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Abstract

Contact constraints arise naturally in many robot planning problems. In recent years, a variety of contact-implicit trajec-

tory optimization algorithms have been developed that avoid the pitfalls of mode pre-specification by simultaneously opti-

mizing state, input, and contact force trajectories. However, their reliance on first-order integrators leads to a linear

tradeoff between optimization problem size and plan accuracy. To address this limitation, we propose a new family of tra-

jectory optimization algorithms that leverage ideas from discrete variational mechanics to derive higher-order generaliza-

tions of the classic time-stepping method of Stewart and Trinkle. By using these dynamics formulations as constraints in

direct trajectory optimization algorithms, it is possible to perform contact-implicit trajectory optimization with signifi-

cantly higher accuracy. For concreteness, we derive a second-order method and evaluate it using several simulated rigid-

body systems, including an underactuated biped and a quadruped. In addition, we use this second-order method to plan

locomotion trajectories for a complex quadrupedal microrobot. The planned trajectories are evaluated on the physical

platform and result in a number of performance improvements.

Keywords

Contact, discrete mechanics, motion planning, trajectory optimization, microrobots

1. Introduction

Trajectory optimization algorithms comprise a powerful

collection of methods for planning motions of nonlinear

dynamical systems (Betts, 1998). Generally speaking, these

algorithms aim to find an input trajectory that minimizes a

cost function subject to a set of constraints on the system’s

states and inputs. Trajectory optimization has a long history

of successful application to systems with smooth dynamics.

However, many robotic systems experience discontinuous

frictional contact with the environment as an essential part

of their routine operation. The non-smooth dynamics

encountered in these situations pose significant challenges.

A popular approach for handling contact events is to use

a hybrid system model in which discontinuities are enumer-

ated explicitly (Posa et al., 2016). However, contact mode

sequences must then be pre-specified by the user or gener-

ated by a higher-level heuristic planner. This approach can

work quite well for systems with a small number of contacts

(Buss et al., 2003; Mombaur, 2009; Remy, 2011; Schultz

and Mombaur, 2010; Xi and Remy, 2014). Unfortunately,

for more complex systems, the number of modes grows

exponentially with the number of contact constraints, mak-

ing mode sequence pre-specification impractical.

Recently, an alternative approach has emerged in which

state, input, and contact force trajectories are optimized

simultaneously (Mordatch et al., 2012; Posa et al., 2014;

Tassa et al., 2012). These so-called contact-implicit trajec-

tory optimization methods can synthesize motions without

a priori specification of the contact mode sequence.

However, current state-of-the-art algorithms rely on first-

order discretizations of the dynamics constraints, severely

limiting accuracy and closed-loop trajectory tracking per-

formance (Posa et al., 2016; Xi and Remy, 2014).

To overcome the accuracy limitations of current algo-

rithms, we propose a new family of variational contact-

implicit methods that combine ideas from discrete varia-

tional mechanics with the complementarity formulation of

rigid-body contact to achieve higher-order integration
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accuracy. For simplicity and concreteness, we provide an

explicit derivation of a second-order method. However, the

mathematical tools used are general, and can be applied to

derive integrators of arbitrary order.

This paper builds on two previous conference publica-

tions by the current authors (Doshi et al., 2018; Manchester

and Kuindersma, 2017). The major contributions over those

previous papers are a comparison of the new second-order

contact-implicit method with a first-order method similar to

that developed by Posa et al. (2014), as well as a discussion

of the computational cost of the new method and extensive

timing results. The remainder of the paper is organized as

follows: Section 2 provides a summary of work on trajec-

tory optimization through contact. Next, Section 3 gives a

brief review of some important concepts from both classical

variational mechanics and discrete mechanics. In Section 4

we derive the new variational rigid-body time-stepping

scheme, and in Section 5 a direct trajectory optimization

algorithm is built around these dynamics. Several simula-

tion examples that demonstrate the performance of the new

algorithm are then presented in Section 6. We also evaluate

the performance of the algorithm in hardware on a complex

quadrupedal microrobot platform in Section 7. Finally, we

summarize our findings in Section 8.

2. Related work

In spite of their limitations, hybrid trajectory optimization

algorithms that rely on a pre-specified contact mode

sequence have had a number of notable successes. For

example, hybrid multiple-shooting algorithms have been

used to find open-loop stable walking trajectories for a

two-dimensional model of a humanoid (Mombaur, 2009)

and to study the energetics of quadrupedal locomotion

(Remy, 2011). Hybrid collocation methods with third-order

integration accuracy have also been demonstrated on a full-

body model of a humanoid (Posa et al., 2016).

Much of the recent work on contact-implicit methods

has focused on approximation schemes to smooth disconti-

nuities. Several authors have developed indirect trajectory

optimization algorithms based on differential dynamic pro-

gramming (DDP) (Mayne, 1966) that apply a smoothing

function to the contact constraints (Tassa et al., 2012) or

penalize constraint violations in the objective function

(Neunert et al., 2016; Todorov, 2011). The penalty approach

has also been applied in direct trajectory optimization meth-

ods (Mordatch et al., 2012). These algorithms have been

used to plan motions for quadrupeds (Neunert et al., 2016)

and simplified humanoids (Mordatch et al., 2012; Tassa

et al., 2012; Todorov, 2011) in simulation.

Another method for handling contact in trajectory opti-

mization algorithms is to use a spring–damper model to

generate contact forces. Such approaches often require very

large spring stiffness and damping constant values to

achieve realistic behavior, necessitating very small step

sizes (Stewart, 2000). However, Neunert et al. (2017) have

reported positive results using a nonlinear spring–damper

model as part of a DDP-based algorithm. Their work is par-

ticularly notable for its successful demonstration in hard-

ware experiments on a quadrupedal robot.

The previous work most closely related to the present

paper is that of Posa et al. (2014). Their algorithm attempts

to accurately capture discontinuous rigid-body physics by

relying on the ‘‘time-stepping’’ linear complementarity for-

mulation of Stewart and Trinkle (Anitescu and Potra, 1997;

Stewart and Trinkle, 1996). The essential idea behind time-

stepping methods for simulating rigid-body dynamics is to

apply a first-order semi-implicit Euler discretization to the

dynamics,

M(qk)(vk + 1 � vk)= h B(qk)uk + N (qk)
Tgk � C(qk , vk + 1)

� �
qk + 1 = qk + hvk + 1

ð1Þ

where k is a time index; q 2 R
Nq , v 2 R

Nv , u 2 R
M , and

g 2 R
P are configurations, velocities, control inputs, and

normal contact impulses acting over a timestep of length h,

respectively; M is the system’s mass matrix; B and NT are

the Jacobians mapping control inputs and normal contact

forces into generalized coordinates; and C includes Coriolis

and potential terms. We have temporarily ignored the tan-

gential (friction) component of the contact force for clarity,

but it is discussed extensively in Section 4.2. For the nor-

mal impulse, we have the following constraints:

gk ø 0

f(qk + 1)ø 0

gkf(qk + 1)= 0

ð2Þ

where f(q) is a function that returns the signed distance

between closest points on bodies.

In words, the conditions in Equation (2) specify that nor-

mal forces can only push bodies apart (not pull them

together), that bodies cannot interpenetrate, and that

contact forces can only be non-zero when bodies are in

contact. The combination of (1) and (2) forms a linear com-

plementarity problem (LCP) that can be solved efficiently

(Anitescu and Potra, 1997). However, this formulation

depends crucially on the particular choice of first-order

discretization used in (1). Although it may be possible to

apply a higher-order discretization scheme in an ad hoc

way, it is not obvious how to do so while still satisfying the

contact constraints. To overcome this limitation, the next

few sections introduce a set of mathematical tools for sys-

tematically deriving time-stepping methods with any

desired order of integration accuracy.

At the core of our approach is the use of variational inte-

grators as dynamics constraints in trajectory optimization.

While not previously associated with contact dynamics, this

idea has been explored by Junge et al. (2005), and has been

termed ‘‘discrete mechanics and optimal control’’ (DMOC).
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3. Preliminaries

This section reviews some classical results from variational

mechanics, as well as some more recent results from dis-

crete mechanics.

3.1. Lagrange–D’Alembert principle

Our starting point is the Lagrange–D’Alembert principle,

which is the integral form of D’Alembert’s principle of vir-

tual work (Marsden and Ratiu, 1999), and can also be

thought of as a modification of Hamilton’s principle of

least action (Goldstein et al., 2001) to accommodate exter-

nal forces:

d

Z tf

t0

L(q, _q) dt +

Z tf

t0

F � dq dt = 0 ð3Þ

We use L to denote the system’s Lagrangian, F to denote

a generalized force, and d to indicate a variation (Fréchet

derivative) with respect to the trajectory q(t). Equation (3)

describes a boundary-value problem in which a trajectory

q(t) is sought given fixed end points q(t0) and q(tf ).
We now review the steps used to derive the classical

forced Euler–Lagrange equation from (3). Applying the

chain rule results in,

Z tf

t0

(D1L(q, _q) � dq + D2L(q, _q) � d _q) dt +

Z tf

t0

F � dq dt = 0

ð4Þ

where we have moved the variational derivative inside the

integral (Marsden and Ratiu, 1999) and used the slot deri-

vative Di to indicate partial differentiation with respect to a

function’s ith argument. The next step is to eliminate d _q by

performing an integration by parts:

Z tf

t0

(D1L(q, _q)� d

dt
D2L(q, _q)+ F) � dq dt

+ D2L(q(tf ), _q(tf )) � dq(tf )� D2L(q(t0), _q(t0)) � dq(t0)= 0

ð5Þ

The fact that the end points q(t0) and q(tf ) of the boundary

value problem are fixed, and thus dq(t0)= dq(tf )= 0, can

be used to eliminate the last two terms in (5):

Z tf

t0

D1L(q, _q)� d

dt
D2L(q, _q)+ F

� �
� dq dt = 0 ð6Þ

Finally, recognizing that (6) must hold for all variations

dq, we arrive at the classical forced Euler–Lagrange

equation:

d

dt
D2L(q, _q)� D1L(q, _q)= F ð7Þ

By substituting a Lagrangian of the form,

L(q, _q)=
1

2
_qTM(q) _q� V (q) ð8Þ

into (7), where M(q) is a positive-definite mass matrix and

V (q) is a potential energy function, the familiar manipula-

tor equation can be recovered by a simple application of the

chain rule,

M(q)€q + C(q, _q)+ G(q)= F ð9Þ

where C(q, _q) includes Coriolis terms and G(q)=rV (q)
accounts for conservative forces. Rather than discretizing

(9) in time, as in most prior work, our approach builds on

ideas from discrete mechanics.

3.2. Discrete mechanics

Discrete mechanics encompasses a set of mathematical

tools for deriving specialized numerical integrators for

mechanical systems. These so-called variational integra-

tors have many advantages over traditional Runge–Kutta

schemes, including realistic long-term energy and momen-

tum behavior (Marsden and West, 2001). While often asso-

ciated with simulations of energy-conserving systems,

variational integrators can also be applied to non-

conservative systems subject to external forces and control

inputs (Junge et al., 2005).

Inspired by the numerical methods used to solve optimal

control problems, the strategy behind discrete mechanics is

to approximate the integrals in the Lagrange–D’Alembert

principle (3) with a quadrature rule before taking variations.

We begin by breaking those integrals into N smaller pieces,

d
XN�1

k = 0

Z tk + 1

tk

L(q, _q) dt +
XN�1

k = 0

Z tk + 1

tk

F(q, _q) � dq dt = 0

ð10Þ

where tk = t0 + kh and h is a small timestep. Each short

integral in (10) is then approximated. While any quadrature

rule can be used for this purpose, we will use the midpoint

rule for simplicity and clarity:

d
XN�1

k = 0

hL qk + qk + 1

2
,

qk + 1 � qk

h

� �

+
XN�1

k = 0

hF
qk + qk + 1

2
,

qk + 1 � qk

h

� �
� dqk + dqk + 1

2

� �
= 0

ð11Þ

Equation (11) can be written more compactly as,

d
XN�1

k = 0

Ld(qk , qk + 1)+
XN�1

k = 0

1

2
Fd(qk , qk + 1) � (dqk + dqk + 1)= 0

ð12Þ

where Ld is known as the discrete Lagrangian,
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Ld(qk , qk + 1)= hL qk + qk + 1

2
,

qk + 1 � qk

h

� �
ð13Þ

and Fd is called the discrete generalized force,

Fd(qk , qk + 1)= hF
qk + qk + 1

2
,

qk + 1 � qk

h

� �
ð14Þ

Note that both the discrete Lagrangian and discrete gener-

alized force depend on our particular choice of quadrature

rule and, as a result, many different definitions are possible

(Marsden and West, 2001).

We now apply the chain rule to the variation in (12):

XN�1

k = 0

(D1Ld(qk , qk + 1) � dqk + D2Ld(qk , qk + 1) � dqk + 1)

+
XN�1

k = 0

1

2
Fd(qk , qk + 1) � (dqk + dqk + 1)= 0 ð15Þ

Paralleling the derivation of the classical Euler–Lagrange

equation in the previous section, we perform the discrete-

time equivalent of integration by parts to line up the time

indices of the dq terms. This amounts to a simple index

manipulation trick:

D1Ld(q0, q1)dq0 +
1

2
Fd(q0, q1) � dq0

+
XN�1

k = 1

(D2Ld(qk�1, qk)+ D1Ld(qk , qk + 1):

+
1

2
Fd(qk�1, qk)+

1

2
Fd(qk , qk + 1)

�
� dqk

+ D2Ld(qN�1, qN )dqN +
1

2
Fd(qN�1, qN ) � dqN = 0

ð16Þ

As in the continuous case, the endpoints q0 and qN are

fixed. As a result, dq0 = dqN = 0, and the first and last

terms in (16) can be eliminated:

XN�1

k = 1

(D2Ld(qk�1, qk)+ D1Ld(qk , qk + 1)+
1

2
Fd(qk�1, qk)

+
1

2
Fd(qk , qk + 1)) � dqk = 0

ð17Þ

Finally, using the fact that (17) must hold for all variations

dqk , we arrive at the following discrete-time version of the

forced Euler–Lagrange equation:

D2Ld(qk�1, qk)+ D1Ld(qk , qk + 1)

+
1

2
Fd(qk�1, qk)+

1

2
Fd(qk , qk + 1)= 0

ð18Þ

Equation (18) can be used to simulate the dynamics of a

mechanical system by inserting values for qk�1 and qk and

solving for qk + 1. In fact, it is equivalent to the implicit mid-

point method.

An important result in the theory of discrete mechanics

is that the order of accuracy associated with a variational

integrator is equal to the order of accuracy of the quadra-

ture rule used to define the discrete Lagrangian and discrete

generalized force (Marsden and West, 2001). As the mid-

point rule has a global error of O(h2), an integrator based

on (18) inherits this second-order accuracy. Variational inte-

grators of any desired order can be derived by simply

choosing an appropriate quadrature rule (Ober-Blobaum

and Saake, 2015).

4. Variational time-stepping methods

Time-stepping methods for simulating rigid-body dynamics

with contact were popularized by Stewart and Trinkle

(1996). The essential idea is to deal with the discontinuities

that occur during rigid-body impacts by formulating the

dynamics at the level of impulses and velocities, rather

than forces and accelerations. The contact impulse pro-

duced during a timestep, together with the next state, is

computed by solving a constrained optimization problem.

Since variational integrators such as (18) are also formu-

lated in terms of impulses and avoid direct computation of

forces and accelerations, they are a natural choice for han-

dling rigid-body contact dynamics. In this section, we

derive a time-stepping method with second-order integra-

tion accuracy. We treat only the case of perfectly inelastic

collisions, meaning that the normal component of the velo-

city at the point of contact is set to zero upon impact.

However, an extension to the elastic case is possible using

existing time-stepping schemes (Anitescu and Potra, 1997).

4.1. Interpenetration and complementarity

Interpenetration must not occur between rigid bodies.

Mathematically, this constraint can be expressed as an

inequality,

f(q)ø 0 ð19Þ

where f(q) is a vector-valued function that evaluates the

signed distance between closest points on all pairs of

bodies.

To build a variational integrator that respects the interpe-

netration constraint, we add it to the discrete Lagrange–

D’Alembert principle (12) with a corresponding Lagrange

multiplier g:

d
XN�1

k = 0

Ld(qk , qk + 1)+ gT
k f(qk + 1)

+
XN�1

k = 0

1

2
Fd(qk , qk + 1) � (dqk + dqk + 1)= 0

ð20Þ

Note the deliberate choice of time indices in the constraint

term gT
k f(qk + 1) to indicate that the next state must always

satisfy the inequality f(qk + 1)ø 0.
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Following the same steps used to derive equation (18) in

the previous section, we find

D2Ld(qk�1, qk)+ D1Ld(qk , qk + 1)+
1

2
Fd(qk�1, qk)

+
1

2
Fd(qk , qk + 1)+ N (qk + 1)

Tgk = 0

ð21Þ

where N (q)T = (∂f=∂q)T is the Jacobian mapping normal

contact forces into generalized coordinates. In addition,

solutions to (21) must satisfy the following conditions:

gk ø 0

f(qk + 1)ø 0

gT
k f(qk + 1)= 0

ð22Þ

Together, (21) and (22) form the first-order necessary con-

ditions, known as Karush–Kuhn–Tucker (KKT) conditions,

for an inequality constrained optimization problem (Boyd

and Vandenberghe, 2004).

Physically, the Lagrange multiplier, gk (units Ns), takes

on the magnitude of the contact impulse in the normal

direction. The three conditions in (22) are collectively

known as a complementarity constraint. In addition to pre-

venting interpenetration, they ensure that contact forces can

only push bodies apart (not pull them together), and that

contact forces can only act when bodies are in contact.

Such constraints are commonly denoted using the follow-

ing shorthand notation:

0 ł gk?f(qk + 1)ø 0 ð23Þ

Intuitively, complementarity constraints express discon-

tinuous ‘‘switching’’ behavior: only one variable or the other

is allowed to be non-zero at a time. They are an inherent

feature in many models of contact physics.

4.2. Coulomb friction

Coulomb friction exerts forces in the plane tangent to the

contact surface between two bodies. It can be described by

the maximum dissipation principle (Moreau, 1973), which

states that friction forces maximize the rate of dissipation

of kinetic energy. Mathematically, this can be posed as the

following optimization problem,

minimize
b

_qTDTb

subject to jjbjjł mg
ð24Þ

where b is the friction force in the contact tangent plane, m

is the friction coefficient, and DT is the Jacobian mapping

tangential contact forces into generalized forces.

The second-order cone constraint in (24) is known as

the friction cone. Because it is not differentiable at b = 0,

this constraint can pose difficulties for general-purpose

nonlinear optimization solvers (Vanderbei and Yurttan,

1998). For this reason, an inner approximation of the fric-

tion cone is often made using a polyhedron (Stewart and

Trinkle, 1996). For the specific case of a four-sided pyra-

mid, this is accomplished by defining a new friction vector

b with twice as many elements as b, enforcing the con-

straint b ø 0, and forming a new Jacobian matrix (Anitescu

and Potra, 1997):

P =
D

�D

� 	
ð25Þ

With this approximation, the optimization problem (24)

becomes

minimize
b

_qTPTb

subject to mg � eTb ø 0

b ø 0

ð26Þ

where e is a vector of ones.

The set of first-order necessary conditions (KKT condi-

tions) for an optimum of (26) are

P _q + ce� h = 0

b,c,h ø 0

mg � eTb ø 0

cT mg � eTb
� �

= 0

hTb = 0

ð27Þ

where c (units m/s) and h (units m/s) are Lagrange multi-

pliers. In the more compact shorthand notation introduced

in the previous subsection, these conditions can be rewrit-

ten as

P _q + ce� h = 0

0 ł c? mg � eTb
� �

ø 0

0 ł h?b ø 0

ð28Þ

Physically, the Lagrange multiplier c approximates the

projection of the system’s velocity into the plane tangent to

the contact manifold. The conditions in (28) ensure that the

friction force will assume whatever value is necessary to

prevent sliding when c = 0, up to the boundary of the fric-

tion cone. In the sliding case, when c 6¼ 0, the friction force

will lie on the boundary of the friction cone.

4.3. A second-order time-stepping method

We now build a complete time-stepping method by com-

bining the results of the previous sections. We first define a

vector, l, that combines the normal and friction compo-

nents of the contact impulse,

l =
g

b

� 	
ð29Þ

and the corresponding Jacobian matrix to map l into gener-

alized coordinates:

Manchester et al. 1467



J =
N

P

� 	
ð30Þ

The discrete Euler–Lagrange dynamics can then be writ-

ten as follows:

D2Ld(qk�1, qk)+ D1Ld(qk , qk + 1)+
1

2
Fd(qk�1, qk)

+
1

2
Fd(qk , qk + 1)+ J (qk + 1)

Tlk = 0

ð31Þ

The set of complementarity conditions derived in the

previous subsections are used to determine lk in (31).

Given qk�1 and qk, the following feasibility problem can be

solved to find lk and qk + 1,

r(h, qk�1, qk , qk + 1, lk)= 0

P(qk + 1)
qk + 1 � qk

h

� �
+ cke� hk = 0

0 ł (mgk � eTbk)?ck ø 0

0 ł f(qk + 1)?gk ø 0

0 ł bk?hk ø 0

ð32Þ

where r(h, qk�1, qk , qk + 1, lk)= 0 refers to (31).

5. Direct trajectory optimization

We now propose a direct trajectory optimization algorithm

that uses the variational time-stepping scheme developed in

the previous section as a set of dynamics constraints. Our

strategy is to formulate the trajectory optimization problem

as a nonlinear program (NLP) and solve it using standard

constrained optimization software.

To ease the numerical difficulties associated with com-

plementarity constraints, we apply a smoothing scheme

similar to that used by Fletcher and Leyffer (2004). The

key idea is to relax the equality constraints in the three

complementarity conditions in (32) by replacing them with

inequalities and introducing slack variables sk :

r(h, qk�1, qk , qk + 1, lk)= 0

P(qk + 1)
qk + 1 � qk

h

� �
+ cke� hk = 0

lk ,ck ,hk , sk ø 0

f(qk + 1)ø 0

(mgk � eTbk)ø 0

sk � hT
k bk ø 0

sk � gT
k f(qk + 1)ø 0

sk � cT
k (mgk � eTbk)ø 0

ð33Þ

Figure 1 illustrates the feasible regions for both the orig-

inal ‘‘strict’’ complementarity constraints and the new

relaxed complementarity constraints in (33). If the slack

variables are reduced to zero, the two regions coincide.

Physically, the relaxed complementarity constraints

allow contact forces to act at a non-zero distance from the

contact manifold. This aids numerical convergence, but we

ultimately want solutions to closely respect the true con-

straints. To encourage convergence of solutions towards

strict satisfaction of the original complementarity con-

straints, we augment the cost function with a term that

penalizes sk . The complete trajectory optimization problem

can then be stated as the following NLP,

minimize
h,Q,U, C

J (h,Q,U)+ a
PN�1

k = 1

sk

subject to f (h, qk�1, qk , qk + 1, lk ,ck ,hk)= 0

g(qk + 1, lk ,ck ,hk , sk)ø 0

umin ł uk ł umax

hmin ł h ł hmax

ð34Þ

where J is a cost function, a is a positive scalar weighting

parameter, f and g are the equality and inequality con-

straints in (33), Q is the set of all configuration knot points,

qk , U is the set of all control inputs, uk , and C is the set of

all contact-related variables, lk , ck , hk , and sk .

The penalty on the slack variables in the cost function

of (34) is a so-called ‘‘exact penalty’’ that has theoretical

convergence guarantees with finite values of a (Anitescu,

2005). In practice, we have observed good convergence

behavior with modest values of a. Problem (34) can be

solved with standard nonlinear programming algorithms

such as sequential quadratic programming (SQP) and

interior-point methods (Nocedal and Wright, 2006). We

use the commercially available constrained optimization

solver SNOPT (Gill et al., 2005). It is also straightforward

to include additional constraints on the system’s state and

inputs.

6. Numerical examples

To evaluate the proposed trajectory optimization algorithm,

we demonstrate its ability to generate complex, multi-

contact motions by optimizing walking trajectories for two

simulated legged robots: Spring Flamingo and LittleDog.

Fig. 1. Illustration of feasible regions for relaxed and strict

complementarity constraints.
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Our implementation of this algorithm was written in

MATLAB R2016a using the dynamics and control toolbox

Drake written by Tedrake and the Drake Development

Team (2016). We also compared its accuracy with the first-

order method used by Posa et al. (2014) in both open- and

closed-loop simulations. In all cases, the optimizer was

initialized with dynamically infeasible trajectories consist-

ing of simple linear interpolation between initial and goal

states. No a priori information about contact forces or

mode sequences was used.

6.1. Spring Flamingo

Spring Flamingo is an 18-state planar bipedal robot with

actuated hips and knees and a passive spring ankle joint

(Pratt and Pratt, 1998). A trajectory optimization problem

was defined in which the robot was required to move from

an initial standing pose to a final standing pose translated

to the left. The following cost function was minimized,

J =
XN�1

i = 1

0:1(xi � xg)
T(xi � xg)+ uTi ui ð35Þ

where xg is the goal state. Figure 2 shows a sequence of

frames taken from the optimized walking gait. The algo-

rithm produced an energetically efficient heel–toe gait that

exploits the passive dynamics of the leg and ankle.

6.2. LittleDog

LittleDog is a 36-state quadrupedal robot designed by

Boston Dynamics to enable research on legged locomotion

(Buchli et al., 2010). A trajectory optimization problem

was defined in which the robot was required to climb up

an 11 cm step. Once again, initial and final state constraints

were enforced and a simple quadratic cost function was

minimized. Figure 3 shows an example climbing strategy

and Figure 4 shows the corresponding sequence of modes

(combinations of foot contacts) that were generated by the

solver.

6.3. Computational cost

We also compared the computational cost of our second-

order method with a first-order variational method with the

same order of accuracy as the time-stepping dynamics from

Posa et al. (2014) for the Spring Flamingo and LittleDog

examples. Our first-order method uses a backward-Euler

discretization of the configurations and a midpoint

Fig. 2. Optimized walking gait for the Spring Flamingo robot.

Fig. 3. LittleDog climbing a step.

Fig. 4. Contact mode sequence for each foot from LittleDog

step-climbing example.
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discretization of the velocities. Five trajectory optimizations

were run using the first- and second-order methods for

each example on an Intel Core i5-6400 CPU with four 2.7

GHz cores and 8 GB of RAM. The mean running time to

convergence 6 one standard deviation is reported in

Table 1.

Furthermore, the maximum slack variables for all 10

trials using the second-order method were less than the sol-

ver tolerances (10�4 for the Spring Flamingo and 10�5 for

LittleDog) at convergence. This indicates that the solutions

respect the true complementarity constraints and the

second-order method does not return solutions in the

relaxed feasibility region. On the other hand, the first-order

method had difficulty finding a solution that respected the

strict feasibility region for the LittleDog step-up example.

6.4. Simulation accuracy

Finally, we compare the first-order time-stepping dynamics

used by Posa et al. (2014) with our second-order variational

time-stepping method in open-loop simulations of a tum-

bling brick hitting the ground and closed-loop simulations

of the LittleDog robot tracking a walking trajectory with

proportional–derivative (PD) feedback control applied to

its joints. Tumbling-brick simulations were initialized with

twenty different randomly chosen initial conditions while

varying the number of trajectory knot points. A reference

solution was computed using the first-order method at a

sample rate of 2 kHz. Figure 5 shows the root-mean-square

(RMS) error (compared with the reference solution) as a

function of the number of knot points. The variational

method achieves better accuracy with fewer knot points

(lower sampling rates) than the first-order time-stepping

method.

To test closed-loop tracking performance, a set of walk-

ing trajectories was optimized using both the first-order

method of Posa et al. (2014) and the second-order varia-

tional method. The number of knot points used to parame-

terize the trajectories was varied between 10 and 40. Simple

PD control was applied to each joint of the robot, and simu-

lations were performed using the first-order method at a

sample rate of 2 kHz. Figure 6 shows the RMS tracking

error in the robot’s state.

The first- and second-order methods generate qualita-

tively similar plans and have similar running times.

However, thanks to the improved accuracy of the second-

order dynamics formulation, the plans generated using the

second-order method achieve better closed-loop tracking

performance with fewer knot points than the first-order

method.

7. Hardware implementation

To demonstrate the practical utility of the new algorithm,

its performance was evaluated on a quadrupedal microro-

bot, the Harvard Ambulatory MicroRobot (HAMR-VI,

Figure 7). This robot is fabricated using laminate manufac-

turing techniques (Whitney et al., 2011), is 4.51 cm long,

weighs 1.5 g, and has eight independently actuated degrees

of freedom (Doshi et al., 2015). Each leg has two degrees

of freedom that are driven by optimal-energy-density piezo-

electric bending actuators (Jafferis et al., 2015). A flexure-

based spherical-five-bar (SFB) transmission connects the

two actuators to a single leg in a nominally decoupled man-

ner: one actuator controls leg swing (x-direction) motion,

while the other actuator controls leg lift (z-direction)

motion.

Table 1. Running time of first- and second-order methods.

Numerical example First order (min) Second order (min)

Spring Flamingo 4:3061:72 (n = 5) 4:9162:17 (n = 5)
LittleDog 38:7764:50 (n = 5) 52:3466:36 (n = 5)

Fig. 5. Falling brick simulation RMS error and standard

deviation.

Fig. 6. RMS tracking error for LittleDog walking with PD

tracking controller.
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The dynamics of the SFB transmissions are assumed to

follow the pseudo-rigid-body approximation with flexures

approximated using pin-joints (Howell, 2001). Given this

assumption, each SFB transmission has two inputs (forces

generated by the actuators), and eight generalized coordi-

nates. These include two independent coordinates (actuator

tip deflections) and six dependent coordinates (a subset of

flexure joint angles). The motion of the dependent coordi-

nates is constrained by the parallel kinematics of the trans-

mission. Thus, a complete model of the robot has eight

inputs (actuator drive voltages), 38 generalized coordinates

(76 states), and 24 position constraints. In addition, each

transmission has a natural frequency experimentally deter-

mined to be near 100 Hz (Doshi et al., 2017). A more

detailed description of the dynamic model for this robot is

given by Doshi et al. (2018). The combination of a high-

dimensional state space and high-frequency passive

dynamics make trajectory optimization for HAMR particu-

larly challenging.

7.1. Surface characterization

We experimentally verified the applicability of the

Coulomb friction model to locomotion at HAMR’s scale.

The coefficients of static friction (m) between microrobot’s

feet and three surfaces, PTFE (Teflon), card stock, and

1,200 grit sandpaper, were measured. Experiments were

conducted using a single leg (Figure 8(a)) to closely repli-

cate conditions during locomotion. Forces were measured

by a six-axis force sensor (ATI Nano17 Titanium) at 100

Hz. Eight trials were run on each surface, and force traces

for a representative trial are shown in Figure 8(b). The leg

was manually lowered to pre-load the force sensor to 35–

200% of the microrobot’s body weight (between 1 and 2 in

Figure 8(b)). The swing degree of freedom is then actuated

to generate a force in the x–y plane (3 in Figure 8(b)) until

the leg begins to slip (4 in Figure 8(b)). The normal, Fn,

and static frictional, Ff , forces were computed as

Fn = DFz ð36Þ

Ff =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DF2

x + DF2
y

q
ð37Þ

where DFx, DFy, and DFz are the net forces between stages

1 and 4 in Figure 8(b) in the x, y, and z directions,

respectively. The friction force increases linearly with the

normal force as anticipated (Figure 8(c)). The mean and

standard deviation for coefficients of friction averaged over

the eight trials for Teflon, card stock, and 1,200 grit sandpa-

per are 0:2960:03, 0:5160:07, and 1:0260:20, respec-

tively. Lines corresponding to these average friction

coefficients are shown in Figure 8(c).

7.2. HAMR trajectory optimization

We performed a number of trajectory optimizations to

search for periodic gaits that achieve forward velocities of

approximately 10 mm per cycle near stride frequencies of

2, 10, and 30 Hz on three different surfaces: Teflon, card

stock, and 1,200 grit sandpaper. A distance of 10 mm is

nearly twice the robot’s step length, approaching the theore-

tical kinematic limit for a two-beat gait. In addition, the

selected frequencies represent three different operational

regimes for the microrobot as discussed by Goldberg et al.

(2017b): quasi-static (2 Hz), near the vertical natural fre-

quency (10 Hz) of the system, and near the roll natural fre-

quency (30 Hz) of the system. Finally, these nine gaits

cover a wide-range of ground contact conditions with coef-

ficients of friction ranging from 0.29 to 1.02, demonstrat-

ing the versatility of the new algorithm.

The NLP presented in (34) was modified to search for

periodic state and input trajectories by adding periodicity

constraints on all position and velocity decision variables

except the x-position of the body. We used the following

Fig. 7. Still frames of HAMR-VI executing a vertical jump.

Fig. 8. (a) Labeled image of the friction-measurement

experimental setup. (b) Representative force data: Fz is the

normal force, and Fx and Fy are the tangential forces. (c) Raw

data (n = 8) and best-fit lines corresponding to the estimated

coefficients of static friction between the microrobot’s foot and

the Teflon, card stock, and 1,200 grit sandpaper surfaces.
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cost function to encourage the robot to achieve its maxi-

mum theoretical stride length:

J = (xN � xg)
TQ(xN � xg)+

XN�1

i = 2

c1

2
D _qTi D _qi +

1

2
DuTi Dui

ð38Þ

where D _qi = _qi � _qi�1 and Dui = ui � ui�1 are the differ-

ence between neighboring generalized velocities and con-

trol inputs, respectively. Here Q is a diagonal matrix with

Q11 2 ½10, 50� and the remaining diagonal entries equal to

one, c1 2 ½10, 50� scales the velocity difference penalty, and

xg is a goal state. To aid convergence and reduce suscept-

ibility to local minima, the solver was initialized with an

empirically generated trot gait that achieves roughly peri-

odic motion for the card-stock friction coefficient. The goal

state is set to xg = ½10, xp�T, where xp 2 R
75 is the periodic

subset of the initial state.

A vertical jump trajectory of approximately one center-

of-mass (COM) height was also optimized. The following

cost function, which encourages the microrobot to jump to

a specified height, was minimized:

J = (xN � xg)
TQ(xN � xg)+

XN�1

i = 1

1

2
uT

i Rui ð39Þ

Here xg = ½02× 1, 24, 073× 1�T is a goal state that specifies

the desired apex height of the jump (slightly less than twice

the COM height) with no body rotation or horizontal

motion. The quadratic input cost penalizes swing actuator

voltages as fore/aft forces do not contribute significantly to

a vertical jump. To improve convergence time and avoid

poor local optima, the optimization was initialized with a

heuristically designed nominal jump trajectory.

As with the simulation examples, these ten trajectory

optimization problems were implemented in MATLAB

R2016a using the dynamics and control toolbox Drake.

Due to the complexity of the HAMR model, these optimi-

zations took several hours to converge.

7.3. Locomotion experiments

The actual performance of the microrobot when executing

the planned trajectories from the previous section was eval-

uated in a controlled 20 cm × 20 cm motion-capture

arena. Input signals were generated at 2.5 kHz using a

MATLAB xPC environment (MathWorks, MATLAB

R2015a), and were supplied to the microrobot through a

10-wire tether. Five motion capture cameras (Vicon T040)

track the position and orientation of the robot body and the

position of the feet at 500 Hz with a latency of 11 ms. In

addition, eight piezoelectric encoders provide low-latency

estimates of actuator tip velocities at 2.5 kHz (Jayaram

et al., 2018). An estimator that combines foot-position and

actuator-velocity measurements to generate low-latency

estimates of the leg positions was developed. Finally, a PD

controller was implemented to track the desired positions

of the microrobot’s four legs in the body-fixed frame. The

details of the motion capture arena, estimator, and tracking

controller are provided by Doshi et al. (2018).

7.4. Performance improvements

Control signals for periodic locomotion trajectories of

HAMR were previously manually designed. This process

involves tuning a series of parameters including input vol-

tage, stride frequency, and relative phasing between the

eight actuated degrees of freedom. Finding periodic control

signals to produce a desired gait is often time consuming,

requiring hundreds of experiments (Goldberg et al.,

2017a,b). The new trajectory optimization method, in con-

trast, was able to generate open-loop control signals that

offer improved performance without exhaustive

experimentation.

The 2 Hz closed-loop experimental trajectories achieved

an average velocity of 9.77 mm/cycle (Figure 10(a)), which

is within 5% of the goal speed of 10 mm/cycle. These gaits

also performed 26% better than the previous-best manually

tuned gaits. In addition, the planned body pose closely

matched that executed by the robot (Figure 9), demonstrat-

ing the accuracy of the trajectory optimization scheme. At

10 Hz, the closed-loop experimental trajectories achieved

an average velocity of 8.98 mm/cycle, which is close to the

desired velocity and 10% faster than the best manually

Fig. 9. Still frames of HAMR-VI (left) and a simulation of

HAMR-VI (right) ambulating at 2 Hz on a card-stock surface.
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tuned gaits. The card-stock gait at this frequency achieved

the fastest per-cycle velocity recorded for this robot at

10.87 mm/cycle. Finally, the average velocity for the 30 Hz

closed-loop gaits was slower at 4.24 mm/cycle. The closed-

loop experiments on sandpaper and card stock, however,

were still 20% faster than the best manually tuned gaits

and within 20% of the predicted velocities from the optimi-

zer. The robot also maintained the desired gait timing (front

legs depicted in Figure 10(b)), and tracked the optimized

leg trajectories in the body frame (front left leg depicted in

Figure 10(c)) for all experiments except at 30 Hz on

Teflon. Finally, we used this method to execute a vertical

jump of 9.96 mm, which is approximately 78% of the

robot’s COM height (Figure 7). This was more than twice

the jump height of 4.72 mm achieved using the heuristi-

cally designed jump trajectory that the optimizer was initia-

lized with.

In summary, our model-based approach yielded

improvements over previous experimental results

(Goldberg et al., 2017a,b). Specifically, the average velo-

city of 9:2161:31 mm/cycle achieved across the six gaits

at 2 and 10 Hz is comparable with the highest previously

measured experimental velocity of 9.5 mm/cycle achieved

using careful hand tuning on a card-stock surface

(Goldberg et al., 2017a). Even the three slower 30 Hz gaits

move on average 30% faster than previously recorded trots

at similar frequencies on a card-stock surface. In addition,

the robot was able to achieve a new highest velocity of

10.87 mm/cycle, and demonstrate the first controlled verti-

cal jump of 9.96 mm (78% of COM height). Importantly,

these performance improvements were achieved without

exhaustive experimentation: tens of experiments were con-

ducted as opposed to hundreds.

7.5. Quality of optimized trajectories

We evaluated the quality of the periodic trajectories by mea-

suring the normalized average slip, �s, commonly defined as

(Jayaram and Full, 2016; Ridgel et al., 2003)

�s =
1

4
R tf

t0
vx(t)dt

X4

i = 1

Z
j

jvi
x(t)jdt ð40Þ

Here, vi
x is the x-velocity of the ith leg and vx is the x-velo-

city of the COM, both in the world-fixed frame as mea-

sured by the motion capture system. The time interval of

interest is bounded by t0 and tf , and j is the set of times for

which vi
x\0. Normalized slip is the total distance a single

leg travels backwards in the world frame divided by the for-

ward distance traveled by the body. We present an average

value for all four legs. Higher values of �s indicate increased

backwards motion of the legs, decreased propulsion, and

reduced performance. The average value of �s was

0:1060:06 (n = 9) for the optimized trajectories, which is

expected because we demand high performance from the

robot. The closed-loop experimental trajectories slipped

slightly more, with an average �s of 0:2460:14 (n = 9).

This is similar to the average slip of 0:2360:11 (n = 9)

Fig. 10. Mean per-cycle forward velocity for the optimized

(orange), closed-loop experimental (blue), and manually tuned

(gray) trajectories. Error bars represent one standard deviation

(n = 15).

Fig. 11. Optimized (orange) and mean closed-loop experimental

(blue) leg height for the front left (solid) and front right (dashed)

leg.
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across the manually tuned trajectories, and is one of the

factors that could have resulted in decreased performance

when compared with the optimized trajectories. In addition,

the optimizer also found an intuitive jumping trajectory

where all four legs first build spring potential energy, and

then simultaneously push into the ground.

8. Discussion and conclusions

We have presented a new family of variational time-

stepping algorithms that generalize previous methods to

higher orders of integration accuracy. We used a midpoint

discretization to derive a second-order method and incorpo-

rated it into a direct trajectory optimization algorithm that

solves for contact forces along with state and input trajec-

tories. We also demonstrated the algorithm’s ability to gen-

erate walking trajectories for both simulated underactuated

robots and a physical quadrupedal microrobot with com-

plex dynamics. Hardware experiments on this microrobot

showed significant improvements over previous hand-tuned

trajectories.

Numerical tests suggest that our second-order contact-

implicit method offers improved accuracy over previous

first-order algorithms, allowing smaller NLPs to be solved

while maintaining reasonable solution accuracy. Compared

with existing hybrid trajectory optimization methods, our

technique can offer comparable solution accuracy without

requiring pre-specification of a contact mode sequence. In

particular, if the slack variables in (34) converge to zero,

the solution from our method should correspond to a hybrid

method supplied with the same mode sequence. However,

the size of the optimization problem that must be solved in

the contact-implicit formulation is larger than in a hybrid

method, potentially leading to significantly longer solution

times.

Several directions remain for future work. For example,

a more extensive numerical comparison including third-

and fourth-order time-stepping methods would allow us to

better understand the trade-off between accuracy and com-

putational cost in the context of motion planning.

Furthermore, our current MATLAB implementation

requires several minutes to compute the Spring Flamingo

and LittleDog plans and several hours to compute the

HAMR-VI plans described in the previous section.

Significant speed improvements could be made with a

careful C++ implementation that exploits the sparsity

structure of the problem. Lastly, there may also be advan-

tages to combining our contact-implicit approach with

existing hybrid trajectory optimization schemes such as that

of Posa et al. (2016) by warm-starting the hybrid method

with the contact mode sequence and trajectory discovered

by our method. This combined approach could ultimately

offer faster convergence to more accurate solutions.
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