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Abstract

Accurate smartphone localization ( < 1-meter error) for indoor navigation
using only RSSI received from a set of BLE beacons remains a challenging
problem, due to the inherent noise of RSSI measurements. To overcome the
large variance in RSSI measurements, we propose a data-driven approach
that uses a deep recurrent network, DeepBLE, to localize the smartphone
using RSSI measured from multiple beacons in an environment. In
particular, we focus on the ability of our approach to generalize across
many smartphone brands (e.g., Apple, Samsung) and models (e.g., iPhone
8, S10). Towards this end, we collect a large-scale dataset of 15 hours
of smartphone data, which consists of over 50,000 BLE beacon RSSI
measurements collected from 47 beacons in a single building using 15
different popular smartphone models, along with precise 2D location
annotations. Our experiments show that there is a very high variability of
RSSI measurements across smartphone models (especially across brand),
making it very difficult to apply supervised learning using only a subset
smartphone models. To address this challenge, we propose a novel statistic
similarity loss (SSL) which enables our model to generalize to unseen
phones using a semi-supervised learning approach. For known phones,
the iPhone XR achieves the best mean distance error of 0.84 meters. For
unknown phones, the Huawei Mate20 Pro shows the greatest improvement,
cutting error by over 38% from 2.62 meters to 1.63 meters error using our
semi-supervised adaptation method.
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Chapter 1

Introduction

Smartphone-based localization using Bluetooth Low Energy (BLE) beacons is utilized

in various urban spaces, but its accuracy is severely limited by the large variance in

Received Signal Strength Index (RSSI) measured across various smartphone models.

Urban spaces such as hospitals, museums, shopping malls and airports utilize BLE

beacons to offer location-specific services but their use has been largely limited to

rough proximity sensing due to the instability of the RSSI measurement. Implementing

more accurate forms of smartphone localization needed for applications such as way-

finding (e.g., assisting blind people to navigate indoor spaces) is challenging due to

this lack of consistency between smartphone receiver characteristics. In this work,

we work towards developing a BLE beacon-based localization technique that can

generalize to any smartphone model.

The RSSI of BLE beacons measured by a smartphone can vary greatly for different

brands and models due to a number of reasons. Hardware differences such as the

form factor of the phone, receiver module, layout of the internal circuitry and antenna

design can all affect how the RSSI is measured. Software factors such as built-in

signal processing and data loss can also affect the RSSI measurements. Due to these

differences in measurements, it is challenging to develop a single method that will

work across multiple smartphones. Therefore, it is critical to develop localization

methods that can adapt to changes in RSSI measurements across smartphones.

Due to the differences in RSSI measurements across smartphones, fingerprinting

based localization methods are a favorable approach. Whereas trilateration methods
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1. Introduction

Figure 1.1: Proposed Approach: TransNet learns to transfer RSSI from any phone
to RSSI from a reference phone we had during training. LocNet is the Localization
engine to get positions given RSSI by BLE

often require calibration of measurements to fit a known sensor model to compute loca-

tion (e.g., log power drop off), fingerprinting methods bypass the need for calibration

by storing a large database of measurements to index location. Fingerprinting also do

not require a known parametric model and can capture complex non-linear changes

in RSSI measurements that may be challenging to define. The benefit of robustness

does come at the cost of a requiring a labor intensive data collection process, where

RSSI measurements must be recorded at many locations in the environment prior to

use. However, using indoor mapping technology such as robotic mapping systems,

the cost of data collection can be reduced.

In this work, we utilize a fingerprinting approach using a recurrent neural network

which has the ability to generalize to any smartphone model. We first characterize the

performance of a neural network-based localization system using a standard supervised

learning approach and show how it fails to generalize to different smartphone models.

We then propose a semi-supervise method for adapting the localization system by

introducing a translation network which is able to take the RSSI measurements of an

2



1. Introduction

unseen smartphone and convert it to the RSSI measurements of a known smartphone.

To evaluate our method we collect a large-scale dataset of BLE beacon data

collected using 15 popular smartphone models from Apple, Samsung, Google, Huawei

and Xiaomi. The data is taken in a large building instrumented with 47 BLE beacons.

We collected over 15 hours of RSSI measurement using various smartphones. The

dataset consists of over 50,000 beacon RSSI measurements and is 10 times larger

than existing datasets. The contributions of this work are as follows:

1. We propose the concept of a translation function which maps the RSSI signals

of unknown smartphones to the space of known smartphones

2. We provide an empirical characterization of RSSI localization on 15 popular

smartphones and quantify the large variance in RSSI measurements;

3. We present the largest BLE beacon RSSI dataset to enable thorough evaluation

of localization techniques across multiple smartphone models.

3
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Chapter 2

Related Work

Various localization techniques based on RFID [33], UWB radios [13], and ultrasound

[18] have been developed. Recently, localization using Channel State Information (CSI)

has been investigated to achieve a high accuracy (about 1m) [3, 31, 35]. However,

extracting the CSI in commodity smartphones is non-trivial. In contrast, RSSI

information is available ubiquitously and is easy to retrieve. For this reason and

relatively low infrastructure costs, using only RSSI from BLE or WiFi remain a

popular choice for indoor localization [10, 11, 16, 29].

A clear choice between using RSSI from BLE or WiFi remains an active topic

of research. The choice of WiFi often precedes BLE, as most buildings already

have WiFi installed. A prime reason for WiFi-based methods to not perform at par

with BLE is WiFi routers are not placed to support device localization but instead

strategically placed for efficient data transfer. However, at the same time BLE suffers

severe packet loss comparing with WiFi and other wireless techniques due to the

following three reasons. Firstly, there are only three broadcast channels allocated for

BLE beacons. When there are multiple beacon stations installed in the vicinity of

the receiver, collisions may happen such that the receiver cannot recover the beacon

signals correctly. Secondly, with a much lower transmission power of BLE beacons,

the transmission range of BLE is much shorter than that of WiFi. It is thus more

likely for receivers to be in the boundary areas of BLE beacon stations and suffer

from beacon lost due to fluctuations of receiving signal power. Thirdly, BLE beacon

stations are usually battery-powered, so there would be signal vacuums when the
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2. Related Work

batteries run out. However, in comparative studies [38] [15], the authors conclude that

BLE is much more suitable for the application of indoor positioning and navigation.

RSSI-based localization can be categorized into two categories: fingerprinting

and trilateration. Fingerprinting uses a database to store the RSSI strengths at

various known reference points. At run time, this database is used to calculate the

location. Both non-parametric method such as nearest neighbors, and parametric

approaches such as neural networks can be used for this computation. However, as

RSSI measurements must be collected for many locations in the environment, the

process is often time-consuming and expensive. Moreover, as these methods are based

on data of the RSSI distribution obtained from a set of receivers, naively using these

methods is ought to result in failure when the received RSSI distribution changes.

Trilateration on the other hand uses parametric models of RSSI signal attenuation to

form geometric constraints of the receiver with respect to a set of transmitters (or

vice versa). Known methods are able to estimate position within 2 meters [23, 26].

A variety of models have been proposed such as Gaussian models [11], Monte Carlo

[6], Bayesian [20], Hidden Markov Models [17], and radio propagation models [4].

Ring overlapping approaches have been proposed in the past [21, 32], however, these

methods tend to require additional calibration, both at the antenna and the phone

level.This calibration process based on transmitters and receivers significantly inhibits

their usage and generalization ability across different phones. Also modelling signal

propagation methods for complex indoor environments is extremely difficult [22] and

lead to wrong estimates.

Hence, often for large spaces fingerprinting based RSSI localization remains a

popular choice. [9] Transmitters (some BLE, some WiFi) were deployed across a floor,

and the ground truth locations were collected using an Active Bats system. Recently,

[27] came up with adaptations to a classic particle filter (with an observation model

as proposed in [11]) in order to deploy beacon-based localization in a large scale

building and achieving a localization error in the range of 2-3 m. However, the method

involves a lot of parameter calibration for different scenarios, drawing questions on

the generalization of the method across phones.

With the advent of deep learning and machine learning, some methods have

tried leveraging these parametric approximators for BLE localization. [2, 14, 34, 37]

combine use of robust feature estimates from Deep networks, with classical machine
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learning, algorithms like probabilistic KNNs and HMM’s to come up with indoor

positioning systems. . [5] proposed an end to end deep network performing RSSI

based localization. Although the results have been published on WiFi RSSI signals,

the end goal is very similar to what we are trying to achieve. Hence we use it as one of

our baselines. Very recently, [30] tried solving the inverse problem of localizing beacon

scanners, using RSSI strengths received. In the experiments section we compare a

very similar network as proposed by [30] architecture to DeepBLE.

Although there is some work on understanding variations of BLE signals across

different smart phone, it is not very well understood. [12] studies BLE technology on

a variety smartphones models finding out key differences on per smart phone basis.

However they do not test the BLE for Localization on different phones. Other works,

like [7, 27] evaluate their methods on additional phone models/devices, a rigorous test

of generalization is missing. As we see BLE Localization systems being deployed in

real world scenarios, with almost 200+ smart phone models present this is inevitably

a challenge that would inhibit the use case of RSSI based indoor localization methods

in future.

In this work we take up this challenge, analysing BLE RSSI for multiple smart-

phones, creating a large scale dataset for 15 different smart phones and propose a

localization engine that can achieve competitive results on all the phones, without

explicitly training the neural network in a supervised fashion on each phone.

citefingerprintingVStrialteration [23]. To estimate the distance from each antenna,

a variety of models can be employed: Gaussian models [11], Monte Carlo [6], Bayesian

[20], Hidden Markov Models [17], and radio propagation models [4] have been presented

over the years. Ring overlapping approaches have been proposed in the past [32] [21],

however, these methods tend to require additional calibration, both at the antenna

and the phone level. Lately, with Convolutional Neural Networks gaining popularity

in Computer Vision, [24] encoding the information like RSSI, ToF and AoA as heat

maps and passing through CNN’s to get an estimate on of location.
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Chapter 3

Problem Setup

Consider an indoor environment with B BLE beacons and P different smartphone

models (e.g., iPhone X, S10). Let the set of beacon indices be B = {1..., B}, and the

set of smartphone model indices be P = {1, ..., P}.
At any time step t, smartphone p ∈ P is at location xp

t ∈ R2. The RSSI received by

smartphone p from beacon b ∈ B at time t is sp,bt ∈ R≥0. The vector of RSSI received

by smartphone p from all B beacons at time t is spt = [sp,1t sp,2t ... sp,Bt ]T ∈ RB
≥0. For a

history of H time steps, the matrix of RSSI received by smartphone p from all beacons

at times {t− (H − 1), t− (H − 2), ..., t} is Sp
t = [spt−(H−1) spt−(H−2) ... spt ] ∈ RB×H

≥0

Consider the labeled dataset Dl = {〈Sp
t ,x

p
t 〉 | p ∈ P , t ∈ Tl} consisting of P × |Tl|

elements. Each element of Dl is a tuple, consisting of the matrix of RSSI received by

a smartphone p, and its corresponding location at some time t ∈ Tl.
Consider the unlabeled dataset Du = {Sp

t | p ∈ P , t ∈ Tu} consisting of P × |Tu|
elements. Each element of Du is the matrix of RSSI received by a smartphone p at

some time t ∈ Tu.

Let there be an unknown function f : RB×H
≥0 → R2 mapping the matrix of RSSI

received by any smartphone to the location of the smartphone at that time, i.e.

f(S) = x. In the problem of indoor localization, our goal is to approximate this

function. In this paper, we consider the following scenarios:

1. We consider the ideal scenario where we have access to labeled data from all

smartphones Dl.

9



3. Problem Setup

2. We consider the more realistic scenario where we only have access to limited

labeled data from a subset of smartphone models. Let P ′ be a subset of

smartphone models, i.e., P ′ ⊂ P. Then, the corresponding subset of labeled

data is D′l = {〈Sp
t ,x

p
t 〉 | p ∈ P ′, t ∈ Tl} ⊂ Dl. We consider the situation where

we only have access to D′l.

3. Lastly, we consider the scenario where we have access to limited labeled data

from a subset of smartphone models, as well as limited unlabeled data from

a subset of unseen smartphone models. Let Q′ be a subset of smartphones

such that Q′ ∈ {P \ P ′}. Then, the corresponding subset of unlabeled data

is D′u = {Sp
t | p ∈ Q′, t ∈ Tu} ⊂ Du. We consider the situation where we only

have access to D′l and D′u.

In each scenario, our goal is to approximate the function f from the available

data Dtrain, such that our approximation f̂ provides accurate localization of any

smartphone in a known environment. Specifically, scenario 1: Dtrain = Dl,

scenario 2: Dtrain = D′l, scenario 3: Dtrain = D′l ∪ D′u.

10



Chapter 4

Proposed Approach

As discussed in Section 3, our goal is to construct an approximation f̂ to the

localization function f : RB×H
≥0 → R2, which maps the matrix of RSSI received by

any smartphone to the location of the smartphone at that time. In each of the three

scenarios we consider, the localization function f̂ is approximated with a deep neural

network. For each scenario, we propose different paramterizations of f̂ , objectives,

and training procedures based on the data available for training. We refer to our

proposed methods collectively as DeepBLE.

Figure 4.1: Proposed Architecture

11



4. Proposed Approach

4.1 Scenario 1: Labeled Data for All Smartphone

Models

We develop our first DeepBLE method for learning the localization function f̂ where

we are given labeled data from all phone models for training, i.e., Dtrain = Dl. While

this scenario is ideal, it is often unrealistic as it requires that we obtain the ground

truth location for every possible smartphone model for training.

4.1.1 Localization Network (LocNet):

The fully supervised localization network f̂ is modeled as a 2 layer LSTM followed

by two fully connected layers. We call the localization network, LocNet. At time

t, it takes as input Sp
t , i.e., the beacon readings received by smartphone p in the

last H = 5 seconds, and outputs the location xp
t . During training, LocNet learns to

correctly interpret temporal beacon information, e.g.: how fast signals are changing,

patterns of oscillation in signals, etc., and maps it to a location x.

4.1.2 Optimization:

We define the following objective function:

min
f̂

E〈S,x〉∼Dl

[∣∣∣∣∣∣f̂(S)− x
∣∣∣∣∣∣2
2

]
(4.1)

This is the standard empirical risk minimization objective for supervised learning,

where we learn the minimizer f̂ over the training data for all phone model P .

4.2 Scenario 2: Limited Labeled Data

We now develop our second DeepBLE method for a more realistic scenario, where we

have access to limited labeled data from a subset of smartphone models P ′ ⊂ P , i.e.,

Dtrain = D′l. Each model included in the subset P ′ belongs to a brand. For example,

P ′ may include iPhone 7 and iPhone 8 from the Apple brand as well as Pixel 3 and

12



4. Proposed Approach

Pixel 4 from the Google brand. In this example, P ′ does not include any models from

Samsung, Xiaomi or Huawei brands.

If we learn a localization function according to optimization 4.1 using only the

limited labeled data D′l, we will overfit to the smartphone brands included in P ′ since

the training data is not representative of all smartphone brands. In order to avoid

overfitting, we propose the use of a BLE signal translation function which maps RSSI

measured by any smartphone to that of a smartphone brand which is known, i.e.,

one which was part of the labeled training dataset.

Consider a brand-specific localization function h : RB×H
≥0 → R2, which maps the

matrix of RSSI measured by smartphone models of a known brand to the smartphone’s

location. Let the set of smartphone models of that known brand be indicated by

J ⊂ P ′.

Now consider a BLE signal translation function g : RB×H
≥0 → RB×H

≥0 , which takes

as input the matrix of RSSI received by any smartphone model p ∈ P and transforms

it to a corresponding matrix of RSSI measured by a model p′ ∈ J from the known

smartphone brand, at the same location. Then, f(S) = h(g(S)) is the true localization

function, where S is the matrix of RSSI received by a smartphone model p ∈ P . Our

goal is to learn an estimate of the localization function f̂ = ĥ(ĝ).

For this scenario, we define a new loss function with the following components:

1. Localization loss: Lloc =
∣∣∣∣ĥ(ĝ(St)) − xt

∣∣∣∣2
2
. This quantifies deviation of

estimates of our localization function from ground truth label x and is identical

to the loss function in scenario 1.

2. Position smoothness loss: This quantifies the distance between consecutive

location predictions, Lps =
∣∣∣∣ĥ(ĝ(St)) − ĥ(ĝ(St−1))

∣∣∣∣2
2
. This term acts as a

regularization term to ensure that estimated motion is smooth.

3. Statistic similarity loss (SSL): Intuitively, we know that beacons that are

near each other will often be ‘seen’ together by the smartphone Bluetooth

receiver. This means that beacon RSSI measurements are correlated and that

the outputs of the translation function g should also be correlated. Formally,

consider the subset of models J ⊂ P ′ of the known brand . Labeled data from

models of this brand is given by D′J = {〈spt ,x
p
t 〉 | p ∈ J , t ∈ Tl}. We use the

brand-specific data D′J to infer brand-specific correlation statistics.

13



4. Proposed Approach

Now, consider a matrix M ∈ RB×B
≥0 of statistics derived from data D′J . Each

entry of M is described as:

Mij = E〈s,x〉∼D′
J
[sj | si > 0],

where Mij is the expected RSSI from the jth beacon when the RSSI from the

ith beacon is detected.

We use the inferred statistics to quantify the deviation of the output of ĝ from

the expected statistics of smartphone models ∈ J . Our proposed statistic

similarity loss (SSL) is defined by:

Lssl =
H∑
t=1

B∑
i=1

B∑
j=1

witdijt

where:

wit = exp

(
(Sit −Mii)

τ

)
, and

dijt =

||Mij − ĝ(S)jt ||1 if Mij − ĝ(S)jt < 0

(Mij − ĝ(S)jt)
2 if Mij − ĝ(S)jt ≥ 0

and τ is a hyperparameter. In our experiments, τ = 10. Recall that the output

of ĝ is a matrix of translated RSSI and ĝ(S)jt denotes the entry corresponding

to the jth beacon at time index t.

Our function ĝ must map the matrix of RSSI received by any smartphone model

to the corresponding RSSI received by a known smartphone model ∈ J . Our

proposed loss SSL quantifies the deviation of the output of ĝ from the expected

statistics of smartphone models ∈ J . Specifically, Lssl provides an exponential

weighting (wit) to any deviation (dijt) from the expected RSSI of the jth beacon

when the ith beacon is detected, according to pairwise statistics Mij of known

smartphone models ∈ J . When ĝ is learned correctly the statistical deviation

of the translated output signals should be low.

We softly encourage the corrected readings to have a higher mean, by giving

an L1 penalty when readings are higher than the desired statistic. The insight

14



4. Proposed Approach

here is that having higher RSSI BLE generally helps in better localization

performance, even for the known phones.

4. Temporal smoothness loss: One of the major problems we observed in

lower-end smartphone models is lost RSSI information where beacons randomly

measure zero RSSI. In order to address this problem, we introduce a temporal

smoothness loss that ensures that the output of the translation function ĝ does

not randomly drop RSSI,

Lts =
H−1∑
t=1

B∑
i=1

|| ĝ(S)i,t − ĝ(S)i,t+1 ||1.

ĝ(S)i,t is the entry corresponding to the ith beacon at time index t.

4.2.1 Optimization:

We propose a modified optimization with weights wloc, wps, wssl, wts on each term

respectively:

min
ĥ, ĝ

E〈S,x〉∼D′
l

[
wlocLloc + wpsLps + wsslLssl + wtsLts

]
(4.2)

By training ĥ and ĝ to minimize this objective, we expect generalization of

localization performance to unseen smartphones. The localization network ĥ has the

same architecture as LocNet detailed in the previous scenario. We now describe the

signal translation network ĝ.

4.2.2 Signal Translation Network (TransNet):

Our signal translation function ĝ transforms the matrix of RSSI measured by a phone

p ∈ P, to the matrix of RSSI measured by a model of a known brand in the same

location. Intuitively, we expect the difference in RSSI measured by different phones

at the same location to be bounded. Therefore, we constrain ĝ to output a correction

to its input. Formally, our signal translation function is a neural network of the form

ĝ(S) = ReLU(r̂(S) + S). We call this network TransNet. The correction r̂(S) is a

6-layered 1-D convolutional autoencoder, composed of 3 encoder layers and 3 decoder
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layers with ReLU activations.

4.3 Scenario 3: Limited Labeled and Unlabeled

Data

We now describe our third DeepBLE approach for the scenario in which RSSI

measurements for new smartphones (not contained in the labeled data) can be

collected as people walk around the indoor environment. However, this data is not

annotated with the smartphone’s true location, i.e., the data is unlabeled. In this

scenario, we have access to limited labeled data D′l from smartphone models P ′ ⊂ P ,

as well as limited unlabeled data D′u from other smartphone models Q′ ∈ {P \ P ′}.

4.3.1 Optimization:

Like the previous scenario, we consider the estimation of ĥ and ĝ, so that the

localization function f̂ = ĥ(ĝ). Intuitively, using the additional unlabeled data,

we can further tune the translation function ĝ to deal with changes in the input

distribution. For example, some smartphones may exhibit more RSSI signal dropping.

Training ĝ and ĥ to deal with such changes further equips our localization function f̂

to generalize to unseen smartphones. While the previous two scenarios involved a

supervised approach to learning f̂ , in this scenario, we describe a semi-supervised

approach:

1. Using D′l, we first perform optimization (4.2) in a supervised manner, to obtain

initial estimates ĥ and ĝ.

2. Once we have initial estimates of ĥ and ĝ, we use both labeled data D′l and

unlabeled data D′u from new smartphones Q′ to improve our estimates. Notice

that, in optimization (4.2), only the localization loss Lloc depends on the label

x. Thus, we define a modified objective function for the unlabeled data by

adding loss functions that do not depend on the label. We use weights wloc,

wps, wssl, wts as before, as well as a weight wu on the expected loss over the
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unlabeled data:

min
ĥ, ĝ

E〈S,x〉∼D′
l

[
wlocLloc + wpsLps + wsslLssl + wtsLts

]
+

wu Ex∼D′
u

[
wpsLps + wsslLssl + wtsLts

]
(4.3)

By training ĥ and ĝ to minimize this objective, we expect better generalization

of localization performance to unseen smartphones. The localization network ĥ and

signal translation network ĝ have the same architecture as LocNet and TransNet

detailed in the previous scenarios.
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Chapter 5

Dataset

Model Price OS Processor

Apple iPhone XR $600 iOS 13 A12 Bionic

Apple iPhone 8 $450 iOS 13 A11 Bionic

Apple iPhone 7 $190 iOS 13 A10 Fusion

Samsung Galaxy S10 $700 Android 10 SM8150 SD-855*

Samsung Galaxy Note9 $600 Android 9 SDM845 SD-845*

Samsung Galaxy A50 $300 Android 9 Exynos9610

Google Pixel 4XL $900 Android 10 SM8150 SD-855*

Google Pixel 3XL $550 Android 10 SDM845 SD-845*

Google Pixel 3aXL $400 Android 10 SDM670 SD-670*

Xiaomi Mi 9 $435 Android 9 SM8150 SD-855*

Xiaomi Mi 9T Pro $360 Android 9 SM8150 SD-855*

Xiaomi Redmi Note 8 $180 Android 9 Mediatek Helio G90T

Huawei Mate 20 Pro $550 Android 9 HiSilicon Kirin 980

Huawei Honor 20 Pro $340 Android 9 HiSilicon Kirin 980

Huawei Honor View 20 $290 Android 9 HiSilicon Kirin 980

Table 5.1: Specs of Smartphone models used as BLE Receivers. *Qualcomm Snap-
dragon
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5. Dataset

Figure 5.1: The colored region is the area we collect data in. The red dots show the
beacons, along with the minor ids

Indoor localization using RSSI has been gaining momentum in the last few years,

but the scarcity of large scale public datasets on BLE Localization has been a problem

for researchers working toward this problem. To the best of our knowledge, [25]

is the only publicly available BLE RSSI dataset. The dataset was collected using

iPhone6S, receiving BLE RSSI from 13 different iBeacons deployed in the Waldo

Library of Western Michigan University. The dataset contains two sub-datasets: a

labeled dataset (1420 instances) and an unlabeled dataset (5191 instances). As we

try to analyze how varying phone types, change RSSI signals, the data cannot be

used for our analysis.

So towards this end, we collected a large scale BLE dataset with about 54K RSSI

fingerprint samples along with fine-grained location information, for 15 smartphone

models. The setup was deployed across a university floor spanning 2000 sq. m. in

area. The dataset comprises of RSSI data ranging from Kontakt.io beacons for fifteen

different phones from 5 major brands which include Apple, Samsung, Pixel, Huawei,

and Xiaomi. In this section, we describe the data collection procedure in detail.
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5.1 Overview

We designed a rig, as shown in 5.1, which can hold three phones and a Kaarta Stencil

on top to get precise ground truth locations. Study in [38], suggests BLE data

changes significantly with orientations, so having three facing directions helps us in

augmenting the BLE data substantially at every single location. About 50 Kontakt.io

beacons were installed all across the first floor of a university, as shown in 5.1. One

of the factors that influence noise in RSSI systems is multipath fading, which often

makes localization using BLE a lot more difficult. Therefore, the complex structure

of the building makes it a perfect testing ground for our purpose.

Figure 5.2: The rig used for data collection

It might be enticing to clamp a large number of phones on a rig, to get data
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for many different phones together. To do so, we designed a rig which can hold 15

phones together; however, the data received by different phones changes compared to

RSSI received by a smartphone as a person is walking. Also, the number of beacons

detected by each smartphone decreases significantly. For Huawei and Xiaomi, less

than five beacons were recorded compared to 17-18 beacons when used separately.

These limits in such extreme cases boil down to available bandwidth, transmission

duty-cycle and physical proximity. If all the devices plan to talk to one ’hub’, then the

potential will be drastically reduced. Also, it is worth mentioning that although the

theoretical limits and guarantees mentioned in the BLE protocol state a transmission

rate of 1Mbps, the packets generally transmit in real-world scenarios at somewhere

close to 115Kbps, increasing the packet loss to a high degree and limiting the use

case when there are way too many devices using BLE.

5.2 Obtaining Ground truth Locations

Typically fingerprinting is performed standing at specific reference locations, collecting

the RSSI and then using the BLE data at these reference locations to localize. However,

as the data collection procedure is static, we cannot expect the methods to work very

well as the robot/person is moving. However, collecting ground-truth as the robot

moves requires high-end infrastructure in the building, making it extremely infeasible

for scaling such methods. Stencil by Kaarta is a stand-alone, lightweight and low-cost

system delivering the integrated power of mapping and real-time position estimation

with a precision of ±30mm. The device is based on the scientific work [36] and

depends on LIDAR, vision and IMU data for localization. The system uses Velodyne

VLP-16 connected to a low-cost MEMS IMU and a processing computer running

Robotic Operating System (ROS) for real-time six DoF mapping and localization. A

10-Hz scan frequency is used for the data capture VLP-16 has a 360◦ field of view with

a 30◦ azimuthal opening using 16 scan lines. The stencil tilt angle is recommended to

be within the ±15◦ envelope. The progress of the mapping can be monitored on-line

via an external monitor attached via an HDMI cable.[19]. For robust estimates, we

use the multi-modal localization engine, which gives us position estimates using data

captured via both camera and LIDAR.
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5.3 Transmitters - BLE Beacons

For our analysis and experiments, we used beacons manufactured by Kontakt.io. Some

of the key factors and parameters of BLE beacons that can significantly influence

localization performance are Broadcasting Power, Advertising Interval, and Measured

Power. In our setup these values are -12dBm, 100ms and -77 dBm respectively. We

refer readers to [1] for detailed analysis and impact of each of these terms.

5.4 Receivers - Commodity Smartphones

We used fifteen different smartphone models from 5 notable brands, with their price

ranging between $250 to $ 900 (Table 5.1) as receivers. Broadly, choice in every

brand comprises of one lower-end phone, one middle-end phone and one high-end

smartphone. The detail and specs for every phone are consolidated in table 5.1. Note

that every phone used has BLE version 5, except iPhone 7, which is using a version

4.2.

5.5 API for accessing BLE Beacon RSSI data

iOS (on iPhones) has an inbuilt API to log the beacon data being sensed. However,

we note that these readings are processed, and the maximum frequency with which

one can access the data is 1 Hz. For Android we tried using the Android Beacon

Library for data collection. however we observed a huge amount of packet loss. We

believe the application is sub-optimally designed for large scale Beacon data collection

and hence we built our in-house Android Beacon logging library that logs beacon

scans at a consistent rate of 1Hz with zero packet loss in processing. 5.3 shows the

difference between the readings logged by Android Beacon library and our library.

5.6 Time Synchronization

We match the data recorded from the different phones with the ground truth from

the stencil using timestamps recorded at both ends. In order to do this accurately,
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Figure 5.3: Comparison of RSSI BLE recorded by Android Beacon Library and our
proposed API
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the time on the devices need to be synced. We perform NTP time sync on both the

stencil and the phones at the beginning of every run using the same NTP server 1 .

We empirically observed the sync to be precise to a few microseconds.

5.7 Data Collection Procedure

We place Kontakt.io beacons across the floor of a university building, as shown in

Figure 5.1(b). The rig is designed to hold three phones (Figure 5.1(a)). We group

the phones by brand and collect around 60 mins of data for each brand. The colored

region Figure 5.1(b) is the regions where we perform localization. To make sure the

comparison between the phones is fair, and the beacon signals have not changed

drastically between different brands, any given day we data is collected for all brands

by the same person. This process is repeated on multiple days to collect the complete

data set. The data has been collected, during the after-hours in the evening, so

that noise due to external factors is subsidized, and we can focus on change in RSSI

distributions introduced by varying smartphone models. For different runs, we ensure

that the gait style and walking pattern does not vary a lot between brands. As we

collect different runs of data, we observe that as the frequency of BLE data reception

is low (typically 1 Hz), the BLE data received does not change drastically from person

to person for normal walking speeds (1-1.2m/s). Expecting absolutely no change

between different runs is not possible. However, the best efforts were made to collect

the data to be as similar as possible to a person walking with a phone in hand, with

almost all factors we can control remaining the same except the smartphone models.

5.8 Train Test Validation Split

We refer to the collected Dataset as Dc which we split into the train set (Dc,train),

validation set (Dc,val), and test set (Dtest). Each of these sets are independent runs,

with no overlapping samples. We note that through out our analysis, Dtest remains

untouched and is used only for final evaluation.

1NTP server used: time.google.com
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Env. → No Interference W/ Interference

Phone↓ Mean Var SnR Mean Var SnR

iPhone 7 27.61 7.18 3.83 26.80 4.07 6.59
iPhone 8 30.20 1.73 17.49 27.52 8.25 3.34

iPhone XR 29.17 2.26 12.87 27.93 0.37 76.47
Galaxy S10 33.04 8.09 4.09 20.87 14.77 1.41

Galaxy Note9 30.30 2.86 10.58 22.35 40.92 0.55
Galaxy A50 30.83 17.93 1.72 26.80 19.03 1.41
Pixel 4XL 24.46 11.47 2.13 11.83 41.93 0.28
Pixel 3XL 30.35 0.49 62.22 16.41 42.72 0.38
Pixel 3aXL 28.98 3.20 9.07 20.61 50.37 0.41

Mi 9 27.39 45.90 0.60 19.11 41.77 0.46
Mi 9T Pro 30.39 55.79 0.54 19.12 62.34 0.31

Redmi Note 8 32.33 4.35 7.43 22.50 43.95 0.51
Mate 20 Pro 34.67 1.39 24.88 26.33 21.87 1.20
Honor 20 Pro 28.04 11.91 2.35 21.07 35.63 0.59

Honor View 20 26.09 3.99 6.53 25.17 7.06 3.57

Table 5.2: Per phone signal statistics of one beacon with (47 other beacons) and in
absence of other beacons. RSSI distribution can change significantly across phones.

5.9 BLE RSSI Analysis

Here we perform simple empirical analysis to understand how RSSI data received

differs between different smart phones.

5.9.1 RSSI without Interference

In an isolated environment, we consider one beacon and one smartphone at a time.

The BLE beacon and smartphone are kept at a distance of 1m, and RSSI data is

collected for 60 seconds for each phone sequentially. We calculate the mean and

the variance of the RSSI signal for each phone using the signal strengths registered

during the 1-minute interval. The numbers are reported in 5.2. Although the mean

RSSI being registered across different phones is approximately the same, the variance

changes drastically across phones. For particular phones, signal drops are observed.

For instance, for Mi 9T Pro, we observe the beacon was not registered for 3 seconds

continuously.
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Figure 5.4: RSSI vs. Time plots for the two experimental setups show that having
multiple beacons in the environment has little impact on the nature of the signal from
iPhone, some impact on the Pixel phone, but major impact in case of the Xiaomi
phone. We see significantly higher instability in Experiment 2

27



5. Dataset

5.9.2 RSSI with Interference

We repeat a similar experimental setup, with the same beacon, but in the presence

of multiple other beacons to act as sources of interference. According to [22], we

know multi-path fading, and interference due to multiple beacons can lead to a

significant change in RSSI behavior. The numbers are reported in 5.2, under the

”W/Interference” heading. The experiments were performed in the building, where

the dataset has been collected. We observe in addition to the variance, in this case,

the mean RSSI changes significantly across phones, contrary to what we observed in

the no interference setting. Also, we note that the variance (noise) is not directly

related to what we observed in the absence of other sources of interference. For

instance, Pixel3XL records a significant variance in this setup, and iPhone XR shows

a remarkably stable reading here (5.4). The differences we observe can be due to

multiple factors, which include multi-path fading and interference due to multiple

beacons. Empirically we conclude, that the behaviour of RSSI distribution can change

significantly across phones in the presence of other sources of interference.

5.9.3 RSSI Receiver Failure Statistics

A troubling phenomenon that we encountered were frequent occurrence of receiver

failure where all RSSI measurements become zero at random time instances.

We compute the following metrics to quantify receiver failure:

1. Non Zero Mean RSSI - The average RSSI strength that a phone detects for

RSSI measurements greater than -100 dBm

2. Receiver Failure - Percentage of samples in the train data when no beacons

were detected

3. Dead time - Mean duration of such Receiver failure incidents.

These metrics obtained for each phone are reported in Table 5.3. Note that

receiver failures happen about 15% of the time for Xiaomi models and can last

roughly from 1 to 3 seconds. These statistics suggest that the translation network

that we implement needs to be able to handle significant receiver failures where all

beacons RSSI measurements are completely missing.

To provide a more qualitative visualization of the dead time issue, we had a
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Phone Mean Receiver Dead
Name RSSI(dBm) Failure(%) time(s)

iPhone 7 12.09 0.00 0.00
iPhone 8 12.84. 0.00 0.00

iPhone XR 11.64 0.00 0.00
Huawei Mate 20 Pro 9.28 9.98 1.45
Huawei Honor 20 Pro 8.28 8.52 1.51

Huawei View 20 7.389 14.96 1.55
Xiaomi Mi9 8.27 15.18 3.20

Xiaomi Mi9TPro 10.03. 15.11 3.19
Xiaomi Redmi Note 8 . 10.03 7.88 1.00

Google Pixel 3aXL 9.68 0.00 0.00
Google Pixel 3XL 10.00 0.00 0.00
Google Pixel 4XL 8.63 0.00 0.00

Samsung S10 13.18 0.16 1.73
Samsung A50 10.25 0.17 1.31

Samsung Note9 9.25 0.16 1.32

Table 5.3: RSSI Receiver Failure Statistics

subject walk with two phones (one in each hand), across the building recording RSSI

from 47 possible beacons on both phones. We plot the RSSI vs. Time plot for a

particular beacon (b = 11) for the Apple iPhone 7 and Xiaomi Mi9T Pro shown in

Figure 5.5. Notice that the Mi9T Pro has many instances of signal dropping (no

RSSI measurements) over time. In contrast, the iPhone 7 has a strong RSSI signal

throughout.

5.9.4 t-SNE Analysis

To visualize mathematically, how RSSI data from different phones differ, we train a

simple classifier network with one phone from each brand and get the 3 dimensional

t-SNE reduction to features of the last layer. 5.6 shows the plot so obtained. The plot

suggests that each phone can be clustered in local regions and indeed the distribution

for RSSI from each phone is different from one another. Inevitably, if we train our

Machine Learning algorithm naively to fit one particular phone distribution, it won’t

be able to generalize across other phones.
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Figure 5.5: RSSI by iPhone 7 vs. RSSI by Xiaomi30
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Figure 5.6: t-SNE plots for classification features from each phone

31



5. Dataset

32



Chapter 6

Experiments

In this chapter we consider the experiments performed with our proposed approach

and our comparisons with commonly used and state of the art methods for localization.

But before we

6.1 Experiments: DeepBLE Methods

In this section, we present experiments performed using the DeepBLE methods

developed in Section 4. We implement all methods using PyTorch [28]. Before

detailing experiments for different scenarios, we describe our augmentations to the

collected data Dc,train and the resulting labeled data set Dl. We also provide details

of the evaluation metrics used.

Data augmentation:

Based on the analysis of RSSI across different smartphone models (Section 5.9), we

augment the collected train data Dc,train as follows:

• Scaling the RSSI strengths: Dependence of beacons on batteries often leads

to a decrease in RSSI transmitted by a beacon with time. To replicate that

effect, we scale down the BLE input S at multiple scales.

• Imitating packet loss: Given only three channels for transmission in BLE,

Packet Loss is often observed when there are too many beacons in an environ-
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Scenario Scenario 1 Scenario 2

Proposed Baseline 1 Baseline 2 Proposed

Test Phone Mean Std Mean Std Mean Std Mean Std
iPhone 7 0.95 0.65 0.99 0.83 0.92 0.83 0.91 0.75
iPhone 8 1.09 0.73 1.13 0.95 1.16 0.99 1.06 0.76
iPhone XR 0.92 0.60 1.05 0.83 0.95 0.75 0.84 0.60
Mate 20 Pro 1.96 1.61 4.19 4.25 2.62 2.45 1.76 1.61
Honor 20 Pro 1.92 1.46 3.14 2.19 2.36 1.77 1.95 1.42
View 20 1.74 1.40 3.15 3.31 2.20 2.04 1.64 1.59
Mi 9 1.53 1.20 3.82 5.48 2.39 3.30 1.69 1.57
Mi 9T Pro 1.77 1.14 3.78 4.98 2.71 3.35 1.78 1.41
Redmi Note 8 1.50 1.17 2.25 2.01 1.76 1.57 1.62 1.16
Pixel 3a XL 1.05 0.83 1.51 1.30 1.25 1.12 1.24 1.07
Pixel 3XL 1.21 0.96 2.04 1.56 1.54 1.29 1.22 0.95
Pixel 4XL 1.21 0.83 2.13 1.64 1.53 1.28 1.36 1.01
S10 1.44 1.15 1.80 1.41 1.58 1.35 1.31 1.05
A50 1.49 0.98 2.11 1.68 1.62 1.34 1.42 1.30
Note9 1.14 0.87 1.67 1.23 1.27 0.98 1.13 0.82

Overall Average 1.37 1.11 2.23 2.76 1.67 1.83 1.37 1.20

Table 6.1: Mean and std. deviation of absolute localization error for all methods and
scenarios. All numbers are in meters(m). Numbers in bold indicate best performance
within each scenario. Numbers in color indicate best performance overall.

ment. We imitate such behaviour by adding random signal drops in the input

signals in a constrained fashion.

• Random Noise: As the beacon data being received changes with scene dy-

namics, we add Gaussian white noise sampled from N (0, 5) to our BLE input.

We refer to the augmented data as DA. Thus, the labeled data from all smartphone

brands is Dl = Dc,train ∪ DA.

Evaluation:

In all scenarios, our methods are evaluated using Dtest. All reported statistics are

with respect to absolute localization error (AE) of the learned localization function f̂
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Scenario Scenario 3

Proposed Proposed
(Huawei) (Xiaomi)

Test Phone Mean Std Mean Std

iPhone 7 0.95 0.88 0.94 0.82
iPhone 8 1.11 0.83 1.07 0.83
iPhone XR 0.89 0.80 0.86 0.63
Mate 20 Pro 1.63 1.32 1.63 1.31
Honor 20 Pro 1.99 1.33 1.92 1.34
View 20 1.66 1.32 1.64 1.29
Mi 9 1.65 1.31 1.58 1.11
Mi 9T Pro 1.84 1.45 1.68 1.20
Redmi Note 8 1.61 1.09 1.61 1.06
Pixel 3a XL 1.22 1.07 1.21 1.06
Pixel 3XL 1.17 0.96 1.18 0.94
Pixel 4XL 1.39 1.07 1.40 1.08
S10 1.30 1.02 1.23 0.93
A50 1.36 1.22 1.42 1.26
Note9 1.15 0.81 1.15 0.82

Overall Average 1.37 1.15 1.34 1.09

Table 6.2: Mean and std. deviation of absolute localization error for all methods and
scenarios. All numbers are in meters(m). Numbers in bold indicate best performance
within each scenario. Numbers in color indicate best performance overall.

on test sample 〈S,x〉 ∼ Dtest :

AE(S,x) =
∣∣∣∣∣∣f̂(S)− x

∣∣∣∣∣∣
2

We now discuss our methods and results for each scenario in detail. For all methods,

Table 6.1 represents mean and standard deviation of absolute localization error over

test data from each smartphone model, as well as over all test data Dtest. For all

methods, Table 6.3 represents mean, standard deviation, median, 90 percentile and

maximum absolute localization error over all test data Dtest.
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Stat. ↓
Scen. 1 Scen. 2 Scen. 3

Prop. Base. 1 Base. 2 Prop.
Prop. Prop.
(Hua.) (Xia.)

Mean 1.37 2.23 1.67 1.37 1.37 1.34
Std. Dev. 1.11 2.76 1.83 1.20 1.15 1.09
Median 1.07 1.47 1.15 1.02 1.06 1.04
90 %ile 2.68 4.55 3.49 2.76 2.76 2.66
Max. 12.28 37.58 29.67 19.72 13.19 11.82

Table 6.3: Various statistics of absolute localization error over all test data for all
methods and scenarios. All numbers are in meters (m). Numbers in bold indicate
best performance over all methods.

6.1.1 Scenario 1: Labeled Data for All Smartphone Models

As discussed in Section 4, in our first scenario, we have labeled data from all smart-

phone models, i.e., Dtrain = Dl. We train the localization network LocNet for objective

(4.1) in Section 4, using the Adam optimizer for 50 epochs, with a learning rate

= 10−4 and batch size = 256 samples.

Results:

We report mean and standard deviation of absolute localization error over test data in

Table 6.1. Note, we do not have any numbers in bold here, since we do not compare

our proposed method with any other method in this scenario. In this ideal scenario,

since we have labeled data for all phones, performance on all phones is very good,

with an average AE of 1.37 m over all test data. Despite the high amounts of receiver

failure for smartphone models from Huawei and Xiaomi brands (Section 5.9), AE for

each of these models is less than 2 m. However, as noted before, it is unrealistic to

assume that we can performing fingerprinting for all smartphone models.

6.1.2 Scenario 2: Limited Labelled data

In our second scenario, we have only limited labeled data Dtrain = D′l from a subset of

smartphone models P ′ ⊂ P . In our experiments with this scenario, P ′ includes models
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of the two most popular smartphone brands 1 - Apple and Samsung, i.e., {iPhone 7,

iPhone 8, iPhone XR, Samsung S10, Samsung A50, Samsung Note 9}. Our signal

translation function ĝ learns to transform RSSI measured by any smartphone model

to that measured by the Apple brand, i.e., J ⊂ P ′ includes smartphone models from

the Apple brand {iPhone 7, iPhone8, iPhone XR}.
Experiments were also performed considering P ′ to have { Apple, Huawei }, {

Apple, Xiaomi} and {Apple, Pixel}. The performance for all the combinations even-

tually results in a similar performance, conditioned to independent hyperparameter

search for each. Hence for brevity here we show experiments considering P ′ with

{Apple, Samsung} only.

As detailed in Section 4, our localization function in this scenario is f̂ = ĥ(ĝ),

where ĥ is LocNet and ĝ is TransNet. We train f̂ for objective (4.2) in Section 4,

using the Adam optimizer for 50 epochs, with a learning rate = 10−4 and batch size

= 256 samples. Appropriate weights for each loss term are obtained using validation

data.

Baselines:

We compare our method against the following baselines:

1. Similar to the first scenario, we consider the situation where our localization

function f̂ is LocNet only. We limit the available labeled data to that from

smartphone models of the Apple brand only, i.e., P ′ includes {iPhone7, iPhone8,

iPhone XR}. We train LocNet according to optimization (4.1) in Section 4,

using labeled data from the Apple brand. We include this baseline to verify our

hypothesis that data augmentation alone is not enough to generalize well to

unseen phones. We expect our proposed method to outperform this method

due to the inclusion of labeled data from an additional smartphone brand.

2. Again, we consider the situation where our localization function f̂ is LocNet

only. However, for a stronger baseline, we consider that we have access to the

same data as our proposed method, i.e., P ′ includes models from the Apple and

Samsung brands. We train LocNet according to optimization (4.1) in Section 4

using labeled data from Apple and Samsung brands. We include this baseline

1as reported by the IDC - Worldwide Quarterly Mobile Phone Tracker
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to verify our hypothesis that simply training LocNet using limited labeled data

will lead f̂ to overfit to the known phone brands. We expect our proposed

method to outperform this method due to the inclusion of a signal translation

function ĝ. This is because ĝ explicitly learns to translate RSSI measured by a

(possibly unknown) smartphone to that measured by a known brand, using our

novel statistic similarity loss (SSL). This enables f̂ = ĥ(ĝ) to generalize better

to unseen phones.

Results:

From Table 6.1, we see that our proposed method significantly outperforms baselines

in terms of both mean and standard deviation of AE over all test data, as well as

over test data from individual smartphone models. Moreover, our proposed approach

performs as well as the fully supervised approach from the first scenario, achieving an

average AE of 1.37 m, despite having access to only limited labeled data! Importantly,

this demonstrates its ability to generalize well to unseen smartphone models.

While Baseline 2 performs significantly better than Baseline 1, it performs poorly

on unseen smartphone brands Huawei and Xiaomi. By comparison, our proposed

approach consistently gives mean AE of less than 2 m for models of these brands.

Moreover, from Table 6.3, Baseline 2 shows a high maximum error of ≈ 30m. This

supports our hypothesis that training with limited data leads LocNet to overfit to

known smartphones. Our proposed approach avoids this problem by training an

explicit signal translation function ĝ using our novel SSL loss.

Baseline 1 performs very well on iPhone models, with mean and standard deviation

of AE within 1 m. However, its performance is significantly worse on other smartphone

brands, especially Huawei and Xiaomi. Moreover, from Table 6.3, the maximum

and 90 percentile errors are the highest in the table. Baseline 1 overfits to a larger

degree than Baseline 2, supporting our hypothesis that data augmentation alone is

not enough to generalize well to unseen phones.

6.1.3 Scenario 3: Limited Labeled and Unlabeled Data

In our third scenario, we have limited labeled data D′l from a subset of smartphone

models P ′ ⊂ P. Additionally, we have unlabeled data D′u from other smartphone
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models Q′ ⊂ {P \ P ′}. Our training data is thus Dtrain = D′l ∪ D′u. Similar to the

previous scenario, in our experiments with this scenario, P ′ includes models of Apple

and Samsung brands. Our signal translation function ĝ learns to transform RSSI

measured by any smartphone model to that measured by the Apple brand. We

consider Q′ to include smartphone models of the Huawei brand or the Xiaomi brand.

As detailed in Section 4, our localization function in this scenario is f̂ = ĥ(ĝ), where

ĥ is LocNet and ĝ is TransNet. In this scenario,

1. We train f̂ for objective (4.2) in Section 4, using the Adam optimizer for 50

epochs, with a learning rate = 10−4 and batch size = 256 samples. Appropriate

weights for each loss term are obtained using validation data.

2. We then train f̂ for the semi-supervised objective (4.3) in Section 4, using

the Adam optimizer for 20 epochs, with a learning rate = 10−5 and batch size

= 256 samples.

Results:

From Table 6.2, we see that our proposed method trained in a semi-supervised fashion

using unlabeled data from the Xiaomi brand leads to better test performance for

Xiaomi and Huawei smartphones, when compared to our proposed method in scenario

2. Moreover, our proposed method outperforms the fully supervised method

in scenario 1, with a mean AE of 1.34 m and standard deviation AE of 1.09 m

over all test data. Importantly, this result is achieved despite only having access to

limited labeled data, demonstrating our proposed method’s ability to generalize well

to unseen phones. From Table 6.3, our proposed method leads to the best (or nearly

the best) performance on all metrics over all the test data.

6.2 Experiments: Common Localization Methods

We verify our proposed approach and compare it with some of the most commonly used

and state of the art methods in RSSI based Localization. Particularly, the performance

of DeepBLE has been compared to the 1. K-Nearest Neighbours (KNN)[4] 2. Bayesian

Estimation [8] 3. NavCog[27] and 4. DL-RNN [5]. For KNN, we perform a weighted

KNN regression using k=10, and a weighing function inversely proportional to the
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Figure 6.1: Localization Performance comparing different approaches on iPhone7 and
Huawei Honor20Pro
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Method → KNN Reg Bayesian KRR+KF DL-RNN

Test on ↓ Mean Std Mean Std Mean Std Mean Std

iPhone 1.1917 0.9298 1.5424 1.2267 1.7575 1.0770 1.0205 0.7712
Huawei 6.3579 9.595 4.8951 6.3216 3.0021 2.3075 2.2437 2.2014
Xiaomi 4.1781 7.2262 3.5959 4.2674 2.7569 1.9125 2.4360 3.0378
Pixel 1.9082 1.5561 2.1457 1.7167 1.8955 1.1816 1.4347 1.1638

Samsung 2.0139 2.5525 2.0843 2.3115 2.0767 1.2390 1.5282 1.1301

Average 3.0157 5.7190 2.7724 3.8090 2.2640 1.6644 1.6826 1.8650
Median 1.5230 1.7505 1.8884 1.2067
90% ile 5.2514 5.5866 4.2660 3.2968

Max 52.5572 48.3013 17.2977 31.9299

Table 6.4: Evaluation results for different methods when trained using data from
iPhone and Samsung phones

Method → Proposed(Sup) Proposed (Semi)

Test on ↓ Mean Std Mean Std

iPhone 0.9409 0.7163 0.9572 0.7741
Huawei 1.7900 1.5515 1.7370 1.3260
Xiaomi 1.7014 1.3918 1.6284 1.1280
Pixel 1.2769 1.0183 1.2687 1.0341

Samsung 1.2898 1.0808 1.2732 1.0310

Average 1.3700 1.2080 1.3462 1.0979
Median 1.0258 1.0436
90% ile 2.7689 2.6601

Max 19.7231 11.8294

Table 6.5: Evaluation results for different methods when trained using data from
iPhone and Samsung phones

distance from each considered neighbour. As [27] uses information from multiple

sensors, we make a comparison to the observation model in the particle filter proposed

to make a fair comparison to our proposed method as it’s observation model depends

on only RSSI based Localization. [5] although based on WiFi, solves the same problem

of regressing locations directly using deep learning given only RSSI signals, and can

be easily deployed for a BLE RSSI setting. Hence we use that as a baseline as well.
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For all the methods we use a time history of 5 seconds of BLE beacon RSSI to make

a fair comparison between them.

To evaluate each of the methods mentioned above, we calculate the mean and

standard deviation of the absolute distance error, as used in 6.1. We calculate this

metric on per brand basis as well as across all the phones. We report the median,

90%ile errors and the max for each of the above methods to evaluate the robustness

of each method. The comparisons for all the methods have been made under Scenario

2: Access to limited labelled data, as none of these methods can use the unlabelled

data in some way.

The numbers obtained are shown in Table 6.5. The proposed approach outperforms

all the other methods in terms of the mean and standard deviation of distance errors.

More importantly, the disparity between the localization performance shown by

phones of different brands is significantly reduced. KNN, which is one of the most

commonly used methods, the errors shoot up drastically as we switch phone brands

indicating its susceptibility to variation in smartphone model. The Kernel Ridge

regression can be a strong competitor, as it is fast and easy to deploy. However, KF

is infamous for being very sensitive to the calibration parameters selected. Coming

up with an effective way to do that for each phone, is tedious.

Furthermore, the comparison of the 90%ile error complemented with the Distance

Error CDF comparison plot in 6.2 indicate that the gap between the proposed

approach and others is significant. The DL-RNN is a strong competitor, and it

performs very similar to what we see when we train LocNet using limited data.
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Figure 6.2: Evaluation: Box plot and Distance Error CDF comparing different
methods
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Chapter 7

Conclusions

We return back to the question we started with, as we deploy BLE based localization

system in real world scenarios coming up with methods and algorithms that can work

without performance disparity on multiple devices.

In this research, we try solving this for varying smartphone models, developing a

localization engine that can work different smartphones. We define different scenarios

in our problem statement, considering different levels of access to the training data.

We collected a large scale BLE RSSI data set for 15 different smartphones. We perform

empirical experiments concluding that smartphone signals can change significantly

and unpredictably across phones in different situations. We observe that in particular

phones, we observe receiver failures, detecting no observations for a couple of seconds.

Such a situation inevitably would lead to failure. To fix the beacon signals in such

scenarios, we propose the use of TransNet trained using our novel statistic similarity

loss (SSL) that can learn to translate beacon signals from an unknown phone RSSI to

a known phone RSSI. We provide solutions for the various all the possible scenarios

listed with the proposed approach. The experiments and the evaluation indicate that

the proposed approach can adapt itself towards a change of smartphone models, and

outperforms other state of the art methods for RSSI based localization.
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Chapter 8

Future Work

In this work, we have considered the problem of making RSSI based localization

device agnostic to a certain degree. However, the change of phone models is not

the only factor that affects the distribution of RSSI received. Dynamic factors like

crowd density, changes in the phone software are inevitable and will significantly

affect our localization performance. Development of a basis function that can treat

the problem as a matrix factorization correcting for significant changes, instead of

just learning minor corrections in the signal can be an exciting direction for work. At

the same time, online adaptation model, replicating ideas from ”few-shot” learning

to adapt the network real-time, is exciting and would be very useful. With the

recent advancements in BLE standards, we have information like AoA and ToA also

available in some cases, use of which can be leveraged to further improve upon the

accuracy. Finally, accounting to the low frequency of BLE RSSI received, making this

technology multi-modal by merging the use of IMU can improve upon the localization

performance to a high degree.
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