Indicator (RSSI) between the
robot and it’s nearest dropped node is below a threshold or if the robot is not
within line of sight of a dropped node and a stricter RSSI threshold is not
met. RSSI is the estimated power level measure between a radio frequency
(RF) client device and an access point. RSSI decreases as the distance between
radio transceivers increases, as shown by Figures 1.3 and 1.4, which display
the data from a field test in which no communications nodes were dropped
and the robot, connected to a node, drove from a separate node at the origin
until the robot was no longer in communications range with the node at the
origin. Team Explorer’s approach, that will henceforth be referred to as the
Naive Approach, was sub-optimal for three main reasons. First, the line of
sight restriction, measured using ray casting, caused nodes to pile in tight areas
with many corners, since any sudden turns would cause the robot to lose line of
sight to any previously dropped nodes. An example of this is shown in 1.2. In
addition, radio transceivers are not strictly limited to line of sight connectivity,
as shown by the RSSI improvement in Figure 1.3 between time steps 522 and
600, even though the robot is no longer in line of sight with the node at the
origin, as shown in comparing Figures 1.4a and 1.4b. In response to this, Team
Explorer added the condition that the robot could be out of line of sight within
a stricter target RSSI range. Due to the rapid variability of RSSI measurements,
as shown by the noise in Figure 1.3, this still proved sub-optimal, resulting in
piling of nodes in complex environments.

Figure 1.2: The free area to be covered in communications is white and occupied
area is black. If the agent is dropping nodes whenever it is out of line of with
any other dropped node, represented by the red dot, nodes will just as easily be
“piled” in dead ends (left) as they will be placed in the center (right). The left
is an example of sub-optimal node placement from piling.

4

Figure 1.3: Rajant radio transceiver (Section 3.1) data from field testing Team
Explorer’s robot (R1) in an urban environment. Nodes are dropped based on
RSSI values. As RSSI and throughput (Rates) drop, Cost, a weighted combi-
nation of RSSI, Rate, and other measurements, rises. Vertical red dashed lines
indicate the time steps at which the snapshots in Figures 1.4a and 1.4b are
taken, at time steps 522 and 600, respectively. The RSSI values at these time
steps are -81 dBm and -66 dBm, respectively.

5

(a) Time Step 522, -81 dBm (b) Time Step 600, -66 dBm

Figure 1.4: Robot locations (meters) during field testing to measure Rajant
radio transceiver metrics in an urban environment. The green square indicates
the robot’s origin at time step zero and the red square indicates its position at
the current time step. All blue dots make up the point cloud of the map created
by the robot.

The second reason the Naive Approach was sub-optimal was because nodes
were dropped with no regard to their placement in the global environment. In
testing, a node was dropped in a tight dead-end corner of the environment just
as easily as it was dropped in a free hallway leading to many areas of potential
future coverage. Finally, the Naive Approach was based solely on the map
known to the robot, only dropping nodes in traversed areas, not considering the
potential value of placing nodes in unexplored areas of the environment. These
causes of sub-optimal dropping and the desire to create a robust MANET in
any environment, known or unknown, inspired this research. This work will
present our novel method of communications coverage in unknown underground
environments for maximum connected coverage with a fixed number of sensor
nodes in polynomial time. Our goal is to optimize the current state of the art
in autonomous sensor coverage to allow Team Explorer to autonomously deploy
communications nodes in an unknown environment in the DARPA Subterranean
Challenge to maximize communications coverage.

Challenges & Contributions

Without a priori knowledge of the environments, dropping nodes poses two main
challenges that must be addressed. First, the environment’s map is unknown ex-
cept for areas explored by the agent. This leads to the challenge of predicting the
map accurately based on the agent’s observations. Our contribution is to apply
existing methods for map prediction, using Convolutional Neural Nets (CNNs),
to our unique application environments: tunnel, urban, and cave. Once the
unexplored environment is predicted, the agent must solve for placement loca-

6

tions of the available nodes that ensures there will be communications between
the agent’s start position and every node dropped, either directly or through a
chain of nodes. We address this challenge by solving for greedy connected cover-
age, explained in Section 2.1.3, and modifying the agent’s exploration strategy
to place nodes as necessary. Finally, our contributions are evaluated by ex-
perimental analysis of the combination of our node placement approaches on
different map types with different CNNs and experimental comparison of this
research’s newfound node placement approach with that currently used by Team
Explorer. The block diagram in Figure 1.5 demonstrates a high-level overview
of the node dropping process employed by this work.

Figure 1.5: An initial Observed Map of the agent’s environment is used to
calculate the agent’s next goal destination with Frontier Exploration. As the
agent moves with Frontier Exploration, the Observed Map is updated, which
is used for Map Prediction. If the agent’s RSSI to all dropped nodes is weak,
sensor coverage is solved for potential node placements using the predicted map.
A node is dropped at the calculated location nearest to the agent. If there is
not weak RSSI or the agent just dropped a node, the agent continues exploring
with Frontier Exploration.

7

Chapter 2

Related Work

This section will discuss previous methods of sensor coverage, map prediction,
and frontier exploration that have inspired the proposed node dropping method.

2.1 Sensor Coverage

Currently, the state of the art in sensor coverage is for known environments.
Approaches, such as polygon division and the Art Gallery Problem (AGP), are
geometry-based sensor coverage solutions. Kazazakis et al. proposed a polygon
division method of sensor coverage for limited-visibility guards, or sensors, in
2D areas, but the map is a required input to solving the placement[13]. This
approach can also result in sub-optimal placement where neighboring sensors
are closer than the given radius because global improvement is not considered
in the search for complete coverage. Sub-optimal placement results in dropping
more nodes than necessary, costly to an application with limited nodes. An-
other proposed solution is the AGP, a computational geometry problem which
takes a known environment and places the minimum number of guards G, or
communications nodes for our purposes, such that there is a line segment be-
tween every point p within the polygon P and every guard g ∈ G that does
not leave P . This approach guarantees the minimal number of nodes will be
dropped, but does not work for our application because it does not consider
guards with limited range. The Art Gallery Problem with Fading (AGPF) [6]
addresses this issue by treating each guard as a light source where the coverage
of the light fades over distance. While this would result in optimal line of sight
placement of nodes, placing nodes based solely on if placement is line of sight
to another dropped node has resulted in sub-optimal coverage and communi-
cations for Team Explorer in the DARPA Subterranean Challenge thus far, as
explained in Section 1. Therefore, developing a placement algorithm for cover-
age of an unknown area with limited-range sensors that need to all be connected
explicitly or implicitly through a chain without necessarily being line of sight is
essential to creating a reliable communications network online in an unknown

8

underground environment.

2.1.1 Set Cover Problem

Transitioning to a coverage approach based on sensors with fixed range brought
us to the set cover problem. The set cover problem is an NP-complete problem
where, given a universe U of elements e and a collection of sets S from U whose
union comprises the entire universe, one must find the smallest set cover S, the
smallest subset of S whose union comprises the universe [12]. According to [20],
the optimal set cover solution is an integer linear program defined as follows:

min
∑
S∈S

xS (minimize number of sets chosen)

s.t.
∑

S:e∈S
xS ≥ 1 ∀e ∈ U (cover every e in U)

xS ∈ {0, 1} ∀S ∈ S (every set xS is either in S or not)

Since this problem is NP-hard, it cannot be solved in polynomial time unless
variable conditions are relaxed to

xS ∈ [0, 1] ∀S ∈ S.

Team Explorer has a limited number of sensors to drop. Therefore, the set cover
problem was deemed too broad since, as maps grow, computation time and the
number of potential sensor placements will as well. In addition, if the world the
agent traverses is large enough, it will not have enough nodes to solve the set
cover problem. This leads us to a solution that will maximize coverage with a
fixed number of sets, the maximum coverage problem.

2.1.2 Maximum Coverage Problem

Using a finite number of sensors with fixed range to cover the maximum area
possible can be described as an instance of the maximum coverage problem [2].
Given a universe U and a set system S within the collection of sets S whose
union comprises U , maximum coverage, according to [2], is:

maxX⊂S,|X|≤k|Y | (maximize number of covered elements)

where Y =
⋃
x∈X

x (union of all sets chosen)

where k is the maximum number of chosen sets. For our purposes, a set is a
node and the entire traversable area covered by it is its range. An example
of a solution to the maximum coverage problem is given in Figure 2.1 [22].
This problem is NP-hard, thus making it infeasible for a real-world application,
leading us to the greedy maximum coverage algorithm.

9

Figure 2.1: This sample solution to the maximum coverage problem shows a
fixed number of 20 sets, represented by red dots with fixed black circle range,
maximally covering as many blue dots as possible.

2.1.3 Greedy Maximum Coverage Algorithm

The greedy maximum coverage algorithm chooses the set with the maximum
incremental reward. At each iteration, the set covering the most uncovered
elements is chosen until k sets are chosen. This polynomial time greedy solution
to the maximum coverage problem constructively approximates the optimal
maximum coverage [7]. For our purposes, polynomial time is ideal since the
algorithm is run at least as many times as there are nodes to drop. The greedy
maximum coverage algorithm constructively approximates optimal maximum
coverage within a minimum ratio of 1− 1

e ' 0.632 [7]. Feige et al. [7] prove this
as follows:

Proof. The optimal maximum coverage solution consists of set S′ ⊂ S. S′ covers
n′ elements. Since it is optimal, S′ can be covered by k sets. Therefore,

ni ≥
n′ −

∑i−1
j=1 nj

k

where ni is the number of elements covered by the ith set from the greedy
algorithm. Furthermore,

Σi
j=1nj ≥ n′ − n′

(
1− 1

k

)i

k∑
i=1

ni ≥ n′ − n′
(

1− 1

k

)k

≥ n′
(

1− 1

e

)

10

Our sensor coverage method is based on the greedy maximum coverage al-
gorithm, with modifications made for our node placement application to create
a connected network. We will refer to the modified algorithm we use as greedy
connected coverage, represented by Sensor Coverage in Figure 1.5.

2.2 Map Prediction

Map prediction has been implemented by various methods for numerous ap-
plications. Richter et al. used partially observable Markov decision processes
(POMDPs) to determine the speed at which a robot should approach a frontier
to safely navigate a map as fast as possible [16]. While using a POMDP could
be beneficial for local path planning decisions, it is currently not clear how they
could be used for a globally optimal node placement strategy of an entire map,
leading us to consider CNNs. CNNs are a class of deep neural networks which
assigns weights and biases that can be learned to aspects of and objects in an
input image for differentiation, leading to classification. Caley et al. used a
CNN to predict exit locations in buildings based on 2D images of the building
floor plans [1]. The agent is given the floor plan of the environment, unlike in
our applications. Even still, this work demonstrates the value of using CNNs
trained on a large dataset of image input for map prediction applications. This
led us to use the U-Net CNN[17] and image inpainting [14], based on the work
of Saroya et al. in [18], represented by Map Prediction in Figure 1.5.

2.2.1 U-Net

U-Net was chosen because it can accept an input image of any size, valuable
since the map sizes in the DARPA Subterranean Challenge have varied from
90 meters (m) × 90 m to 400 m × 400 m thus far. This is because U-Net is
a fully convolutional network made up of only convolutional layers, no dense
layers, allowing us to work with map inputs of different sizes. U-Net is used for
image classification and localization tasks, where the contents of an image and
the locations of those contents are identified, respectively. In addition, U-Net is
known for its symmetrical downsampling (encoding) and upsampling (decoding)
methods. In a regular convolutional network with only pooling and dense layers,
we can classify an image but there is no upsampling of the image, preventing us
from localizing the information of interest. U-Net performs upsampling using
transposed convolution, also known as deconvolution. Localization occurs when
high resolution feature maps from the encoder are concatenated to the trans-
posed convolutional layers in the decoder at the same level. This combination
of information helps create a more precise output in the following convolution
layer. Furthermore, the U-Net network is without any fully connected layers
and the segmentation map only includes the pixels from the valid part of each
convolution, allowing segmentation of larger images using the same network.
The border region of the image consists of the pixels outside of the valid part
of each convolution, also known as the receptive field or context. The overlap-

11

tile strategy extrapolates these border pixels by mirroring the input image[17].
Figure 2.2 displays the output of a trained U-Net network applied to a partial
map.

Figure 2.2: U-Net map prediction example. The left image is the ground truth
map of a cave environment, where white cells are free and black cells are occu-
pied. The middle image is 59.84% of the ground truth map, representing the
amount the map has been explored and observed. The right map is the U-Net
output of the full map after the 59.84% Explored Map has passed through the
network. Lighter cells represent a higher probability of being a free cell.

2.2.2 Inpainting Loss

Once an image is passes through the U-Net CNN, image inpainting is used to
calculate the losses used for training. Image inpainting, often used to fill holes
in images, is used in this research for pixel-based reconstruction and compo-
sition of maps to ensure predicted cells, whether free or occupied, transition
smoothly into their surrounding cells [14]. Image inpainting’s losses are the
per-pixel losses, Lhole and Lvalid, spatial feature losses, Lperceptual and Lstyle,
and the total variation loss Ltv. Lhole and Lvalid are used to better predict the
ground truth image Igt from the input image with a hole Iin. Lhole is the L1
loss between (1 −M) × Iout and (1 −M) × Igt, where M is the initial binary
mask and Iout is the predicted map. M is equivalent to Iin with added ones, or
occupied cells, representing the walls that surround the known free cells added
to the binary array. Knowledge of where untraversable walls are located al-
lows for better prediction of where potential free areas exist and where they do
not, resulting in better overall map predictions. Lhole improves the per-pixel
accuracy of predictions for unexplored regions. Lvalid is the L1 loss between
M× Iout and M× Igt. Lvalid improves the per-pixel accuracy of predictions for
explored regions and heavily increases when known pixels are changed, encour-
aging compliance to the ground truth. To ensure not only per-pixel accuracy
is maintained, but also spatial features, inpainting loss includes Lperceptual and
Lstyle. These losses use the ImageNet-pretrained VGG-16 network for feature
extraction to project the images into a higher level feature space [19]. Lperceptual

12

is defined as

Lperceptual =

P−1∑
p=0

∥∥∥ΨIout
p −Ψ

Igt
p

∥∥∥
1

N
Ψ

Igt
p

+

P−1∑
p=0

∥∥∥Ψ
Icomp
p −Ψ

Igt
p

∥∥∥
1

NΨIgt
p

where ΨI∗
p is the activation map from the pth layer of P total layers from

the VGG-16 network for input I∗. NΨI
pgt

is the number of elements in Ψ
Igt
p .

In addition, Icomp is Iout with known, or explored, pixels set to ground truth
[19]. Lperceptual is shown to decrease the recreation of grid-shaped artifacts [14],
which is why we keep its weight low. When applying this method to real-world
maps, as opposed to gridworld maps, it may be valuable to increase the weight
of Lperceptual to improve the smoothness of the predictions. To compute Lstyle,
we apply an autocorrelation, or Gram matrix, to each feature, and then compute
the L1 loss. In

Lstyleout
=

P−1∑
p=0

1

CpCp

∥∥∥Kp

((
ΨIout

p

)> (
ΨIout

p

)
−
(
ΨIgt

p

)> (
ΨIgt

p

))∥∥∥
1

Lstylecomp
=

P−1∑
p=0

1

CpCp

∥∥∥Kp

((
ΨIcomp

p

)> (
ΨIcomp

p

)
−
(
ΨIgt

p

)> (
ΨIgt

p

))∥∥∥
1

Cp × Cp is the gram matrix, where Cp is the number of channels in the pth
selected layer and the normalization factor is

Kp =
1

CpHpWp

where Hp and Wp are the height and width of the pth selected layer, respectively.
Finally, total variation loss Ltv encourages smoothness between neighboring
pixels by taking the L1 loss between Icomp pixels and their neighbors in both
the x and y directions [14].

Ltv =
∑

(i,j)∈R,(i,j+1)∈R

∥∥Ii,j+1
comp − Ii,jcomp

∥∥
1

NIcomp

+
∑

(i,j)∈R,(i+1,j)∈R

∥∥Ii+1,j
comp − Ii,jcomp

∥∥
1

NIcomp

NIcomp
is the number of elements in Icomp. The total loss Ltotal, used to optimize

training, is a weighted combination of all these losses[14].

13

Figure 2.3: The map prediction process from ground truth image Igt (top left)
to input image with hole Iin (top middle) to binary mask M (top right). The
U-Net predicted map (bottom left) leads to the newly predicted map (bottom
middle) which, added to Iin, results in the output predicted map Iout (bottom
right).

2.3 Frontier Exploration

Similar to how Team Explorer’s robots explore an environment, this work will
use frontier exploration. Frontier exploration, popularized by the Yamauchi
method [21], is a complete exploration approach, meaning the entire environ-
ment will be explored. The Yamauchi method continuously moves the agent
to the nearest frontier. Frontiers are regions marking the transition between
known free areas and unexplored areas that could be either free or occupied,
meaning the area is traversable or untraversable, respectively. Frontier-based
exploration, through the Yamauchi method, chooses newly generated frontiers
for the agent to set as its destination, allowing the agent to gain more knowledge
of its environment, until it has full knowledge of the environment. When there
are no more frontiers, the agent has finished exploring. The Yamauchi method
is continuing to be used alongside A* path planning to fully explore unknown
environments, with additional pruning of frontier cells to improve computation
[15]. Our frontier exploration method is represented by Frontier Exploration in
Figure 1.5.

14

Chapter 3

Approach

This section will describe the radio transceiver hardware and software used
by Team Explorer, giving context to the communications strategy pursued by
Team Explorer and the need for improved communications coverage. The radio
performance is outlined to create a realistic model of the type of nodes and
environments that will be used to test our node dropping approach. The map
generation method is explained to demonstrate how highly variable real-world
maps can be created to help train networks to learn map structures, leading to
the map prediction method used for this research. This chapter also explains
how we incorporate and deviate from Yamauchi Frontier Exploration in our
approach, leading to all the node placement approaches implemented to be
tested on the numerous environments generated.

3.1 Hardware & Software

In order to maintain communications between the robots and basestation at
all times, Team Explorer has resolved to dynamically deploy a MANET as
the ground robots traverse the environments. To accomplish this, the choice
of hardware for radio transceivers is of the utmost importance, as well as the
network meshing software that accompanies the radios. For the STIX Event
and Tunnel Circuit, Team Explorer used 30 Ubiquiti UniFi Mesh Access Points
(UAP-AC-M) [11], pictured in Figure 3.1a, with the Better Approach To Mo-
bile Adhoc Networking (B.A.T.M.A.N.) routing protocol [8]. The UAP-AC-M
is a dual-band 2.4 GHz and 5GHz, 2x2 multiple-input multiple-output (MIMO)
transceiver. Further specifications on the UAP-AC-M hardware can be found
in Table A.1. B.A.T.M.A.N., developed specifically for MANETs, decentralizes
what is considered the network’s best route so that no single node passes all
the data and network changes do not need to be communicated to each node.
Each node only needs to be aware of where it receives data from and to where
it is sending the data. This process gives the packets individual routes devel-
oped dynamically. B.A.T.M.A.N. is developed on a data link layer, or Layer

15

2, network, meaning data is transferred between neighboring wide area net-
work (WAN) nodes or nodes sharing a local area network (LAN). While routing
through B.A.T.M.A.N. met our initial requirements of dynamically building a
network, this protocol and the UAP-AC-M hardware caused several issues that
required us to move to new hardware following the Tunnel Circuit. Firstly, the
B.A.T.M.A.N. meshing protocol often caused remeshing, or network reconfig-
uration, of nodes at inopportune times that led to the communications being
down anywhere from 10 seconds to three minutes. This problem was exacer-
bated by having each ground robot carry nine nodes containing UAP-AC-M
radios to be dropped at user-defined points, increasing the number of possible
meshing configurations. We attempted to alleviate this issue by only power-
ing nodes to be dropped one node in the queue prior to when they were to be
dropped, allowing time for the radios and their software to boot up, a process
that took one to two minutes, while decreasing the number of nodes actively
meshing at one time. We knew this solution was not sustainable in the long
term due to the long boot up time of the nodes combined with the uncertainty of
node placement needs for the testing environments and the speed at which the
ground robots would be traveling. This led us to our current radio hardware
and software, the Rajant Breadcrumb DX2 alongside the InstaMesh routing
protocol [10].

(a) Ubiquiti UAP-AC-M

(b) Rajant DX2

Figure 3.1: Team Explorer communications hardware used in the STIX Event
and Tunnel Circuit (a) and the Urban Circuit (b)

Team Explorer is using 30 Rajant Breadcrumb DX2s, specifically the DX2-
50 model, a 5.0 GHz, 2x2 MIMO, 300 Mbps transceiver, shown in Figure 3.1b.
The DX2 was chosen over the UAP-AC-M because of its higher transmit power,
smaller form factor, lighter weight, significant for aerial vehicles, wide power
supply range, and increased communications range, all shown in Table A.1.
The wide power supply range allowed us to power it directly from a battery
as opposed to through a custom-made board with a voltage regulator, like we
had done for the UAP-AC-M radios. All Rajant radios use their proprietary
InstaMesh meshing protocol. Like B.A.T.M.A.N., InstaMesh directs mesh re-
configuration as nodes move in Layer 2, but InstaMesh does not demonstrate

16

the constant remeshing behavior seen in B.A.T.M.A.N. Using DX2s with In-
stamesh allowed us to keep all nodes powered in the network at all times, those
on the robots and basestation as well as those being dropped throughout the
environment. The meshing configuration according to InstaMesh would rarely
change unless there was a significant cost change between nodes, based on Ra-
jant’s proprietary cost metric. This cost metric is based on data rate in Mbps,
TX power in dB, RSSI in dBm, and signal-to-noise ratio (SNR) in dB. The rest
of this work will focus on performance using the Rajant Breadcrumb DX2s.

3.2 Radio Performance

In testing and competition runs for the DARPA Subterranean Challenge, we
tended to be conservative when dropping communications nodes in terms of
distance between each node to preserve strong connections. In addition, we
aimed to keep all nodes dropped within line of sight of another dropped node
since, in underground environments with dense walls, communications often
will not travel as easily through these walls as in an above-ground office or lab
environments. Figure 3.2 shows a point cloud created by one of Team Explorer’s
ground robots in the Urban Circuit in Winter 2020. Each cell in the grid is 10 m
× 10 m. The cyan dot markers on the map represent where nodes were placed
during Team Explorer’s hour-long run on this course. There is also a node,
not pictured, at the basestation located at the start gate in the bottom right
corner of the point cloud map. As can be seen, the farthest a single node is
from any other node is approximately five cells, demonstrated by the leftmost
node on the map. This means that node is roughly 50 meters from its nearest
node. While this node is not line of sight to any other node, there are no thick
walls completely blocking its signal from reaching the node five cells to its right.
Based on this, and extensive testing done with the Rajant Breadcrumb DX2
Radios in underground tunnels and urban environments, as shown in Section
1, our metric for placing nodes moving forward will be that they have a range
of 30 meters in underground environments. Following this metric, two nodes
can be 60 meters apart and still communicate if not completely blocked by
obstructions since their signal radii will meet. This information will be valuable
for the simulation shown in Section 4.2.

17

Figure 3.2: Point cloud map of the SATSOP nuclear reactor in Elma, Wash-
ington taken at the DARPA Subterranean Challenge Urban Circuit in Winter
2020. Cyan dots indicate node placements.

3.3 Map Generation

Four types of gridworld maps are used in this research: cave, urban, tunnel,
and hybrid, a combination of the three. The maps used for map prediction and
sensor coverage were generated based on John Conway’s Game of Life [9], a
famous cellular automaton which applies the following rules to a grid of cells
that are either alive or dead:

1. A living cell with less than two living neighbors dies.

2. A living cell with two or three living neighbors lives.

3. A living cell with more than three living neighbors dies.

4. A dead cell with exactly three living neighbors becomes alive.

For map generation, we simplify these criteria to be:

1. A living cell with less than death limit living neighbors dies.

2. A living cell with greater than or equal to death limit living neighbors
lives.

3. A dead cell with greater than birth limit living neighbors becomes alive.

4. A dead cell with less than or equal to birth limit living neighbors dies.

18

The death limit and birth limit parameters are changed based on the type of map
generated. The maps used in this research are two-dimensional boolean arrays
where false (alive) is represented by a black cell, meaning the cell is occupied
and cannot be traversed and true is represented by a white cell, meaning the cell
is free (dead) and can be traversed. When initializing the map, we randomly set
each cell to be dead or alive with the percent chance of being alive changed based
on the different environment maps discussed. We calculate the new cell value
for each cell based on the values of its eight neighbors and our simplified rules of
The Game of Life and put the resultant value into its corresponding position in
a new grid, so that the new values do not affect the old. We repeat this process
on each updated grid for the user defined number of steps, in our case three.
Figure 3.3 demonstrates the map changing over these steps to become a map
with the same properties as one of the cave maps we used for testing. Examples
of the different maps created using this method are in Section 4.2.1.

Figure 3.3: From left to right, we see the map improved with iterations based
upon The Game of Life to produce a cave-like map. The last map on the right
is the final map used for testing with all islands of free cells not neighboring the
main free cave cells removed to allow traversal among all free cells.

3.4 Map Prediction

In simulation, as the agent is traversing the created gridworld map, where zeros
represent occupied cells (walls) and ones represent free cells (traversable space),
the agent is only aware of cells within a range of one cell in all directions,
including diagonal, from the cell it is currently at and the cells it has traversed.
To maximize communications coverage while placing nodes in the map in real
time, the agent must predict the rest of the map based on the free and occupied
cells it already knows. We assume the agent is aware of the total size of the
gridworld, a safe assumption given Team Explorer is often aware of the total size
of their deployment environment when testing in real-world environments. Map
prediction is accomplished using a combination of the U-Net CNN architecture
[17] and image inpainting [14]. Since the networks will not predict the unknown
map with 100% accuracy, as shown by the losses in Section 4.1, we give a
higher probability of an unknown cell being free in the softmax function used for
individual cell state prediction to encourage nodes to provide communications

19

to new frontiers.

3.4.1 U-Net Architecture

The U-Net Architecture [17] used for map prediction in this research is shown
in Figure 3.4, based on the work in [18]. At each level of the encoder, two 3×3
convolutions are applied, each followed by a rectified linear unit (ReLU). The
Rectified Linear Unit (ReLU) activation function, defined as f(x) = max(0, x),
is computationally faster and has fewer vanishing gradients than the sigmoid and
hyperbolic tangent activation functions, making it ideal for multilayer CNNs.
At each downsampling iteration, we perform 2×2 max pooling with stride two,
halving the image size and doubling the number of feature channels, with the
exception of the first iteration, where we jump from the 3 channel RGB image we
feed the network to 64 feature channels. The encoding step allows the network
to learn what is in the image, but does not perform localization. The second
half of the network, the decoder, applies 2×2 transposed convolutions to double
the image size and halve the number of feature channels. In addition, on each
level the cropped feature map from the parallel encoding level is concatenated
with the decoding tensor to localize and two 3×3 convolutions, each followed
by a ReLU, are performed.

Figure 3.4: The U-Net Architecture for a 32x32 image, where the encoder (left)
captures spatial information and the decoder (right) localises features, courtesy
of [18].

Based on the work in [18], 80% of the map datasets input to the CNN are
used for training, 10% are used for validation, and the other 10% are saved
for testing. Each index of the dataset consists of three arrays that represent
different input images: Ground Truth, Image, and Mask. Ground Truth is an

20

x× y size array where zeros represent occupied cells (walls) and ones represent
free cells (traversable space). Image is a percentage cropped version of the free
cells from the Ground Truth array, meaning a cropped percentage of the free
cells in the Ground Truth array are kept constant and the rest of the cells in
the array are set to zero, representing unexplored, or unknown, area. Our maps
were randomly cropped percentages between 10% and 90%. Like in Section
2.2.2, Mask is equivalent to Image, with added ones representing the walls that
surround the known free cells. Figure 3.5 shows a visual representation of the
three arrays.

Figure 3.5: (Left to Right) Ground Truth, Image, and Mask visual representa-
tions of the input arrays to the network. For each map type, 40,000 of these
were generated for training, validation, and testing. Ground Truth is the full
gridworld array. Image is a percentage of neighboring free cells from Ground
Truth with all other cells set to occupied. Mask is Image with occupied cells
surrounding the Image free cells where occupied cells are located. This allows
better prediction of frontiers, the border between known free cells and unknown
cells.

3.4.2 Inpainting Loss

Working with 32×32 grid images, all losses, explained in Section 2.2.2, are
calculated according to that size. Therefore, to calculate Lperceptual, NΨI

pgt
, the

number of elements in Ψ
Igt
p , is 1,024. To calculate Ltv, NIcomp

, the number of
elements in Icomp, is also 1,024. Finally, Hp and Wp, the height and width of
the environment used to calculate the normalization factor Kp, are both 32. For
our purposes, the total loss Ltotal, is defined as

Ltotal = 120Lvalid +20Lhole +0.05Lperceptual +120
(
Lstyleout + Lstylecomp

)
+2Ltv,

where the constant coefficients for all losses were calculated by a hyperparameter
search on 100 validation images in [14]. The weights for Lvalid, Lhole, and Ltv

were increased from those found in [14] to prevent overfitting the validation data
to the training data for our map datasets.

21

3.5 Frontier Exploration

Team Explorer’s ground and aerial vehicles seek to autonomously traverse the
entire environment in the DARPA Subterranean Challenge. These agents have
incomplete knowledge of their environments. Therefore, they must observe and
learn the environment through exploration. For our purposes, the agent explores
using the Yamauchi method [21], explained in Section 2.3. In our Yamauchi im-
plementation, outlined in Algorithm 1, the A* path planning algorithm is used
to find and guide the robot to its nearest frontier. All gridworld cells are checked
for being frontiers in line 6 with isFrontier(). This method confirms that a cell
is a potential frontier if it has not been visited by the agent, is a free cell, and
neighbors a cell that has been visited. Dist() in line 10 calculates the length of
an A* path between the agent location a and each potential frontier in F . Once
a destination is reached, it is added to a list of visited frontiers. Our approach,
specified in Section 3.6.2, deviates from the standard Yamauchi method when
the agent needs to drop a node to maintain communications. When this occurs,
the chosen node placement position is selected as the next Yamauchi frontier.
Once this destination is reached and the node is dropped, Yamauchi Frontier
Exploration proceeds as normal. Yamauchi Frontier Exploration is complete
when the agent has visited all free cells of the ground truth map. For our pur-
poses, if this occurs and not all the allotted nodes are dropped, the agent will
calculate a greedy connected node placement and add it as a new frontier, even
if the location has already been visited. This placement will increase communi-
cations coverage and allow for comparison of our approaches, as seen in Sections
4.3 and 4.4, since the number of nodes dropped in all tests will be the same.

Algorithm 1: Yamauchi Frontier Exploration

Input: potential node location N , need to drop d, agent location a
(1) if d then
(2) new frontier f = N ;
(3) else
(4) potential frontiers F = [];
(5) for each cell C in gridworld do
(6) if isFrontier(C) then
(7) add C to F ;
(8) end

(9) end
(10) f = min(Dist(a, F));

(11) end
(12) return f

3.6 Node Placement Approaches

The node placement approaches are the four methods for placing nodes in all
types of environments that we use for evaluation, namely the Prediction Ap-

22

proach, the pessimistic and optimistic Maximum Coverage (Without Prediction)
Approaches, and the Naive Approach. The Greedy Connected Solution is the
ideal layout of nodes if the agent were not constantly changing frontiers and mov-
ing due to Yamauchi Frontier Exploration. The approaches all use Yamauchi
Frontier Exploration to best demonstrate Team Explorer’s robot moving in a
real environment. These approaches will be simulated and compared to each
other and the Greedy Connected Solution in Section 4.

3.6.1 Greedy Connected Solution

The Greedy Connected Solution implements the greedy algorithm for maximum
coverage, explained in Section 2.1.3, with adjustments for our research applica-
tions. This new version of greedy maximum coverage is called greedy connected
coverage. Since we are placing communications nodes to make a connected
MANET, each dropped node must be within communications range of another
dropped node, creating a fully connected network, verified by Connected() in
line 6 of Algorithm 2. All dropped node locations are stored in D, including
the location of the basestation node, given by the initial agent location a. In
the Greedy Connected Solution, the agent has full knowledge of the entire uni-
verse. The greedy connected coverage problem runs N iterations, where N is
the number of nodes to be dropped. Each iteration, the node placement with
the maximum coverage of an area without communications coverage is chosen
to drop a node, if the condition is obeyed that this new node’s communications
range connects with that of an already placed node. The Greedy Connected
Solution is reached when the final node is dropped.

23

Algorithm 2: Greedy Connected Algorithm

Input: ground truth map M , agent location a, number of nodes to
drop N , node range R

(1) number of nodes dropped n = 0;
(2) dropped node locations D = a;
(3) while n < N do
(4) maximum area covered A = 0;
(5) for each free location x in M do
(6) if Connected(x,R,D) then
(7) coverage C =

size S of newly covered area by node placed at x;
(8) if C > A then
(9) A = C;

(10) L = x;

(11) end

(12) end

(13) end
(14) Add L to D;
(15) n += 1;

(16) end
(17) return D

3.6.2 Prediction Approach

The Prediction Approach is the foundation on which this research is based. It
incorporates all the methods discussed in Sections 3.4 and 3.5, namely map
prediction, sensor coverage, and frontier exploration. Specifically, as the agent
explores the unknown environment using Yamauchi Frontier Exploration, it uses
what it knows of the environment from exploration to predict the rest, demon-
strated by line 5 of Algorithm 3. The observed map M is input to Yamauchi(),
producing an updated M and agent location a from exploration. The more
the agent explores, the more accurate the predicted maps will be to the ground
truth maps. Implementing MapPrediction() on M , the agent creates a predicted
map I on which to calculate sensor coverage. Every time the agent reaches a
location that is on the edge of being out of communications of the established
communications network, as shown by line 6, the agent uses GreedyConnect-
edCoverage() to solve for sensor coverage for each of its remaining available
nodes. In addition, Dist() calculates the A* path length from a to each indi-
vidual dropped node location in D. When the closest potential node location
is found, the agent drops a node in this location with Drop(). The agent solves
for potential node placements for all of its remaining nodes to give it options
in the case that its nearest potential node placement is an obstacle due to an
incorrect map prediction. In this work, the agent will not predict a potential
node placement in an occupied cell, but moving forward this should be a con-

24

sideration. If this occurred, the agent would drop the node at the next nearest
potential node placement. If there were no valid potential node placements,
the agent would recalculate greedy connected coverage with its new knowledge
of free and occupied cells. This ensures the agent can get a node placement
solution as close to the Greedy Connected Solution as possible with minimal
deviations from Yamauchi Frontier Exploration.

Algorithm 3: Prediction Algorithm

Input: observed map M , agent location a, number of nodes to drop N ,
node range R

(1) number of nodes dropped n = 0;
(2) dropped node locations D = a;
(3) while n < N do
(4) M,a = Yamauchi(M);
(5) predicted map I = MapPrediction(M);
(6) if min(Dist(a,D)) ≥ R then
(7) potential locations to drop nodes L =

GreedyConnectedCoverage(I, a,N − n,R);
(8) closest location to drop a node L = min(Dist(a,L));
(9) Drop(L);

(10) Add L to D;
(11) n += 1;

(12) end

(13) end
(14) return D

3.6.3 Maximum Coverage (Without Prediction) Approach

To prove or disprove the value of using mpa prediction to determine poten-
tial node placements using greedy connected coverage, we are also testing ap-
proaches using the same Yamauchi Frontier Exploration and greedy connected
coverage as the Prediction Approach, but without the prediction step. In the
Prediction Approach, the universe in which to solve greedy connected cover-
age is all free cells the agent is aware of or has predicted. Without prediction
there are two approaches, a pessimistic and an optimistic approach, known as
No Prediction Pessimistic and No Prediction Optimistic, respectively. In No
Prediction Pessimistic, the agent assumes the universe in which to solve greedy
connected coverage is the free cells it has observed. We remove Line 6 from
Algorithm 3 and set I to the known map M . Therefore, the universe the agent
uses to calculate greedy connected coverage is only the currently observed areas,
limiting its ability to provide communication to new frontiers. No Prediction
Optimistic assumes all areas the agent has not visited are free, allowing it to
calculate node placements anywhere in a universe of all free cells, except for the
cells the agent knows are walls through observation. We remove Line 6 from
Algorithm 3 and set I to a map of size M map’s size, with only known obstacle
points set to occupied. No Prediction Optimistic behaves as if the probabil-

25

ity associated with an area being free in the prediction step for the Prediction
Approach is one.

3.6.4 Naive Approach

The Naive Approach directly implements Team Explorer’s sensor placement
model from the Tunnel and Urban Circuits, explained in Algorithm 4. Specifi-
cally, nodes are placed either once the robot reaches the edge of communications
range R, calculated using Euclidean distance (Dist()), with any dropped nodes
D or if the agent is no longer in line of sight with any dropped nodes and a
threshold half of R from the nearest node is exceeded. This latter condition
is abbreviated as LineOfSightInRange() in Algorithm 4 and has been used in
testing due to Team Explorer’s noisy communications model. These conditions
are maintained in this work because it is representative of Team Explorer’s real-
world testing. We predict this approach is sub-optimal because it lacks foresight
into node locations that will maximize coverage in the given environment. Using
this approach, a node is as easily put in a secluded corner as it is put in a free
hallway leading to many new communications frontiers.

Algorithm 4: Naive Algorithm

Input: observed map M , agent location a, number of nodes to drop N ,
node range R

(1) number of nodes dropped n = 0;
(2) dropped node locations D = a;
(3) while n < N do
(4) M,a = Yamauchi(M);
(5) if min(Dist(a,D)) ≥ R or not LineOfSightInRange(a,D) then
(6) Drop(a);
(7) Add a to D;
(8) n += 1;

(9) end

(10) end
(11) return D

26

Chapter 4

Results

To fully understand the benefits and trade-offs of our approach, we developed
simulation environments in which to test and evaluate all approaches. This
section will present the simulation used to compare all approaches taken for node
placement, namely Greedy Connected, Prediction, No Prediction Pessimistic,
No Prediction Optimistic, and Naive. First, we will give an overview of the
results of the map prediction training of the CNN. Second, we will cover the
simulation and the different map types used for all approaches. Then, the
Prediction Approach will be compared to both the No Prediction Pessimistic
and the No Prediction Optimistic Approaches. This comparison is made to
justify using map prediction moving forward in this research. Finally, we will
evaluate the results from the Prediction Approach to those from the Naive
Approach and Greedy Connected Solution.

4.1 Training & Validation Data Losses

Figure 4.1 shows the losses over 500,000 training iterations for the dataset of
hybrid maps, that will be discussed in Section 4.2.1. These losses are described
in detail in Section 2.2.2. All the losses, with the exception of Lhole, plateau
around iteration 100,000, showing successful training. Lhole appears to slightly
overfit due to the validation data loss rising above the training data loss. After
numerous trials with increased Lhole weights, the results shown with a weight
of 20 were found to be the best possible. Since Lhole is the loss concerning
per-pixel accuracy of predictions for unexplored regions, and it is being trained
on highly variable environments, it is expected to be imperfect.

27

(a) Lhole (b) Lvalid

(c) Lprc (d) Lstyle

(e) Ltv (f) Ltotal

Figure 4.1: Losses for training data (orange) and validation data (blue) over
500,000 iterations.

4.2 Simulation

The simulation, inspired by [5], is run in Python using the Tkinter Python bind-
ing to the Tk GUI toolkit on an Intel Core i7-8750H CPU running the Ubuntu
18.04 operating system. A map is a 32× 32 gridworld, where four different ap-
proaches to sensor placement are simulated to demonstrate the benefit of using
map prediction and maximum coverage for sensor placement. The Prediction,
Naive, No Prediction Pessimistic, and No Prediction Optimistic Approaches are
compared to each other and the Greedy Connected Solution for dropping a set
number of nodes in an unknown environment on three different types of maps
representing cave, urban, and tunnel environments, as well as a combination of
the three. For all simulation tests, the agent’s initial location is randomly chosen
from the list of free cells. These initial locations are kept the same when com-

28

paring corresponding maps with different approaches. A node is dropped at the
initial location, represented by an orange cell, as shown in Figure 4.4. The node
represents the basestation node and its communications coverage contributes to
the total number of free cells covered, but does not count as one of the available
nodes dropped. For all simulations, regardless of node placement method, the
agent has five available nodes to drop. In a completely free map without any
occupied cells, the maximum number of free cells the node placements could
cover is 289 of the 1,024 free cells, including those covered by the initial node
dropped at the basesation. Since our map types vary from mostly free to mostly
occupied cells, we chose to test with dropping five nodes to display the agent’s
ability to choose placement positions wisely in both confined and free spaces
with a number of nodes that will rarely fill every free cell in the gridworld. In
all simulations implementing the greedy connected coverage problem, namely
simulations implementing the Greedy Connected Solution and the Prediction,
No Prediction Pessimistic, and No Prediction Optimistic Approaches, a set is
a box grid subset of the gridworld of node range radius around a potential cell
location of a node. Our node range is three cells, representing a 30 meter cover-
age radius in the real world as discussed in Section 3.2. Unless the range around
the node location exceeds the width or height of the gridworld or it intersects
with an occupied cell, each node radius set is a 7 × 7 box grid. The agent has
an observation range of one cell block in all directions, representing a 10 me-
ter observation radius. The agent has the same communications range as the
nodes, in our case three cells or 30 meters. The maximum distance the robot
can be from its nearest dropped node while remaining in communications range
is six cells, since a node dropped at this location will allow both communications
ranges to meet. In the results shown for the Prediction Approach for Sections
4.2.3, 4.3, and 4.4, all map predictions are made from networks trained on the
same type of map the specific simulation is using. The rest of this section will
explain the simulation environment of each approach for better understanding
of the approaches and context leading into the results.

4.2.1 Maps

As shown by the examples in Figure 4.3, four types of 32 × 32 grid maps were
used for simulation testing to mimic the environments seen in the DARPA Sub-
terranean Challenge. The white cells represent free, traversable areas, while the
blue and black cells are occupied and untraversable areas. The blue cells repre-
sent the beginning of walls, marking the transition from free cells to occupied
cells. Like the point cloud shown in Figure 3.2, each cell in these gridworlds rep-
resents 10 m × 10 m in the real world. Therefore, the entire gridworld is 320m
× 320m, which is within range of the sizes of all the map types we have seen
thus far in the DARPA Subterranean Challenge, as shown by the approximately
90m × 90m Urban Circuit map in Figure 3.2 and the approximately 350m ×
400m Tunnel Circuit map in Figure 4.2. Since we will be testing all environment
types in the gridworld, we want to use a grid size and scale representative of
all environments. To represent the environment in the Cave Circuit, maps like

29

Figure 4.3a were created. The multiple rooms of various sizes, tight freeings,
and obstacles within large rooms represent natural cave structures and what is
expected at the Cave Circuit. Figure 4.3b represents urban environments seen
in the Urban Circuit. These environments are much more free with obstacles
dispersed throughout representing debris, pillars, or large obstructions. Finally,
Figure 4.3c represents tunnel environments seen in the Tunnel Circuit. The nar-
row passages and many branches are representative of the mine environments we
competed in for the Tunnel Circuit. Finally, the DARPA Subterranean Grand
Challenge will incorporate all three of these environments into one hybrid en-
vironment. Figure 4.3d is a combination of the three environments, where the
first third of the total columns represents a cave environment, the next third
an urban environment, and the final third a tunnel environment. For each type
of map shown, 32,000 different variations were produced for training and 4,000
were produced for validation.

Figure 4.2: Map of Bruceton Mine in Bruceton, Pennsylvania from the DARPA
Subterranean Challenge Tunnel Circuit in Summer 2019.

30

(a) Cave Environment (b) Urban Environment

(c) Tunnel Environment (d) Hybrid Environment

Figure 4.3: The four types of maps used for simulation testing.

4.2.2 Greedy Connected Solution (Gridworld)

Implementing the coverage method explained in Section 3.6.1, the Greedy Con-
nected Solution is used as a metric of comparison to the simulated node drop-
ping approaches. Figure 4.4 demonstrates the output of dropping five nodes in
a simulated cave environment using the Greedy Connected Solution. A node
placement is identified by a maroon cell and the yellow cells represent areas
under communications coverage.

Figure 4.4: Node placement using the Greedy Connected Solution on a cave
map.

31

4.2.3 Prediction Approach (Gridworld)

In simulation, the Prediction Approach executes the approach explained in Sec-
tion 3.6.2. This approach begins with the agent, represented by the green cell
in Figure 4.5b, having limited knowledge of the rest of the gridworld. A ground
truth gridworld of a cave map is shown in Figure 4.5a. In Figure 4.5b, the white
cells surrounding the agent represent the agent’s known free area of the map.
Both the light and dark purple cells represent the agent’s prediction of the rest
of the free map based on its known map. The dark purple cells are equivalent
to the light purple cells according to the agent, but are dark purple to allow
the viewer to be aware of the agent’s incorrect prediction because these cells
are truly occupied. The prediction in Figure 4.5b is initially mostly incorrect
because the known map is only the 3×3 grid at the initial agent location. As the
agent learns more of the gridworld, its predictions improve. Once initialized, a
node is dropped at the initial location of the agent, representing the communica-
tions node that would be located at the basestation. Then, the agent solves the
greedy connected coverage problem, outlined in Section 3.6.1, to produce the
set number of possible node placements, in our case five, as shown by the five
red cells in Figure 4.5b. Only node placements within communications range of
already placed nodes are considered. This ensures the agent will always be able
to communicate back to the basestation. Since the first node placement predic-
tions are within range of the basestation node, they will appear sub-optimal.
In fact, these predictions are a result of greedy connected coverage for the pre-
dicted map, but there are more nodes predicted than necessary at this point in
the exploration since all nodes must be within range of the basestation node.
This phenomenon leads to potential node placements next to each other, as seen
with the centermost potential node placements in Figure 4.5b. As more nodes
are placed, these placement predictions will spread out to encourage nodes as
far apart as possible while maintaining a chain of communication.

(a) Ground Truth (b) Prediction (Initial)

Figure 4.5: Initial stage of the simulation of Prediction Approach on a cave
map.

32

After the first set coverage problem is calculated, the agent begins traversing
the gridworld according to the Yamauchi method. The agent predicts the un-
known environment every step. Once the agent reaches a cell at the maximum
distance from its nearest dropped node, it will recalculate greedy connected
coverage to determine its maximum coverage placements with the updated pre-
dicted map. The agent will then set a new destination at the greedy connected
coverage node location calculated nearest to it. Once this location is reached,
the agent will resume standard Yamauchi Frontier Exploration. Figure 4.6b
demonstrates the agent approaching its final node to drop in the simulation,
represented by the red cell, where maroon cells represent nodes that have al-
ready been dropped. When the agent drops its final node, the simulation will
end. The cell containing the final node will not appear maroon because the
agent, indicated by the green cell, is located on top of it, but the node is there
all the same. The final state is shown in Figure 4.6c, where the yellow cells
indicate communications coverage. As can be seen, the number of cells within
communications range in the Greedy Connected Solution and the Prediction
Approach are close at 223 cells covered and 192 cells covered, respectively. Sec-
tion 4.3 will further elaborate on this performance for all tested maps.

(a) Greedy Connected Solution (b) Prediction (Mid-Run)

(c) Prediction (Finished)

Figure 4.6: Comparison of the Greedy Connected Solution to Prediction Ap-
proach on a cave map.

33

4.2.4 Maximum Coverage (Without Prediction) Approach
(Gridworld)

These simulations follow the approaches explained in Section 3.6.3. As seen in
4.8a, the No Prediction Pessimistic Approach leads to less exploration and nodes
placed based solely on the frontiers generated by Yamauchi Frontier Exploration.
At the end of this simulation, the No Prediction Pessimistic Approach dropped
nodes that covered only 145 cells. In addition, Figure 4.8b demonstrates these
nodes are sub-optimally placed against walls rather than in open space for max-
imum coverage, a product of Yamauchi Frontier Exploration initially exploring
along walls. Since the No Prediction Optimistic Approach assumes all cells in
the gridworld are free, except those it has observed to be occupied, it has a
much larger universe of free cells in which to calculate greedy connected cover-
age. This approach performs significantly better than the pessimistic approach,
covering 195 cells in communications range.

(a) Pessimistic (Mid-Run) (b) Pessimistic (Finished)

(c) Optimistic (Mid-Run) (d) Optimistic (Finished)

Figure 4.7: Simulation of both Maximum Coverage (Without Prediction) Ap-
proaches in a cave environment.

34

4.2.5 Naive Approach (Gridworld)

As elaborated upon in Section 3.6.4, the Naive Approach executes Team Ex-
plorer’s node placement model used in the Tunnel and Urban Circuits. Specifi-
cally, nodes are placed either once the agent reaches the edge of communications
range, six cells between itself and the nearest dropped node, or if the agent is
no longer in line of sight with any dropped nodes and a minimized threshold of
three cells between itself and the nearest dropped node is reached. This min-
imized threshold mimics Team Explorer’s current approach of allowing nodes
to be dropped out of line of sight as long as a minimum distance, and thus
node range, is not exceeded. As shown in Figures 4.8a and 4.8b, the agent lacks
foresight into the layout of the entire map, where gray and black cells represent
unknown areas. This leads to nodes being dropped in sub-optimal places for
coverage, near walls and dead-ends, because the agent does not deviate from
Yamauchi Frontier Exploration to drop in more free areas. In this example, the
Naive Approach placed nodes to cover 157 free cells, 18% less coverage than the
Prediction Approach.

(a) Naive (Mid-Run) (b) Naive (Finished)

Figure 4.8: Simulation of the Naive Approach in a cave environment.

4.3 Prediction vs. No Prediction Simulations

The metrics we will be using to determine which approach is most useful for
node placement are the percentage of cells in the gridworld covered by communi-
cations after the final (fifth) node is dropped, the average distance between the
corresponding nodes that are dropped by the given approach and the Greedy
Connected Solution, the percentage of the free cells in the map explored, the
average time of the simulation, and the average node distance between the sim-
ulated approach and the Greedy Connected Solution, defined by∑N

n=1

√
(xSn − xGn)2 + (ySn − yGn)2

N
.

35

In the above equation, N is the number of nodes to be dropped, n is the specific
node being dropped, xSn and ySn are the x and y locations of the nth node
dropped using the simulated approach, and xGn

and yGn
are the x and y loca-

tions of the nth node dropped in the Greedy Connected Solution. The results
in Table 4.1 come from running simulations on 100 maps from each type of
environment, cave, urban, tunnel, and hybrid, on the three node placement ap-
proaches: No Prediction Pessimistic (No Pred Pess), No Prediction Optimistic
(No Pred Opt), and Prediction (Pred). When compared to No Prediction Pes-
simistic, both No Prediction Optimistic and Prediction perform significantly
better in terms of communications coverage, node dropping accuracy to the
Greedy Connected Solution, and amount of the free area in the map explored.
This is at the expense of having a longer path for the agent to drop all of its
nodes, since it will travel to new frontiers to place nodes in the No Prediction
Optimistic and Prediction Approaches. In addition, simulation times, the time
from the agent’s initialization in the gridworld to dropping its final node, are
significantly longer for the No Prediction Optimistic and Prediction Approaches
due to the increased exploration, which allows for more coverage. The map pre-
diction step for the Prediction Approach gives it the highest run-times of the
three approaches. Even still, the Prediction Approach’s ability to have higher
coverage, lower path length, and more accurate node placement on three out of
the four map types for each metric demonstrates the value of map prediction
when determining where to place nodes in unknown areas. As stated in Section
3.6.3, the No Prediction Optimistic Approach behaves like a highly optimistic
version of the Prediction Approach, where all cells the agent has not visited are
considered free. Therefore, the approach has the freedom to use all cells in the
gridworld to calculate greedy connected coverage, with the exception of known
occupied cells. Even still, taking the time to do more accurate map prediction
is worthwhile in preserving agent movement, approaching Greedy Connected
Solution placement accuracy, and maximizing communications coverage.

36

Cave Urban
No Pred

Pess
No Pred

Opt
Pred

No Pred
Pess

No Pred
Opt

Pred

Average % Covered 31 38 39 20 30 30
Average Path Length 124.3 151.10 157.19 101.13 144.34 139.02
Average Node Distance 9.71 8.69 8.27 11.85 9.25 9.07
Average % Explored 30 43 42 17 32 32
Average Time (s) 39.59 196.48 275.74 31.73 200.43 392.0

(a) Cave and Urban Data

Tunnel Hybrid
No Pred

Pess
No Pred

Opt
Pred

No Pred
Pess

No Pred
Opt

Pred

Average % Covered 43 48 49 26 32 34
Average Path Length 129.57 164.35 142.09 117.48 151.31 138.60
Average Node Distance 8.54 7.74 7.86 9.17 7.60 7.37
Average % Explored 46 61 51 24 38 36
Average Time (s) 48.10 269.11 301.65 35.96 185.99 272.21

(b) Tunnel and Hybrid Data

Table 4.1: Prediction and No Prediction (Pessimistic and Optimistic) compari-
son results, demonstrating the value of predictions that favor keeping unknown
areas free for potential node placements.

4.4 Prediction vs. Naive Simulations

The following results come from running the Naive and Prediction Approaches
and the Greedy Connected Solution on 100 maps from each of the three map
types, cave, urban, and tunnel, as well as a combination of the three, referred
to as “All”. Figures 4.9 and 4.10 demonstrate the significant increase in cell
coverage when using the Prediction Approach over the Naive Approach. This
is expected, given the Prediction Approach’s goal of placing nodes in free areas,
whereas the Naive Approach drops a node as soon as the edge of communications
range with a dropped node is reached.

37

(a) Cave (b) Urban

(c) Tunnel (d) All

Figure 4.9: Results in the node dropping simulation showing the number of free
cells covered in communications range after all available nodes are dropped on
100 maps of each map type. The Maximum data is the total number of free
cells available to put in communications range in the map.

38

Cave Urban Tunnel All

60

80

64
61

55
58

87
91

88 86

Map TypeN
or

m
.

P
er

ce
n
ta

g
e

C
el

ls
C

ov
er

ed
(%

)

Cells Covered

Naive Prediction

Figure 4.10: Results in the node dropping simulation showing the percentage
of free cells covered in communications range normalized over the percentage of
free cells covered by the Greedy Connected Solution over 100 maps of each map
type.

Added benefits of the Prediction Approach are its ability to explore more
of the total environment and place nodes more accurately to the positions cal-
culated using the Greedy Connected Solution. Figure 4.11 shows that in every
environment, the Prediction Approach explores nearly, if not more than, double
the percent of free cells explored by the Naive Approach. This behavior will
benefit Team Explorer as they seek to explore as much of the test environment
as possible with as few nodes dropped as possible.

Cave Urban Tunnel All

20

40

22

14

21
18

42

32

51

40

Map Type

P
er

ce
n
ta

ge
C

el
ls

E
x
p

lo
re

d
(%

) Cells Explored

Naive Prediction

Figure 4.11: Results in the node dropping simulation showing the percentage of
free cells explored using the Naive Approach and the Prediction Approach on
100 maps of each map type.

39

Figure 4.12 shows the average node distance between nodes at the same order
in the dropping queue from the Prediction and Naive Approaches compared to
the Greedy Connected Solution. Therefore, the distance is an average over the
100 map simulation tests run of the average nodes location distances. When
compared to the Naive Approach, the Prediction Approach is at most a 40%
decrease in node distance from the Greedy Connected Solution, shown in the
urban maps, and at least a 31% decrease, shown in the tunnel maps.

Cave Urban Tunnel All

8

10

12

14

16

13

15

11

13

8
9

8
9

Map Type

A
v
g.

N
o
d

e
D

is
ta

n
ce

(C
el

ls
) Node Distance

Naive Prediction

Figure 4.12: Results in the node dropping simulation showing the average node
distance to the Greedy Connected Solution from nodes dropped using the Naive
Approach and the Prediction Approach on 100 maps of each map type.

Figure 4.13 demonstrates the large discrepancy in simulation run-times be-
tween the Naive and Prediction Approaches. The Prediction Approach’s longer
run-time can be attributed to its increased exploration as well as the time to
run map prediction and the greedy connected coverage problem. This metric
is one of the main trade-offs that must be considered when using this method.
Measures were taken to decrease this run-time, such as decreasing the number
of times the greedy connected coverage problem was solved and only performing
map prediction every three steps the agent took, but more measures need to be
taken if faster times are desired.

40

Cave Urban Tunnel All

0

200

400

20 14 9 8

276

392

302

408

Map Type

A
v
g
.

T
im

e
(s

)

Time of Simulation

Naive Prediction

Figure 4.13: Results in the node dropping simulation showing the average sim-
ulation time from the Naive and Prediction Approaches on 100 maps of each
map type.

4.5 Cell Coverage Comparison

CNNs were trained on all map types separately as well as a combination of
the three, resulting in four networks used for simulation: CaveNet, UrbanNet,
TunnelNet, and AllNet. All network names correspond to the map types they
were trained on, with AllNet being trained on a combination of cave, urban, and
tunnel maps. The average percentages of free cells covered in communications
range normalized over the Greedy Connected Solution for all combinations of
map type and network, simulated on 100 maps, are shown in Table 4.2. It was
expected that map types run in simulation using their corresponding network
would result in better coverage due to better map predictions. While this be-
havior is true for most map types and their respective networks, the increase
is not significant. For example, the Prediction Approach with the urban maps
tend to always have high normalized coverage, regardless of the network used.
This is most likely due to its free nature, in which nodes placed are more likely
to cover more cells. As stated in Section 3.4, we give a higher probability of an
unknown cell being free in the softmax function used for individual cell state
prediction to encourage nodes to provide communications to new frontiers. This
map prediction behavior explains why the No Prediction Optimistic and Pre-
diction Approaches behaved similarly on urban maps, shown in Table 4.1a. No
Prediction Optimistic gives all unknown cells 100% probability of being free.

41

CaveNet UrbanNet TunnelNet AllNet
Cave 87% 86% 83% 83%
Urban 91% 91% 85% 91%
Tunnel 85% 87% 88% 85%
All 86% 87% 85% 86%

Table 4.2: Results in the node dropping simulation showing the average percent-
age of free cells covered in communications range normalized over the percentage
of free cells covered by the Greedy Connected Solution for 100 maps. This data
is from simulations on every combination of map input type and network trained
on all map types.

42

Chapter 5

Conclusions and Future
Work

5.1 Conclusions

The results of our simulations demonstrate the significant improvement in per-
formance of using map prediction and greedy connected coverage with the Pre-
diction Approach to determine node placement, as opposed to Team Explorer’s
current approach, the Naive Approach. Map prediction allows the agent to
have a larger universe of free cells from which to determine node placements
and greedy connected coverage uses this larger universe to maximize commu-
nications coverage while maintaining connection in polynomial time. In the
Prediction Approach, we found a significant benefit from greedy connected cov-
erage and Yamauchi Frontier Exploration working together to increase agent
exploration while remaining in communications range with a limited number of
nodes. The agent’s deviation from the generated Yamauchi frontiers to pursue
a node placement when necessary encourages new frontiers to be covered with
communications so that the agent can keep exploring. In addition, the Predic-
tion Approach helped us gain a better understanding of how map prediction
can be used to improve communications coverage. While predictions favored
predicting unknown cells as free similar to the fully optimistic approach seen in
the No Prediction Optimistic Approach, predictions positively impacted maxi-
mization of cell coverage and minimization of the agent path length and node
distance from the Greedy Connected Solution.

5.2 Future Work

Based on the close results from the No Prediction Optimistic and Prediction
Approaches in Section 4.3 it would be interesting to see how the Prediction Ap-
proach improves with a tighter softmax function when predicting which cells are

43

free and occupied. This may result in more accurate predictions to the ground
truth or clustered node placements due to the agent predicting more occupied
cells than necessary. In addition, improving computation time of map predic-
tion and the greedy connected coverage problem is essential to implementing the
Prediction Approach in the real-world. Currently the greedy connected coverage
problem is implementing A* for all potential node placements to ensure there
is a communications path between the potential placement and a cell that is
known to be in communications coverage. This process adds time, but is nec-
essary to ensure there is not a wall completely blocking the coverage between a
node and its connection to the entire network.

Future work that would also benefit this research is answering how to ap-
proach this problem with unknown total map size or a map that grows in total
size with exploration. For our simulation, we maintain a 32× 32 gridworld rep-
resenting a 320m×320m world because it is representative of the environments
Team Explorer has worked in thus far. Even still, caves, urban environments,
and tunnels in the real world can be much larger and grow to become larger
than expected when the full size is not known during exploration. A possible
solution worth exploring to solve node placement with a map of unknown size
is to use a graph to represent the world, rather than the array data structure
that is currently used. In this way, every cell in the gridworld would be repre-
sented by a node in the graph with edges connected between nodes. With the
exception of the edges, each node would be independent of the others. Training
would behave in the same way by calculating the probability one node is free
given its neighbor is free, adjusting losses, such as total variation loss Ltv to
encourage smoothness between neighboring nodes. Using a graph instead of an
array allows scaling as the agent discovers more of the map or determines the
map is larger than originally expected. In addition, using a graph allows for
a naturally decentralized method of performing computation, posed as a mes-
sage passing problem, to allow for adding and subtracting states. We started
looking into factor graphs in large scale simultaneous localization and mapping
(SLAM) [4], which would allow for state space changes. While this could be
of use, factor graphs increase complexity by splitting each cell of the gridworld
into a factor node and variable node. While the run-time of solving greedy
connected coverage increases with the gridworld size, the only part of the Pre-
diction Approach that would currently be impeded by variable gridworld size
is map prediction, since the CNN is trained on 32 × 32 gridworlds. We need
to evaluate the trade-offs between using factor graphs and training on maps of
variable size.

44

Appendices

45

Appendix A

Hardware

UAP-AC-M DX2 (5 GHz)
Dimensions (mm) 353× 46× 34.4 108× 43× 40
Weight (g) 152 123
Power Supply (VDC) 24 8-60
Max Power Consumption (W) 8.5 7.5
Max TX Power (dBm) 20 27±2
Max Range* (meters) 183 5,250

Table A.1: Ubiquiti and Rajant Radio specifications. *Max Range is for optimal
environments.

46

Bibliography

[1] J. A. Caley, N. R. J. Lawrance, and G. A. Hollinger. Deep learning of
structured environments for robot search. In 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 3987–3992,
2016.

[2] Gerard Cornuejols, Marshall L. Fisher, and George L. Nemhauser. Ex-
ceptional paper—location of bank accounts to optimize float: An ana-
lytic study of exact and approximate algorithms. Management Science,
23(8):789–810, 1977.

[3] DARPA. Darpa subterranean (subt) challenge, 2019.

[4] Frank Dellaert and Michael Kaess. Factor graphs for robot perception.
Foundations and Trends R© in Robotics, 6(1-2):1–139, August 2017.

[5] Sahib Dhanjal. Path-planning-simulator, Feb 2018.

[6] Maximilian Ernestus, Stephan Friedrichs, Michael Hemmer, Jan
Kokemüller, Alexander Kröller, Mahdi Moeini, and Christiane Schmidt.
Algorithms for art gallery illumination. CoRR, abs/1410.5952, 2014.

[7] Uriel Feige. A threshold of ln n for approximating set cover. JOURNAL
OF THE ACM, 45:314–318, 1998.

[8] Freifunk. Open-mesh:b.a.t.m.a.n, 2020.

[9] Martin Gardner. Mathematical games-the fantastic combinations of john
conway’s new solitaire game, life, 1970. Scientific American, October, pages
120–123.

[10] Rajant Inc. Rajant breadcrumb dx2, 2020.

[11] Ubiquiti Inc. Unifi mesh access point, 2020.

[12] Richard Karp. Reducibility among combinatorial problems. volume 40,
pages 85–103, 01 1972.

47

[13] G. D. Kazazakis and A. A. Argyros. Fast positioning of limited-visibility
guards for the inspection of 2d workspaces. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, volume 3, pages 2843–2848
vol.3, Sep. 2002.

[14] Guilin Liu, Fitsum A. Reda, Kevin J. Shih, Ting-Chun Wang, Andrew Tao,
and Bryan Catanzaro. Image inpainting for irregular holes using partial
convolutions, 2018.

[15] Anshika Pal, Ritu Tiwari, and A. Shukla. Multi robot exploration using a
modified a* algorithm. pages 506–516, 04 2011.

[16] Charles Richter and William Vega-Brown. Bayesian Learning for Safe
High-Speed Navigation in Unknown Environments, pages 325–341. 01 2018.

[17] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolu-
tional networks for biomedical image segmentation, 2015.

[18] Manish Saroya, Graeme Best, and Geoffrey A. Hollinger. Online explo-
ration of tunnel networks leveraging topological cnn-based world predic-
tions. In Under review, 2020.

[19] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition, 2014.

[20] Vijay Vazirani. Approximation Algorithms. 01 2001.

[21] B. Yamauchi. A frontier-based approach for autonomous exploration. In
Proceedings 1997 IEEE International Symposium on Computational Intelli-
gence in Robotics and Automation CIRA’97. ’Towards New Computational
Principles for Robotics and Automation’, pages 146–151, 1997.

[22] M.H. [Fazel Zarandi], S. Davari, and S.A. [Haddad Sisakht]. The large scale
maximal covering location problem. Scientia Iranica, 18(6):1564 – 1570,
2011.

48

