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Abstract

For autonomous driving perception, visual data, such as camera image
and LiDAR point cloud, consists of two aspects: semantic feature and ge-
ometric structure. While usually studied separately, these two properties
can be combined and jointly used by a unified framework. In this work,
we apply and validate this idea on modern visual recognition tasks. For
image panoptic segmentation, we introduce position-sensitive embedding
that is able to distinguish instances with similar appearance but at dif-
ferent locations. Such embedding allows a simple single-stage network to
generate panoptic segments in a highly efficient way. For LiDAR point
cloud detection, we fuse deep semantic feature extracted from pseudo
range image with raw geometric information. This additional feature
fusion stage significantly improves the detector’s mAP on all categories,
outperforming other state-of-the-art approaches. The methodology of
combining semantic and geometric features gives a unique perspective of
looking at the problems in modern visual recognition tasks.
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Chapter 1

Introduction

1.1 Motivation

Recent advances in deep learning on visual data have started a revolution in designing

the perception systems of autonomous vehicles. Compared with traditional methods,

deep neural networks are much better at extracting meaningful semantic information

from images. For example, fully convolutional network (FCN) is a popular and effective

approach to encode dense per-pixel embedding for semantic segmentation. However,

the application of autonomous driving requires a better scene understanding approach

that not only should be able to distinguish objects from background, but also locate

each instance precisely on the map. We call these two aspects of the problem semantic

scene understanding and geometric scene understanding respectively. In practice,

semantic scene understanding is well-studied on 2D image data while geometric scene

understanding is usually applied to 3D point cloud data. The reason behind this is

simple: images have richer semantic information due to higher dimensionality and

density, and point clouds are easier for localization because each point naturally

contains 3D positional information.

This thesis explores an interesting idea: combining semantic scene understanding

and geometric scene understanding together for modern visual recognition tasks in a

unified framework. On images, we propose a method that utilizes position-sensitive

embedding to generate simultaneously semantic and instance masks for panoptic

segmentation. On point clouds, we show that adding deep semantic information to
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CHAPTER 1. INTRODUCTION

raw geometric point features can significantly improve the 3D detection performance.

Experiments demonstrate that jointly using semantic and geometric information is

highly effective on many common perception tasks including both detection and

segmentation.

1.2 Thesis Overview

This thesis can be divided into two main parts as the above idea is tested on two

types of input data, images and point clouds, both widely used in autonomous driving

perception. I will now delineate the organization of this thesis following this division.

1.2.1 PanoNet

Chapter 3 introduces PanoNet for panoptic segmentation on images. PanoNet is a

novel one-stage segmentation network using a single FCN as backbone. The network

generates per-pixel embedding to be then clustered into instance-level masks. In

additional to the raw RGB features, we also feed the network with spacial information

so that it can distinguish objects with similar appearance but at different locations.

PanoNet is conceptually simpler than the traditional two-branch design (one for

semantic segmentation and one for instance segmentation) and does not require any

fusion process to combine the two results together. Our key contributions are listed

below:

• We propose PanoNet, a single-stage panoptic segmentation method using highly

similar structure and sharable parameters for both semantic and instance

segmentation branches. The design of PanoNet is much simpler than that of

other state-of-art solutions.

• PanoNet utilizes position of objects on top of their feature embedding for

segmentation without region proposals. We develop a unique training procedure

that allows the network to learn how the position-sensitive information should

be encoded, resulting in a significant performance improvement.

• PanoNet has excellent speed-accuracy trade-off in terms of both memory and

time consumption. With less than 3 GB memory used, PanoNet achieves

real-time inference speed (20 FPS) on high-resolution 2048× 1024 images. On
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CHAPTER 1. INTRODUCTION

the other hand, PanoNet still has decent performance both visually and on the

panoptic quality metrics.

1.2.2 PanoNet3D

On point cloud data, 3D object detection is the most common task. Chapter 4

proposes PanoNet3D to solve this problem. Similar to PanoNet, per-point semantic

embedding is extracted from an FCN. The input of this encoding network is generated

by projecting all points onto the perspective plane of the LiDAR sensor. Then, the

semantic embedding is concatenated with raw point features (including 3D coordinates

and reflected intensity) and fed into a voxel-based network to generate final detection

results. The key contributions of this work are the following:

• We introduce PanoNet3D, a novel approach that feeds both deep semantic

feature and raw geometric feature of point cloud data to main detector. By

doing so, the detector is exposed to both spatial structure of point cloud and

semantics natural to the LiDAR sensor.

• PanoNet3D achieves significant improvements on both single-sweep input and

multiple-sweep input. Our design of temporal aggregation allows using multiple

scanned frames for denser input data without the redundancy of repeatedly

running the same semantic feature extraction network on these frames.

• PanoNet3D beats state-of-the-art (SOTA) performance on 3D object detection.

With several improvements on network architectures, it achieves 0.54 mAP

on NuScenes dataset detection challenge, out-performing PointPillars [35] and

CBGS [82].
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Chapter 2

Background

2.1 Autonomous Vehicle Perception

Autonomous driving systems has been proven to have many benefits compared

to human drivers, including preventing accidents caused by human errors, cutting

emission, and reducing driving-related stress [72]. Perception system is a vital

component for autonomous vehicles as it provides understanding of the environment

to the downstream parts (usually localization and mapping) [62]. A typical perception

system receives images from cameras and point clouds from LiDAR sensors. These

two types of information introduce different tasks. For images, panoptic segmentation

extracts most useful information as it includes both instance segmentation and

semantic segmentation, such that things like cars and pedestrians as well as stuff like

road and vegetation can be segmented at the same time. For LiDAR point clouds,

we usually cares about 3D detection as it can output estimated positions of obstacles.

Next, we will discuss these two tasks separately.

2.2 Panoptic Segmentation on Images

Things and stuff have long been studied separately: the former formulated as tasks

known as object detection or instance segmentation, the latter formulated as tasks

known as semantic segmentation. To find an effective design of a unified vision system
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CHAPTER 2. BACKGROUND

that generates rich and coherent scene segmentation, panoptic segmentation [32] was

introduced, and it has become particularly important in autonomous driving and

augmented reality [69].

The uniqueness of panoptic segmentation lies in two aspects: First, this task

should be solved efficiently since it needs to be fast in real applications. Second, it

unifies the feature presentation and network architecture for semantic segmentation

and instance segmentation. However, to our best knowledge, there are no methods

satisfying both requirements at the same time.

Although semantic segmentation and instance segmentation are highly relevant,

very dissimilar methods has been adopted for each task. For semantic segmentation,

FCNs with specialized backbones enhanced by dilated convolutions [13] dominate

popular leader boards [16, 21]. For instance segmentation, region-based Mask R-

CNN [28] with a Feature Pyramid Network (FPN) [41] backbone has been used

as a foundation for all top entries in recent recognition challenges [7, 49, 79]. To

make full use of these top-performing methods, most previous works use two parallel

branches, one for instance-level recognition with RPN [56] and one for semantic-level

segmentation [32, 33, 52]. However, neither inference efficiency nor the correlation

between these two highly relevant tasks is considered. In these proposed methods,

only the feature extraction backbone is shared. Panoptic FPN [33] predicts instance

segmentation masks without using any semantic segmentation result. Similarly,

BiSeg [52] runs R-FCN [18] multiple times and applies a max operation to produce

per-pixel likelihood of the object category.

To alleviate the time inefficiency caused by re-segmentation, our goal is to design

a one-stage panoptic segmentation algorithm using FCNs as backbone. Previous

work [19] has shown that semantic segmentation frameworks can also be used to

distinguish different instances by training the network with a discriminative loss

function and then clustering pixel-wise feature embedding into masks of instances.

However, it does not take positional information into consideration because of the

translational invariance of FCNs. Thus, this approach is unable to segment instances

with similar appearance and feature (e.g., two cars of the same model).

We argue that both appearance and position of objects are important when using

pixel-wise embedding to cluster instance masks. Inspired by Liu et al. [43], we add

spacial information as additional input and train the network to be position-sensitive.

6
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Experimental results show that the position-sensitive feature embedding leads to

significant improvement of performance. With light-weight backbone like ICNet [77],

we achieve real-time performance and accuracy comparable to the state-of-the-art.

Fig. 2.1 shows the speed-accuracy trade-off of panoptic segmentation methods. To

the best of our knowledge, our method is the first approach achieving real-time

performance on high-resolution images on a single GPU.

2.3 3D Detection on Point Clouds

Both industry and academia are excited about the advent of autonomous vehicles.

Significant progress has been made since the vision-guided Mercedes-Benz robotic

Van in 1980 that used LiDAR sensor and computer vision technology [6]. Since then,

detecting and localizing obstacles on LiDAR point clouds has become a popular

research topic. While LiDAR sensors output 3D point clouds, it is fundamentally

different than true 3D data (such as 3D mesh models). Because of the sweeping

mechanics of LiDAR, the data can be represented in 2D format (range image). This

is commonly referred as 2.5D [24]. Many popular 3D detectors like PointPillars [35]

often ignore such fact and treat the LiDAR data purely as a collection of (x, y, z, i)

points (i is the point’s intensity or reflectance). Though these works achieve decent

performance on detection tasks, they completely destroy the natural organization of

the data.

To address this issue, the simplest way is to format the data as normal 2D images

and apply 2D image detectors on them. However, this solution has several drawbacks.

First, spatial coordinates are different from image’s RGB channels. The spatial

structure of points cannot be easily extracted from 2D convolutions on the projected

range image. Second, range images are not scale invariant. That is, closer objects

have much larger number of pixels compared to objects that are far away. Various

scales of similar objects make it hard for the network to generalize.

Inspired by previous exploration on image segmentation. We argue that combining

both deep semantic features from range images and raw geometric structures from

3D point clouds together can achieve best results. At the first step, we extract

semantics from 2.5D range image with FCN. The resultant high dimensional semantic

features are then fused with low dimensional raw geometric features. Final predictions
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are generated from a 3D sparse convolutional network. In such manner, we utilize

semantics from 2.5D range images and still keep scale invariance in real 3D space

at the same time. Our method shows that additional semantic features significantly

improve the detection performances on NuScenes [8] dataset, surpassing the current

first-place method CBGS [82] on the official leader-board.

8



CHAPTER 2. BACKGROUND

Figure 2.1: Panoptic quality (PQ) vs inference speed on Cityscapes validation set
(full scale 1024 × 2048 high-resolution image). The listed methods: Li et al.[36],
Mask R-CNN and PSPNet (MR-CNN-PSP) [33, 64], Panoptic FPN [33], UPSNet [64],
DeeperLab [67] variants and our PanoNet. Our model runs significantly faster than
other methods with comparable performance.
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Chapter 3

PanoNet

3.1 Related Work

3.1.1 Semantic Segmentation:

Semantic segmentation is a classical and well-studied computer vision problem.

Convnets have been long used to exploit the contextual information for segmenta-

tion [17, 22, 26, 53, 68, 71]. Recently, a prevalent family of approaches based on Fully

Convolutional Networks (FCNs) [46] have demonstrated state-of-art performance on

several benchmarks [7, 16, 21, 79]. Four great ideas have been proposed among these

methods. The first idea is fusing multi-scale feature [10, 25, 63, 76], since higher-layer

feature contains more semantic meaning but less local information, and combining

multi-scale features can improve the performance. The second idea is using dilated

convolution to increase local information and enlarge the receptive field at the same

time [9, 12, 13, 14]. The third idea is to adopt probabilistic graphical models (e.g.

CRFs) to refine the segmentation result [9, 13, 39, 78]. However, this post-processing

is time-consuming and breaks the end-to-end modeling. Fourth idea is the usage of

Encoder-decoder networks [3, 5, 40, 51, 73]. Previous works [14] show that it can

help to obtain sharper segmentation.

11
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3.1.2 Instance Segmentation

Instance segmentation task is to predict the boundary of each object in the scene. We

categorize current instance segmentation methods into two categories: detection-based

methods and segmentation-based methods.

For detection-based methods, most models adopt RPN [56] to generate instance

proposals. FCIS [37] and MaskLab [11] utilize the ‘position-sensitive score map’

idea proposed by R-FCN [18]. Mask R-CNN [28] extends Faster R-CNN by adding

a branch for predicting object masks. PANet [44] adds a bottom-up path to the

FPN backbone aiming at enhancing the localization capability of the entire feature

hierarchy and demonstrates outstanding performance.

The other approach is segmentation-based. The methods that fall into this

category always need to learn spatial transformation for instance clustering. Many

methods attempt to predict link relationship between each pixel with its neighbors [20,

38, 57] through graphical models [2, 75], embedding vectors [50] or discriminative

loss [19]. InstanceCut [31] predicts object boundary while Watershed [4] predicts the

watershed energy through an end-to-end convolutional neural network and applies

multi-cut. Instances are also separated by exploiting depth ordering within an image

patch [60, 74]. However, this method requires ground-truth depth maps during

training which we do not assume that we have.

Other works focus on fast prediction speed to achieve real-time performance.

Box2Pix [61] relies on a single FCN [46] to predict object bounding boxes, pixel-wise

semantic object classes and offset vectors toward object centers. However, because

of the single architecture and delicate offset vector prediction, the final result is not

competitive.

3.1.3 Panoptic Segmentation

Normally, instance segmentation only focuses several semantic classes (such as humans

and cars, usually referred as things) and ignores the other (such as road and sky,

usually referred as stuff ). On the other hand, semantic segmentation cannot provide

masks of each individual objects. The idea of combining instance and semantic

segmentation together is first proposed by Kirillov et al. [32]. The new task, called

panoptic segmentation, requires the output to contain both pixel-wise semantic

12



CHAPTER 3. PANONET

Figure 3.1: The PanoNet framework for panoptic segmentation. The top branch
takes normal images as input and outputs semantic segmentation results. The lower
branch takes original images along with additional XY coordinate map and outputs
instance segmentation results. The outputs of the two branches can be merged into
panoptic segmentation directly without requiring any additional procedures

prediction and object boundaries for things classes. A simple solution to this problem

is proposed in [32] by heuristically combining the instance segmentation results from

a Mask R-CNN and semantic segmentation results from a PSPNet. Recently, many

works are aimed to find a unified network for the two sub-tasks. Panoptic FPN [33]

slightly modifies Mask-RCNN by enabling it to also generate pixel-wise semantic

segmentation prediction. UPSNet [64] designs a panoptic head with a single network

as backbone. However, these methods all rely on a region-proposal based object

detector and fail to run in real-time.

In contrast to those methods, we proposed a framework that exploits the strong

correlation between detection and segmentation tasks. We use information in both

spacial and feature embedding domain for instance grouping to alleviate the inefficiency

caused by detection-based segmentation. Our design is simple yet effective. With

ICNet [77] as backbone, we achieve ∼20-fps inference speed on Cityscapes’ full scale

images (resolution: 2048× 1024) with decent prediction accuracy in both semantic

and instance segmentation tasks.

13
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3.2 Method

3.2.1 Network Structure

We choose ICNet [77] (originally designed for semantic segmentation) as the backbone

of PanoNet. ICNet uses cascade feature fusion unit and cascade label guidance

to speed up low-speed segmentation network (PSPNet50) while still maintaining

decent accuracy. We modify ICNet by adding an extra branch that takes additional

coordinate input channels and outputs an pixel-wise embedding map for instance

segmentation. The whole structure of PanoNet is shown in Fig. 3.1.

For semantic segmentation task, we simply adopt the same design as the original

ICNet. For instance segmentation, the input and the final output layers of the ICNet

framework are modified. Two more layers of normalized horizontal and vertical

coordinates are appended to the RGB color channels as the input of this branch,

and the final output is a 12-channel position-sensitive instance embedding map. In

post-processing, a fast version of mean-shift clustering algorithm is applied class-wise

to generate the instance segmentation map. More details of the PanoNet structure

are discussed in the following sections.

3.2.2 Loss Function

We design the overall loss function by dividing it into two sub-terms, one for each

branch of the PanoNet. For the semantic segmentation branch, we follow the ICNet’s

weighted softmax cross entropy loss design. Because there are T = 3 scales of

reference guidance, the loss can be defined as

Lsem =
T∑
t=1

λtLsce,t (3.1)

Lsce,t denotes the softmax cross entropy loss of each scale, and λt are the weighting

factors.

For instance segmentation, we adopts the idea of discriminative loss [19] proposed

by Kirillov et al. The loss pulls the pixel embeddings closer to the mean of their

cluster and pushes different clusters away from each other. We define that C is

14
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the number of clusters, Nc, µc is the number of pixels and mean of cluster c, xi is

the embedding vector, and δv, δd, δr are the margins of the variance, distance and

regularization loss terms. [x]+ = max(0, x) denotes the hinge function and ‖·‖ denotes

the L2 distance. Then our modified instance segmentation loss can be expressed as

Lvar =
1

C

C∑
c=1

1

Nc

Nc∑
i=1

[‖µc − xi‖ − δv]2+ (3.2)

Ldist =
1

C(C − 1)

C∑
ca=1

C∑
cb=1

ca 6=cb

[2δd − ‖µca − µcb‖]
2
+ (3.3)

Lreg =
1

C

C∑
c=1

1

Nc

[‖µc‖ − δr]2+ (3.4)

Linst,t = αLvar,t + βLdist,t + γLreg,t (3.5)

Linst =
T∑
t=1

λtLinst,t (3.6)

method PQ SQ RQ PQTh SQTh RQTh PQSt SQSt RQSt mIoU AP runtime (ms)

Li et al. [36] 53.8 - - 42.5 - - 62.1 - - 71.6 28.6 7000
MR-CNN-PSP [32] 58.0 79.2 71.8 52.3 77.9 66.9 62.2 80.1 75.4 75.2 32.8 1105
Panoptic FPN [33] 58.1 - - 52.0 - - 62.5 - - 75.7 33.0 500
UPSNet [64] 59.3 79.7 73.0 54.6 79.3 68.7 62.7 80.1 76.2 75.2 33.3 236
PanoNet 55.1 77.5 67.9 46.8 74.6 60.9 60.5 79.6 72.9 74.6 23.1 50

Table 3.1: Panoptic segmentation results on Cityscapes validation set. Superscripts
Th and St stand for things and stuff. Runtimes, if not stated in the original paper,
are guessed in favor of the method. Metrics that are not reported are left as ‘-’.

3.2.3 Position-Sensitive Embedding

Previous embedding-clustering based approach does not take the position of different

instances into consideration. When there are two instances with similar appearance

in a same image, such model often fails. Inspired by Liu et al. [43], we propose

to add coordinate maps in addition to the origianl RGB image as the input of the

network. However, achieving a weighting balance between the two aspects (position

and appearance) of the final fused embedding can be tricky. Through experiments,

15



CHAPTER 3. PANONET

we observe that directly training such network from scratch may cause the network to

overuse the coordinate information such that the network’s learned embedding does

not generalize very well and performs poorly on validation set. To address this issue,

we apply a two-stage training technique. More specifically, we first train the network

with discriminative loss by using the pretrained semantic segmentation weights and

re-initializing last few layers. After converging, the network is trained again with

the two coordinate input layers added. This approach allows the network to learn

how to effectively utilize the coordinates to segment different instances and fuse the

position-sensitive information into the final embedding vector.

3.2.4 Clustering

In the discriminative loss function, if we choose the margins such that δd > δv,

the embedding will move each vector xi closer to its own cluster center than to all

other clusters. To get the instance masks, we need to choose a clustering method to

group the vectors xi into their respective clusters. As the number of instances, i.e.,

the number of clusters in the embedding space of xi’s, is unknown, the mean-shift

algorithm [15] is a good fit in this case. Mean-shift is controlled by a single ‘bandwidth’

parameter in lieu of the number of clusters. The bandwidth can be viewed as the

distance threshold for determining whether a point belongs to the neighbourhood of

a cluster center. Because the δv term in the loss function plays a similar role as the

bandwidth, we choose it as the base value of the bandwidth, and we search within a

small range for an optimal value of each semantic category on the training set. This

is because we cannot train the discriminative loss to zero in practice, so that the

actual optimal bandwidth value for clustering is slightly larger than δv. The search

process is one-time and straightforward (usually takes few hours to complete). We

also accelerate the mean-shift algorithm with discretized bin-seeding (seeds are chosen

from a grid of original points). The clustering process adds minimal overhead to the

whole pipeline and does not affect the real-time inference speed.

3.2.5 Implementation Details

We set the hyperparameters of the loss function as τ1 = 1, τ2 = 0.4, τ3 = 0.16

for the three layer of cascade guidance (1/4, 1/8, 1/16 scale of original image),
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method AP AP0.5 person rider car truck bus train mcycle bicycle

ICNet[77] 23.1 42.3 8.8 8.2 29.6 29.3 45.3 45.4 9.3 8.5
DeepLabv3+[13] 19.6 40.1 11.9 14.2 28.2 14.4 39.6 22.9 13.1 12.7
ground truth 59.7 77.3 41.8 73.2 31.8 78.6 76.8 71.9 58.0 45.6

number of instances in train set 17.9k 1.8k 26.9k 0.5k 0.4k 0.2k 0.7k 3.7k

Table 3.2: Influence of semantic segmentation results on instance segmentation
performance. The last row shows the total number of training instances in the
Cityscapes dataset.

δv = 0.25, δd = 1, δr = 6 for the margins and α = 1, β = 1, γ = 0.1 for the weights of

discriminative loss. For training on Cityscapes dataset, we choose Adadelta with the

learning rate of 0.003 and polynomial decay policy.

3.3 Results

We train the PanoNet on the Cityscapes train set (2975 images) and test the model

on the validation set (500 images). For both training and testing, we use the original

high-resolution images without down-sampling. The inference speed measurement is

conducted on a single Titan X GPU.

3.3.1 Panoptic Segmentation Metrics

We report the panoptic segementation results on Cityscapes together with other

state-of-art methods in Table 3.1. Only our method requires no object detectors or

region proposals. We show that the PanoNet runs much faster than all other methods

and achieves decent panoptic quality score at the same time. Our inference time is

50 ms, less than 1/4 of the fastest UPSNet. On the other hand, our PQ score is 55.1,

which is even better than one method that does not pay attention to the speed.

Some visual examples are shown in Fig. 3.2. Because our method does not need

to handle the conflicts of semantic and instance segmentation like other two-stage

solutions, there is no large black (unlabeled) area in the images as observed in those

methods. The PanoNet is also able to properly group non-connected regions, which

cannot be properly segmented by some other instance clustering approaches. The

last two rows illustrate some failure modes of our solution. The first image shows
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semantic segmentation error of some trash cans, and the second one shows a hard

instance segmentation case where there are crowded pedestrains with occlusion.

3.3.2 Influence of Semantic Segmentation on Instance

Segmentation

As our method does instance clustering on semantic segmentation results, error may

accumulate during this process. Compared with the UPSNet, we observe higher

performance gap for instance segmentation (things) than semantic segmentation

(stuff). To further understand the influence of semantic segmentation on instance

segmentation, we replace the semantic segmentation map with a) prediction from

a more complex model - DeepLabv3+ [13] and b) ground truth. These results are

reported in Table 3.2. We can see that the average precision is significantly higher

when the ground truth semantic segmentation is given. This shows that our method

is highly efficient on the instance clustering task. The AP is higher on bus and train

class because there are usually only one or two instances of these classes in a single

image (little clustering work is needed). When using semantic prediction instead

of the ground truth, instance segmentation is very prone to error especially when

some small regions are incorrectly mislabeled. One of such examples is shown in Fig.

3.3. The highlighted regions are mislabeled as ‘bicycle’ class and clustered into three

instances. Though these small regions won’t affect the semantic segmentation metrics

much, they significantly degrade the instance performance because of the introduced

false positives. The ‘car’ class has the smallest performance gap without the ground

truth semantic segmentation, because this class has the most training examples in the

dataset. Last, we show that, more accurate semantic segmentation methods, such as

DeepLabv3+, does not necessarily lead to performance improvement. The semantic

segmentation models that are conservative on ‘things’ categories and predict fewer

false positives tend to result in better instance segmentation.

3.3.3 Position-Sensitive Embedding

To study whether adding position-sensitive component to the embedding leads to

any improvement on instance segmentation task, we train a variant of PanoNet
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method backbone AP APGT

Discriminative Loss[19] ResNet38 21.4 37.5
PanoNet w/o pos. ICNet 20.5 58.9
PanoNet ICNet 23.1 63.7

Table 3.3: Performance of instance segmentation on Cityscapes validation set. APGT

means the average precision of instance segmentation given the ground truth semantic
segmentation.

under the same settings but without providing position information (i.e., removing

coordinate map from input). The results are reported in Table 3.3. We observe that

position-sensitive embedding increases the average precision. Even with a much more

light-weight backbone (ICNet compared to ResNet38), PanoNet outperforms the

baseline model.

Position information is especially useful in scenarios where two instances have

similar or the same appearance. Fig. 3.4 shows such an example. The image was

created by mirroring the left half of the original image to the right half. If we use pure

feature embedding to cluster instances, the two mirrored cars cannot be distinguished

from each other as expected. But when position information is provided, all the four

instances can be correctly predicted as shown in the figure.

3.3.4 Runtime and Memory Analysis

We report the computational complexity of our model in Table 3.4. PanoNet shows

excellent performance-accuracy trade-off. To our best knowledge, PanoNet is the

first panoptic segmentation model that runs in real time on a single GPU with

2-mega-pixel high-resolution input images.

Our model has advantages over other methods for three main reasons. First, for

applications such as autonomous driving and augmented reality, real-time performance

is highly desired. The inference speed of PanoNet is at 20 fps and significantly faster

than all other approaches, making it favorable especially when hardware resources are

limited. Second, the highest-end GPUs on the market usually have 12 GB memory,

while many other consumer GPU products have only 4 GB to 8 GB memory. For

high-resolution images, the listed models usually have to crop the image into several
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smaller sub-images to process separately simply because the model cannot be fit into

the GPU’s memory. This makes PanoNet stand out as it only requires 3GB memory

for images as large as 2048× 1024. Thus, our whole model can be easily fit into most

GPUs so that the output of a complete image is generated in a single shot. Last,

PanoNet is easy to train beacause of it contains many fewer parameters. Most other

panoptic segmentaion models use 16 GPUs or more [64] to train, while our training

process only takes 4 GPUs thanks to the compactness of the model.

method PQ # p. mem. fps

Li et al. [36] 53.8 - 48 GB < 0.5
MR-CNN-PSP [32] 58.0 92M > 12 GB 0.9
Panoptic FPN [33] 58.1 - > 12 GB 2
UPSNet [64] 59.3 46M - 4.2
DeeperLab (Xception-71) [67] 56.5 - - 3.2
DeeperLab (Wider MNV2) [67] 52.3 - - 6.7
DeeperLab (Light Wider MNV2) [67] 48.1 - - 10.2
DeeperLab (Light Wider MNV2) [67] 39.3 - - 24
PanoNet 55.1 12M 3 GB 20

Table 3.4: Panoptic quality (PQ) and computational complexity comparison of
PanoNet and other methods on full-scale Cityscapes images. ‘# p.’ means the
number of parameters of the model. Metrics that are not reported are left as ‘-’.

3.3.5 Sharable Weights

Currently our PanoNet model consists of two independent ICNet branches. However,

it is possible for these two branches to share the weights of shallow layers to further

compress the model. We train a variant of PanoNet with shared weights except for

the final three layers leading to the prediction. This yields 52.3 PQ, which is 5%

lower than the baseline. As PanoNet is already light-weight and fast, further study

on weight sharing and model compression is beyond the scope of this paper.
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Figure 3.2: Visual prediction of PanoNet on Cityscapes dataset (1 of 2). First column:
overlayed results; second column: corresponding panoptic segmentation results.
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Figure 3.2: Visual prediction of PanoNet on Cityscapes dataset (2 of 2). First column:
overlayed results; second column: corresponding panoptic segmentation results. The
last two rows shows some failure mode.
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Figure 3.3: Zoomed-in view of mislabeled semantic regions. The highlighted regions
are all mislabeled as ‘bicycle’ class by the semantic segmentation branch. They are
clustered into three ‘bicycle’ instances, resulting in three false positives.

Figure 3.4: Instance segmentation on an artificially created image (mirrored about
the axis in the middle). Left: prediction result of non-position-sensitive embedding,
the two mirrored cars are grouped into one single instance; right: prediction result of
position-sensitive embedding.
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Chapter 4

PanoNet3D

4.1 Related Work

4.1.1 Point Cloud Representation

Deep learning architectures take different formats of point clouds as input. The first

class consumes raw point clouds directly, including PointNet [54], PointNet++ [55],

and PointRCNN [58]. This type of approaches require no pre-processing of point

clouds (such as voxelization or rendering), but their performance suffers when the

scene is large and sparse. For common LiDAR sensors, a single sweep usually contains

over 50,000 points. So these networks usually need to down-sample input, losing

resolution of raw data.

Some networks simply treat point clouds as a bird-eye-view (BEV) image, e.g.,

AVOD [34] and Complex-YOLO [59]. This particularly works well on detectors of

LiDAR point clouds as we usually only care about x-y (2D) localization of objects.

This formatting allows mature 2D image detection frameworks to be re-applied on

point clouds at the cost of partly losing vertical geometric structure information.

Another type of point cloud formatting is voxelization. Examples include Voxel-

Net [80], SECOND [65], and PIXOR [66]. Voxelized point cloud usually has finite

spatial size with pooling as the technique to convert per-point features to per-voxel

features.

Recently, LaserNet [48] shows that when the size of training dataset is large
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enough, detection networks performing on perspective view of LiDAR point clouds

(range images) can achieve performance close to popular BEV detectors. Similarly,

MVF [81] extracts semantics from both range images and BEV images with two 2D

convolutional towers. For LiDAR point clouds, range image format is dense and has

no range limits compared to other BEV based representations.

4.1.2 Object Detection

Object detection has traditionally been studied on 2D images. Various Convolutional

Neural Network (CNN) based detectors are proposed since R-CNN [23]. These

detectors can be categorized into two major classes: two-stage detectors and single-

stage detectors. Two-stage detectors usually consist of a Region Proposal Network

(RPN) [56] that produces candidate region proposals and a second stage network

regressing the final bounding boxes. On the other hand, single-stage detectors rely on

a Single Shot Detector (SSD) [45] that densely produces bounding box predictions

with a single fully convolutional network (FCN). Single-stage detectors are simpler

and typically faster than two-stage detectors. With focal loss [42] to alleviate the

problem of foreground-background class imbalance, single-stage detectors can achieve

similar or even better results compared to two-stage detectors.

Object detection on 3D point clouds is a more recent research topic. Many

works borrow ideas from 2D image detectors as there is no fundamental difference

between these two tasks. The only necessary modification of detection head is the

regression of additional parameters required to define 3D bounding boxes. Many

modern point cloud detectors adopt single-stage frameworks, including SECOND [65],

PointPillars [35], PIXOR [66], and LaserNet [48]. Single-stage point cloud detector

is more favorable for autonomous driving application due to its simplicity and fast

inference speed.

4.1.3 Detection on LiDAR Point Cloud

Object detection on LiDAR point cloud data has several domain-specific problems.

We discuss convolution types, temporal aggregation and data augmentation below.
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Convolution Types

Intuitively, voxelized point cloud data is a 3D tensor and thus the detector should

consist of 3D convolution layers. Because of the sparsity of LiDAR data, GPU-

accelerated sparse implementation of 3D convolution is usually applied [65] in order

to significantly reduce time and memory consumption. PointPillars [35] converts 3D

inputs to 2D by using a pillar feature encoder that outputs per grid feature embedding

on the x-y (BEV) plane. This allows the detector to use regular 2D convolutional

layers that are highly optimized on GPUs by many deep learning libraries.

Temporal Aggregation

Many detectors aggregate multiple consecutive LiDAR sweeps and show that temporal

information can improve detection results. FaF [47] treats temporal information as

an additional dimension of input tensor, i.e., multiple frames are appended along a

new dimension to create a 4D tensor. SECOND [65] proposes a simpler solution that

adds relative temporal stamp to each point as an extra input channel. We need to

pay special attention t

o ego motion during temporal aggregation as the reference coordinate system

shifts with ego vehicle’s movement.

Data Augmentation

Data augmentation is extremely important for applying LiDAR detection on au-

tonomous driving scenarios, as such real world datasets usually have severe problem

of class imbalance. For example, about half of labelled instances in NuScenes [8]

dataset are cars. A copy-and-paste augmentation schematic are used in many popular

detectors including SECOND [65], PointPillars [35], and CBGS [82]. This method

crops ground truth bounding boxes from other frames and pastes them onto current

frame’s ground plane. Hu et al. [29] argues that maintaining correct visibility during

augmentation makes significant improvements on detection results. The visibility

information can either be explicitly expressed or naturally encoded in range images.
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4.2 Method

The structure of PanoNet3D is illustrated in Fig. 4.1. This framework can be divided

into two stages. 1) Feature extraction stage: A 2D FCN generates deep semantic

features from projected pseudo range images. Meanwhile, a geometric decorator

generates each point’s raw geometric features including its global coordinates and

local position relative to the center of its residing voxel. The semantic features and

geometric features are aggregated and passed to the next stage. 2) Detection stage:

Per-point features are converted to per-voxel features by simple symmetric operation

such as max and average pooling. A single-stage detector then predicts oriented 3D

boxes and their confidence score based on pre-defined anchors. We describe details of

each component of the network in following sections.

Figure 4.1: PanoNet3D’s framework for point cloud detection. The top branch takes
LiDAR point cloud as input and decorates raw point features with several simple
local geometric features. The lower branch converts point cloud to pseudo range
image and feeds it into a 2D FCN to get per-pixel deep semantic feature. The output
features of these two branches are then aggregated and passed to the main detector.
A final bounding box head generates detected proposals on the BEV plane.

4.2.1 Pseudo Range Image Feature Extractor

The outputs of a common LiDAR sensor are range images by nature. However, since

many LiDARs’ rings are not evenly spaced (sometimes the ring information are not
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even available), we manually project point clouds back to 2D range images with

evenly spaced projection angles. For NuScenes [8] dataset, we choose horizontal

projection angle range and resolution to be [xmin, xmax, xstep] = [−180◦, 180◦, 0.3125◦]

and vertical counterparts to be [ymin, ymax, ystep] = [−30◦, 10◦, 1.25◦]. It is possible

that more than one LiDAR points are mapped to a same pixel on range image. In

this case, we simply keep the closest point and neglect the rest. In addition to point’s

range r, we also encode height h, elevation angle φ and reflectance i in separate

channels. Similar to LaserNet [48], the last channel of the image is a flag indicating

whether a pixel contains a projected point. We call this multi-channel tensor (an

example is shown in Fig. 4.2) pseudo range image of LiDAR.

Figure 4.2: An example of projected pseudo range image with five channels. From
top to bottom: range r, height h, elevation angle φ, reflectance i, and occupancy
mask m.

For the feature extractor, we adopt the simple Semantic FPN (SFPN) design in

[33]. It aggregates the features from all levels of FPN layers into a single output with

per-pixel semantic embedding. The SFPN’s backbone is a ResNet34 [27] without

the first layer (conv1). For each projected LiDAR points, the SFPN generates a

64-dimensional feature vector extracted from the pseudo range image.

4.2.2 Voxelization and Geometric Decorator

The raw input point cloud is voxelized before being passed into the detector. We

experiment with two types of voxelization: (1) regular 3D voxelization and (2)

pillarization, where points are organized in vertical columns similar to PointPillars [35].

Pillarization can be seen as a special type of voxelization with only one layer of voxels
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vertically. We decorate each point’s global position [x, y, z] with its distance to the

LiDAR origin r and its position relative to the voxel’s center at [xc, yc, zc]. The

resultant geometric feature can be expressed as a 7-dimensional vector: [x, y, z, r, x−
xc, y − yc, z − zc]. Optionally, a simple one-layer fully connected network can be

applied on each voxel to extract more local features like VoxelNet [80].

4.2.3 Feature Aggregation

We use the simplest way of aggregating semantic feature and geometric feature

by concatenation. For those points that are not assigned with semantic feature,

their embeddings are padded with zeros. For each voxel, locally aggregated feature

representations are generated from point-wise embeddings via symmetric pooling

operations: we apply element-wise max pooling on high-dimensional semantic feature

and average pooling on low-dimensional geometric feature.

4.2.4 Temporal Aggregation

When multi-frame data is available, we add timestamp t as an additional feature to

each point. Such temporal aggregation mainly affects the semantic feature extractor

of the network. For example, when we aggregate 10 consecutive sweeps, the point

cloud is 10 times denser and thus a large portion of points will be discarded by

the pseudo range image projection process. To prevent such loss of information, we

propose two solutions: temporal multi-frame fusion and spatial multi-frame fusion.

Temporal Multi-Frame Fusion

We retrieve the pseudo range image at each frame respectively, and then concatenate

them along a new dimension to form a batch of images as input. This is equivalent

to running the same feature extractor on every individual frame.

Spatial Multi-Frame Fusion

We transform all points to the key-frame’s coordinate system and increase the

resolution of the pseudo range image to allow more points to be projected. If the

new linear resolution is n times as large as before (single-frame resolution), we will
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need to find the optimal value of n. Fig. 4.3 shows the occupancy map of different n.

The range image becomes sparse and inefficient for feature extraction when n is too

large. We want the occupancy rate τ to be close to the original one. For NuScenes

dataset (20 Hz frame rate), we choose n = 2 for 10-frame aggregation. Notice that

the range image has only 4× pixels while the point cloud have 10× points. When

multiple points are projected to the same pixel, we prioritize those with timestamps

closer to the key-frame. This allows us to enhance the resolution of input efficiently

without too much redundancy caused by close or repeating points.

Figure 4.3: Occupancy maps showing the results of spatial multi-frame fusion. Yellow
color indicates the pixel is occupied by a projected LiDAR point. τ is the occupancy
rate (number of occupied pixels over number of total pixels). From top to bottom:
original single frame, 10-frame aggregation with n = 1, n = 2, n = 3.

4.2.5 Detector

As discussed in Section 4.2.2, the input of the detector can have two types of formats:

2D pillars or 3D voxels. The detector is designed accordingly. For 2D pillar input, we

can directly apply a semantic FPN as backbone (similar to the range image feature

extractor, but functions as a Region Proposal Network (RPN) instead) to get the final

feature map. For 3D voxel input with shape of [H,W,D,C], we first adopt a sparse

3D ResNet to downscale the tensor to [H/sH ,W/sW , D/sD, C], where sH , sW , sD are

the downscale factors. Then we lower the dimension of the tensor by reshaping it to

[H/sH ,W/sW , D × C/sD], so that it can be similarly fed into a 2D RPN to generate

the BEV feature map.

For bounding box regression head, we follow the same multi-group head design

as in CBGS [82], where the 10 classes in NuScenes are categorized into 6 groups:
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(car), (truck, construction vehicle), (bus, trailer), (barrier), (motorcycle, bicycle),

(pedestrian, traffic cone). We also adopts the same bounding box parameterization

and anchor design. Detailed detector structure is illustrated in Fig. 4.4.

Figure 4.4: Structure of detector with 2D pillars or 3D voxels as input. The initial
feature is 128 dimensional. We limit the size of the whole scene to [−51.2, 51.2] ×
[−51.2, 51.2]× [−3, 3] meters in x, y, z direction. The networks consist of a few layers
of ResNet basic blocks. S denotes the stride of each layer and N denotes the number
of blocks. The generated feature map of SFPN has the same resolution as the layer
marked in red.

4.2.6 Data Augmentation

We use similar data augmentation schematics used in SECOND [65] and CBGS [82].

Ground truth boxes are cropped and saved offline, and then pasted onto the current

frame’s ground plane. Additionally, we allow the augmented object randomly rotate

around the LiDAR within 45 degrees (its distance to the center of frame remains

unchanged). As newly pasted objects may occlude with other objects, we remove

all annotations that have less than 3 points projected on the pseudo range image.

By doing so, the objects that should not be visible to the LiDAR are easily filtered

out. We also perform global augmentations that randomly transform the whole point

cloud including translation (within [-0.2m, 0,2m]), rotation (within [-45◦, 45◦]) and

scaling (within [0.95x, 1.05x]).
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4.2.7 Implementation Details

Our implementation is based on CBGS’s [82] official code base1. All object classes

share the same detection backbone except an exclusive two-layer regression head for

each category group. The experiments are conducted on 4 NVIDIA 1080 Ti with

PyTorch’s official implementation of multi-GPU synchronized batch normalization.

We train the network with Adam optimizer [30], one-cycle policy [1] (max learning

rate: 0.0001, division factor: 5), and batch size of 4 for 20 epochs. The IoU threshold

of the non-maximum suppression is 0.2 and the maximum number of final predicted

bounding boxes is 100.

4.3 Results

We first compare quantitative performance of our model against other SOTA models

on NuScenes dataset. Qualitative results (visualization of predictions) are shown in

Fig. 4.5. Next, we conduct ablation studies to explain how we make the decisions

during network design and show where the performance improvements come from.

4.3.1 Main Results

We submitted the results of our method to the NuScenes test server. In Tab. 4.1, we

compare PanoNet3D against other models on the NuScenes detection leaderboard.

Our overall mAP on test-set surpasses the current first-place method CBGS [82]

by 1.7%. For fairness, we also compare our method against CBGS’s reproducible

performance on NuScenes validation set in Tab. 4.2. The results of CBGS are

reproduced with its official code and under the same experimental setup as ours. Our

model improves mAP on all categories and the average mAP is 7.7% higher than

CBGS.

4.3.2 Ablation Study

Tab. 4.3 shows a series ablation studies. Based on these results, we can make the

following key observations.

1https://github.com/poodarchu/Det3D
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car truck bus trailer cons. pedes. mcycle bicycle cone barrier mAP
Point Pillars [35] 68.4 23.0 28.2 23.4 4.1 59.7 27.4 1.1 30.8 38.9 30.5
SARPNET [70] 59.9 18.7 19.4 18.0 11.6 69.4 29.8 14.2 44.6 38.3 32.4
CBGS [82] 81.1 48.5 54.9 42.9 10.5 80.1 51.5 22.3 70.9 65.7 52.8
Ours 80.1 45.4 54.0 51.6 15.1 79.1 53.1 31.3 71.8 62.9 54.5

Table 4.1: Detection mAP by categories compared on NuScenes test set.

car truck bus trailer cons. pedes. mcycle bicycle cone barrier mAP
CBGS* [82] 79.8 45.8 58.6 31.1 11.7 74.8 38.3 14.2 55.0 56.6 46.6
Ours w/o sem. feat 80.1 44.2 59.1 32.2 10.9 74.5 40.2 20.2 57.8 55.6 47.5
Ours 82.6 49.9 62.4 36.3 11.8 80.6 53.8 33.8 67.2 64.5 54.3

Table 4.2: Detection mAP by categories compared on NuScenes validation set. *:
reproduced with official released code and our experimental setup. Second line shows
the result of our model without aggregation of range-image-based semantic features
(row i. in Tab. 4.3).

Baseline Comparison (a.-c., g.-h.)

The major difference between PanoNet3D and traditional detectors is its range-image-

based semantic feature extractor. Without the aggregation of extracted semantic

features, our pillar-based detector should have similar framework to PointPillar’s [35]

except for backbone design. Our pillar-based baseline model achieves better perfor-

mance than PointPillars. We hypothesize this might be because our SFPN backbone

is able to utilize multi-level features more efficiently. On the other hand, for voxel-

based detectors, our model has close performance to CBGS without semantic feature

extractor, showing that the final improvements against CBGS do not come from the

different backbone.

Range Image Semantic Feature Extractor (c.-f., g.-l., i.-m.)

For single-frame pillar-based detectors, semantic features extracted from range images

significantly improve the average mAP by 13.7%. With this help of semantic feature

extractor, our single-frame model is able to achieve comparable results against multi-

frame models. For multi-frame voxel-based detectors, semantic features also improve

the average mAP by over 6%. From Tab. 4.2, we can further observe that combining

deep semantic features with raw geometric features leads to improvements across all 10

categories. The perspective view is natural to LiDAR sensors and contains semantics
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that cannot be extracted from real Euclidean space, which helps the detector to

achieve a better overall understanding of the scene.

Pillar or Voxel (e.-f., k.-l.)

We show that for single-frame input pillar-based detector performs slightly better,

while for multi-frame input voxel-based detector is more favorable. One possible

explanation is that pillar-based detector is sufficient for single-frame input and can

prevent over-fitting caused by complex 3D convolutions. Multi-frame input has much

denser point clouds whose features can not be well extracted by the simple pillar

feature extractor.

BEV Resolution (j.-k., l.-m.)

Finer grid of voxelization usually leads to better detection performance. However, its

impact is less dominant than other factors. Increasing BEV resolution from 0.25m to

0.1m improves mAP of 10-frame pillar-based detector by 0.1%, and increasing BEV

resolution from 0.1m to 0.05m improves mAP of 10-frame voxel-based detector by

1.4%.

Method Range image feat. # Input frames Voxelization BEV resolution(m) mAP
a. Point Pillars [35] - 1 Pillar 0.25 24.0
b. Point Pillars [35] - 10 Pillar 0.25 29.5
c. Ours 7 1 Pillar 0.25 31.5
d. CGBS [82] - 1 Voxel 0.1 39.2
e. Ours 3 1 Voxel 0.1 43.1
f. Ours 3 1 Pillar 0.25 45.2
g. Ours 7 10 Voxel 0.1 46.3
h. CGBS [82] - 10 Voxel 0.1 46.6
i. Ours 7 10 Voxel 0.05 47.5
j. Ours 3 10 Pillar 0.25 47.9
k. Ours 3 10 Pillar 0.1 48.0
l. Ours 3 10 Voxel 0.1 52.9

m. Ours 3 10 Voxel 0.05 54.3

Table 4.3: Ablation studies on NuScenes validation set. ‘range image feat.’ means
whether the detector uses perspective-view-based semantic feature extractor. ‘BEV
resolution’ means the x-y resolution when the point cloud is voxelized.
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4.3.3 Voxel Feature Pooling Methods

We test all pooling methods during aggregating point-wise features to voxel-wise

features. With all combinations shown in Tab. 4.4, we conclude that max pooling on

semantic features with average pooling on geometric features yields the best results.

Deep semantic feat. aggr. Raw geometric feat. aggr. mAP
Max Max 44.6
Max Average 45.2

Average Max 44.3
Average Average 44.9

Table 4.4: Study on pooling methods during voxel-wise feature aggregation. The
experiment is done with a single-frame pillar detector as baseline.

4.3.4 Temporal Aggregation Methods

We also experiment with different temporal aggregation approaches, the results of

which are shown in Tab. 4.5. Spatial multi-frame fusion with n = 2 is the best among

them, showing that our previous analysis is correct. However, notice that the optimal

n is not a fixed value. If the number of aggregated frame or the input dataset changes,

we might need to change n accordingly to fit the data.

Aggregation method n mAP
Temporal 10-frame fusion - 52.9
Spatial 10-frame fusion 1 53.1
Spatial 10-frame fusion 2 54.3
Spatial 10-frame fusion 3 52.2

Table 4.5: Results of different multi-frame temporal aggregation approaches.
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Figure 4.5: Detection examples of PanoNet3D on NuScenes dataset (1 of 2). Ground
truths are annotated in green boxes and detection results are annotated in blue boxes.
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Figure 4.5: Detection examples of PanoNet3D on NuScenes dataset (2 of 2). Ground
truths are annotated in green boxes and detection results are annotated in blue boxes.
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Chapter 5

Conclusions

We explore the possibility of combining both semantic and geometric understanding for

modern visual recognition tasks. This idea is tested with two types of data commonly

used in autonomous driving scenarios: 2D images (on perspective plane) and 3D point

clouds (in real-world Euclidean space). For image data, we add spatial information

of each pixel to original color channels to generate instance-specific embeddings. For

LiDAR point cloud data, we enhance each point’s raw geometric coordinates with

deep semantic features to improve 3D detection performance. Multiple experiments

show that both geometric and semantic information are important for deep learning

frameworks to achieve better overall understanding of the scene.
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