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Abstract—For robots to operate robustly in the real world,
they should be aware of their uncertainty. However, most meth-
ods for object pose estimation return a single point estimate of
the object’s pose. In this work, we propose two learned methods
for estimating a distribution over an object’s orientation. Our
methods take into account both the inaccuracies in the pose
estimation as well as the object symmetries. OQur first method,
which regresses from deep learned features to an isotropic Bing-
ham distribution, gives the best performance for orientation
distribution estimation for non-symmetric objects. Our second
method learns to compare deep features and generates a non-
parameteric histogram distribution. This method gives the best
performance on objects with unknown symmetries, accurately
modeling both symmetric and non-symmetric objects, without
any requirement of symmetry annotation. We show that both
of these methods can be used to augment an existing pose
estimator. Our evaluation compares our methods to a large
number of baseline approaches for uncertainty estimation
across a variety of different types of objects.

I. INTRODUCTION

Pose estimation is a commonly used primitive in many
robotic tasks such as grasping [1], motion planning [2], and
object manipulation [3]. For grasping, pose estimation is reg-
ularly used to register an observed object to a 3D model for
which grasp positions have been annotated [4], [5]. In motion
planning, many algorithms require the poses of objects in
the environment, either for avoiding collisions [6] or as a
state representation used for planning how to manipulate the
objects [2].

Most prior methods for pose estimation output a single
best guess of each object’s pose [7], [8], [9], [10]. In contrast,
for many robotic applications, we believe that it is important
for a robot to be aware of the uncertainty underlying these
estimates before taking an action. This uncertainty can be
caused by environmental factors, such as occlusions, poor
lighting, or object symmetry, or by biases in the algorithm,
induced by insufficient training sets. These factors can cause
ambiguity with respect to the object’s orientation. If this
uncertainty is not taken into account, then the actions of
the robot may cause irreversible damage to itself or its envi-
ronment. For example, a poorly estimated pose estimate can
cause a robot to knock over fragile objects while attempting
to grasp them. In such cases, rather than taking potentially
dangerous actions, the robot should instead capture more
information about the environment in an attempt to reduce
this uncertainty. Additionally, estimates of uncertainty allow
the robot to fuse multiple estimates, through tracking, to
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Fig. 1. Multi-modal distributions estimated by our Learned Comparison
Histogram approach. These distributions are generated for the tuna can, bowl
and sugar box using PoseCNN featurizations of the top right image. Here
we see the estimator capturing multiple possible viewpoint for the tuna can,
while still placing most of the probability density on the correct mode. It is
also able to capture the full symmetry of the bowl without any symmetry
labeling. In the case of unambiguous poses, like the sugar box, it is still
capable of producing tight uni-modal distributions.

achieve a more robust final pose estimate. Thus, methods
for pose estimation for robotics should output a distribution
of poses rather than just a single pose estimate.

We propose two novel methods for estimating orientation
distributions. The first method learns a uni-modal, parametric
distribution in the form of an isotropic Bingham, regressed
from deep learned features. This model is ideal for objects
that are known to be non-symmetric. The second learns to
estimate a multi-modal non-parametric distribution, in the
form of a histogram distribution, obtained using a learned
comparison function over deep learned features. We find that
this second method works well for objects with unknown
symmetries, accurately modeling both symmetric and non-
symmetric objects, without any requirement of symmetry
annotation.

We compare our learned methods against other statistically
driven methods for estimating parametric and non-parametric
orientation distributions. We evaluate each method using the
pre-trained feature representations from state-of-the-art pose
estimation methods [7], [8]. We evaluate each method on
a large pose estimation dataset [7] that has been used in a
number of recent works [8], [11].



II. RELATED WORK
A. Pose Estimation

Previous methods for pose estimation fall into four major
categories: segmentation based methods, local coordinate
based methods, image template based methods, and direct
regression methods. Segmentation based algorithms [12],
[13] use an object segmentation algorithm to isolate the
points associated with the target object. The segmented
depth pixels can be registered with a 3D model of the
object using Iterative Closest Point (ICP) algorithms. Local
coordinate methods densely predict the 3D location of each
pixel with respect to the original object model [9]. These
local coordinates define correspondences between the model
and the image pixel locations; which are then used with
RANSAC [14] to find the object’s pose. Alternatively, instead
of densely estimating coordinates, the coordinates of an
object’s bounding box can be regressed can be regressed [11].
Image template methods [15], [16], [17] render a template
image at multiple viewpoints around the object model and
compute a feature representation at each pose. The objects
pose is estimated by looking up the nearest object templates,
either by successive pruning of candidates [15], a hashing
function [17], [18], or by GPU parallelized comparison [16].
These coarse estimates tend to be refined using ICP. Recently,
deep learned methods have been explored, which can directly
regress the object’s pose using RGB images [7] or densely
fused image and point features [8]. In this work, we focus not
on improving the accuracy of the underlying pose estimate,
but in adding an model of the estimates uncertainty over the
entire orientation space.

B. Pose Distribution Estimation

While most prior methods for pose estimation output a
single best guess of each object’s pose, there has been some
recent work on estimating pose distributions. Su [19] esti-
mated uncertainty distributions over the individual camera
view angles relative to classes of objects through a soft
classification method. Marton [20] estimated a conditional
probability distribution over orientations, in the form of
a confusion matrix generated over rendered point clouds.
Glover [21] fit mixtures of Bingham distributions to clusters
of local point cloud features to estimate an orientation
distribution. Similarly, Riedel [22] combined multiple pose
estimates using Bingham mixture models. However, unlike
this work, they do not evaluate uncertainty estimation with
respect to existing deep learned methods or with respect to
log likelihood.

Other previous work has estimated a distribution over the
object coordinates [23] or bounding box coordinates [11].
However, these methods do not output a distribution over
poses, nor do they evaluate whether the distributions them-
selves are reasonable. One previous paper evaluates dis-
tributions over the poses of object classes [19], mostly
focusing on azimuth estimation. In contrast, we estimate the
orientation distribution of specific object instances and over
the full space of orientation.

Most recently, Deng [24] used a learned feature space to
estimate multimodal uncertainty distributions over rotations,
and used those estimates for particle filter tracking. However,
this work did not quantitatively evaluate the uncertainty
distribution itself, nor did it compare to other approaches
for estimating orientation distributions. Additionally, this
method requires the use of a specifically learned autoencoder
representation. Manhardt [25] explored learning orientation
distributions through PCA analysis of multiple orientation
hypotheses, trained using a winner-take-all approach. While
this method does visualize their distributions as Bingham
distributions, they do not investigate the accuracy of the un-
derlying uncertainty distribution beyond qualitative analysis.

C. Neural Network Uncertainty Estimation

Because deep learning is a popular method for many
computer vision tasks (including pose estimation), many
approaches have explored how to estimate uncertainty from
neural networks. The most popular approaches include
Monte Carlo Dropout [26] to estimate epistemic uncertainty,
and regressing to the parameters of a distribution [27] to
estimate aleatoric uncertainty. We evaluate both of these
approaches in this work.

D. Pose Tracking

Tracking 6D rotation has been done using Kalman fil-
ters over Bingham Distributions [28], [29]. Bingham dis-
tributions [30] are well suited for this problem when the
orientation distribution is expected to be unimodal, as they
well model rotation quaternion and their composition is well
defined. Additionally, particle filtering [24], [31] as well
as histogram filtering [20] have been used to sequentially
improve and track object pose. The distribution estimates
estimated by our method can be similarly used to improve
pose estimate accuracy.

ITI. BACKGROUND
A. Orientation Representation

Unit quaternions are used as our rotation representation,
as they are a compact, numerically stable representation
that does not suffer from singularities or gimbal lock. For
these reasons, they are the preferred representation of 3D
orientation in many papers for both robotics and deep
learning [7], [8]. Additionally, unit quaternions have well
studied parametric distributions, as well as several uniform
sampling strategies [32], [33], [34]. For more background on
quaternions, we refer the reader to [35].

B. Bingham distributions

One of our proposed methods, described in Section V-
A, makes use of a Bingham distribution [30]. A Bingham
distribution is an antipodal distribution over the surface of a
sphere, equivalent to a Gaussian distribution projected into
orientation space, SO(3). Bingham distributions have been
used for both orientation tracking and filtering [28], [21],
[22]. These distributions are parameterized by an orthogonal
4x4 quaternion rotation matrix M, which describes how the
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Fig. 2. System pipeline for estimating orientation distributions about an
existing pose estimator. The base pose estimator generates an orientation §
and a featurization ¢ of the input, one or both of which are used to estimate
a uncertainty distribution over possible poses. We render this distribution in
as a heat map in axis angle space, lower right, with each orientation being
plotted as point in the directions of the axis of rotation and at a distance
away form the origin equal to the angle of rotation.

distribution will be rotated on the 3-sphere, and the diagonal
4x4 concentration matrix Z which describes the spread of
the distribution. Similar to Gaussian distributions, Bingham
distributions can be simplified to an isotropic distribution,
parameterized by a mean quaternion and a single concentra-

tion parameter, analogous to variance for a Gaussian) .

IV. METHODS FOR ESTIMATING ORIENTATION
DISTRIBUTIONS

We introduce two novel algorithms for learning orientation
distributions. These methods can be used to augment many
existing pose estimators, without decreasing the single point
accuracy of the underlying system. In this work, we focus
on estimating only the uncertainty of the object’s orientation,
and not its full 6D pose. However, given a distribution over
the object’s orientation, a distribution over translation can
also be estimated using Rao-Blackwellized particle filter
sampling [24].

A. Bingham Distribution Regression

Our first method is designed to estimate the distribution
of non-symmetric objects. For such objects, we regress the
parameters of a Bingham distribution from deep learned
object features. Our method builds off of a base pose
estimator which extracts a set of features ¢ (1) from a cropped
image I of the target object. The base pose estimator then
regresses from these features ¢ () to a single point estimate q
of the object’s orientation. The focus of our approach is not in
obtaining these features ¢ () or in learning the point estimate
q; rather, these are provided as an input to our system. We
evaluate a couple of different options for feature extraction,
as explained in Section V-C, and show that our method works
for both.

We use the orientation q as the mean of the Bingham
distribution. From the features ¢(/), our method learns to
regress the remaining parameters of the Bingham distribu-
tion, explained below. The parameters of this method are
learned by maximizing the log likelihood of the ground-truth
pose for each image in the training set.

For simplicity, we limit our Bingham distribution to having
an isotropic covariance, requiring only a single parameter
o to be learned. The orthogonality constraint on M can

be handled using the Cayleys factorization of the of 4D
rotations [36], giving us a parameterization of M into two
unit norm quaternions, ¢y and qg. By setting q; = @ and qg
to the identity quaternion, we both simplify the regression
and guarantee that the distribution is centered about q.
This parameterization can be used to regress an anisotropic
Bingham, but we found that the isotropic Bingham produced
more accurate results and a more stable training procedure.
Results using the full Bingham regression are included as a
baseline; see Section V-A.5 for details.

B. Multi-modal Distribution Regression

For symmetric objects, or objects that appear symmetric
from certain poses or under particular occlusion patterns,
a uni-modal Bingham distribution may not be sufficient to
capture the object’s uncertainty. In such cases, a multi-modal
histogram distribution may be more appropriate.

We use a k-nearest neighbor representation over a uni-
formly gridded space of unique orientations. In this work,
we using the discretization method described by Straub [37],
as it enforces a near uniform distance between vertices, but
any uniform sampling or gridding method could be used.
The likelihood estimates at these vertices are interpolated
using inverse distance weighting to the k nearest orientations
with respect to angular distance. These interpolated values
are normalized by dividing by the surface integral of the
interpolation over the space of unique rotations, to form a
valid continuous probability distribution.

A naive approach to obtaining such a histogram would
be to regress from some latent features ¢(I) directly to
the parameters of a multi-modal histogram, p(q | ¢). We
include this approach as one of our baselines; see Section
V-A.6 for details. We show that such a method leads to poor
results, due to the inability of such a method to generalize
to unseen object viewpoints.

Fig. 3. Isotropic Bingham distributions regressed for the soup can, top, and
the wood block, bottom, using DenseFusion featurization. The estimator is
able to tightly fit a Bingham to the unambiguous pose of the soup can, but
is not able to capture the multi-modal symmetry of the wood block. The
only recourse is to inflate the uncertainty in an attempt to capture multiple
modes.



Learned Comparison Histogram: We instead learn a
comparison function f(¢(/;) | ¢(I)) between the features
¢(I) and the features ¢(;), which are computed from an
image of the object rendered at orientation ;. To simplify
notation, we will write this comparison function as f(¢; | ¢)
These rendered orientations are selected using the gridding
described above. Our feature comparison function, once nor-
malized, is specifically trained to approximate the posterior,
e.g. f(¢;,0)~ p(q;| @), as described below.

To mimic the posterior p(q; | ¢), we train the comparison
function, f(¢; | ¢), using an interpolated negative log like-
lihood loss. Specifically, given a ground-truth orientation of
q*, we minimize the loss

(D

where d(q*,qy) is the minimum angular distance between
orientations q* and qi. The set {qy,...,qx} are the K nearest
gridded orientations to q*, and {qj,...,qy} are all of the
orientations in our gridding. In our experiments, we use K =
4.

We pre-compute the features ¢; using a rendered image,
I;, of the object generated with uniform lighting and no
occlusions at orientation q;. This image is then passed
through the base pose estimator to extract features ¢;. Note
that, if the featurization ¢(-) is fixed, the features ¢; can be
pre-computed and cached. This method is capable of learning
tight uni-modal distributions when the pose of the object
is unambiguous, like the sugar box in Fig. 1, while still
maintaining the flexibility to learn complicated multi-modal
distribution cause by symmetry, as is the case with the bowl
or ambiguity cause by similar viewpoints, as seen with the
tuna can.

Although the feature comparison function f(¢;|¢) can be
parameterized in a variety of ways, we parameterize it as a
neural network that takes concatenated features ¢ and ¢; as
input. Implementation details of our specific architecture and
training procedure can be found in Section V-C.

V. EXPERIMENTAL EVALUATION
A. Baselines

We compare our method to other common distribution
estimation approaches.While the set of methods we compare
to is far from exhaustive, we believe it represents a good
sampling of the major classes of distribution estimation
algorithms.

1) Fixed Isotropic Bingham: Given a base pose estimator
(such as [8], [7]) which outputs a single point estimate q
of the object’s orientation, a simple baseline method for
estimating an orientation distribution is to fit a Bingham

centered about q, with a fixed isotropic concentration pa-
rameter, ¢. This parameter can be tuned independently for
each object, using cross-validation. In our experiments, we
fit this parameter using a sub-random search [38] over a
validation set, maximizing the log likelihood of the ground
truth orientation.

Note that, unlike our method described in Section IV, the
uncertainty of this baseline does not depend on the input
image; rather, a single uncertainty parameter is used for all
images of a given object type. Thus, this approach is not
sensitive to the uncertainties that can be induced by envi-
ronmental factors such as lighting, viewpoint, or occlusions.
We show that this approach performs significantly worse
than our method which outputs image-dependent uncertainty
estimates.

2) Mixture of Isotropic Binghams: Some methods, such
as DenseFusion [8], output a set of orientation estimates
q;, each with a corresponding confidence c¢;. A mixture of
isotropic Bingham distributions can be fit to this output,
with each isotropic Bingham distribution centered at the
orientation estimate ¢; with a fixed concentration parameter,
o, similarly tuned using cross-validation. These Bingham
distributions are combined into a single mixture distribution
by weighting each one by its confidence c;, where the
confidence scores are normalized to sum to one.

3) MC-Dropout Ensemble: Monte Carlo Dropout [26]
has been used to approximate the epistemic uncertainty
of a network’s predictions, using dropout to simulate an
ensemble of estimators. PoseCNN [7] includes a dropout
layer, whereas we retrained DenseFusion [8] with an ad-
ditional dropout layer inserted into the network. At test
time, n forward passes of the network are run on each
observation, with dropout active, to generate n orientation
estimates for each input. This process generates an estimate
of the epistemic uncertainty and is mathematically equivalent
to a deep Gaussian process [26]. We make the assumption
that these samples are drawn from a Bingham distribution
and fit the parameters of such a distribution to the sampled
orientation estimates. The number of forward passes used
provides a trade-off between the accuracy of the uncertainty
estimates and the speed of computation; following previous
work [39], we choose n = 50 as a balance between accuracy
and speed.

4) Confusion Matrix: As described in [20], a confusion
matrix can be used to estimate the conditional uncertainty
p(q* | q) of an estimate §. The confusion matrix is computed
over a discretization of the orientation space. This method
counts how often the ground-truth orientation q* is classified
as ¢ by the our base estimator in a training or validation set.
As with our method, we use the orientation discretization
from Straub [37] to define the discretization of the confusion
matrix.

Specifically, we form a n x n matrix, X, where n is
the number of orientations in our discretization. Each row
represents the estimated poses §;, whereas each column
represents the ground-truth poses ¢*. We initialize this matrix
to 0. To compute the elements of this matrix, we iterate over



our dataset. For each image /;, we compute an estimated
orientation §; with a base pose estimator (e.g. [7] or [8]).
Given the ground-truth pose ¢*, we then increment the
value of the matrix corresponding to the row and column
of (§j,q*). A small constant € is to each element of the
confusion matrix for Laplace smoothing, and the rows are
then normalized using the procedure described in Section
IV-B.

At inference time, we compute the estimated orientation §
using the base estimator. The row in the confusion matrix that
corresponds to this estimated orientation gives the estimated
value of the distribution p(q* | §).

5) Full Bingham Regression: Using the parameterization
described in Section IV-A, we can regress the parameters
of a full Bingham distribution. We still require that the
Bingham be centered at the output of the estimator, q, but
the covariance can be dilated and rotated about this point.
The four parameters of the diagonal concentration matrix,
Z, can be simplified to three parameters by subtracting the
maximum value, without loss of generality [30]. To rotate
the distribution about q, the 4D rotation matrix M, can be
post-multiplied by the four dimensional rotation matrix Q,
using a three dimensional rotation Rp parameterized by the
quaternion qp, Q =diag ([1 Rp]).

6) Direct Histogram Regression: As mentioned previ-
ously, we test directly regressing from the features ¢ (/) to the
histogram values at each gridded orientation q, as opposed
to computing these values based on feature comparisons.
For this baseline, the values at each grid cell, p(q | ¢), are
estimated using a neural network, which receives as input the
latent features ¢ and regresses an unnormalized posterior,
p(q; | ¢). As before, we train this function with the log
likelihood loss of equation 1. Also as before, we normalize
over all of the gridded orientations, and use the gridding
from Straub [37].

7) Cosine Feature Difference: As an ablation of our
learned comparison method from Section IV-B, we evaluate
using the cosine distance as the feature comparison function,
e.g. f(9;.9) = ¢;-0/(10]|[14]]). For this ablation, the
cosine distance replaces our learned comparison function, to
evaluate the benefits to learning such a comparison function.
This distance function f(¢;,¢) is used to approximate p(q; |
¢) in the same manner as described in Section IV-B.

B. Dataset

To evaluate the accuracy of our methods for uncertainty
estimation as well as the baselines, we use the YCB Video
dataset [7], a commonly used pose estimation dataset. This
dataset is comprised of videos of 21 objects in various
cluttered tabletop scenes, with segmentation and 6D pose
annotations. Each object in the dataset is accompanied by a
textured mesh. Among the 21 objects, four objects contain
discrete rotational symmetries, meaning the objects have a
rotational symmetry with respect to a discrete set of rotations.
One object (the bowl) has a continuous rotational symmetry,
having a symmetric axis about which the object can be freely
rotated. Twelve of the videos are held out as a test set,

leaving 80 videos for training. We focus on this dataset for
our evaluation, as the two base estimators that we evaluate,
DenseFusion [8] and PoseCNN [7], have made the pretrained
weight for these objects available.

C. Implementation Details

We tested each method for estimating orientation distribu-
tions using both PoseCNN [7] and DenseFusion [8] features.
When generating features with DenseFusion, we used the
segmentation estimated by PoseCNN for training images,
as is done in the original publication [8] and the ground
truth segmentation for the rendered images used for our non-
parametric distributions. We use the global feature produced
by DenseFusion for our multi-modal methods, while the
maximum confidence local feature is used in our Bingham
Regression method. These were experimentally verified to
produce the best results in each method. All features are
generated using pretrained models.

For PoseCNN features, we use the output of the last hidden
layer of the network’s orientation head. When generating
PoseCNN features for rendered images, it is possible for
the estimator to not detect the target object, as the network
jointly estimates a segmentation mask as well as the pose
of the object. In these cases, we evaluated each method
using the featurization of the detected object whose mask
maximally overlaps the target object. When the estimator
failed to find any object in an image, we set the feature
to the zero vector. This process is only used for rendered
images. For real images, only the features of objects detected
by PoseCNN are used.

Our methods are trained using a combination of real
and rendered data. This data is resampled to ensure a
uniform coverage over SO(3) using the discretization method
described in Section III-B. In this case, we use coarser
discretization than our distribution gridding, with a maximum
distance to the nearest bin center of about 26 degrees.

Our non-parametric methods used a simple three layer
neural network with 4096 neurons on each hidden layer,
dropout and ReLU activations on the input and first hidden
layer, and sigmoid activation on the output. The parametric
methods draw inspiration from DenseFusion [8], using four
fully connected layers, with 640, 256, and 128 neurons on
the hidden layers and ReLU activation functions.

D. Evaluation Method

We evaluate each orientation distribution estimator on each
example in the YCB test set and record the log likelihood
of the ground-truth pose, clipped to a minimum of le-6. A
likelihood distribution is computed for each of these images
and the likelihood of the ground truth pose is computed
given that distribution. For multi-modal methods, the inter-
polation described in Section IV-B is used, while Bingham
based methods use standard Bingham likelihood. The log
likelihood evaluation metric allows us to evaluate whether
the distribution is correctly placing probability mass in the
appropriate locations.



Our Method Baselines
Bingham Learned Fixed Bingham Confusion | Cosine Full Histogram
Objects Regression | Comparison || Bingham | Mixture | Dropout Matrix Distance | Bingham | Regression
Non-Symmetric
DenseFusion 2.80 1.18 1.74 0.66 0.70 1.63 -1.90 2.56 0.28
PoseCNN 1.91 2.17 1.50 - 2.71 -2.46 -0.92 1.95 1.87
Symmetric
DenseFusion -3.81 -5.54 -3.66 -2.27 -8.09 -2.91 -2.23 -4.18 -2.57
PoseCNN -8.82 -0.52 -9.18 -5.28 -1.75 -1.55 -3.70 -1.23
All

DenseFusion 1.72 0.08 0.86 0.18 -0.74 0.88 -1.95 1.46 -0.19
PoseCNN 0.19 1.74 -0.22 1.43 -3.31 -1.02 1.05 1.37

TABLE I
MEAN LOG LIKELIHOOD OF GROUND TRUTH ORIENTATION. FOR EACH GROUPING, BEST-SCORING METHODS ARE MARKED IN BOLD; SECOND-BEST

SCORING METHODS ARE INDICATED BY ITALICS.

VI. RESULTS

The log likelihood results of our method and all the
baselines can be seen in Table I. We separate the objects
into symmetric and non-symmetric objects and evaluate each
method using DenseFusion [8] and PoseCNN [7] features.
We find that our method of isotropic Bingham regression
performs the best for non-symmetric objects when combined
with DenseFusion features. Good performance is also ob-
tained with a Bingham distribution fit to samples from MC
Dropout using PoseCNN features. A uni-modal Bingham
distribution is able of capture the orientation uncertainty of
non-symmetric objects when the distribution is tightly fit
around a mean orientation, as shown by the tomato soup
can in Fig. 3. However, such a method will struggle with
symmetric objects, like the wooden block in Fig. 3, or
objects that appear symmetric from particular views or under
particular occlusion patterns.

While the Full Bingham Regression performed similarly
to the Isotropic Bingham Regression, we found this method
to be less numerically stable in training, as it requires the
gradients for the normalization constant of an anisotropic
Bingham distribution. The gradients of the isotropic nor-
malization constant, however, proved to be more stable and
cause few problems in training. Our experiments demonstrate
that this longer training time provides little benefit over the
isotropic version.

For symmetric objects, Table I shows that learning a non-
parametric histogram distribution is best able to capture
the multi-modal nature of the uncertainty of such objects.
Specifically, Table I shows that our Learned Comparison
Histogram estimation method has the best log likelihood,
when using PoseCNN features. PoseCNN features using His-
togram Regression is also among the top scoring methods for
this task, although performance is significantly worse than
our method. Note that the log likelihoods of the symmetric
objects are expected to be lower than the log likelihood for
non-symmetric objects, since the optimal distribution will
spread the probability mass evenly over each symmetric
mode, leading to a lower likelihood at each mode. This can
be seen when our method correctly distributes the probability
density to all eight of the wood block’s symmetric modes,
shown in Fig. 4. Overall, our learned comparison based

Fig. 4. Multimodal distribution of the wood block’s symmetries captured
by the Learned Comparison Estimator, using PoseCNN features. There are
eight distinct modes, associated with four 90 degree rotations about the long
axis multiplied by two 180 degree rotations about one of the short axes. This
distribution is impossible to well model with a single Bingham distribution,
as shown in Fig. 3, but can be easily captured by a multi-modal histogram.

method for estimating a non-parametric distribution is best
able to capture the uncertainty across the full set of objects,
having the flexibility to model multi-modal distributions for
objects with various types of symmetries, while still being
able to concentrate the probability mass over a single mode
when necessary.

We note that the log likelihood values in Table I may
be hard for the reader to interpret directly; for reference,
a uniform distribution, where every orientation is equally
likely, would be expected to obtain a log likelihood of -2.29.
As shown in Table I, some distributions perform worse than
the uniform distribution. This is likely caused by overesti-
mating the certainty of the output, i.e. the distribution for
such methods is often concentrated around a single incorrect
mode. In such cases, the method fails to put sufficient
probability mass in regions of the pose space far from this




incorrect mode, leading to a very low log likelihood at the
ground-truth pose.

Table I also reveals that DenseFusion performs poorly on
uncertainty estimation for symmetric objects, for all methods
and baselines. Our analysis revealed that this is due to Dense-
Fusion’s lack of robustness to poor segmentation masks.
To demonstrate this, we evaluated our Learned Comparison
method using DenseFusion features but using ground truth
masks, instead of estimated masks. The results, shown in
Table II, reveal a substantial increase in performance for
the log likelihood of symmetric objects, when using ground
truth masks, instead of estimated masks. When ground-truth
segmentation masks are not available, Table I shows that
our Learned Comparison method, combined with PoseCNN
features, can obtain good performance on these objects.

Non-Symmetric | Symmetric | All

Estimated Masks 1.18 -5.54 -0.18

Ground Truth Masks 1.97 -0.18 1.61
TABLE II

MEAN LOG LIKELIHOOD OF GROUND TRUTH ORIENTATION FOR
LEARNED COMPARISON ESTIMATOR USING DENSEFUSION FEATURES
WITH ESTIMATED AND GROUND TRUTH MASKS

A. Confidence Filtering

As previously shown [25], pose uncertainty estimation can
be used to robustly filter pose estimates. As we are directly
computing the likelihood of an estimate, the output of our
algorithm can be used to select which poses to trust and
which to reject. Specifically, we use each of our methods to
estimate a distribution over orientations. We then compute a
pose estimate § from the base pose estimator, and we use
our estimated distributions to compute the likelihood at this
pose: p(q| ¢(I)). For our Learned Comparison method, this
requires interpolating the histogram, which we achieve using
the interpolation described in Section IV-B.

We test the validity of this process in Table III, which
shows the effects of rejecting pose estimates based on
likelihood thresholds. In this experiment, we describe these
thresholds as multiples of the likelihood of a sample selected
at from a uniform distribution, 0.101. As a reminder, this
is a probability density, rather than a discrete probability
value, and thus ranges from O to infinity. For the remaining
poses, angular error is calculated with respect to annotated
symmetry axes and Average Distance Error (ADD) and
Symmetric Average Distance Error (ADD-S) is computed for
non-symmetric objects and symmetric objects, respectively.
Further details on these evaluation metrics can be found in
prior works [7], [8], [25].

Our results can be seen in Table III, which shows a
clear trend of decreasing angular error with an increasing
threshold of estimated log likelihood. This shows that using a
threshold on the estimated log likelihood (using our methods
for estimating orientation distributions) is indeed an effective
approach for filtering out examples with a large angular error.
Such a threshold can be used to allow a robot to determine
when its predictions might be inaccurate. In such cases, the

robot can move its camera to acquire new viewpoints before
taking an action, or it can ask a human for help.

Learned Comparison (PoseCNN)

Threshold Ang Error (deg) ADD (m) Reject (%)
- 25.44 0.0402 0
Uniform 24.76 0.0398 3
10x Uniform 23.69 0.0390 7
50x Uniform 17.12 0.0374 20
100x Uniform 15.90 0.0361 34
200x Uniform 12.72 0.0364 71
Bingham Regression (DenseFusion)
Threshold Ang Error (deg) ADD (m) Reject (%)
- 21.68 0.0155 0
Uniform 21.61 0.0155 0
50x Uniform 19.08 0.0145 11
250x Uniform 16.91 0.0135 18
le3x Uniform 13.74 0.0118 25
2e3x Uniform 12.53 0.0112 30

(a) Non-Symmetric Objects

Learned Comparison (PoseCNN)

Threshold Ang Error (deg) | ADD-S (m) | Reject (%)
- 40.05 0.0478 0
Uniform 34.13 0.0472 13
2x Uniform 32.60 0.0475 16
5x Uniform 29.24 0.0468 24
15x Uniform 25.43 0.0487 40

(b) Symmetric Objects

TABLE III
POSE ERROR COMPUTED ON ESTIMATES BELOW LIKELIHOOD
THRESHOLDS FOR NON-SYMMETRIC (A) AND SYMMETRIC (B)
OBJECTS. THE THRESHOLDS ARE DESCRIBED AS MULTIPLES OF
CHANCE, THE LIKELTHOOD OF A UNIFORM DISTRIBUTION (0.101).

VII. CONCLUSION

We propose two methods for augmenting existing pose es-
timation methods with orientation distributions. These meth-
ods were compared to a series of uncertainty estimation base-
lines, evaluated using the log likelihood of the ground-truth
orientation. Our findings indicate that, for non-symmetric
objects, our learned isotropic Bingham regression gives the
best performance. For objects with unknown symmetries, our
method for estimating a non-parametric distribution based
on a learned feature comparison gives the best performance.
We demonstrate that our method can be used to filter out
the examples with the worst angular error, for which the
robot can choose to capture more information about the
environment or request help from a human. Future work
will use this uncertainty estimation in the context of tracking
or grasping applications; we will also explore how multiple
methods for estimating uncertainty can be combined for
improved performance.
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