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Abstract— 3D multi-object tracking (MOT) is an essential
component for many applications such as autonomous driving
and assistive robotics. Recent work on 3D MOT focuses on
developing accurate systems giving less attention to practical
considerations such as computational cost and system com-
plexity. In contrast, this work proposes a simple real-time 3D
MOT system. Our system first obtains 3D detections from a
LiDAR point cloud. Then, a straightforward combination of
a 3D Kalman filter and the Hungarian algorithm is used for
state estimation and data association. Additionally, 3D MOT
datasets such as KITTI evaluate MOT methods in the 2D space
and standardized 3D MOT evaluation tools are missing for a
fair comparison of 3D MOT methods. Therefore, we propose
a new 3D MOT evaluation tool along with three new metrics
to comprehensively evaluate 3D MOT methods. We show that,
although our system employs a combination of classical MOT
modules, we achieve state-of-the-art 3D MOT performance on
two 3D MOT benchmarks (KITTI and nuScenes). Surprisingly,
although our system does not use any 2D data as inputs,
we achieve competitive performance on the KITTI 2D MOT
leaderboard. Our proposed system runs at a rate of 207.4 FPS
on the KITTI dataset, achieving the fastest speed among all
modern MOT systems. To encourage standardized 3D MOT
evaluation, our code is publicly available at http://www.
xinshuoweng.com/projects/AB3DMOT.

I. INTRODUCTION

MOT is an essential component for many real-time appli-
cations such as autonomous driving and assistive robotics.
Due to advancements in object detection [1]–[3], there has
been much progress on MOT. For example, for the car class
on the KITTI [4] 2D MOT benchmark, the MOTA (multi-
object tracking accuracy) has improved from 57.03 [5] to
84.04 [6] in just two years! While we are encouraged by
the progress, we observed that our focus on innovation and
accuracy has come at the cost of practical factors such
as computational efficiency and system simplicity. State-
of-the-art methods typically require a large computational
cost [7]–[10] making real-time performance a challenge.
Also, modern MOT systems are often very complex and
it is not always clear which part of the system contributes
the most to performance. For example, leading works [9]–
[11] have substantially different system pipelines but only
minor differences in performance. In these cases, modular
comparative analysis is quite challenging.

To provide a standard 3D MOT baseline for comparative
analysis, we implement a classical approach which is both
efficient and simple in design – the Kalman filter [12] (1960)
coupled with the Hungarian method [13] (1955). Specifically,
our system employs an off-the-shelf 3D object detector to
obtain 3D detections from the LiDAR point cloud [2]. Then,
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Fig. 1. MOTA of modern 2D and 3D MOT systems on the KITTI 2D
MOT leaderboard. The higher and more right is better. Our 3D MOT system
achieves competitive MOTA in 2D MOT evaluation while being the fastest.

a combination of the 3D Kalman filter (with a constant
velocity model) and the Hungarian algorithm is used for
state estimation and data association. Unlike other filter-
based MOT systems which define the state space of the filter
in the 2D space [14] or bird’s eye view [15], we extend the
state space of the objects to the 3D space, including 3D
location, 3D size, 3D velocity and heading orientation.

Our empirical results are alarming. While the combination
of modules in our system is straightforward, we achieve
state-of-the-art 3D MOT performance on standard 3D MOT
datasets: KITTI and nuScenes. Surprisingly, although our
system does not use any 2D data as inputs, we also achieve
competitive performance on the KITTI 2D MOT leaderboard
as shown in Fig. 1. We hypothesize that the strong 2D MOT
performance of our 3D MOT system may be due to the
fact that tracking in 3D can better resolve depth ambiguities
and lead to fewer mismatches than tracking in 2D. Also,
due to efficient design of our system, it runs at a rate of
207.4 FPS on the KITTI dataset, achieving the fastest speed
among modern MOT systems. To be clear, the contribution
of this work is not to innovate 3D MOT algorithms but to
provide a more clear picture of modern 3D MOT systems in
comparison to a most basic yet strong baseline, the results
of which are important to share across the community.

In addition to the 3D MOT system, we also observed two
issues in 3D MOT evaluation: (1) Standard MOT benchmarks
such as the KITTI dataset only supports 2D MOT evaluation,
i.e., evaluation on the image plane. A tool to evaluate 3D
MOT systems in 3D space is not currently available. On the
KITTI dataset, the convention to evaluate 3D MOT methods
is to project the 3D MOT results to the image plane and
then use the KITTI 2D MOT evaluation tool. However, we
believe that this will hamper the future progress of 3D MOT
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systems as evaluation on the image plane cannot provide a
fair comparison of 3D MOT methods, e.g., a system that
achieves better tracking in 3D does not necessarily have
higher performance in 2D MOT evaluation. To overcome
the issue, we propose an MOT evaluation tool that evaluates
MOT systems directly in 3D space using 3D metrics; (2)
Common MOT metrics such as MOTA and MOTP do not
consider the confidence score of tracked objects. As a result,
users must manually select a threshold and filter out tracked
objects with lower scores. However, selecting the best thresh-
old requires non-trivial efforts. Also, evaluation at a single
threshold prevents us from understanding the full spectrum
of accuracy and precision of a MOT system. To address the
issue, we propose three new integral metrics to summarize
the performance of MOT methods across many thresholds.
We hope that our new evaluation tool including metrics will
serve as a standard for future 3D MOT evaluation. Our
contributions are summarized as follows:

1) We propose an accurate real-time 3D MOT system
based on a 3D Kalman filter for online applications;

2) We propose a new 3D MOT evaluation tool along with
three new metrics to standardize 3D MOT evaluation;

3) Our 3D MOT system achieves S.O.T.A. performance
and the fastest speed on standard 3D MOT datasets.

II. RELATED WORK

2D Multi-Object Tracking. Recent 2D MOT systems can be
split into batch and online methods based on data association.
Batch methods attempt to find the global optimal association
from the entire sequence. These methods often create a
network flow graph and can be solved by the min-cost
flow algorithms [16], [17]. In contrast, online methods only
require the information up to the current frame and are
applicable for online applications. Online methods often
formulate data association as a bipartite graph matching
problem and solve it using the Hungarian algorithm [13],
[14]. Beyond using the Hungarian algorithm, modern online
methods design deep association networks [10], [18] that
can construct the association using neural networks. Our
proposed system falls into the category of online methods.
For simple design and real-time efficiency, we do not use
neural networks and only adopt the Hungarian algorithm.

To achieve data association, designing appropriate cost
functions to measure similarity is crucial to a MOT system.
Early work [16], [19] employs hand-crafted features such as
spatial distance and color histograms as the cost function.
Modern methods often use the motion model [14], [20],
[21] and the appearance feature [20], [22], [23]. For system
simplicity, we only employ the simplest motion model, i.e.,
constant velocity, while not using any appearance cue.

3D Multi-Object Tracking. 3D MOT systems often share
the same components as 2D MOT systems. The distinction
lies in that the input detections are in the 3D space instead of
the image plane. Therefore, 3D MOT systems can obtain the
motion and appearance information in the 3D space without
perspective distortion. [11] proposed to estimate the distance

of objects to the camera and their velocity in the 3D space
as the motion cue. [15] used an unscented Kalman filter to
estimate the linear and angular velocity on the ground. [24]
proposed a 2D-3D Kalman filter to utilize the observation
from the image and 3D world. Beyond using hand-crafted
features, [18], [25]–[27] used neural networks to learn the
3D appearance and motion features from data. Unlike prior
work uses various 3D features and has complex systems, we
only use a 3D Kalman filter to obtain the 3D motion cue
for simplicity and efficiency, with extending the state space
of the filter to full 3D domain including 3D location, 3D
velocity, 3D size and heading orientation.

III. APPROACH

The goal of 3D MOT is to associate 3D detections in
a sequence. As our system is an online MOT system, at
every timestamp, we only require detections in the current
frame and associated trajectories from the previous frames.
Our system pipeline is shown in Fig. 2: (A) a 3D detection
module is used to obtain 3D detections from the LiDAR
point cloud; (B) a 3D Kalman filter predicts the state of
associated trajectories from the previous frames to the current
frame; (C) a data association module matches the predicted
trajectories from Kalman filter and detections in the current
frame; (D) the 3D Kalman filter updates the state of matched
trajectories based on the matched detections; (E) a birth
and death memory creates trajectories for new objects and
deletes trajectories for disappeared objects. Except for the
pre-trained 3D detection module, our 3D MOT system does
not need any training and can be directly used for inference.

A. 3D Object Detection

Thanks to advancements in 3D object detection, we have
access to high-quality detections. Here, we experiment with
[2], [28] on KITTI and [29] on nuScenes. We directly use
their pre-trained models on the corresponding dataset. In
frame t, the output of 3D detection module is a set of
detections Dt = {D1

t , D
2
t , · · · , D

nt
t } (nt is the number of

detections). Each detection Dj
t , where j ∈ {1, 2, · · · , nt}, is

represented as a tuple (x, y, z, θ, l, w, h, s), including loca-
tion of the object center in the 3D space (x, y, z), object’s
3D size (l, w, h), heading angle θ and confidence score s.
We will show how different 3D detection modules affect the
performance of our 3D MOT system in the experiments.

B. 3D Kalman Filter: State Prediction

To predict the state of object trajectories from the previous
frames to the current frame, we approximate objects’ inter-
frame displacement using a constant velocity model indepen-
dent of camera ego-motion. That means we do not explicitly
estimate the ego-motion but rely on our motion model to
accommodate both the ego-motion and motion of the other
objects. We formulate the state of an object trajectory as a
11-dimensional vector T = (x, y, z, θ, l, w, h, s, vx, vy, vz),
where the additional variables vx, vy , vz represent the object
velocity in the 3D space. Note that we do not include
the angular velocity vθ in the state space for simplicity as
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Fig. 2. Proposed System Pipeline: (A) a 3D detection module obtains 3D detections Dt from the LiDAR point cloud; (B) a 3D Kalman filter predicts the
state of trajectories Tt−1 to the current frame t as Test during the state prediction step; (C) the detections Dt and predicted trajectories Test are associated
using the Hungarian algorithm; (D) the state of each matched trajectory in Tmatch is updated by the 3D Kalman filter based on the corresponding matched
detection in Dmatch to obtain the final trajectories Tt; (E) a birth and death memory takes the unmatched detections Dunmatch and unmatched trajectories
Tunmatch as inputs and creates new trajectories Tnew and deletes disappeared trajectories Tlost from the associated trajectories.

we empirically found that including the angular velocity
does not really improve the performance. In every frame,
the state of associated trajectories from the previous frame
Tt−1={T 1

t−1, T
2
t−1, · · · , T

mt−1

t−1 } (mt−1 is the number of tra-
jectories in the frame t-1) will be propagated to the frame t
as Test, based on the constant velocity model:
xest = x+ vx, yest = y + vy, zest = z + vz. (1)

As a result, for every trajectory T it−1 in Tt−1 where i ∈
{1, 2, · · · , mt−1}, the predicted state in the frame t is T iest
= (xest, yest, zest, θ, l, w, h, s, vx, vy , vz).

C. Data Association

To match the predicted trajectories Test with the detections
Dt, we first construct the affinity matrix with a dimension
of mt−1×nt by computing the 3D Intersection of Union
(IoU) or negative center distance between every pair of the
trajectory T iest and detection Dj

t . Then, the data association
becomes a bipartite graph matching problem, which can
be solved in polynomial time using the Hungarian algo-
rithm [13]. Also, we reject a matching if the 3D IoU is less
than a threshold IoUmin (or the center’s distance is larger than
a threshold distmax if using center distance to compute affinity
matrix). The outputs of data association are as follows:

Tmatch = {T 1
match, T

2
match, · · · , T

wt

match}, (2)

Dmatch = {D1
match, D

2
match, · · · , D

wt

match}, (3)

Tunmatch = {T 1
unmatch, T

2
unmatch, · · · , T

mt−1−wt

unmatch }, (4)

Dunmatch = {D1
unmatch, D

2
unmatch, · · · , D

nt−wt

unmatch}, (5)

where Tmatch and Dmatch are the matched trajectories and
detections and wt denotes the number of matches. Also,
Tunmatch and Dunmatch are the unmatched trajectories and
detections. Note that, Tunmatch is the complementary set of
Tmatch in Test. Similarly, Dunmatch is the complementary set
of Dmatch in Dt.

D. 3D Kalman Filter: State Update

To account for the uncertainty of state prediction, we
update the state of each trajectory in Tmatch based on its corre-
sponding detection in Dmatch. As a result, we obtain the final
associated trajectories in frame t as Tt={T 1

t , T
2
t , · · · , T

wt
t }.

Following the Bayes rule, the updated state of each tra-
jectory T kt =(x′, y′, z′, θ′, l′, w′, h′, s′, v′x, v

′
y, v
′
z), where k ∈

{1, 2, · · · , wt}, is the weighted average between the state of
T kmatch and Dk

match. The weights are determined by the state
uncertainty of the matched trajectory T kmatch and detection
Dk

match (please refer to the Kalman filter [12] for details).
Also, we observe that directly applying the Bayes update

rule to orientation θ does not work well. For example, there
might be the case where the orientation of detection Dk

match
is nearly opposite to the orientation of the corresponding
trajectory T kmatch, i.e., differ by π. Although we know that
this is impossible because objects should move smoothly
and cannot change the orientation by π in one frame (i.e.,
0.1s in KITTI), the prediction of the orientation in either
the detection or the trajectory can be wrong, making this
scenario possible. As a result, if we follow the normal state
update rule, the final trajectory T kt in this case will have an
orientation somewhere in the middle of the orientation of
Dk

match and T kmatch, which will lead to a low 3D IoU between
the associated trajectory and the ground truth. To prevent this
issue, we propose an orientation correction technique. When
the difference of the orientation θd between Dk

match and T kmatch
is greater than π

2 , we add a π to the orientation in T kmatch so
that θd is always less than π

2 , i.e., the orientation Dk
match and

T kmatch are roughly consistent without substantial change.

E. Birth and Death Memory

As tracked objects might leave the scene and new objects
might enter the scene, a module to manage the birth and
death of the objects is necessary. On one hand, we consider
all unmatched detections Dunmatch as potential new objects
entering the scene. However, to avoid creating false positive
trajectories, a new trajectory T pnew will not be created for
the unmatched detection Dp

unmatch until Dp
unmatch has been

continually matched in the next Birmin frames, where p ∈
{1, 2, · · · , nt−wt}. Once the new trajectory T pnew is created,
we initialize its state same as its most recent detection
Dp

unmatch with zero velocity for vx, vy and vz .
On the other hand, we consider all unmatched trajectories

Tunmatch as potential objects leaving the scene. However, to
prevent deleting true positive trajectories that still exist in the
scene but cannot find a match due to missing detection, we
keep tracking each unmatched trajectory T qunmatch for Agemax
frames before ensuring T qunmatch is a disappeared trajectory
T qlost, where q ∈ {1, 2, · · · ,mt−1 − wt}, and deleting it



from the set of associated trajectories. Ideally, true positive
trajectories with missing detection can be interpolated by
our 3D MOT system without being deleted, and only the
trajectories that leave the scene are deleted.

IV. NEW 3D MOT EVALUATION TOOL

As the pioneering 3D MOT benchmark, KITTI [4] dataset
is crucial to the progress of 3D MOT systems. Though the
KITTI dataset provides 3D object trajectories but it only
supports 2D MOT evaluation, i.e., evaluation on the image
plane, and a tool to evaluate 3D MOT systems directly in
3D space is not currently available. On the KITTI dataset,
the current convention of evaluating 3D MOT systems is to
project the 3D tracking results to the image plane and then
use the KITTI 2D MOT evaluation tool, which matches the
projected tracking results with ground truth trajectories on
the image plane using 2D IoU as the cost function. However,
we believe this will hamper the future progress of 3D MOT
systems as evaluating on the image plane cannot provide a
fair comparison of 3D MOT systems. For example, a system
that outputs 3D trajectories with wrong depth estimates and
low 3D IoU with the ground truth can still obtain high
performance in 2D MOT evaluation as long as the projection
of 3D trajectory outputs on the image plane has high 2D IoU
with the ground truth on the image plane.

To provide a fair comparison of 3D MOT systems, we
implement an extension to the KITTI 2D MOT evaluation
tool for 3D MOT evaluation. Specifically, we modify the
cost function from 2D IoU to 3D IoU and match the 3D
tracking results with 3D ground truth trajectories directly in
3D space. In this way, we no longer need to project our 3D
tracking results to the image plane for evaluation. For every
tracked object, its 3D IoU with ground truth is required to
be above a threshold IoUthres (or center distance must be
below a threshold Distthres) in order to be considered as a
successful match. Although the extension of our 3D MOT
evaluation tool is straightforward, we hope that it can serve
as a standard to evaluate future 3D MOT systems.

V. NEW MOT EVALUATION METRICS

A. Limitation of the CLEAR Metrics

Conventional MOT evaluation is based on CLEAR metrics
[30] such as MOTA (see Section VI-A for details), MOTP,
FP, FN, Precision, F1 score, IDS, FRAG. However, none of
these metrics explicitly consider the object’s confidence score
s. In other words, the CLEAR metrics consider all object
trajectories having the same confidence s=1, which is an
unreasonable assumption because there could be many false
positive trajectories with low confidence scores. Therefore,
to reduce the number of false positives and achieve a high
MOTA1, users must manually select a threshold and filter
out tracked objects with confidence scores lower than the
threshold prior to submitting the results for evaluation.

Our observations to the above evaluation are two-fold: (1)
selecting the best threshold for a 3D MOT system requires
non-trivial efforts from the users and the confidence threshold

1MOTA is the primary metric for ranking in most MOT benchmarks.

can be significantly different if a 3D MOT system changes its
input detections or is being evaluated on a different dataset.
As a result, users must run extensive experiments on the
validation set to tune the confidence threshold; (2) using a
single confidence threshold for evaluation prevents us from
understanding how the performance of 3D MOT systems
changes as a function of the threshold. In fact, we observed
that different confidence thresholds can significantly affect
the performance of the CLEAR metrics. For example, we
show the performance of our system on three metrics at
different thresholds in Fig. 3 using the data from the car
subset of the KITTI MOT dataset. To generate the results, we
first sort the tracking results based on the confidence score
s2. Then, we define a set of confidence thresholds based on
the recall of our system between 0 to 1 with an interval of
0.025. This results in 40 confidence thresholds excluding the
confidence threshold which corresponds to the recall of 0.
For each confidence threshold, we evaluate the results using
only trajectories with confidence higher than the threshold.
We show that, in Fig. 3 (a), the confidence threshold should
not be very small (recall not very high) because the number
of false positives will increase drastically, especially when
the recall reaches 0.95. Also, in Fig. 3 (b), the confidence
threshold should not be very large, i.e., recall should not be
very small, as it results in a large number of false negatives.
As a result, in Fig. 3 (c), we observed that the highest
MOTA value is achieved only when we choose a confidence
threshold corresponding to the recall of 0.9 which balances
the false positives and false negatives.

Based on the above observations, we believe that using a
single confidence threshold for evaluation requires non-trivial
efforts from users, and more importantly, prevents us from
understanding full spectrum of accuracy of a MOT system.
One consequence is that a MOT system with a high MOTA at
a single threshold and low MOTA at other thresholds can be
still ranked high on the leaderboard. But ideally, we should
aim to develop MOT systems that achieve high MOTA across
many thresholds, i.e., 3D MOT systems that achieve high
performance when using different detections as inputs. Prior
work [31] shares the same spirit with us in that [31] also
believes it is important to understand the performance of
MOT systems at many operating points. Specifically, [31]
computes a MOTA matrix at different recall and precision
values, similar to our MOTA-over-recall curve. The distinc-
tion lies in that, we additionally propose integral metrics (see
Sec. V-B) that summarize the performance at many operating
points into a single scalar for easy comparison.

B. Integral Metrics: AMOTA and AMOTP

To deal with the issue that current MOT evaluation metrics
do not consider the confidence and only evaluate at a single
threshold, we propose two integral metrics – AMOTA and
AMOTP (average MOTA and MOTP) – to summarize the
performance of MOTA and MOTP across many thresholds.
The AMOTA and AMOTP are computed by integrating

2We define the confidence score of an object trajectory as the average of
its confidence scores across all frames.



0.0 0.2 0.4 0.6 0.8 1.0
Recall

0

250

500

750

1000

1250

1500

1750
Fa

ls
e 

Po
si

tiv
e

(a) FP - Recall Curve

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0

1000

2000

3000

4000

5000

6000

7000

8000

Fa
ls

e 
N

eg
at

iv
e

(b) FN - Recall Curve

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0

20

40

60

80

100

M
O

TA
 (%

)

86.24

(c) MOTA - Recall Curve

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0

20

40

60

80

100

sM
O

TA
 (%

)

(d) sMOTA - Recall Curve
Fig. 3. (a)(b)(c) The effect of confidence threshold on the CLEAR metrics: MOTA, FN and FP. We evaluate our 3D MOT system on the KITTI dataset
using the proposed 3D MOT evaluation tool. We show that, to achieve the highest MOTA, a proper confidence threshold needs to be selected, otherwise
the performance of MOTA will be decreased significantly due to a large number of false positives or false negatives. (d) Effect of scale adjustment in
MOTA: the proposed scaled accuracy sMOTA has an upper bounding of 100% at any recall value.

MOTA and MOTP values over all recall values, e.g., area
under the MOTA over recall curve for computing AMOTA.
Similar to other integral metrics such as the average precision
used in object detection, we approximate the integration with
a summation over a discrete set of recall values. Specifically,
given the original definition of the MOTA metric from [30]:

MOTA = 1− FP + FN + IDS
numgt

, (6)

where numgt is the number of ground truth objects in all
frames. The AMOTA is then defined as follows:

AMOTA =
1

L

∑
r∈{ 1

L ,
2
L ,··· ,1}

(1− FPr + FNr + IDSr
numgt

), (7)

where FPr, FNr and IDSr are the number of false positives,
false negatives and identity switches computed at a specific
recall value r. Also, L is the number of recall values (number
of confidence thresholds for integration). The higher L is,
more accurate the approximate integration can be. However,
a large L requires significant compute during evaluation. To
balance the accuracy and speed, we use 40 recall values (i.e.,
from 0% to 100% with an interval of 2.5% excluding 0%),
i.e., L=40. For a 3D MOT system which has a maximum
recall of rm less than 100%, the MOTA values for integration
beyond rm are 0. As a result, our proposed metrics are
biased towards high-recall systems. We believe that this bias
is acceptable as having a high recall is crucial to prevent
collision for autonomous systems in practice. Note that our
proposed AMOTA metric is similar to the PR-MOTA metric
proposed in the independent work [32].

C. Scaled Accuracy Metric: sAMOTA
Conventionally, an integral metric such as average preci-

sion is a percentage ranging from 0% to 100% so that it is
easy to measure the absolute performance of the system. To
ensure that the integral metric has a range between 0% and
100%, the metric used at every operating point to compute
the integral metric should also be between 0% and 100%.
However, we observe in Fig. 3 (c) that the MOTA is likely
to have a strict upper bound lower than 100% at many recall
values. In fact, the upper bound of the MOTA at a specific
recall value r is derived as follows:

MOTAr = 1− FPr + FNr + IDSr
numgt

≤ 1− FNr
numgt

≤ 1−
numgt × (1− r)

numgt
= r.

(8)

The first inequality is true because the false positives FPr
and identity switches IDSr are always non-negative. Also,
the second inequality uses the fact that FNr ≥ numgt×(1−r)
because if the recall is r that means that at least (1−r) of the
total objects (numgt) are not tracked. If r is the upper bound
on MOTAr then it follows that the integral metric AMOTA is
upper bounded by 50% (i.e., upper bound r creates a triangle
in the MOTA vs Recall Curve).

To make the value of the integral metric AMOTA range
from 0% to 100%, we need to scale the range of the MOTAr.
From Eq. 8, we find that the reason why the MOTAr has
a strict upper bound of r is due to the fact that FNr ≥
numgt × (1 − r). To adjust the MOTAr, we propose two
new metrics, called sMOTA (scaled MOTA) and sAMOTA
(scaled AMOTA), which are defined as follows:

sMOTAr = max(0, 1− FPr+FNr+IDSr−(1−r)×numgt

r×numgt
), (9)

sAMOTA =
1

L

∑
r∈{ 1

L ,
2
L ,··· ,1}

sMOTAr, (10)

with the number of objects numgt× (1− r) being subtracted
from the FNr in the numerator, the proposed sMOTAr is
now upper bounded by 100%, leading to that the sAMOTA
is upper bounded by 100% as well. Note that we also add
a scalar factor r in the denominator as we think using the
actual number of ground truth objects available at a recall
value of r (i.e., r× numgt) makes more sense than using the
total number of objects numgt, some of which are not even
available to be tracked at a recall of r. Additionally, we add a
max operation over zero in Eq. 9, which is to adjust the lower
bound of the sMOTAr to zero. Otherwise, sMOTAr can
approach towards negative if there are many false positives
or identity switches. As a result, the proposed sMOTAr in
Eq. 9 can have a range between 0% and 100% as shown
in Fig. 3 (d), which also leads to the corresponding integral
metric sAMOTA having a range between 0% and 100%. In
summary, we believe that the proposed new integral metric
– sAMOTA, AMOTA, AMOTP – are able to summarize
performance of MOT systems across all thresholds.

VI. EXPERIMENT

A. Settings

Evaluation Metrics. In addition to the proposed sAMOTA,
AMOTA and AMOTP, we also evaluate on standard CLEAR



TABLE I
PERFORMANCE OF CAR ON THE KITTI VAL SET USING THE PROPOSED 3D MOT EVALUATION TOOL WITH NEW METRICS.

Method Input Data Matching criteria sAMOTA↑ AMOTA↑ AMOTP↑ MOTA↑ MOTP↑ IDS↓ FRAG↓ FPS↑

mmMOT [25] (ICCV′19) 2D + 3D IoUthres = 0.25 70.61 33.08 72.45 74.07 78.16 10 55 4.8 (GPU)
IoUthres = 0.5 69.14 32.81 72.22 73.53 78.51 10 64
IoUthres = 0.7 63.91 24.91 67.32 51.91 80.71 24 141

FANTrack [10] (IV′20) 2D + 3D IoUthres = 0.25 82.97 40.03 75.01 74.30 75.24 35 202 25.0 (GPU)
IoUthres = 0.5 80.14 38.16 73.62 72.71 74.91 36 211
IoUthres = 0.7 62.72 24.71 66.06 49.19 79.01 38 406

Ours 3D IoUthres = 0.25 93.28 45.43 77.41 86.24 78.43 0 15 207.4 (CPU)
IoUthres = 0.5 90.38 42.79 75.65 84.02 78.97 0 51
IoUthres = 0.7 69.81 27.26 67.00 57.06 82.43 0 157

TABLE II
PERFORMANCE OF PEDESTRIAN AND CYCLIST ON KITTI VAL SET.

Category Matching criteria sAMOTA↑ AMOTA↑ AMOTP↑ MOTA↑

Pedestrian IoUthres = 0.25 75.85 31.04 55.53 70.90
IoUthres = 0.5 70.95 27.31 52.45 65.06

Cyclist IoUthres = 0.25 91.36 44.34 79.18 84.87
IoUthres = 0.5 89.27 42.39 77.56 79.82

TABLE III
PERFORMANCE OVER ALL CATEGORIES ON THE NUSCENES VAL SET.

Method Matching criteria sAMOTA↑ AMOTA↑ AMOTP↑ MOTA↑

FANTrack [10] Distthres = 2 19.64 2.36 22.92 18.60
mmMOT [25] Distthres = 2 23.93 2.11 21.28 19.82

Ours Distthres = 2 39.90 8.94 29.67 31.40

metrics such as MOTA, MOTP (multi-object tracking preci-
sion), IDS (number of identity switches), FRAG (number of
trajectory fragmentation), FPS (frame per second).

Datasets. We evaluate on the KITTI and nuScenes 3D MOT
datasets, which provide LiDAR point cloud and 3D bounding
box trajectories. As the KITTI test set only supports 2D MOT
evaluation and its ground truth is not released to users, we
have to use the KITTI val set for 3D MOT evaluation. Also,
we are collaborating with nuTomony to use our proposed
metrics to build 3D MOT evaluation on the nuScenes dataset.
However, the first nuScenes 3D MOT challenge is not yet
finished when this work was developed. As such, we use
our evaluation tool to evaluate 3D MOT systems on the
nuScenes val set to develop a temporary comparison. For
future evaluation on the nuScenes dataset, we recommend
users to use the evaluation code provided by nuScenes and
primarily evaluate 3D MOT systems on the nuScenes test set
for comparison, though our developed temporary comparison
on the val set can still be used for reference.

In terms of the data split, we follow [11] on KITTI and use
sequences 1, 6, 8, 10, 12, 13, 14, 15, 16, 18, 19 as the val set
and other sequences as the train set, through our 3D MOT
system does not require training. For nuScenes, we use its
default data split. Regarding object category, we follow the
KITTI convention and show results on each category (Car,
Pedestrian, Cyclist). For nuScenes, we first obtain results on
each category and then compute the final performance by
averaging over 7 categories (Car, Truck, Trailer, Pedestrian,
Bicycle, Motorcycle, Bus). For matching criteria, we follow
the convention in KITTI 3D object detection benchmark and
use 3D IoU to determine a successful match. Specifically, we
use 3D IoU threshold IoUthres of 0.25, 0.5 for Pedestrian and

Cyclist, and IoUthres of 0.25, 0.5, 0.7 for Car. On nuScenes,
we follow the criteria defined in the nuScenes challenge and
use a center distance Distthres of 2 meters.

Baselines. We compare against modern open-sourced 3D
MOT systems such as FANTrack [10] and mmMOT [25].
We use the same 3D detections obtained by PointRCNN [2]
on KITTI and by Megvii [29] on nuScenes for our proposed
method and baselines [10], [25] that require 3D detections as
inputs. For baseline [10] that also requires the 2D detections
as inputs, we use the 2D projection of 3D detections.

Implementation Details. For our best results in Table I, III,
II and IV, we use (x, y, z, θ, l, w, h, s, vx, vy , vz) as
the state space of our 3D Kalman filter without including
the angular velocity vθ. We use Fmin=3 and Agemin=2 in
the birth and death memory module. For the threshold
to reject a matching in the data association module, we
empirically found that using IoUmin=0.01 for Car, Distmax=1
for Pedestrian, Distmax=6 for Cyclist can obtain the best
performance on the KITTI dataset. On the nuScenes dataset,
we use Distmax=10 for all object categories. For other detailed
hyper-parameters, please directly check our code.

B. Experimental Results

Results for Cars on the KITTI val set. We summarize the
results in Table I. Our proposed 3D MOT system consistently
outperforms other modern 3D MOT systems in all metrics
when using different matching criteria (e.g., 3D IoUthres =
0.25, 0.5, and 0.7). As a result, we establish new state-of-
the-art 3D MOT performance on the KITTI val set for Cars
and achieve an impressive zero identity switch.

Results for Pedestrians and Cyclists. In addition to evaluate
on cars, we also report our 3D MOT performance for other
objects such as pedestrians and cyclists on the KITTI val
set in Table II. Although tracking of pedestrians and cyclists
is more challenging than cars due to the small size of the
objects, we show strong performance of our 3D MOT system.

Results for all objects on the nuScenes val set. In addition
to evaluate on the KITTI dataset, we also report 3D MOT
results on the nuScenes val set in Table III. We emphasize
that the nuScenes dataset is more challenging than KITTI
due to sparse LiDAR point cloud inputs, complex scenes,
and a low frame rate. Therefore, 3D detections on nuScenes
are of significantly lower quality than 3D detections on
KITTI, resulting in that all 3D MOT systems have a lower



TABLE IV
ABLATION STUDY FOR CAR ON THE KITTI VAL SET USING THE PROPOSED 3D MOT EVALUATION TOOL WITH NEW METRICS.

Method variants Matching criteria sAMOTA↑ AMOTA↑ AMOTP↑ MOTA↑ MOTP↑ IDS↓ FRAG↓ FP↓ FN↓

(a) replace detector with [28] IoUthres = 0.25, same below 63.27 32.47 64.29 64.91 68.26 1 24 1045 1894
(b) change to 2D Kalman Filter 90.17 42.99 77.99 81.95 78.98 7 43 684 821
(c) add angular velocity vθ 93.29 45.44 77.40 86.16 78.39 0 16 365 795
(d) remove orientation correction 92.87 45.04 76.73 85.62 76.93 0 50 418 787
(e) IoUmin = 0.1 92.43 45.25 77.44 85.63 78.47 0 18 366 838
(f) IoUmin = 0.25 86.70 40.05 73.85 79.91 79.03 19 34 342 1322
(g) Birmin = 1 91.51 43.60 79.06 82.17 78.26 4 21 797 693
(h) Birmin = 5 90.56 43.49 75.46 84.89 78.69 0 13 278 988
(i) Agemax = 1 90.89 43.60 75.86 83.96 78.90 0 43 380 964
(j) Agemax = 3 91.26 44.48 77.17 84.75 78.21 0 13 503 775

(k) Ours 93.28 45.43 77.41 86.24 78.43 0 15 365 788

Frame 13 (FANTrack 2019) Frame 13 (Ours)

Frame 28 (FANTrack 2019) Frame 28 (Ours)

Frame 43 (FANTrack 2019) Frame 43 (Ours)

Fig. 4. Qualitative comparison between FANTrack [10] (left) and our system (right) on the sequence 3 of the KITTI test set.

absolute performance on nuScenes. Our 3D MOT system still
outperforms other 3D MOT systems in all metrics.

Inference Time. We compare inference time of all methods
in the last column of Table I. Our 3D MOT system (excluding
the 3D detector part) runs at a rate of 207.4 FPS on the KITTI
val set without the need of GPUs, achieving the fastest speed
among other 3D MOT systems in Table I.

Qualitative Comparison. We show qualitative comparison
between our 3D MOT system and [10] and in Fig. 4. The
3D tracking results are visualized on the image with colored
3D bounding boxes where the color represents the object
identity. We can see that the results of FANTrack (left)
contain a few identity switches and miss tracking for objects
at the rightmost of the image while our system (right) does
not have these issues on the example sequence. We provide
more qualitative results of our 3D MOT system in our demo
video, which demonstrates that (1) our system, requiring no
training, does not have the over-fitting issue on the dataset
and (2) our system often produces more stable results and
has fewer identity switches and jittered bounding boxes.

C. Ablation Study
We conduct all ablative analysis for cars on the KITTI val

set using the proposed 3D MOT evaluation tool along with

the new metrics, which is summarized in Table IV.

Effect of 3D Detection Quality. In Table IV (a), we switch
the 3D detection module from [2] to [28]. The distinction
lies in that [2] requires a LiDAR point cloud as input while
[28] only requires a single image. As a result, the quality of
3D detections produced by the monocular 3D detector [28] is
much lower than the LiDAR-based 3D detector [2] (see [2],
[28] for details). We can see that the 3D MOT performance
in (k) is also better than (a), suggesting that 3D detection
quality is crucial to the performance of 3D MOT systems.

3D v.s. 2D Kalman Filter. We replace the 3D Kalman filter
in our final model (k) with a 2D Kalman filter [14] in (b).
Specifically, we define the state space of an object trajectory
T=(x, y, a, r, s, vx, vy, va), where (x, y) is the object’s 2D
location, a is the 2D box area, r is the aspect ratio and
(vx, vy , va) denote the velocity in the 2D image plane. We
observed that using the 3D Kalman filter in (k) reduces the
IDS from 7 to 0 and FRAG from 43 to 15, which we believe
it is due to the fact that tracking in the 3D space can help
resolve the depth ambiguity that exists if tracking in the 2D
image plane. Overall, the absolute sAMOTA, AMOTA and
MOTA values are improved by 3% to 4%.

Effect of Angular Velocity vθ. We add vθ to the state space



so that the state space of a trajectory T = (x, y, z, θ, l,
w, h, s, vx, vy , vz , vθ) in Table IV (c). We observed that,
compared to (k), adding vθ improves sAMOTA and AMOTA
by 0.01% and decreases AMOTP and MOTA by up to 0.08%.
This shows that adding the angular velocity or not does not
really have a clear impact on the performance for all metrics.
Therefore, we simply do not include the angular velocity in
the state space of our final system for simplicity.

Effect of Orientation Correction. As mentioned in Section
III-D, we use an orientation correction technique in our
final system in Table IV (k). Here, we experiment a variant
without using the orientation correction in Table IV (d). We
observed that the orientation correction helps improve the
performance in all metrics, suggesting that this technique is
useful to our proposed 3D MOT system.

Effect of Threshold IoUmin. We change IoUmin=0.01 in (k)
to IoUmin=0.1 in (e) and IoUmin=0.25 in (f). We observed that
increasing IoUmin leads to a consistent drop in all metrics.

Effect of Birmin. We adjust Birmin=3 in (k) to Birmin=1 in
(g) and Birmin=5 in (h). We show that using either Birmin=1
(i.e., creating a new trajectory immediately for an unmatched
detection) or Birmin=5 (i.e., creating a new trajectory after an
unmatched detection is matched in next five frames) leads
to inferior performance in sAMOTA, AMOTP and MOTA,
suggesting that using Birmin=3 is the best.

Effect of Agemax. We verify the effect of Agemax by de-
creasing it to Agemax=1 in (i) and increasing it to Agemax=3
in (j). We show that both (i) and (j) result in a drop in
sAMOTA, AMOTA and MOTA, suggesting that Agemax=2
(i.e. keep tracking the unmatched trajectories Tunmatch in next
two frames) in our final model (k) is the best choice.

VII. CONCLUSION

We proposed an accurate, simple and real-time system
for online 3D MOT. Also, a new 3D MOT evaluation tool
along with three new metrics was proposed to standardize
future 3D MOT evaluation. Through extensive experiments
on the KITTI and nuScenes 3D MOT datasets, our system
establishes new state-of-the-art 3D MOT performance while
achieving the fastest speed. We hope that our system will
serve as a solid baseline on which others can easily build on
to advance the state-of-the-art in 3D MOT.
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