
Stability of a Light Sail Riding on a Laser Beam

Zachary Manchester1 and Abraham Loeb2
1 John A. Paulson School of Engineering and Applied Science, Harvard University, 60 Oxford St., Cambridge, MA 02138, USA; zmanchester@seas.harvard.edu

2 Astronomy Department, Harvard University, 60 Garden St., Cambridge, MA 02138, USA
Received 2016 December 20; revised 2017 February 13; accepted 2017 February 17; published 2017 March 7

Abstract

The stability of a light sail riding on a laser beam is analyzed both analytically and numerically. Conical sails on
Gaussian beams, which have been studied in the past, are shown to be unstable without active control or additional
mechanical modifications. A new architecture for a passively stable sail-and-beam configuration is proposed. The
novel spherical shell design for the sail is capable of “beam riding” without the need for active feedback control.
Full three-dimensional ray-tracing simulations are performed to verify our analytical results.
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1. Introduction

The light sail concept—harnessing photon pressure to propel
a spacecraft—has a long history dating back to some of the
earliest pioneers of astronautics. Tsiolkovsky & Zander first
described “tremendous mirrors of very thin sheets... using the
pressure of sunlight to attain cosmic velocities” in 1925
(Zander 1964). Since then, most research has focused on solar
sails—light sails that harness solar photons. Following the
invention of lasers, in the 1960s Forward (1984), Marx (1966),
and Redding (1967) independently proposed the use of high-
power lasers to propel a sail to a significant fraction of the
speed of light. This was followed by subsequent studies over
the past five decades (Moeckel 1972; Weiss et al. 1979;
Lubin 2017). Most recently, the Breakthrough Starshot
Initiative3 was funded to propel a gram-scale spacecraft
attached to a sail to a fraction of the speed of light using a
high-power laser, with the goal of reaching the nearest stars
within several decades.

There are many difficult engineering challenges associated
with laser-propelled light sails that remain to be solved. A
particularly important problem is ensuring that the sail remains
centered on the laser beam despite disturbances, misalignment,
and manufacturing imperfections. Ideally, a sail should possess
beam-riding stability without the need for active feedback
control, as the addition of sensor and actuator hardware would
add significant complexity and mass to the spacecraft.

While a substantial literature exists on the stability and
control of solar sails (Wie 2004a, 2004b; Smith et al. 2005;
Polites et al. 2008; Mimasu et al. 2011), laser-propelled sails
have received far less attention. The most closely related
previous work has focused on conical microwave-propelled
sails, which were studied both in numerical simulations
(Schamiloglu et al. 2001; Chahine et al. 2003) and laboratory
experiments (Benford et al. 2002, 2003). However, a rigorous
theoretical analysis of the stability of such sails was not
performed.

This paper analyzes the beam-riding stability of laser-
propelled light sails and proposes a new passively stable laser
and sail configuration. Section 2 provides an introduction to the
beam-riding problem, followed by a review of some basic
results from linear stability theory in Section 3. Then, Section 4

derives a linearized dynamical model of a conical sail riding a
Gaussian laser beam. Section 5 then uses the model to show
that such sail configurations are unstable without active
feedback control or mechanical modifications. In Section 6
we propose a novel passively stable spherical sail architecture.
Section 7 presents the results of numerical ray-tracing
simulations that demonstrate the stability of the proposed
design. Finally, Section 8 summarizes our results and offers
some commentary on the direction of future research.

2. The Beam-riding Problem

We assume that a laser beam with a full-width-at-half-
maximum W is incident on a sail of radius R, where W and R
are of the same order of magnitude. The challenge is—through
shaping the sail, choosing the beam profile, and possibly using
active feedback control—to keep the sail centered on the beam
as it is accelerated.
The total force applied by a beam incident on a perfectly

reflective sail of area S is given by

( ) ˆ · ˆ ( ) ˆ ( ) ( )ò=F
x b n x

n x
P

c
dS2 , 1

S

where the domain of integration is the surface of the sail, ˆ ( )n x
is the unit vector normal to the sail surface at the point x, ( )xP
is the beam power flux at the point x, b̂ is a unit vector parallel
to the beam axis, and c is the speed of light. Similarly, the total
torque applied by the beam to the sail is given by

( ) ˆ · ˆ ( ) ( ( ) ˆ ( )) ( )òt = ´
x b n x

r x n x
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c
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where ( )r x is the vector from the sail’s center of mass to point
x. If the sail is assumed to be rigid, its motion can be described
by Newton’s second law:

( )=x Fm ¨ , 3

and Euler’s equation:

˙ ( )w w w t+ ´ =I I , 4

where m is the mass, w is the angular velocity vector, and I is
the inertia tensor of the sail.
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3. Linear Stability Analysis

We now briefly review some definitions and results from
stability theory. For thorough treatments, the reader is referred
to Kailath (1980) and Khalil (2002).

A dynamical system can be generically written as a first-
order vector differential equation

˙ ( ) ( )=x f x , 5

where Îx n is the state vector of the system. An equilibrium
point of the system is a point *x such that

( ) ( )* =f x 0. 6

Without loss of generality, we assume that *x coincides with
the origin.

A linear dynamical system is described by a square matrix
Î ´A n n such that

˙ ( )=x xA . 7

Nonlinear systems can be approximated in the neighborhood of
the origin by taking A to be

( )=
¶
¶

A
f

x
. 8ij

i

j

Solutions of (7) are given by

( ) ( )=x xt e , 9At
0

where x0 is a vector of initial conditions and eAt is a matrix
exponential, which is formally defined in terms of its power
series (Kailath 1980).

The qualitative stability of a nonlinear system in the
neighborhood of the origin is characterized by the eigenvalues
of A. If all eigenvalues li have negative real parts, the matrix
exponential in Equation (9) will decay to zero as  ¥t and
the state ( )x t will tend toward the origin. In such cases, the
system is said to be asymptotically stable. On the other hand, if
any eigenvalues have positive real parts, the exponential will
grow unbounded as  ¥t , and the system is said to be
unstable. Finally, if the real parts of any li are zero while the
rest are negative, the system is said to be marginally stable, and
a definitive stability characterization cannot be made based on
linearization (Khalil 2002).

4. Transverse Dynamics of Conical Sails
on Gaussian Laser Beams

The notion of stability outlined in the previous section
requires an equilibrium point. Clearly, the full dynamics of a
beam-riding sail do not possess any equilibria: the sail
accelerates as long as it remains on the beam. However,
projecting the dynamics onto what we call the transverse
subspace results in a system with an equilibrium point at the
origin.

We define the transverse coordinates as those orthogonal to
the beam axis. As depicted in Figure 1, the coordinates x and y
are used to describe translation of the sail in the plane
orthogonal to the beam, while the angles θ and f are used to
describe rotation of the sail about the x and y axes, respectively.
The x and y components of the angular velocity vector are
denoted by wx and wy. The laser beam is assumed to have a
radially symmetric Gaussian power distribution whose width

can be expressed in terms of the standard deviation σ as

( ) ( )s=W 2 2 ln 2 . 10

In addition, we assume that the sail is symmetric about the z-
axis, with mass m and moments of inertia Iz and Ix=Iy, that
the sail is spinning about the z-axis with angular frequency w0,
and that the cone angle measured relative to the x–y plane is α.
To simplify our analysis, we also assume that multiple
reflections of the beam do not occur. For this to hold, α must
be less than 30 .
We can now formally define beam-riding stability as the

stability of the origin with respect to the sail’s transverse
dynamics. In the remainder of this section we derive a linear
model that approximates these dynamics for a conical sail near
the center of a Gaussian laser beam.

4.1. Translation

From basic geometry and ray optics, the translational motion
of a conical sail near the center of the beam can be
approximated by the equations

( )
f
q

=- +
=- -

x k x k
y k y k
¨
¨ , 11

1 2

1 2

where k1 denotes the partial derivative of the sail’s transverse
acceleration with respect to displacements in the x–y plane,
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and k2 is the partial derivative of the sail’s transverse
acceleration with respect to rotations about the x and y axes:
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f q

=
¶
¶

= -
¶

¶
k

m

F

m

F1 1
. 13x y

2

The first term in Equation (11) describes the restoring force due
to the sail’s conical shape, while the second term describes the
forces encountered as the sail rotates by a small angle, causing
a component of the beam to be deflected in the x–y plane.
An expression for k1 in terms of the system’s parameters can

be derived by integrating Equation (1) over a sail with a small

Figure 1. Schematic illustration of the geometry for a spinning conical sail
riding on a Gaussian laser beam.
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displacement dx. In polar coordinates we have

( ) ( ) ( ) ( )
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where ψ is the polar angle the standard deviation σ is used in
place of W for clarity. Retaining only terms up to first order in
dx gives

( )

( ) ( ) ( )

( ) ( )

ò ò

ò

p s
d
s

y

a a y y
d
s

a

D = +

´

=

p
s

s

-

-

⎜ ⎟⎛
⎝

⎞
⎠F

P

c
e

r

r dr d

P

c
r e dr

1 cos

cos sin cos

2
sin 2 . 15

x

R
r x

x
R

r

0 0

2
0

2
2

2

0
4 0

2 2

2 2

2 2

If »W R, most of the beam flux falls on the sail. Therefore we
take the limit  ¥R to obtain the closed-form approximation,

( ) ( )p a
s

dD »F
P

c

sin 2

2 2
. 16x x

0

Finally, σ is written in terms of W to arrive at

( )
( ) ( )

p
a=k

P

mcW

ln 2
sin 2 . 171

0

Performing similar steps, Equation (2) can be integrated over
the surface of a sail rotated by a small angle to derive the
following expression for k2:

( ) ( )
( )
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p

a= - -
⎛
⎝⎜

⎞
⎠⎟k

P

mc

d

W
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where d is the distance from the tip of the cone to the sail’s
center of mass.

4.2. Rotation

The angular motion of the sail near the upright orientation
q f= = 0 can be described by the kinematic equations

˙
˙ ( )
q w w f
f w w q
= +

= + , 19
x

y

0

0

along with the following dynamics:

˙
˙ ( )
w q w
w f w

=- + -
= + +
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k x k k . 20
x y
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The constant k3 describes the torque imparted by the beam on
the sail due to translation in the x–y plane. Proceeding in the
same fashion as before, Equation (2) is integrated over the
surface of a sail with a small displacement to arrive at

( )
( ) ( )

p
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⎛
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x
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The constant k4 describes torques encountered as the sail
rotates. Once again, we integrate Equation (2)—this time over
the surface of a sail that has been rotated by a small angle—to

derive

( ( ) ( ))
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Lastly, k5 captures gyroscopic effects due to the sail’s spin
about the z-axis. It can be derived from Euler’s Equation (4) by
making the assumption that w0 is much greater than both wx

and wy (Hughes 2004):

( )w=
-⎛

⎝⎜
⎞
⎠⎟k

I I

I
. 23x z

x
5 0

5. Stability of Conical Sails

Equations (11), (19), and (20) can be assembled into the
matrix form

˙ ( )=x xA . 24cone

Directly calculating the eigendecomposition of Acone analyti-
cally is quite unwieldy. Instead, we take advantage of its
structure. First, we note that Acone is traceless. Since the trace of
a matrix is equal to the sum of its eigenvalues, the best that can
be hoped for is to arrange all of the eigenvalues of Acone to lie
on the imaginary axis. It is important to keep in mind that such
a marginal stability result does not allow us to draw
conclusions about the stability of the full nonlinear system.

5.1. The Non-spinning Case

In the non-spinning case in which w = =k 00 5 , the
transverse sail dynamics can be written as a four-dimensional
undamped oscillator:

( )+ =x xK¨ 0. 25

In analogy with the scalar case, the “spring constant” matrix K
must have positive real eigenvalues for the system to be
marginally stable. With [ ]q f=x x y T , K takes the following
block-diagonal form:

( )=

-
- -

-
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. 26
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Its eigenvalues can then be found in closed form by analyzing
each 2×2 block separately:

( ( ) )
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From Equation (28), a necessary condition for marginal
stability is

( )+ <k k k k 0, 291 4 2 3

which is plotted in Figure 2 as a function of the cone angle, α,
and the distance between the cone tip and the center of mass d,
which we have normalized by the cone radius R. A line
showing the normalized cone height, which upper bounds d/R,
is also plotted.

Figure 2 indicates that a simple conical sail cannot achieve
stability, since the center of mass must lie beneath the base of
the cone by a significant distance. While it may appear that
further increasing the cone angle could alleviate this problem,
any benefit will be very limited since the restoring force on the
sail begins to decrease beyond a = 30 due to multiple
reflections of the beam. In fact, it is easy to show that there is
no restoring force when a = 45 , indicating instability. One
can imagine mechanical solutions that could lower the center of
mass, such as the rigid pendulum suggested by Chahine et al.
(2003), however, they introduce serious practical difficulties.
First, any such structure will necessarily be exposed to the laser
beam. Second, significant additional mass would be added to
the spacecraft, reducing its acceleration. Lastly, the flexible
modes of the structure and their effect on stability would
require careful analysis.

5.2. The Spinning Case

We now turn to the spinning case in which w0 and k5 are
non-zero. First, we note that it is possible to achieve marginal
stability with a sufficiently large choice of w0. However, the
situation is somewhat more subtle than might be expected from
an analysis of the linearized transverse dynamics.

While Equations (19) and (20) capture gyroscopic precession
and nutation effects, they implicitly assume that the sail’s
angular momentum vector w=ℓ I is perfectly aligned with the
beam axis b̂. If the sail has an initial ℓ that is not in perfect
alignment with the beam axis, the ( )SO 2 symmetry of the
system is broken and the equilibrium point in the transverse

dynamics disappears. A stability analysis in the sense of
Section 3 is therefore misleading.
A qualitative physical understanding of the situation can be

gained by recalling the behavior of a rigid body undergoing
precession. Viewed in an inertial reference frame, the body’s
angular velocity vector w traces out a cone centered on its
angular momentum vector (Figure 3). In the case of a conical
sail with ℓ parallel to the beam axis, one can see that it should
be possible, with a sufficiently high spin frequency w0, for
perturbing forces to “average out” over a precession period.
However, if ℓ is not exactly parallel to the beam axis, the
average force on the sail over a precession period will have a
component in the x–y plane, pushing the sail off the beam.
In mathematical terms, the equilibrium point in the sail’s

transverse dynamics is not structurally stable. It exists only for
very particular choices of ℓ, the set of which has zero Lebesgue
measure. In practical terms, it is not possible to achieve perfect
alignment of the sail’s angular momentum vector with the
beam axis. Therefore, we cannot expect a spinning conical sail
to achieve stable beam riding.

6. Spherical Shell Design for the Sail

We now propose an alternative beam-riding architecture
with more favorable stability properties. Upon inspection of the
matrix Acone, it is clear that the instabilities found in the
previous section are rooted in coupling between the translation
and rotation degrees of freedom of the sail. Motivated by this
observation, we analyze a spherical shell configuration for the
sail, whose symmetry eliminates such coupling.
A light ray offset from the centerline of a reflective spherical

sail clearly does not produce a restoring force, instead pushing
the sphere farther away from the beam axis. Any unimodal
beam profile, like the Gaussian studied in the previous section,
will have a similar effect. If the beam is instead allowed to be
multimodal, stable beam riding becomes possible. The left side
of Figure 4 depicts a beam profile composed of a sum of four
Gaussians. A sum of Gaussians was chosen due to the ease of
producing Gaussian beams and their favorable divergence
properties. An appropriately sized spherical sail perturbed from
the center of such a composite beam will experience a restoring
force pushing it back toward the center due to the increased
power in the sides of the beam.

Figure 2. Stability regions in the space of sail parameters α (cone angle) and
d/R (center of mass location normalized by sail radius). The dashed line marks
the normalized cone height.

Figure 3. Illustration of the effect of gyroscopic precession on the angular
velocity of a sail with angular momentum ℓ.
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The linearized transverse dynamics for this beam-riding
configuration are,

( )
q
f

=- =
=- =

x k x

y k y

¨ ¨ 0

¨ ¨ 0, 30
1

1

where, once again,
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x m

F

y

1 1
. 31x y

1

As expected, there is no coupling between translation and rotation.
There are also no torques applied to the sphere by the beam, since
all forces are directed through the center of mass. By inspection,
the associated eigenvalues are 0 and i k1 . Since all lie on the
imaginary axis, the system is marginally stable.

To obtain a more conclusive stability result, the beam is
discretized on a grid and the forces on the sail are evaluated at
each grid point. Since the transverse forces F̂ depend only on the
sail’s position in the x–y plane and are not functions of velocity or
time, they are conservative (Goldstein et al. 2001). As a result,
they can be associated with a scalar potential function ( )V x y,
such that ( )= -F̂ V x y, . We compute this potential function
numerically, as depicted in the right half of Figure 4.

Based on Figure 4, it is clear that there is a basin of attraction
surrounding the center of the beam. As long as the sail’s initial
conditions lie within this basin and its total energy is below the
energy associated with the rim of the basin (which can be
calculated numerically for any parameters of interest), the sail will
remain trapped in the basin. Physically, the sail will oscillate
around the center of the beam, but the amplitude of the
oscillations will remain bounded. While this does not meet the
definition of asymptotic stability presented in Section 3, it does
meet the looser requirements of Lyapunov stability (Khalil 2002).

Figure 4 also implies an inherent trade-off between stability
and the acceleration experienced by the sail along the z-axis.
By placing the beam’s constituent Gaussians closer together,
more flux will fall onto the sail and it will experience greater
acceleration. However, the size of the potential well will also
be reduced, making it easier for the sail to be pushed off the
beam. This trade-off manifests itself in some form in all sail
designs. Ultimately, an evaluation must be made based on the
size of the perturbations encountered in practice.

7. Numerical Simulations

We demonstrated the stability of the spherical sail riding on the
composite beam profile shown in Figure 4 in two numerical
simulations. The integrals in Equations (1) and (2) were
approximated by discretizing the beam shown in Figure 4 into a
grid of 50×50 rays. The path of each ray was then traced as it
intersected the sail and reflected off of its surface. The net change
in momentum of each ray was calculated, and the resulting forces
and torques were applied to the sail. The differential Equations (3)
and (4) were then integrated forward in time using the standard
fourth-order Runge–Kutta method. The parameters used in our
simulations follow the Starshot design, with a beam power
P=100 GW, a sail mass m=10 g, a sphere radius R=1m, a
width of each constituent Gaussian in the beam of W=1m, and
a distance of 1 m between the center of each constituent Gaussian
and the overall beam center.
The left side of Figure 5 shows the components of the sail’s

position vector during a short simulation with an initial offset
of 5 cm in both the x and y components of the position vector
and zero initial velocity. The sail’s position in the x–y plane
oscillates with a frequency of roughly 11 Hz, but as predicted it
remains bounded.
The right side of Figure 5 shows the components of the sail’s

position vector during a longer simulation in which white noise
was added to the rays making up the laser beam to simulate
perturbations due to atmospheric turbulence. The average
power of the noise applied to each ray was chosen to be 1% of
that ray’s nominal power. While perturbations of the beam
clearly excite transverse oscillatory motion, the sail remains in
the stable basin of attraction over a timescale of several
minutes, which is sufficient for it to achieve a sizable fraction
of the speed of light along the z-axis.
In general, noise will add energy to the transverse modes of

the system. This energy will execute a random walk, and after
sufficient time, will exceed the energy associated with the rim
of the potential well, causing the sail to leave the beam. This
“exit time,” which depends on the beam power and shape, as
well as the power spectral density of the noise, will be an
important consideration in the design of a realistic laser-sail
system.

Figure 4. Multimodal beam profile composed of four Gaussian laser beams (left) and corresponding potential function ( )V x y, for the transverse dynamics of a
spherical sail (right).
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8. Discussion

We have presented a passively stable laser-sail architecture
that is capable of beam riding without active feedback control.
The proposed design makes use of a spherical sail and a
multimodal beam profile. While we have focused on a
particular beam profile composed of a sum of four Gaussians,
many others are possible, including sums of three or more
Gaussians and radially symmetric ring-like profiles.

Spherical sails possess a number of practical advantages over
the conical sail designs previously studied in the literature.
First, a hollow spherical sail could be made of a thin, flexible
material and inflated with a gas to maintain its shape. This
would allow many sails to be stored compactly and launched
inside a conventional rocket before being inflated in Earth orbit
and accelerated with a ground-based laser. It would also allow
the sail to be deflated after the acceleration phase, and perhaps
reconfigured for some other purpose. A spherical sail would
also be much less massive than a rigid conical sail with a
pendulum, allowing it to achieve a higher acceleration with a
given beam power. Lastly, the interior of a spherical sail would
naturally provide a shielded environment for electronics or
other payload items.

There are several effects that were not accounted for in this
study, but which are likely to be important in the practical
implementation of a laser-sail system. Perhaps most impor-
tantly, we have assumed a perfectly rigid sail. In practice, the
sail will have flexible structural modes that may impact its
beam-riding dynamics. Deformation of the sphere’s surface
could cause non-zero torques on the sail, but could also provide
damping, which would reduce the amplitude of oscillations
about the center of the beam. It may also be possible to use
actuators to actively adjust the sail’s stiffness and damping
properties.

The authors acknowledge support from the Breakthrough
Prize Foundation, and are grateful to the Starshot group at
Harvard for comments on the content of this paper.
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