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Abstract
We present Gaussian distributions as structure primitives in a hierarchical multi-

fidelity framework to enable accurate real-time Simultaneous Localization and Map-
ping (SLAM) using uncertain depth data.

Real-time mapping and localization capabilities are essential components of an au-
tonomous system deployed in real-world environments. An autonomous system must
be able to create an understanding of the world from the history of observed sensor in-
formation in unknown environments and operate appropriately in response. A typical
state-of-the-art mobile robot has multiple perceptual processes operating concurrently
on the incoming sensor information to enable various autonomy subsystems. Each
subsystem processes the sensor data independently to obtain information suitable for
its operation that is often unusable by other subsystems. Such a disjoint autonomy sys-
tem creates redundancy in terms of data processing, and increases the computational
load on the mobile system, the overall memory footprint, and the modes of failure.
However, mobile robots deployed in real-world scenarios are Size Weight and Power
(SWaP) constrained. SWaP constrained platforms impose constraints on the compu-
tational and memory resources available onboard thus introducing unique challenges
in deploying such disjoint perceptual models in real-world. In this thesis, we propose
a SLAM framework using a memory and computationally efficient map representa-
tion that can be utilized for various low level autonomy tasks and unify the perceptual
architecture.

The real-time performance of active perception algorithms is dependent on the
memory complexity of the used map representation. Higher memory footprint in-
creases the computational complexity of active perception algorithms with marginal
benefit to their performance. State-of-the-art SLAM techniques generate extremely
high fidelity 3D reconstruction of the world. These 3D maps are often not suitable
for active perception due to their high memory requirements. They must be post-
processed, down-sampled and converted to a map representation more suitable for
active perception such as voxel grids. Voxel grids provide high computational benefits
and low memory footprint at the cost of loss of map accuracy and fidelity.

A family of generative map models have recently been proposed that compress
point cloud data using hierarchical Gaussian Mixture Models (GMMs) by modeling
the structural correlations evident in the input data. These generative models are more
memory efficient and accurate than voxel based map representations. The generative
nature of GMMs enable them to be elegantly converted to more commonly used map
representations. Alongside dense 3D reconstruction, there is a wide range of work
showing the utility of a GMM based map representation for scan matching, global
and local pose estimation, collision avoidance, autonomous exploration and various
other real-world robotic applications. However, the loss in mapping accuracy and
map fidelity is not yet addressed and there is a significant gap between the quality of
reconstruction obtained from state-of-the-art SLAM pipelines and generative mapping
representations such as GMMs.

In this work, we combine the mathematical benefits of a generative map represen-
tation such as GMMs with the accuracy of reconstruction obtained from dense map
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representations such as surfels. Specifically, we create a hierarchical Gaussian distri-
butions based map that is capable of reconstructing the world with high accuracy at
lower hierarchical levels and retain the memory efficiency of GMMs at higher hier-
archical levels. We propose a novel model fitting approach to raw point cloud data,
that uses the projective constraints enforced by depth cameras to reduce the computa-
tional complexity of fitting a GMM to large scale data. Further, we propose a frame-
to-model localization approach, that exploits the hierarchical structure of the map to
obtain a more robust and reliable camera tracking performance. The reduced memory
complexity of the proposed map representation enables deployment of our proposed
approach on SWaP constrained systems.

Additionally, we highlight the computational benefits obtained by using the pro-
posed map representation for two family of problems:
• Global pose estimation and re-localization using a multi-hypothesis particle filter

in a GMM map
• Reactive collision avoidance using Gaussian distributions as geometric primi-

tives
We demonstrate the superior qualitative and quantitative performance obtained by us-
ing the proposed map representation for applications such as SLAM, global local-
ization and collision avoidance as compared to their respective state-of-the-art ap-
proaches. We also highlight the increased computational efficiency, reduced memory
footprint and high reconstruction accuracy achieved using this map representation in
simulated and real-world environments.
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Chapter 1

Introduction

The motivation behind this thesis is to enable real-time dense Simultaneous Localization and Map-

ping (SLAM) on Size Weight and Power (SWaP) constrained systems using noisy depth sensor

information. Depth sensors provide structure information about the objects in the scene. Pose

estimation and scan alignment using such structural 3D information has been shown to perform

robustly in challenging environments with high accuracy [17, 45]. Such dense 3D data also en-

ables high accuracy mapping and scene reconstruction [58]. However, accurate laser based 3D

sensors like a Velodyne LIDAR 1 are expensive and heavy thus restricting their application to

ground robots. The advent of cheap and light weight depth sensors such as a Kinect 2 have made

it possible to equip a mobile aerial robot with depth information and facilitate more robust and re-

liable operation. However, depth measurements obtained from COTS depth sensors are uncertain

and unreliable [19]. Improper handling of this uncertainty leads to propagation of errors throughout

the autonomy pipeline.

Enabling a SWaP constrained robot to create dense, accurate maps using only depth informa-

tion is especially valuable in challenging environments where cameras operating in visual spectrum

1https://velodynelidar.com/products
2https://en.wikipedia.org/wiki/Kinect

1
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fail, like poorly illuminated environments as illustrated in Fig. 1.1 where the color camera does not

observe useful information about the scene but the depth sensor provides dense structural infor-

mation about the scene or texture-less regions [2]. Indeed, the depth sensor has modes of failure

specific to its mode of operation, when the structure information in the scene is repetitive and indis-

tinguishable from multiple perspectives as shown in Fig. 1.2 A reliable autonomous system must

use multiple sensors providing independent information about the scene to be robust to various

challenging environments. For the scope of this thesis, we focus on only depth information and

push the limits of robustness of a depth based localization and mapping framework.

(a) Color image at t = 0s (b) Depth image at t = 0s

(c) Color image at t = 1s (d) Depth image at t = 1s

Figure 1.1: Challenging dataset for a visual odometry system using a forward facing depth camera and a
downward facing color camera. As the robot moves in a structured environment, the lights are turned off and
the color image fails to observe useful information. The depth camera still provides informative structural
data that enables a depth based odometry system to perform reliably.

Depending on the perceptual requirements, different perception frameworks process the input

sensor point cloud data differently. For dense 3D reconstruction of the world, every individual

point is processed independently and stored either as a high resolution point cloud, or a set of

surfels (surface elements) [58], or is used to update a fine resolution voxel grid [26]. For pose esti-
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(a) Depth image at t = 0s (b) Depth image at t = 1s

Figure 1.2: Challenging dataset for a depth based odometry system. The robot moves in a hallway en-
vironment, where the depth camera does not observe distinguishable information from sequential sensor
measurements, thus leading to failure of depth based odometry system.

mation and scan alignment, the point cloud is usually heavily sub-sampled and a small subset of the

original data is operated upon to reduce the computational burden on the system [12]. For applica-

tions such as collision avoidance and safe local navigation, a low resolution voxel grid is typically

created centered around the robot that compresses the sensor information aggressively [6, 49]. For

exploration, a global occupancy grid is maintained that contains information about the observed

and unobserved sections of the map [18]. A mobile robot deployed in real world scenarios must be

able to perform all these operations concurrently. Due to the limited availability of computational

resources all the subsystems may need to compromise on accuracy of performance for real-time

operation. Failure on part of any of these subsystems to perform in real-time may lead to catas-

trophic failure and damages. The redundancy created by processing sensor data independently

and storing as different map representations creates additional burden on the computational and

memory resources. The map representation proposed in this work, however, is succinct, continu-

ous, high fidelity, memory efficient and is generalizable for various applications. We represent the

structure information as a set of independent hierarchical generative distributions, that elegantly

incorporate noisy sensor information, can accurately generate high fidelity 3D reconstruction of

the world [11] and is readily usable for localization [12], frame-to-model tracking [14], collision

avoidance [13] and exploration [55].



4 CHAPTER 1. INTRODUCTION

1.1 Thesis Statement

In this thesis, we present a SLAM approach using Gaussian distributions as structure primitives in

a hierarchical framework to enable accurate real-time 3D reconstruction of the world. We propose

that the reduced computational complexity of the proposed map representation enables real-time

implementation of the proposed SLAM framework on computationally constrained systems. Ad-

ditionally, we demonstrate the applicability of Gaussian distributions as structure primitives for

tackling challenging problems in robotics such as efficient global localization and motion primi-

tive based collision avoidance.

1.2 Thesis Outline

This thesis is structured as follows:

• Chapter 2: Provides a review of related literature and draws comparison of state-of-the-art

approaches to the proposed work

• Chapter 3: Provides a summary of the mathematical preliminaries used throughout this work

• Chapter 4: Provides a detailed description of the hierarchical 3D reconstruction framework

and provides qualitative and quantitative evaluation of the accuracy of map reconstruction

alongside the memory footprint of the map representation. Unlike state-of-the-art generative

mapping approaches our approach minimizes the error in 3D reconstruction explicitly and

therefore generate an accurate and succinct representation with lower computational com-

plexity. [11]

• Chapter 5: Introduces our frame-to-model localization algorithm that tracks a live sensor

observation with respect to the estimate of the 3D map representation. Quantitative com-

parison to state-of-the-art high fidelity mapping approaches shows superior tracking and

mapping performance while being more robust to failures on challenging datasets. [14]



1.2. THESIS OUTLINE 5

• Chapter 6: Presents two applications of the proposed map representation: multi-hypothesis

localization with respect to a global map of the world, and, safe navigation and collision

avoidance in unknown environments using the low fidelity map representation obtained at the

highest hierarchical level from our mapping framework, on SWaP constrained systems. [12,

13]

• Chapter 7: Summarizes the contributions of this thesis work and describes the variety of

future research directions that this work enables.



6 CHAPTER 1. INTRODUCTION



Chapter 2

Related Work

This thesis seeks to enable depth based SLAM on SWaP constrained systems using a Gaussian

distributions in a multi-fidelity hierarchical framework as structure primitives. In this chapter, we

provide a brief overview of the state-of-the-art approaches in the domains of map representation

and SLAM. As the motivation behind this work is to enable SLAM on computationally constrained

systems, we focus on the computational efficiency and complexity trade-off of the state-of-the-art

approaches and highlight how the proposed map representation differs from them and mitigates

their drawbacks.

2.1 Representation of 3D Structure Data

The advent of sensors that can detect the 3D structure in the scene is a milestone for autonomous

robotics and has enabled the use of robotics in a plethora of challenging problems. Starting from

the ultrasonic sensors that can provide a single point measurement along a direction, to Kinect 1

and LIDAR 2 sensors, the sensing accuracy has improved, and the amount of information obtained

in a single scan has increased, yet the most commonly used map representations for robotics ap-

1https://en.wikipedia.org/wiki/Kinect
2https://velodynelidar.com/products/

7
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plications have remained the same. In this section,

• first, we discuss the information provided by standard time-of-flight, structured light, or

stereo depth sensors

• second, we discuss the state-of-the-art map representations used to efficiently and accurately

represent depth sensor information

• finally, we discuss multiple state-of-the-art SLAM approaches that are built upon these map

representations

2.1.1 Structure Sensors

Commercially available Off-The-Shelf (COTS) depth sensors can be broadly classified into the

following categories:

• Time-of-Flight (TOF) sensors: These sensors operate in the infrared spectrum. A ray of

light is emitted from the emitter which is then received by the receiver after reflection with

the surfaces in the environment. The receiver measures the difference between the time

the ray was emitted to the time when the ray was received. This time difference is directly

proportional to the distance of the closest surface along the direction of the ray. This distance

can be computed as half the speed of the ray multiplied by the time difference. Sensors like

the Kinect One and LIDAR operate using this technology. These sensors are extremely

accurate at high depth ranges. However, they have a slow frame-rate and suffer from motion

blur.

• Structured light sensors: These sensors also operate in the infrared spectrum. A fixed pattern

of IR light is projected onto the environment in the sensor Field-Of-View (FOV) from the

projector as shown in Fig. 2.1. This pattern gets distorted according to the spread of the

surfaces of objects in the scene. An infrared camera captures this distortion and estimates

the depth of the surfaces along each ray corresponding to the extent of the distortion. These
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sensors are typically less accurate than TOF sensors.

• Stereo sensors: A pair of color or IR cameras form a stereo pair. A well calibrated stereo pair

can be used to compute the depth of the scene by finding the pixel locations corresponding

to the same 3D point in both the images, using the camera intrinsic parameters, and the

extrinsic calibration between the stereo pair. However, since the modality of measurement is

completely passive unlike the TOF sensors or the structured light sensors, stereo sensors are

the least accurate depth sensors and have a high bias and uncertainty in their measurements.

All the types of sensors listed above provide observations as a set of discrete depth measurements

along individual rays in 3D. The most common way to represent this information is as 3D point

clouds. Further, these sensors operate in the IR, or visible spectrum. This spectrum of radiation

does not penetrate through solid surfaces with an exception of transparent surfaces like glass.

Therefore, a COTS depth sensor can only provide distance to the closest surface along each ray

direction. Therefore, the point cloud data obtained from a depth sensor are samples drawn from an

underlying continuous function that represents the surfaces in the scene. Formally, the point cloud

data in 3D is spread on a lower dimensional manifold of R(3). This understanding is exploited in

Chapter 4 of this thesis work. The sensor measurements obtained from the COTS depth sensors are

arranged in an ordered pattern. Due to the projective nature of these sensors, observed 3D points

that are in the proximity of each other in 3D space are proximate to each other in pixel space.

Additionally, since the observed points are spread along the surfaces of objects, neighboring sensor

observations in image space often belong to the same surface and provide substantial information

about the same surface. Formally, we can state that sensor observations are sampled from a biased

underlying distribution and are not IID in R(3).

In the following section, we describe state-of-the-art map representations and SLAM frame-

works that depending upon the computational, or memory constraints and mathematical conve-

nience, exploit or relax the understanding about a depth sensor described above. Later, we describe
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Figure 2.1: Illustration of the method of working of depth sensors. Depth sensors measure distances to the
closest surface along each ray with some uncertainty.
Source: https://www.abizsensor.com/products/3D-smart-sensor/lmi.html

how the proposed map representation incorporates these constraints to reduce the computational

complexity of the mapping algorithm.

2.1.2 Voxel Grids

Voxel grids are the most commonly used representation of 3D data. Voxel grids provide an efficient

and elegant way to represent dense 2D and 3D structure data using grid cells, known as voxels.

Many variants of the voxel grid based maps have been proposed and depending on the task at hand

one may be more advantageous over the others.

Voxels grids were first proposed as an efficient representation of 2D data by Moravec and Elfes

[34]. The world is divided into a uniform 2D grid of fixed size and each grid cell (voxel) stores a

probability of occupancy. The authors propose a novel idea of interpreting a sensor return from a

depth sensor as a ray of measurement that provides information about the 2D space that is free until

the first surface is observed. Occupancy grids have since been used extensively for various appli-
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cations in trajectory planning, safe navigation and mapping. 2D voxel grids were soon extended

to 3D, however, due to the high memory requirements of 3D voxel grids, their applications were

limited to small scale environments [55]. The memory complexity scales quadratically with the

size of the environment and size of the voxels for 2D voxel grids and cubically for 3D voxel grids.

Applications that require fine resolution voxel grids [26] even today are limited by the size of the

environment they can operate in. However, voxel grids provide a constant time memory lookup in

terms of computational complexity and are therefore very efficient for run-time performance. Mul-

tiple adaptive variants of voxel grids have been proposed to overcome the high memory footprint

while maintaining the low computational complexity of vanilla voxel grids.

A major challenge with voxel grid mapping is knowing the extent of the map and the resolution

of voxel grid. The finer the resolution of the map, the smaller the map extents are given the limited

availability of memory resources on a system. A standard engineering solution to circumvent this

problem is to use a sliding window voxel grid [55]. A dynamically sliding fixed size voxel grid

is maintained, centered around the robot and as the robot moves, the extents of the voxel grid are

moved. This enables the robot to utilize a locally consistent occupancy map for safe navigation

and local trajectory planning. This approach has a constant memory footprint and a constant time

occupancy lookup. However, the robot can only keep track of local information and therefore is

not usable for applications such as map exploration or global 3D reconstruction where information

of the global world is required.

A novel approach proposed by Hornung et al. [24] uses an adaptive Octree based mapping

approach that enables creating a voxel grid map of large scale environments at fine resolutions.

An Octree is recursively created by dividing each voxel grid into 8 smaller cells. This enables

the robot to store the range data at a high resolution in the observed parts of the map and large

unobserved sections of the map can be represented using a single low resolution Octree root node.

An OctoMap is a collection of Octrees where each octree can be recursively divided in to smaller
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octrees. However, due to the recursive and adaptive nature of OctoMap, the lookup complexity

of OctoMap is O(log n), where n is the depth of octrees. The memory complexity for OctoMap

is dependent on the highest resolution voxel size and therefore scales cubically as larger map

environments are observed.

Voxel grids encode information about the free space as well as the occupied space that is used

for various perceptual applications in an autonomous system. For accurate 3D reconstruction,

the representation of free space is not required, and therefore, only the occupied voxels are used

to represent the surfaces in the world. The following map representations model the spread of

observed 3D measurements and do not represent the free space. For the scope of this work, our

proposed map representation does not represent free space information either.

2.1.3 Parametric Surface Elements

Surfels

As described in Sec. 2.1.1, 3D point clouds obtained from sensors are spread on the surfaces in

the FOV of the sensor. This suggests that the 3D observations are locally spread on small planar

surfaces with small curvature. Therefore, the 3D point cloud data can be approximated as tiny

planar surfaces, which together represent the solid surfaces in the scene. Various state-of-the-

art SLAM approaches such as [43, 58] use 2D circular surface elements (surfels), to represent

surfaces of objects of in scene, as illustrated in Fig. 2.2. Each surfel is parameterized by the 3D

location, 3D normal, color information and confidence weight. Surfels enable a high fidelity 3D

reconstruction of the scene where the number of surfels depend on the scale and the complexity

of the environment. Surfels are computationally efficient to fit however, they have a large memory

footprint and the memory lookup complexity isO(n) where n is the number of surfels in the scene.
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Figure 2.2: Illustrative example of parametric surface representations: surfels and triangulated meshes.
Top: Input dense structure data, Bottom Left: A triangulated mesh representation (see Sec. 2.1.3) of the
input point cloud data, Bottom Right: Surfel based representation (see Sec. 2.1.3) of the input data.
Source [9]

3D Planes

Many environments, especially indoor environments consist of large planar structures. Such planar

environments enable the representation of 3D structure using high level features like large planes

over 3D point clouds or voxels. Extending upon the idea of planar surface primitives, Kaess [28]

proposed a SLAM approach that fits large parametric planes to indoor scenes and uses only planar

information for 3D reconstruction and localization. Dominant planes in the scene are segmented

using standard clustering algorithms and the 3D map is represented as a set of dominant planes.

This approach provides an extremely efficient and parametric map representation that can readily

be used for robotic applications like pose estimation and collision avoidance. However, such ap-

proaches fail to represent majority of the sensor information in more complex environments where

the geometry of the scene is not planar and are unable to reconstruct objects with large surface

curvatures.
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Triangulated Mesh

Surfels are discrete circular elements where each surfel is independent of the others in the map.

This creates discontinuities in the map and leads to holes in the reconstructed structure. Similar to

surfels, meshes create a high fidelity representation of the surfaces in the scene from point cloud

data [10, 26]. Sets of neighboring 3D points are combined together to form triangles that represent

locally planar surfaces in the scene. Meshes are widely used as a map representation in graphics

community for 3D object reconstruction and manipulation. Due to the graphical nature of triangu-

lated meshes, they are extremely conducive to mesh manipulation, deformation and high fidelity

3D reconstruction. However, they are computationally expensive to construct as incremental up-

dates affect a large section of the mesh unlike surfels. Further, similar to surfels, meshes have a

large memory footprint making them infeasible to be deployed on SWaP constrained systems for

real-world applications.

2.1.4 Generative Volumetric Models

All the map representations discussed above fit a specific representation to raw 3D point cloud data

using a non-invertible mapping function. Thus the information lost from converting point cloud

to map representation cannot be reconstructed. Recently, a new class of mapping techniques have

been proposed that attempt to compress the input sensor data using generative parametric models,

and reconstruct the raw sensor measurement as required. The incoming sensor data is assumed to

be IID in 3D and sampled from some unknown underlying distribution. As more 3D points are

observed from the stream of sensor information, the model parameters are updated to best approx-

imate the underlying distribution with large incremental data. Jian and Vemuri [27] proposed a

novel approach of representing 3D point clouds by a GMM by fitting a Gaussian distribution over

each point. However, this approach is not scalable with large scale data obtained from 3D sen-

sors. Stoyanov et al. [51] modified this approach using concepts from voxel grid based mapping
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to fit Gaussian distributions to points within fixed sized voxels. Since a parametric distribution is

fitted within each voxel, this approach creates a more accurate reconstruction of the 3D structure

than simple voxel grids. A semi-continuous representation of the 3D occupancy is reconstructed,

however, it has larger memory footprint than vanilla voxel grids as more memory are required to

store the parameters of a Gaussian distribution. To mitigate some of the issues posed by NDT

map, Eckart et al. [16] and Srivastava and Michael [50] proposed a novel hierarchical GMM learn-

ing technique on 3D point cloud data, as shown in Fig. 2.3. A globally consistent GMM is fitted

to the entire history of sensor observation at each time step thus creating a continuous, smooth

and accurate map representation. Both approaches quantify the accuracy of map representation

using the log-likelihood of the 3D point cloud data having sampled from the current estimate of

the GMM, as a heuristic. An iterative Expectation Maximization (EM) technique is employed to

find the best set of parameters that find a local maxima of this log-likelihood.

Figure 2.3: Illustrative example of a hierarchical GMM based representation of structure data.
Source [16]

Model Complexity Estimation

The bottom-up hierarchical model-based mapping approach presented in [50] initializes the model

with an over estimated model complexity, which is subsequently reduced via merging components

while maintaining required representational fidelity. This approach however assumes sensor infor-

mation to be perfect and does not accurately update the map representation with the incrementally

observed sensor information. Further, for real-time application, this approach fits a empirically
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determined fixed number of Gaussian distributions to every sensor data at the highest fidelity level.

The top-down hierarchical mapping approach presented in [16] assumes the model complexity to

be fixed at each hierarchical level and decomposes components into smaller Gaussian distribution

to reach the desired model complexity. Their highly optimized mapping and registration algorithms

run in real-time on a mobile GPU, and the results are comparable to the state-of-the-art trajectory

tracking approaches. This top-down hierarchical approach can, however, be improved upon fur-

ther by adaptively computing the model complexity at each hierarchical level from the data itself.

An accurate estimate of the model complexity at each hierarchical level will avoid under-fitting or

over-fitting the model to the sensor observation. For real-world data, the number of components is

unknown and should be inferred from the data itself [59] rather than using a-priori estimate.

Estimation of the optimal model complexity is usually addressed by using various informa-

tion criteria such as the Akaikes Information Criterion (AIC) [1], Bayesian Information Criterion

(BIC) [30], Minimal Description Length (MDL) [21], among others. AIC is a measure of the di-

vergence between the true distribution of the data likelihood and the likelihood distribution of the

fitted model. BIC estimates the posterior probability of a fitted model being true, under a certain

Bayesian setup. The complexity estimates provided by BIC are shown to be consistent with the

results from MDL [21]. Both BIC and MDL are closely related to AIC but have higher penalties

for the number of parameters in the model. These criteria are based on a fundamental assumption

that the input data is distributed in the exponential family. However, real world data obtained from

depth sensors do not conform to this assumption. Consequently, application of these criteria causes

over-estimation of true model complexity. We direct the reader to [7] for an overview of the perfor-

mance comparison of various model selection criteria. Additionally, these approaches require the

model to be first fitted over a range of complexity values before selecting the complexity value that

minimizes a desired criteria value. Therefore, these methods become computationally intractable

as data size and the maximum number of components increase. A characteristic function based
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model complexity estimation approach is proposed in [59]. This approach avoids over-fitting the

model but is computationally expensive for real-time applications.

Model Fitting: Expectation-Maximization

Expectation-Maximization is the most commonly used parameter fitting technique for GMMs. Jian

and Vemuri [27] finds EM algorithm to be extremely sensitive to parameter initialization, since

EM algorithm is only guaranteed to converge to the nearest local maxima. The work described

by Eckart et al. [16] scales the input data to a unit cube and initializes a fixed number of Gaus-

sian distributions uniformly over the cube. The model fitting approach proposed by Srivastava and

Michael [50] converts the input 3D data to a uniformly sampled voxel grid and initializes an empir-

ically estimated fixed number of Gaussian components over this uniform point cloud. Tabib et al.

[55] also initializes a GMM with fixed complexity over each individual sensor point cloud data

using “KMeans++” algorithm. Expectation-Maximization is then employed by all the approaches

to refine the initialized GMM parameters.

EM aims to find a set of GMM parameters Θ̄ that maximize the lower bound of the log-

likelihood of the input 3D point cloud X having been sampled by the GMM Θ̄. A set of latent

variables c is introduced that represent the log-likelihood contribution of each Gaussian distribution

for each point. Given an initial estimate of the parameters Θ̄:

• Expectation step first computes the expected value of the log-likelihood of X using the cur-

rent conditional distribution c

cnm =
πmN (xn | µm,Σm)∑M
j=1 πjN

(
xn | µj,Σj

) (2.1)

• Maximization step then computes the set of parameters Θ̄ that maximize the expected log-
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likelihood

µi+1
m =

∑N
n cnmxn∑N
n cnm

(2.2)

Σi+1
m =

∑N
n cnm (xn − µim) (xn − µim)

T∑N
n cnm

(2.3)

πi+1
m =

N∑
n

cnm
N

(2.4)

• Check if the log-likelihood has converged

ln p(X, Θ̄) =
N∑
n

ln

(
M∑
m

πmN (xn | µm,Σm)

)
(2.5)

The algorithmic complexity of EM is O(MNK) where M is the model complexity of the GMM,

N is the number of points in the input data X and K is the maximum number of iterations EM

is executed for. High computational complexity of EM poses unique challenges in terms of real-

time implementation on SWaP constrained systems. Various heuristic based approximations have

been proposed to reduce the computational complexity of EM, however, each approach has its set

of drawbacks. As EM cannot guarantee convergence to global minima, parameter initialization

becomes an equally important problem and still remains an open challenge. Further, EM requires

the model complexity to be known a-priori, which is not available in real-world scenarios. The

state-of-the-art mapping approaches mentioned above aim to fit the best parametric distribution

to the input 3D point cloud data obtained from LIDAR or Kinect like sensors. As discussed in

Sec. 2.1.1 this data is spread along the surfaces of objects in the scene and therefore lie on a lower

dimensional manifold in 3D. The generic nature of EM makes it harder to enforce the structure of

the input data on the fitting procedure.

In this work, we use a similar generative map representation with a key difference: instead
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of representing our map as a GMM, we represent the map as a set of independent hierarchical

Gaussian distributions. Similar to NDT mapping approach, each Gaussian distribution represents

some local sensor information. However, we do not force a Gaussian distribution to lie within

a voxel and fit the Gaussian parameters, depending upon the input data. Further, by enabling

Gaussian distributions to be independent of each other, we reduce the computational complexity

of fitting parameters unlike EM. Instead of using a generic EM like approach, we using pixel-

space search based model estimation approach to fit Gaussian distributions to the structure in the

scene. Therefore, our approach is able to fit more accurate Gaussian distributions to the scene with

lower computational complexity than the approaches described above. Additionally, Gaussian

distributions fit according to the structure information in the scene, have smaller memory footprint

than map representations such as meshes and surfels.

2.1.5 3D Deep Learning and Neural Representations

Commonly used 3D representation described above such as voxel grids, surfels, meshes, or point

clouds, are capable of reconstructing the observed map at high fidelity and generalize to any com-

plex shape, subject to the resolution constraints. Generative mapping approaches such as NDTMap

or GMMs approximate the 3D structure data as normal distributions to trade-off the accuracy of

reconstruction for compactness of map storage. These approaches attempt to approximate the un-

derlying continuous function that sensor measurements are sampled from, by combining multiple

simplified representations. More recently, Deep Implicit Functions (DIF) proposed in [33, 38],

represent input data as latent feature vectors and estimate an occupancy grid or a Signed Distance

Field. These approaches are capable of reconstructing small scale 3D objects at high resolution.

However, these approaches are not generalizable and do not scale for large scale environments.

A Recurrent Neural Network based map representation is proposed by Henriques and Vedaldi

[22]. Each sensor measurement is projected on the ground plane in a discrete grid stored as a
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allocentric spatial memory. Each sensor measurement is converted into an implicit representation

and registered to a 2D map for accurate path planning. DeepVoxels [47] proposed a hybrid 2D/3D

approach that condenses the input data into a latent representation but stores the scene information

in a fixed sized spatial voxel structure. This idea was extend by Sitzmann et al. [48] to be able to

model the 3D scene geometry and render color images of the scene without storing the map as a

fixed resolution map. A Scene Representation Network(SRN) is proposed that represents the 3D

data in the scene as a continuous function that maps the input sensor information to a nD feature.

The resolution of this representation is limited by the capacity of the multi-layer perceptron used

as the feature mapping.

These approaches convert the 3D structure information into high dimensional feature vectors.

The feature information is typically stored as voxel grids [31, 47] or as continuous functions [48].

However, these approaches do not scale to large scale environments. The high computational com-

plexity renders them infeasible for deployment on SWaP constrained systems. Further, learning

based mapping approaches do not generalize well to environments outside their training datasets.

2.2 Simultaneous Localization and Mapping

The state-of-the-art depth based SLAM techniques enable high fidelity and accurate 3D reconstruc-

tion of a limited scale environments on Desktop grade GPUs. A typical SLAM framework can be

interpreted as an Expectation-Maximization (see Sec. 2.1.4) routine. The aim of this expectation

maximization is to estimate the map parameters Θ and the trajectory of the sensor {Tt}, that best

explain the history of observed sensor information. As a stream of sensor observations is obtained,

at each time step t:

• Localization (Expectation) step: finds the set of parameters Tt that maximize the log-

likelihood of the history of sensor scans at time t, Xt having been generated from the global

map Θ
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• Mapping (Maximization) step: computes the best estimate of the map parameters Θ, with

respect to the stream of sensor observation observed until time t, and the history of sensor

pose Tt

In this section, we discuss some state-of-the-art SLAM techniques that follow a similar structure

mentioned above with various definitions of Θ. We also draw comparisons to the proposed SLAM

approach and highlight the key differences.

2.2.1 Volumetric SLAM

The advent of high resolution, high frequency hand-held RGBD sensors like the Kinect, enables a

plethora of robotics applications. Dense depth camera based SLAM approach presented by Izadi

et al. [26] was a milestone in dense SLAM that drove a wide variety of research in dense RGBD

based SLAM. Similar to the voxel grids described in Sec. 2.1.2 a fixed sized map representation of

the world is maintained and updated as novel sensor observations are obtained. However, instead

of saving the probability of occupancy, the proposed map representation stores the distance of each

voxel to the closest observed surface as the voxel value. This map representation is also known

as a Truncated Euclidean Signed Distance Field or simply a Truncated Signed Distance Field

(TSDF). The TSDF enables elegant incorporation of noisy sensor information into a incremental

map representation. The surfaces in the scene can be extracted by computing the zero crossing

along each sensor ray. However, this map representation is not readily usable for localization. At

each time step t, points along the observed surfaces are extracted using zero crossing from the

current TSDF and a dense triangulated mesh of the world is reconstructed. The current sensor

observation Xt is then aligned with respect to this intermediate map representation using a variant

of the well known Iterative Closest Point (ICP) algorithm [4, 44]. At each iteration i of ICP:

• a set of correspondences are computed between points in Xt and the planar triangles in the

intermediate map representation Θ



22 CHAPTER 2. RELATED WORK

• a cost function is formulated as the sum of distances of each point to its corresponding

triangle, along the direction of the normal of the triangle

• a Gauss-Newton routine is employed to find a set of transformation parameters that mini-

mizes this cost function

This approach enables 3D reconstruction of dense complex environments on a Desktop grade GPU

from noisy depth sensor data as shown in Fig. 2.4. However, the TSDF map representation requires

a high resolution voxel grid and therefore, KinectFusion has large memory footprint. Further,

maintaining two different map representations for mapping and localization creates redundancy

in the system and increases the computational and memory complexity of the proposed SLAM

pipeline.

Figure 2.4: Illustrative example of 3D reconstruction obtained from KinectFusion SLAM framework.
Source [26].

2.2.2 Surface Primitive Based SLAM

Instead of maintaining and updating two redundant map representations in real-time another family

of dense SLAM technique aims to reconstruct the 3D surfaces in the scene explicitly and update

the explicit surface map. A novel approach proposed by Keller et al. [29] uses a set of discrete
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unordered 3D points as the map representation. Since the sensor input is obtained as 3D point

clouds, this representation can provide a very high fidelity 3D reconstruction of the scene. Sim-

ilar to KinectFusion, this approach attempts to minimize the distance between a point in the live

sensor scan and its corresponding point in the global map, along the direction of its normal. Cor-

respondences are computed using a computer graphics technique known as “surface-splatting”.

“Surface-splatting” creates a disk of set radius, at a given 3D location and a corresponding normal

direction and replaces a 3D point by a 3D disk to provide more robust correspondences. The nor-

mal of each global map point is computed using central differences of the de-noised neighboring

points. The final map reconstruction is obtained by triangulating the reconstructed 3D points and

creating a connected mesh, as post-processing. Maintaining discrete set of points as the global map

representation enables the authors to reason about sensor noise and dynamic objects by indepen-

dently weighing each point using temporal information. Points observed over longer time duration

are weighted higher and considered a part of the static map, while points with lower weights are

considered dynamic or noisy points and discarded from the map. Further, due to the independent

nature of the map representation, this approach is highly parallelizable. However, by definition

3D points do not have any area, and therefore, infinite points are required to be able to accurately

reconstruct a dense surface. This increases the memory footprint of the algorithm and restricts its

applications to small scale environments.

Extending upon this idea of “surface-splatting”, Whelan et al. [58] proposed a SLAM pipeline,

ElasticFusion, similar the point based approach, but replaced the surface primitives from 3D points

to 3D planar disk like surface elements (surfels). Surfels are parameterized by their 3D position,

radius, normal and color. Along with minimizing the distance between incoming sensor points and

corresponding surfels, they incorporate the difference between the intensities of the raw sensor

scan and a rendered image of the map into the localization cost function. Incorporating the inten-

sity information enables the localization framework to be more robust to environments where depth
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data is not informative enough to compute a unique solution (see Fig. 2.5). Along with providing

a more robust localization cost function, the authors introduced a concept commonly used in the

graphics community, known as “deformation graphs” to enable global map consistency and cor-

rect for local drifts in the localization pipeline. When a loop closure is detected by the system, the

entire global trajectory is corrected for, by propagating the correction throughout the deformation

graph and correcting the reconstructed map. Since the surfels are solid objects with a well-defined

area, they can directly be used to represent the final 3D reconstruction of the scene without further

post-processing. However, surfels have a very small radius and only capture a small amount of 3D

neighborhood information. Further, due to the 2D disk structure, surfels lose the local structural

properties and therefore, noisy sensor information often gets incorporated as high frequency noisy

surfels. Although surfels are more memory efficient that TSDFs, they are still very expensive

to store and maintain, numbering in millions for small room-scale environments. Exploiting the

Figure 2.5: Illustrative example of 3D reconstruction obtained from ElasticFusion SLAM framework.
Source [58].

highly structured nature of indoor environments, Kaess [28] presented a SLAM approach, Planar

SLAM, that builds upon the observation that most indoor environments dominantly consists of

large planar regions. Extending the idea of representing the sensor information with small planar



2.3. COMPARISON TO THE PROPOSED APPROACH 25

elements, the authors fit large 3D planes to the dominant planes in the scene while ignoring the

surfaces with large curvature. A Gauss-Newton routine is employed similar to KinectFusion, Elas-

ticFusion, to perform point-to-plane distance minimization, for frame-to-model localization. This

work demonstrates the utility of exploiting the structure in the scene to create efficient and succinct

representations of the scene. However, since this approach only reconstructs planes in the scene, it

is not usable for high fidelity 3D reconstruction and in outdoor complex environments.

2.3 Comparison to the Proposed Approach

Our proposed hierarchical SLAM approach reconstructs a 3D map of the world that can be uti-

lized for various robotic applications. Similar to the hierarchical mapping approaches described

by Srivastava and Michael [50], and Eckart et al. [16], our proposed approach reconstructs a gen-

erative 3D model of the world. However, our approach attempts to generate a high fidelity 3D

reconstruction of the world similar to the dense SLAM approaches described in Sec. 2.2 and have

the compression capabilities of approaches similar to OctoMap, NDTMap and Planar SLAM.

Unlike the hierarchical approach described by Eckart et al. [16] the proposed mapping frame-

work employs a bottom-up hierarchical map reconstruction, where a high-fidelity map Θ0 is first

fitted to the input data without any iterative optimization like EM. This high-fidelity map represen-

tation is then operated over to obtain a lower fidelity map representation and so on. This enables us

to compute the model complexity of the world at different hierarchical levels from the raw data in-

stead of using an arbitrary fixed value. Similar to an OctoMap structure, our map representation is

a set of tree like hierarchical structures, where each tree is independent of the other, thus retaining

the computational benefits of a surfel based SLAM approach, and is able to fit high level features

like planes at the highest hierarchical level, similar to Planar SLAM.

Further, the model fitting technique described in this thesis exploits the understandings of the

working of a depth sensor as described in Sec 2.1.1 to fit parametric models to sensor data that
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attempt to maximize the accuracy of the map representation. Under hard constraints, the model

fitting approach described by Tabib et al. [55] converges to the model fitting technique proposed

in this thesis. Thus, our approach is a lower bound of EM. We argue that, since the data obtained

from depth sensors is indeed not IID, the assumptions made in this work are valid and help reduce

the computational cost of fitting arbitrary resolution Gaussian distributions to raw sensor data.



Chapter 3

Background

This chapter provides a high-level overview of concepts used in this thesis to enable SLAM using

Gaussian distributions as structure primitives.

3.1 Gaussian Distribution

A Gaussian distribution is a parametric representation of a set of random d-dimensional points

aX, in a coordinate frame a, defined by the sufficient statistics of the data, the mean aµ, and the

covariance aΣ. Mathematically, we define a Gaussian distribution aθ as,

aX ∼ N (aµ, aΣ) (3.1)

aθ := {aµ, aΣ} (3.2)

The mean aµ and the covariance aΣ are defined as,

aµ = E[aX] =

∑N
i=1 xi
N

(3.3)

aΣ = E[(aX− aµ)(aX− aµ)T ] =

∑N
i=1 (axi − aµ)(axi − aµ)T

N
(3.4)

27



28 CHAPTER 3. BACKGROUND

A covariance matrix aΣ, by definition is symmetric and Positive Semi-Definite (PSD), (See

Eq. 3.4). The Singular Value Decomposition of a symmetric square matrix M is

M = UΛUT (3.5)

where, U is an orthogonal matrix whose columns are the eigenvectors if M, and Λ is a diagonal

matrix whose elements are the eigenvalues of M. For a PSD matrix, all the eigenvalues are non-

negative.

The probability of sampling a point axi from a Gaussian distribution aθ := {aµ, aΣ} is

p (axi | aΘ) =

√
(2π)d|aΣ|

−1
exp

(
−0.5 (aµ− axi)

T aΣ−1(aµ− axi)
)

(3.6)

and the log-likelihood of axi is,

l (axi | aθ) = log (p (axi | aΘ)) (3.7)

= log

(√
(2π)d|aΣ|

−1)
− 0.5

(
(aµ− axi)

T aΣ−1(aµ− axi)
)

(3.8)

= −1

2
d log(2π)− 1

2
log |aΣ| − 1

2

(
(aµ− axi)

T aΣ−1(aµ− axi)
)

(3.9)

3.2 Transformation Parameterization

A rigid body transformation in R3 space can be represented in various ways. It has 3 degrees of

freedom in rotation and 3 degrees of freedom in translation. The translational part of the transfor-

mation is linear and is simple to use for optimizations. However, there are multiple representations

of the rotational component: Euler angles, quaternions and rotation matrices representing rotation

in Lie group SO(3). Each rotation matrix represents a unique rotation and the representation does

not have any singularities [25]. In this work, we represent the rigid body transformation as an
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element of the Lie group SE(3).

3.3 Lie Groups

Seminal documentation by Eade [15] provides detailed description about Lie groups their corre-

sponding Lie algebra for 2D and 3D rigid body transformations. In this section, we provide a brief

summary on SE(3) and SO(3) Lie groups.

Lie groups and lie algebra are extensively used in robotics and computer vision because of their

special geometric properties. Lie algebra provides a coherent and a robust framework for working

with 3D rigid body transformations.

3.3.1 Rigid Body Rotations

Every Lie Group has a corresponding Lie algebra that we denote by the corresponding lowercase

representation. For the rotation Lie group SO(3), its corresponding Lie algebra is so(3). The

elements of so(3) are a set of 3 × 3 skew-symmetric matrices and the elements of SO(3) are

represented by 3 × 3 matrices and define rotation of rigid bodies. Elements of the group can be

added by matrix multiplication and an inverse rotation can be applied by inverting the rotation

matrix. A rotation matrix R ∈ SO(3) is orthogonal. Therefore,

R−1 = RT ,R ∈ SO(3) (3.10)

Given a random vector ω ∈ R3, an element of so(3) can be written as a linear combination of the

generators:

ω1G1 + ω2G2 + ω3G3 ∈ so(3) (3.11)
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where Gi are the generators of SO(3) [15]. For the sake of convenience we write ω ∈ so(3) and

define ω× to represent an element of so(3) that is the skew-symmetric matrix of ω similar to [15].

3.3.2 Rigid Body Transformations

A group of rigid body transformations in 3D space belonging to SE(3) Lie group, is represented by

rotation matrices R ∈ SO(3) and a translation vector t ∈ R3, as a homogeneous transformation:

T =

R t

0T 1

 ∈ SE(3) (3.12)

An element of se(3) can be represented as:

(ω,u)T = φ ∈ R6 (3.13)

ω1G1 + ω2G2 + ω3G3 + u1G4 + u2G5 + u3G6 ∈ se(3) (3.14)

For brevity, we write (ω,u)T = φ ∈ se(3).

3.3.3 Exponential Maps

There exists a one-to-one mapping between the elements of the Lie algebra se(3) (so(3)) and the

elements of the Lie group SE(3) (SO(3)). This closed form mapping is defined by an exponential

map:

φ = (ω,u) ∈ se(3) (3.15)

exp(φ) = exp

ω× u

0T 1

 ∈ SE(3) (3.16)

=

exp(ω×) Vu

0T 1

 (3.17)
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where

exp(ω×) = I3×3 +
sin θ

θ
ω× +

1− cos θ

θ2
ω2
× ∈ SO(3)

θ2 = ωTω

(3.18)

is the exponential map of so(3) and

V = I3×3 +
sin θ

θ
ω× +

θ − sin θ

θ3
ω2
×

(3.19)

Therefore, the mapping from elements of the Lie group SE(3) (SO(3)) to elements of the Lie

algebra se(3) (so(3)) is given by a log map:

T =

R t

0T 1

 ∈ SE(3),R ∈ SO(3) (3.20)

ln(T) =

ln(R) V−1t

0T 1

 (3.21)

where ln(R) is the log map of SO(3)

ln(R) =
θ

2 sin θ

(
R−RT

)
= ω

(3.22)

θ = arccos

(
tr(R)− 1

2

)
(3.23)

V−1 = I3×3 −
1

2
ln(R) +

1

θ2

(
1− a

b

)
ln(R)2 (3.24)

a =
sin θ

θ
, b = 2

1− cos θ

θ2
(3.25)

The vector φ ∈ R6 can be extracted as (ω,V−1t) = (ω,u).

When the transformation between two elements in SE(3) is extremely small, i.e. θ2 ≈ 0, we

can write sin θ ≈ θ and cos θ ≈ 1. The exponential map defined in Eq. 3.16, Eq. 3.18 and Eq. 3.19
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can be approximated as

exp (ω×) ≈ I3×3 + ω× + 0 (3.26)

V ≈ I3×3 + ω× + 0 (3.27)

exp(φ) =

I3×3 + ω× (I3×3 + ω×) u

0T 1

 (3.28)

The linear relationship in Eq. 3.28 of the se(3) parameters with the exponential map provides

mathematical ease when optimizing a cost function with respect to transformation parameters.

3.4 Non Linear Least Squares

Least squares optimization is a family of techniques that attempts to find a set of parameters that

minimize the sum of the squares of a quadratic cost function. Each element of the overall quadratic

cost is known as a residual. When the squares of residuals are non-linear with respect to the

parameters, the family of techniques used to minimize the cost function is known as non-linear

least squares. In other words, the goal of non-linear least squares optimization is to maximize the

likelihood of a set of observations with respect to its parameters. A detailed overview of standard

approaches for solving non-linear least square optimization problems is provided by Alismail et al.

[2]. In this work, to enable localization of a moving camera in an unknown environment, we

employ a commonly used “Levenberg-Marquardt” optimization technique.

Given a set of N observations from the world, X, in a d-dimensional space, a real valued

function f(x) : Rd → R parameterized by a set of vector of parameters θ, a standard least squares

optimization attempts to find a local minima of the cost function:

C (θ) =
1

2

∑
x∈X

f 2(x | θ) (3.29)
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The function f(x) is the residual of the optimization at point x. Two standard techniques used to

minimize the value of the cost function C (θ) and compute the values of θ at which the minima of

C is achieved are described in Sec. 3.4.1. These approaches only compute the Jacobian of C and

approximate the Hessian to be H ≈ JTJ. This approximation is valid when the residual values of

f(x) are small at the estimated θ.

3.4.1 Solving Non-Linear Least Squares

Gauss-Newton and Levenberg-Marquardt are two standard approaches of solving non-linear least

squares problems. Both approaches iteratively estimate the value of θ by computing increments to

the parameters at each iteration and adding the updates to the parameter vector. At each iteration,

first, the least squares optimization is linearized by computing the first-order partial derivatives of

C at the current estimate of the parameters. Second, this approximately linear system of equations

is solved using an appropriate linear solver (Cholesky decomposition, QR decomposition, etc.).

Third, incremental updates to the parameters are computed and added to the current estimate of

the parameters. These three steps are repeated until the cost function converges or the parameters

updates are infinitesimal.

Gauss-Newton and Levenberg-Marquardt only differ in the way the parameter updates are com-

puted. At each iteration, Gauss-Newton computes the parameter updates δθj as:

JTj Jjδθj,GN = −JTj f(X,θ)j (3.30)

Gauss-Newton provides a very elegant iterative approach to solve a non-linear least squares prob-

lem by simply computing the first-order derivatives of the cost function C. However, it often leads

to mathematical inconsistencies when insufficient information is available for some elements of θ

making the Jacobian matrix J rank deficient. Thus, the incremental update θGN lies in the null

space of J and does not have a unique solution. Levenberg-Marquardt attempts to fix this problem
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by artificially forcing the pseudo-Hessian (JTJ) to be full rank by:

(
JTj Jj + λ

(
diag(JTj Jj)

))
δθj,GN = −JTj f(X,θ)j (3.31)

where, λ is a scalar parameter > 0. Typically, the value of λ is adjusted at each iteration to ensure

that the incremental steps δθ reduce the value of C.



Chapter 4

Hierarchical Gaussian Distributions for 3D

Reconstruction

4.1 Introduction

In this chapter, we describe in detail our proposed Gaussian distribution based hierarchical map

representation that leverages the sensor characteristics of a COTS depth sensor and explicitly in-

corporates the uncertainty of the input data.

Standard GMM fitting approaches employ a computationally expensive EM routine to estimate

the parameters of a GMM wΘ̄ that best approximates the distribution of points wX by maximizing

the log-likelihood of wX with respect to wΘ̄. As described in Sec. 2.1.4, this process is computa-

tionally expensive and the performance varies highly dependent upon the parameter initialization.

In this chapter, we propose a pixel space search-based “Region Growing” technique to fit Gaussian

distributions to planar surfaces in the scene thus providing a more accurate measure of reconstruc-

tion accuracy. It also enables us to achieve orders of magnitude of computational savings, thus

making it feasible to fit high fidelity generative models over the input sensor point cloud data in

real-time.

35
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Figure 4.1: System Overview: The proposed mapping algorithm operates on depth image streams and
corresponding sensor poses. As sequential sensor measurements are obtained, the hierarchical map wΘi

t

is updated. We use projective correspondences to compute the correspondence between a point xi and
Gaussian distributions wθC(i). Each Gaussian distribution is then updated with new points that represent
the sections of the map that are already observed. Novel distributions wθti are then generated using novel
information in each depth measurement. As more measurements are obtained the model is further refined
by discarding noisy distributions from the global model.

A detailed system overview of our proposed mapping approach is illustrated in Fig. 4.1. The

mapping process can be summarized into the following steps:

1. Initialize a high fidelity surface representation of the environment (Sec. 4.1.1)

2. Compute a correspondence map that signifies the point-to-distribution correspondence for

each point in a new depth measurement (Sec 4.1.3)

3. Fuse incrementally observed noisy sensor data into the map representation using correspon-
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(a) (b) (c) (d)

Figure 4.2: Illustrative example of our proposed mapping framework: (a): A hierarchical Gaussian dis-
tribution based map wΘ0

0 is initialized at high fidelity at the given location at time t = 0 and hierarchical
maps at level 1 and 2 are updated wΘ1

0,
wΘ2

0, (b): As the camera moves in the scene, the map estimate wΘ0
0

is updated to wΘ0
t with the novel information and overlapping evidence observed by the sensor, (c): These

updates are propagated through the hierarchical structure to update wΘ1
t as shown in the figure, (d): As the

sensor moves further away, the distributions of wΘ2
t outside the sensor FOV are labeled inactive (red) and

only the active Gaussian distributions are used for further updates until inactive map sections are observed
again.

dence map and Gaussian merging (Sec. 4.1.2)

4. Update the higher hierarchical levels of the map (Sec. 4.1.7)

5. Refine the map by removing outlier Gaussian distributions (Sec. 4.1.6)

6. Segment map as active/inactive for efficient map update (Sec. 4.1.9)

4.1.1 Surface Model Initialization

We initialize a Gaussian distribution based representation of the environment at hierarchical level

0 as the first sensor measurement is observed at time t = 0. This representation is formulated as an

ordered set of Gaussian distributions in a global coordinate frame w, wΘ0
0 =

{
wθ00,

wθ01, . . .
wθ0n

}
.

The covariance Σi of each wθ0i signifies the spread of points that it is fit on. Depth measurements

obtained from COTS structured light sensors are spread along sub-manifolds (surfaces of the ob-

jects in the scene) in the ambient R3 space (see Sec. 2.1.1). A wθ0i that best represents a subset

of this observed data corresponds to a planar patch of the spread of points along a surface. The

smallest eigenvalue λi,0 of Σi represents the variance of points along the direction with the least

data variation i.e., the normal to the surface that wθ0i is fit on. The corresponding eigenvector ui,0

represents the direction of this normal. Given an image I0 of size V ×U , we use this understanding
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to fit the best Gaussian distributions wθ0i to small b0 × b0 pixel patches of I0 that represent planar

spread of points.

Assuming pinhole camera geometry, a depth measurement at pixel location (v, u), I0(v, u) can

be back projected in to R3 space using inverse projective function

xv,u = Π−1(I0(v, u), v, u) (4.1)

Since, this can be viewed as a linear transformation, the points that are proximate in the 3D space,

are also proximate in pixel space. We exploit this property of projective pinhole geometry and

implement a version of the “Region Growing” algorithm proposed by Poppinga et al. [41] that op-

erates in the image space using uncertain data. The “Region Growing” algorithm can be described

as follows:

In each image patch of size b0 × b0 pixels, we

1. Select a random seed pixel (vs, us) and compute the 3D point xvs,us = Π−1(I(vs, us), vs, us)

2. Search for candidate 3D points xvc,uc in the pixel neighborhood of xvs,us that lie within αn

distance of xvs,us and initialize a Gaussian distribution wθ0i using this set of points as defined

by Eq. 3.3 and Eq. 3.4

3. For candidate points xvc,uc that are inside αn distance, search for its neighbor points xvk,uk

within αn distance, such that the smallest eigenvalue λ0 of the covariance Σi of a Gaussian

distribution wθ0i updated with point xvk,uk is less than α2
λ and the largest eigenvalue is less

than αlen

4. Continue until all points in the image patch are processed

The mean and covariance of a Gaussian distribution completely represent sufficient information

about the points that it was fit on. Therefore, for incrementally updating a Gaussian distribution
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wθ0j with a point wxi we do not need to preserve the history of points used to fit wθ0j :

wθ0j
′
:=
{
µ0
j
′
,Σ0

j

′
, N ′j

}
(4.2)

N ′j = Nj + 1 (4.3)

µ0
j
′
=
Njµ

0
j + wxi

N ′j
(4.4)

Σ0
j

′
=
Nj

(
Σ0
j + µ0

jµ
0
j
T
)

+ wxwxT

N ′j
− µ0

j
′
µ0
j
′T (4.5)

For each b0 × b0 image patch, we select the Gaussian distribution that represents the largest planar

region in that patch. Thus, our initial model at hierarchical level 0, wΘ0
0, consists of V

b0
× U

b0

Gaussian distributions that represent planar patches in the observed scene. As a sequence of sensor

measurements is observed, a globally consistent model is updated as shown in Fig. 4.2.

4.1.2 Incremental Model Updates

As sequential sensor measurements are obtained at time t, we can refine the current model estimate

at the hierarchical level 0, wΘ0
t−1, of the scene using this incoming stream of structure informa-

tion. Sequential sensor measurements obtained from a sensor moving in the world, contain some

novel information about the scene and some redundant information that has already been observed.

However, sensor measurements obtained from a depth sensor are often noisy and therefore unreli-

able. We use the redundant structure data to improve the map estimate of the map that is already

observed using a weighted update and fit new Gaussian distributions to novel information. An ad-

ditional uncertainty covariance Σunc
k is added to the Gaussian distributions to represent the average

uncertainty of the points used to fit each Gaussian distribution, wθki−1 := {µk,Σk,Σ
unc
k , Nk}.

Given a sensor measurement wxv,u at a pixel location (v, u) in image It with Gaussian un-

certainty wΣunc
v,u, we check if this point has already been represented by a distribution in wΘ0

t−1 if

wxv,u lies within a αconf probability bound of a distribution wθ̂
0

k :=
{
µk,Σk + Σunc

v,u + Σunc
k

}
. If
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wxv,u lies within this confidence interval then it is considered to be partially represented by wθ0k

and therefore, is classified as non-novel. Points wxk,l that do not lie within the confidence interval

of any of the distributions in wΘ0
i−1 are labeled as novel points.

The novel information obtained in It is used to initialize the new Gaussian distributions θ0k at

hierarchical level 0 that represent the newly observed surfaces in the scene (see Sec. 4.1.1).

4.1.3 Correspondence Map

In order to update the global map of the world wΘ0
t−1 with the correct overlapping 3D point wxv,u,

we must check if the uncertainty distribution of wxv,u overlaps with each uncertain distribution

in wΘ0
t−1. As the number of components in wΘ0

t−1 increases, the search space for finding the

correspondence between a point xv,u ∈ It and distribution wθt−1k ∈ wΘ0
t−1 also increases. This

search becomes computationally intractable in real-time for each pixel in It for a large map. To

reduce this search space, we exploit the geometric properties of a Gaussian distribution and the

linearity of pinhole projection. Gaussian distributions have a infinite support space in 3D. However,

the probability distribution taper off exponentially farther away from the mean. Equipotential

contours of a Gaussian distribution can geometrically be represented as ellipsoids in R3 space.

The pinhole projection of a 3D ellipsoid is an ellipse in a 2D image plane [12]. The Gaussian

distributions corresponding to ellipses that project at a given pixel location (v, u) on the image

plane are potentially proximate to the 3D point xv,u and the Gaussian distributions that do not

project in the proximity of pixel (v, u) are not in the vicinity of point xv,u and therefore have a

negligible contribution to the log-likelihood of xv,u and can therefore be ignored. For each pixel

in It we project the 3D Gaussian distributions in wΘ0
t−1 at hierarchical level 0 in to image space,

where each pixel stores the index k of wθ0k that projects at the corresponding pixel, using pinhole

geometry and a depth buffer implemented in OpenGL. We detail the procedure for projection of a

Gaussian distribution wθ0k on to an image plane in Sec. 4.1.4. We extract an ellipsoid for each wθ0k
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(a) Input sensor observa-
tion, It

(b) Fitted model Θ0
t (c) Sensor observation

It+1

(d) Correspondence map
between Θ0

t and It+1

Figure 4.3: Illustrative example of projective correspondence framework. (a): RGB image of the scene
observed at time t, (b): The colored model wΘ0

t learned on It, (c): RGB image of the scene observed at time
t+1, (d): RGB colored correspondence map created using model wΘ0

t . As sequential sensor measurements
are observed, individual Gaussian distributions wθ0t ∈ wΘ0

t are projected in to the current image frame
using pinhole projective geometry as described in Sec. 4.1.3 to compute point-to-model correspondence.
Each pixel value in the correspondence image refers to the index k of the distribution wθ0t that projects at
that location.

representing 99.97% Chi square probability for each distribution, and project it in an image plane

as shown in Fig. 4.3. Finally, to verify if the projective correspondence is correct, we perform the

same check as described in Sec. 4.1.2 to ensure that the point xv,u ∈ It is within an αconf bounds

of wθ0k that was projected at the same pixel location.

4.1.4 Projecting a Gaussian Distribution on an Image Plane

A Gaussian distribution wθ0k,

(x− µk)
T Σ−1k (x− µk) = 1

represents an ellipsoid in R3 space. The Eigen decomposition of Σ−1k yields:

(x− µk)
T

Uk


σ2

1 0 0

0 σ2
2 0

0 0 σ2
3

UT
k


−1

(x− µk) = 1 (4.6)
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(x− µk)
T Uk


1
σ2

1
0 0

0 1
σ2

2
0

0 0 1
σ2

3

UT
k (x− µk) = 1 (4.7)

(4.8)

For a Chi squared bound of 99.97% when the diagonal matrix is scaled by a factor of 3, i.e.

(x− µk)
T Uk


1

9σ2
1

0 0

0 1
9σ2

2
0

0 0 1
9σ2

3

UT
k (x− µk)− 1 = 0 (4.9)

(4.10)

The general equation of an ellipsoid in R3 is [46]:

x

1


T

T−TDT−1

x

1

 = 0 (4.11)

where

D = Diag
[
1 1 1 −1

]
Comparing Eq. 4.10 and Eq. 4.11,

T =

I3×3 −µk
0 1


Uk 0

0 1




3
√
σ2
1 0 0 0

0 3
√
σ2
2 0 0

0 0 3
√
σ2
3 0

0 0 0 1


(4.12)
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We use this parameterization to splat the Gaussian component to image space as presented in [46].

An OpenGL vertex shader determines the axis-aligned bounds of the projected component in clip

space exploiting tangent planes. A fragment shader is then used to determine if a ray from the

camera space intersects the transformed ellipsoid within these billboard locations. This leads to a

much more accurate projection of the ellipsoid than an approach that generates a polygonal approx-

imation of the ellipsoid in a vertex shader and then paints it in. Since the components are rendered

from back to front, visibility is implicitly taken into account to ensure that the closest distribution

is used for point correspondence. We use an inverse depth buffer to increase the effective depth

resolution of projected components and thus prevent z-fighting of components that are far away

from the sensor.

4.1.5 Gaussian Distribution Update

If an uncertain point
{
wxv,u,

wΣunc
v,u

}
has been previously partially observed by a distribution wθ0k,

wθ0k can be interpreted as the prior probability of a 3D point being sampled around wxv,u. We can

therefore compute the posterior probability as a product of two Gaussian distributions, given by

wx̂v,u = Σk

(
Σk + wΣunc

v,u

)−1 wxv,u (4.13)

= wΣunc
v,u

(
Σk + wΣunc

v,u

)−1
µki−1 (4.14)

wΣ̂
unc
v,u = Σk

(
Σk + wΣunc

v,u

)−1 wΣunc
v,u (4.15)

The posterior distribution wX̂v,u :=
{
wx̂v,u,

wΣ̂
unc
v,u

}
defines the most likely estimate of the par-

tially observed noisy point. We can add this point to the current estimate of wθki−1 and refine its

parameters as

µ̂k =
µkNk + wx̂v,u

Nk + 1
(4.16)
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Σ̂k =

(
Σk + µkµ

T
k

)
Nk + wx̂v,u

wx̂Tj
Nk + 1

− µ̂kµ̂Tk (4.17)

Nk = Nk + 1 (4.18)

Σunc
k = Σunc

k + wΣ̂
unc
v,u (4.19)

If the sensor uncertainty model is perfectly known, the incremental update defined in Eq. 4.16

− Eq. 4.19 converges to an accurate reconstruction of the structure in the scene with less sensor

information. However, in practice, if the uncertainty model is not well known, we perform an

additive update instead defined in Eq. 4.20. The map representation requires more data to converge

to a correct representation in this case, however, it does not converge to an incorrect estimate.

µ̂k =
µkNk + wxv,u

Nk + 1

Σ̂k =

(
Σk + µkµ

T
k

)
Nk + wxv,u

wxTv,u
Nk + 1

− µ̂kµ̂Tk

Nk = Nk + 1

Σunc
k = Σunc

k + wΣunc
v,u

(4.20)

4.1.6 Model Refinement

Sensor measurements obtained from RGBD sensors often contain spurious depth measurements

due to reflective objects in the scene, noisy particles or just random noise. If a distribution wθ0k

is fit to such noisy data, the proposed projective correspondence computation pipeline fails as

these components occlude the true map distributions. However, due to the spurious nature of such

measurements, sequential sensor measurements do not provide overlapping evidence for the noisy

distributions, wθ0k. The pixel locations where wθ0k is projected are rejected as candidate correspon-

dences by our correspondence refinement step. If the rendered depth measurements at these pixel

locations are less than the observed depth measurements, the number of points represented by wθ0k,
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Nk is set to Nk− 1. Distributions wθ0k that do not have sufficient evidence Nk < αN are eventually

discarded thus eliminating spurious and noisy distributions from the hierarchical level 0 map wΘ0
t .

4.1.7 Hierarchical Mapping

The model reconstruction strategy described in Sec. 4.1.1 is inherently independent for each image

patch and therefore, easily extendible to a hierarchical model reconstruction strategy. Similar to

the level 0 pixel space region-growing, we employ a region-growing approach modified to use

Gaussian distributions, wθt as the primitives instead of points wx. A 3-level hierarchy is defined

in image space by dividing the image into larger image patches recursively. We divide the image

into image patches of size b1 × b1 at hierarchical level 1 and b2 × b2 at hierarchical level 2 such

that b2 ≥ b1 ≥ b0. Given the map fitted at hierarchical level 0, wΘ0
t , a Gaussian distribution

based “Region Growing” is performed in a image patch of size b1 × b1, using “Bhattacharyya

Coefficient”1 as a similarity measure with thresholds on the maximum thickness of a Gaussian

distribution αλ,1 and the largest spread of a Gaussian distribution αlen,1.

Once all wΘ1
t distributions are computed, the same process is repeated in a larger image patch

of size b2 × b2 with thresholds αλ,2 and αlen,2. Finally, every distribution wθ2k absorbs one or

more distributions θ1k which absorbs one or more θ0t . Due to the distributive nature of our image

patch splitting, each distribution in hierarchical level l− 1 can only have one parent distribution in

hierarchical level l that it is encompassed by. An illustrative example of a hierarchical map learned

on a single depth measurement is shown in Fig. 4.4.

As the model wΘ0
t is incrementally updated, these updates are propagated up the hierarchical

tree structure at each time step and therefore the entire hierarchical map is updated with the most

recent information. Novel components observed in the live sensor frame that get added to wΘ0
t

also get added to wΘ1
t and wΘ2

t . A Gaussian distribution based “Region Growing” is performed at

level 1 in an image patch of size b1×b1 to incorporate these new distributions in to wΘ1
t . Similarly,

1https://en.wikipedia.org/wiki/Bhattacharyya distance
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novel distributions in wΘ1
t get incorporated into wΘ2

t by performing a Gaussian distribution based

“Region Growing” on distributions in wΘ1
t in an image patch of size b2 × b2.

(a) Input sensor observation It (b) Model at lowest hierarchical level Θ0
t

(c) Model at hierarchical level 1 Θ1
t (d) Model at hierarchical level 2 Θ2

t

Figure 4.4: Illustrative example of the proposed hierarchical mapping strategy. Given an image It at time
t our hierarchical approach fits a highest resolution map wΘ0

t according to Sec. 4.1.1 on image patches of
size b× b. Distributions in this model that lie on a large image patch of size b1 × b1 are combined to create
wΘ1

t and similarly distributions in wΘ1
t that lie on an even larger image patch of size b2 × b2 are further

combined to create wΘ2
t

4.1.8 Sensor Uncertainty Model

The uncertainty associated with a sensor measurement wxv,u observed at a pixel location (v, u) is

assumed to be normally distributed with zero mean and wΣunc
v,u covariance in Sec. 4.1.2. Given a

noisy point x with normally distributed noise characteristics θunc := {wb, wΣunc} the true world
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point x̄ can be written as:

wx̄ = wx +N (wb, wΣunc) (4.21)

wx̄ = (wx + wb) +N (0, wΣunc) (4.22)

Therefore, we can interpret a Gaussian uncertainty with a non-zero mean, as a zero mean Gaussian

distribution with the same covariance and bias adjusted measurement (see Eq. 4.22).

A raw measurement wxv,u obtained from a depth sensor has three principal directions of un-

certainty: one along the direction of the ray, σz in R3 and two along the pixel location width and

height in pixel space (pixel quantization error), σp, as shown in Fig. 4.5. As presented by Proença

and Gao [42], the uncertainties in the pixel space can be propagated to R3 space and transformed

into the camera coordinate frame:

wΣunc
v,u =


f−1x 0 (u− cx) f−1x

0 f−1y (v − cy) f−1y

0 0 1




σ2
p 0 0

0 σ2
p 0

0 0 σ2
z




f−1x 0 (u− cx) f−1x

0 f−1y (v − cy) f−1y

0 0 1


T

(4.23)

where, fx, fy, cx, cy are the camera intrinsic parameters.

The value of σz is computed for each pixel in the sensor measurement from an empirically

fitted model presented in [36] for a Kinect RGBD sensor, where σz is shown to predominantly

vary with the z coordinate of a point xv,u,

σz = 0.0012 + 0.0019 (xz − 0.4)2 +
0.0001
√
xz

(4.24)
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Figure 4.5: Illustrative example of the Gaussian uncertainty associated with a raw sensor measurement.
The measurement obtained at a pixel location may not lie at the center of the pixel. σp denotes the standard
deviation associated with the measurement being obtained from the center of the pixel along the u and v
directions. σz denotes the standard deviation associated with the depth measurement along the direction of
the ray passing through the center of the camera and the observed 3D point. The 3D ellipsoid (shown in
purple) represents the 3D Gaussian uncertainty obtained by propagating the standard deviations through
projective constraints.

4.1.9 Active-Inactive Mapping

As the size of the observed map increases, the number of Gaussian distributions in the global

map wΘ0
t increases proportionally. This increases the cost of projecting the map in to the image

frame and computing point-to-model correspondences (see Sec. 4.1.3). RGBD sensors like the

Kinect have a limited FOV. When a stream of sensor measurements is obtained, only a part of the

observed map wΘ0
t is currently in the sensor FOV. The raw sensor measurements in the live depth

frame can only affect the part of the map inside its FOV. Exploiting these sensor FOV constraints,

we can reduce the size of the map used for correspondence computation to only the subsection that

is within the FOV of the sensor. This enables us to trim the number of distributions that will be

affected by the current sensor measurement to only the distributions that lie within the FOV of the

sensor.

Every Gaussian distribution in wΘ0
t that has a finite projection in the current image frame must
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therefore be used for correspondence computation. However, the computational complexity of

this operation also scales with the number of Gaussian distributions in wΘ0
t . Instead, we exploit

the hierarchical structure of the map representation to efficiently down-sample the map size by

checking the projection of distributions at hierarchical level 2, wΘ2
t .

wΘ2
t has a very small number

of distributions as compared to wΘ0
t (experimentally shown in Fig. 5.8) and therefore, can be used

to quickly check if the individual distributions wθ2t lie within the FOV of the sensor. All wΘ0
t

distributions whose parent distribution wΘ2
t , lies outside the current FOV of the sensor, are labeled

inactive and the rest of the map is active.

This perspective based component sub-selection enables us to compute the point-to-distribution

correspondences efficiently and create a globally accurate map representation.

4.2 Implementation

For the remainder of this thesis we use b0 = 8, b1 = 32, b2 = 160. This provides us a very high

fidelity map representation at level 0, a smoother map representation at level 1 and a low fidelity

but highly succinct map representation at level 2.

4.3 Evaluation

In this section, we demonstrate the reconstruction accuracy of the proposed map representation

and also highlight the compression capabilities. We evaluate the accuracy and performance of our

proposed mapping strategy on multiple datasets quantitatively and qualitatively. First, we demon-

strate the correctness of our incremental mapping strategy on noisy input data. Second, we com-

pare the metric accuracy of our mapping approach to various state-of-the-art mapping algorithms

and demonstrate the superior reconstruction performance with lower memory requirements. Third,

we demonstrate the mapping strategy’s compression capabilities while incurring marginal loss of

fidelity. Finally, we compare the qualitative performance of our proposed approach on publicly
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available real world datasets in terms of quality and error of reconstruction. In all the following

experiments, b, the patch size is set to 8.

We only compare the memory footprint utilized by NDTMap and OctoMap for storing occu-

pied cells to maintain a fair comparison of compression capabilities.

We use the following datasets for our evaluations:

1. “Living Room”: ICL-NUIM Living room Dataset [8, 20]

2. “Lounge”: Lounge Dataset, “Copyroom”: Copyroom Dataset, “Stonewall”: Stonewall Dataset [62]

4.3.1 Comparison Metrics

The quantitative evaluation of our proposed 3D mapping approach is performed using the following

metrics:

1. Reconstruction Error (m) : Gaussian distributions used as structure primitives in this work

are generative models. We sample 3D points from each Gaussian distribution in wΘl at

hierarchical level l, within 3σ confidence bounds to reconstruct a global 3D point cloud of

the environment. The reconstruction error is then computed as the mean distance of each

3D point in the sampled point cloud to its closest surface in the ground truth mesh of the

environment. Larger error suggests that the sampled points are farther away from the ground

truth map and smaller error suggests high similarity between the ground truth map and the

reconstructed point cloud.

2. Precision of Reconstruction : Precision is defined as the fraction of sampled points whose

distance to the ground truth mesh is less than αl,λ for our proposed approach. For NDTMap

and OctoMap precision is defined as the fraction of points whose distance to the ground truth

mesh is less than the resolution of the map.

3. Recall of Reconstruction : Recall of the reconstruction is computed by sampling 3D points

uniformly over the ground truth mesh and querying whether the points are observed by
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the 3D reconstructed map. For our proposed approach and NDTMap, a point is defined

as observed if it lies inside the 3σ bounds of any Gaussian distribution in the map. For

OctoMap, a point is defined as observed if it lies inside an observed voxel of the map.

4. Memory Consumption (MB) : The memory consumption of a representation is defined in

MegaBytes (MB) as the required storage space for each map representation at the end of a

dataset.

4.3.2 Accuracy of Representation

In this section, we demonstrate the accuracy of our incremental mapping strategy on perfect and

noisy sensor data on “Living Room” dataset. We compare the performance of Gaussian distribu-

tions at hierarchical level 0 learned on individual sensor scans to Gaussian distributions learned

incrementally on perfect sensor data and incrementally on noisy sensor data. Table 4.1 shows that

the proposed incremental strategy reconstructs the world with low error and high precision and

recall of input information obtained from every scan. Further, actively incorporating the noise

model of the sensor while mapping enables the pipeline to fit a more compressed representation

thus reducing the memory requirement of the map representation while increasing the precision of

reconstruction over time.

4.3.3 Surface Reconstruction Accuracy

We evaluate the surface reconstruction accuracy of our approach and compare it to state-of-the-

art algorithms, OctoMap [24] and NDTMap [5], on the entire “Living Room” dataset with added

Gaussian noise to each sensor measurement according to a sensor model described in Sec. 4.1.8.

This dataset provides ground truth poses for a camera following a trajectory in a simulated en-

vironment. This environment mesh is used to compute the reconstruction accuracy of the fitted

model. We also compare the memory footprint of these representations and demonstrate the su-

perior compression and representation capability of the proposed method. Figure 4.7 shows the
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Map Type Error (m) Precision Recall Memory (MB)

Perfect input data

Individual 0.0019 0.890 0.997 0.913

Incremental 0.0006 0.987 0.996 0.0372

Noisy input data

Incremental 0.0031 0.790 0.985 0.2604

Noise
0.0017 0.939 0.992 0.041

Compensated

Table 4.1: Quantitative performance comparison of wΘ0
t fit to each individual scan on “Living Room”

dataset with a model fit incrementally, with and without explicitly incorporating the sensor noise in incre-
mental updates. By performing incremental map updates, we are able to exploit the overlapping structure
information observed in multiple sensor scans and thus achieve an order of magnitude better compres-
sion performance. Further, by explicitly incorporating the sensor uncertainty into the map reconstruction
pipeline, we are able to capture the underlying distribution of structure points with higher accuracy and
also reduce the memory footprint of the map.

qualitative reconstruction of “Living Room” dataset using noisy input data as compared to the true

mesh. Model fitted using our proposed approach represents the environment with high accuracy

by representing input points as uncertain distributions and probabilistically updating the map rep-

resentation. Table 4.2 shows that given current sensor pose estimates our proposed approach can

represent the scene with higher precision, reconstruction accuracy and lower memory footprint

than OctoMap and NDTMap.

Approach Error (m) Precision Recall Memory (MB)

Proposed 0.0019 0.890 0.985 0.128
NDTMap 0.0042 0.691 0.653 0.731
OctoMap 0.0236 0.251 0.636 0.5901

Table 4.2: Quantitative comparison of state-of-the-art mapping approaches with the proposed approach on
noisy “Living Room” dataset. OctoMap and NDTMap are being fit at 5 cm resolution. For our proposed
approach we use maximum thickness parameter α0,λ = 5 cm. The proposed approach can explicitly incor-
porate the uncertainty of the sensor measurements into the model. Further, the GMM map is data driven
and does not make assumptions about the distribution of data in fixed grids like OctoMap and NDTMap.
Therefore, our proposed approach can achieve higher accuracy, precision, recall while being more memory
efficient that other compression mapping techniques.
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(a) Ground truth mesh of “Lounge” dataset (b) Reconstruction wΘ0
t from proposed approach

(c) Reconstructed OctoMap for “Lounge” dataset (d) Reconstruced NDTMap for “Lounge” dataset

Figure 4.6: Qualitative comparison on “Lounge” dataset of Left to right: Mesh estimated from [62]; pro-
posed reconstruction framework; OctoMap, NDTMap. Unlike, OctoMap and NDTMap our map represen-
tation does not make assumptions about the distribution of the structure points and fits volumetric planar
primitives to the data. Further, due to the explicit incorporation of sensor uncertainty in the representation,
the proposed representation looks less cluttered and more structured than NDTMap and OctoMap while
achieving orders of magnitude higher compression than either of those representations.

4.3.4 Map Compression

The proposed mapping strategy can be used to solve various problems in robotics like state estima-

tion [54], trajectory planning and collision avoidance [12]. However, for real-time performance,

these applications require a map representation with low memory footprint and high computational

efficiency. In this section, we demonstrate the capability of the proposed mapping strategy to ob-

tain an order of magnitude better compression of input data from “Living Room” dataset with

minor loss of representation fidelity. This ensures complete map coverage and enables the use

of the proposed mapping approach to enable other robotic applications. Table 4.3 demonstrates

that by reducing the required surface reconstruction accuracy from 1 mm to 10 cm, the memory
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(a) “Living Room” reconstruction (b) “Copyroom” reconstruction

(c) “Living Room” ground truth mesh (d) “Copyroom” ground truth mesh

Figure 4.7: Qualitative comparison of the top down view of reconstruction obtained from the proposed
framework on “Living Room” dataset (a) and “Copyroom” dataset(b), ground truth map of “Living Room”
dataset (c) and the mesh constructed from [62] for “Copyroom” dataset(d).

requirement of the map is reduced by a factor of approximately 20 and the mean reconstruction

error is still less than 1 cm.

4.3.5 Hyper Parameter Selection

The trade-off between accuracy and map compression can be tuned by proper selection of the

hyper parameters bi, αi,len and αi,λ. Varying the patch size at level 0, b0, changes the size of image

patches used for model fitting. Larger the value of b0 lesser the number of Gaussian distributions

fit to the map. However, that also reduces the recall of the map representation as only one Gaussian
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α0,λ (m) α0,len (m) Error (m) Precision Recall Memory (MB)

0.01 0.05 0.0008 0.969 0.989 0.314
0.001 0.05 0.0006 0.987 0.989 0.349

0.1 0.1 0.0029 0.877 0.985 0.075
0.01 0.1 0.0016 0.934 0.985 0.195
0.001 0.1 0.0009 0.966 0.989 0.143

0.1 0.2 0.0098 0.701 0.970 0.020
0.01 0.2 0.0034 0.883 0.982 0.0308
0.001 0.2 0.0033 0.930 0.989 0.084

Table 4.3: Quantitative comparison of various performance metrics at different map resolutions on “Living
Room” dataset. At high resolutions, we achieve extremely accurate metric performance, however, have a
large memory footprint. Even after increasing the thickness and length thresholds, our proposed approach is
able to represent the structure information in the scene at high accuracy with error less than 1 cm and gain
substantial decrease in memory footprint. Larger thresholds enable wΘ0

t to represent large planar regions
in structured environments with less model complexity.

distribution is fit to each b0 × b0 image patch. The parameters α0,λ and α0,len dictate the maximum

spread of a Gaussian distribution at level 0. Lower α0,λ enables distributions to represent extremely

planar regions with high accuracy while a higher value of α0,λ represents volumetric regions in the

scene. Similarly, a smaller value of α0,len ensures that the law of large number is not violated by

representing a large amount of data with a single Gaussian distribution. However, a large value of

αlen still enables the algorithm to represent the map with high accuracy and with a low memory

footprint. Table 4.4 highlights this trade-off on the highest resolution model wΘ0
T on the “Living

Room” dataset.

4.3.6 Real World Datasets

The objective of using these datasets is to demonstrate the performance of our pipeline on real-

world datasets where the provided ground truth poses are noisy and a correct sensor model is not

available. “Lounge”, “Copyroom” and “Stonewall” datasets are captured using a hand-held sensor

and sensor poses are estimated as described by Zhou and Koltun [62]. These datasets provide an es-

timate of the map reconstructed using a dense mapping framework. We compare the performance
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α0,λ (m) α0,len (m) b0 Error (m) Precision Recall Number of wθ0

0.01 0.05 8 0.0008 0.969 0.989 7858
0.001 0.05 8 0.0006 0.987 0.989 8743

0.1 0.1 8 0.0029 0.877 0.985 1877
0.01 0.1 8 0.0016 0.934 0.985 4873
0.001 0.1 8 0.0009 0.966 0.989 3576

0.1 0.2 8 0.0098 0.701 0.970 518
0.01 0.2 8 0.0034 0.883 0.982 772
0.001 0.2 8 0.0033 0.930 0.989 2116

0.01 0.05 16 0.0014 0.932 0.987 7397
0.001 0.05 16 0.0009 0.969 0.988 9079

0.1 0.1 16 0.0027 0.885 0.985 1940
0.01 0.1 16 0.0019 0.926 0.985 2200
0.001 0.1 16 0.0011 0.959 0.989 4118

0.1 0.2 16 0.007 0.783 0.983 565
0.01 0.2 16 0.003 0.885 0.982 805
0.001 0.2 16 0.0024 0.934 0.989 2673

Table 4.4: Comparison of reconstruction error, precision, recall and memory consumption of the proposed
mapping approach at different resolutions by varying the mapping hyper-parameters.
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Figure 4.8: Qualitative comparison of the model reconstructed by our approach at high information fidelity
on “Stonewall” dataset: Left: Mesh provided by [62]; Right: proposed reconstruction with α0,λ = 0.1 cm.
The zoomed in view shows that the high fidelity model is able to retain minute texture details in the scene
and create a high quality scene reconstruction using succinct Gaussian distributions as surface primitives.

of our mapping strategy with state-of-the-art mapping frameworks using this model. In order to

compare the performance of OctoMap and NDTMap with the proposed hierarchical approach, we

vary the voxel grid size for these map representations and compare the memory consumption and

reconstruction error of the representations at various configurations. However, since our approach

does not use 3D voxels to change the resolution, we compare the performance of our approach

at all three hierarchical levels with OctoMap and NDTMap at multiple resolutions. Table 4.5 and

Table 4.6 demonstrate that for “Lounge” and “Copyroom” datasets, the proposed hierarchical map

representation outperforms NDTMap and OctoMap in both compactness of the representation and

the accuracy of reconstruction at all three hierarchical levels. Even with noisy pose estimates and

unknown sensor noise model the proposed algorithm creates a qualitatively accurate representa-

tion of the environment and is orders of magnitude more memory efficient than NDTMaps and

OctoMaps on these datasets. NDTMap fits volumetric distributions to fixed sized voxels, while

OctoMap represents the world as voxels. Our approach on the other hand, can more accurately

capture the spread of the structure data along planar regions and shown in Fig. 4.6. Therefore,

we can achieve very high compression values while retaining high reconstruction accuracy. The

proposed map refinement step eliminates the spurious distributions learnt on noisy sensor obser-

vations. Therefore, our approach as a low reconstruction error and a small standard deviation,
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whereas NDTMap has a large amount of noise incorporated in the final map representation as

shown in Fig. 4.9 and Fig. 4.10. These figures show that our approach achieves the best trade-off

between memory consumption and reconstruction accuracy and is capable of reconstructing the

world with high accuracy. We also qualitatively compare a high fidelity model reconstruction of

“Stonewall” dataset at α0,λ = 0.1 cm in Fig. 4.8. The higher fidelity model at hierarchical level 0

retains minute details in the scene but requires a magnitude more memory than the lower fidelity

model at hierarchical level 2. The lower fidelity model loses the detailed texture, but retains all the

geometric details of the scene.

Figure 4.9: Quantitative comparison of the memory vs accuracy trade-off of state-of-the-art mapping ap-
proaches with the proposed approach on “Copyroom” dataset.

4.3.7 Runtime Analysis

The proposed map initialization and update framework proposed in this chapter operates at an

average rate of 27 Hz and the active-inactive map segmentation component operates at ≈ 60 Hz.

A detailed runtime analysis of the mapping algorithm is presented in Chapter 5 along with runtime

analysis of the localization component proposed in this thesis.
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Approach Resolution Error (m) Memory (MB)

NDTMap

0.01 0.0182± 0.0835 3.69
0.05 0.0460± 0.2056 0.29
0.1 0.0844± 0.3001 0.07
0.5 0.3116± 0.5760 0.01

OctoMap

0.01 0.0103± 0.0197 5.71
0.05 0.0261± 0.0551 1.45
0.1 0.0487± 0.0897 0.03
0.5 0.2086± 0.1904 0.002

Proposed
Level 0 0.0052± 0.0086 1.55
Level 1 0.0094± 0.0140 0.07
Level 2 0.0121± 0.0193 0.01

Table 4.5: Quantitative comparison of state-of-the-art mapping approaches with proposed approach on
“Copyroom” dataset using reconstruction accuracy and memory footprint metrics. Since our method does
not set a specific constraint over the resolution such as the voxel size, we compare the trade-off between
accuracy and memory consumption in Fig. 4.9. Our map representation has lower reconstruction error than
NDTMap and OctoMap at different resolutions. The reconstruction error of the lowest fidelity map of the
proposed approach is comparable to OctoMap and outperforms NDTMap at 0.01 m resolution. NDTMap
does not incorporate noisy measurements correctly in the map and therefore has a large variance in recon-
struction error.

Figure 4.10: Quantitative comparison of memory vs accuracy trade-off of state-of-the-art mapping ap-
proaches with the proposed approach on “Lounge” dataset.
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Approach Resolution Error (m) Memory (MB)

NDTMap

0.01 0.0339± 0.0801 22.8664
0.05 0.0367± 0.2067 2.1333
0.1 0.0914± 0.3709 0.4732
0.5 0.4273± 0.9783 0.0188

OctoMap

0.01 0.0192± 0.0185 43.3226
0.05 0.0329± 0.0283 1.0096
0.1 0.0499± 0.0546 0.2104
0.5 0.1496± 0.2059 0.0066

Proposed
Level 0 0.0071± 0.0100 2.3918
Level 1 0.0114± 0.0139 0.2433
Level 2 0.0146± 0.0199 0.0379

Table 4.6: Quantitative comparison of memory vs accuraacy trade-off of state-of-the-art mapping ap-
proaches with the proposed approach on “Lounge” dataset. Since our method does not set a specific con-
straint over the resolution such as the voxel size, we compare the trade-off between accuracy and memory
consumption in Fig. 4.10. Our map representation has lower reconstruction error than NDTMap and Oc-
toMap at different resolutions. The reconstruction error of the lowest fidelity map of the proposed approach
is still lower than the reconstruction error of NDTMap and OctoMap constructed at 0.01 m resolution and
consumes orders of magnitude less memory.



Chapter 5

Iterative Closest Distribution

In the previous chapter, the pose of the sensor is assumed to be known perfectly at each time step

to reconstruct a dense map of the environment as shown in Fig. 4.1. However, in real-world sce-

narios, this information is not always available. Other sources of odometry may exist, but errors

in the extrinsic calibration of various sensors get propagated in the map representation, leading to

an inaccurate reconstruction. In this chapter, this limitation is addressed by proposing a frame-

to-model localization technique that computes a locally optimum transformation between the live

sensor frame and a global map estimate using only depth sensor information. The localization

pipeline is more robust to noisy sensor information than state-of-the-art approaches due to the

explicit incorporation of uncertainty associated with each sensor measurement into the localiza-

tion cost function. This localization framework is then integrated with the mapping framework

to propose a SLAM framework that is able to generate a consistent map of the scene observed

from a COTS depth sensor. We demonstrate quantitatively and quantitatively the improvement in

performance achieved by using the proposed localization framework with the map representation

introduced in Chapter 4 over state-of-the-art SLAM techniques.

61
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5.1 Introduction

This work bridges the gap between existing state-of-the-art dense depth tracking and mapping

algorithms for depth cameras and the benefits of using Gaussian distributions as a succinct repre-

sentation.

Reliable model based SLAM using depth images from COTS depth sensors necessitates ac-

counting for their significant noise characteristics Nguyen et al. [36]. Conventional state-of-the-art

algorithms described in Sec. 2.2, pre-process input data, smoothen out high frequency informa-

tion and further incorporate approximations to sensor depth uncertainty while building the map

model. Instead, we propose that this noise should be completely accounted for by the representa-

tion, with localisation framed as a problem of maximising the likelihood of raw sensor data having

been sampled from it. The chosen map representation (Gaussian distributions) provides a smooth

and continuous data likelihood function (see Sec. 3.1) with well defined gradients. Further, sensor

noise characteristics can be well modeled by a Gaussian distribution with a finite bias and variance

which can be empirically modeled as demonstrated by Nguyen et al. [36]. This representation

thus enables us to formulate a robust likelihood based localization framework that can explicitly

incorporate the uncertainty of a sensor measurement into the map representation. An illustrative

example of a 3D Gaussian distribution map constructed using pose estimates computed with re-

spect to this global map is shown in Fig. 5.1.

5.2 Localization Using Gaussian Distributions

This section describes the proposed frame-to-model localization strategy that is similar in spirit to

Iterative Closest Point (ICP) (see Sec. 2.2), however, our approach minimizes the distance between

uncertain point cloud measurements in the raw depth observations and their corresponding Gaus-

sian distributions and computes a more robust and smooth cost function by explicitly incorporating
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Figure 5.1: Our approach continuously performs data-driven Gaussian distributions growth with spatial
regularity imposed by the hierarchical structure. Shown here are map components in projected colour at
the three hierarchical fidelities we maintain while building the map. Note how the higher level components
intuitively fit the gross structure of the environment. The tracked trajectory in red along with the ground
truth in blue are also superimposed. Segment from the “Living Room” dataset.

the measurement uncertainty in the cost function formulation. Given an estimate of the global map

wΘl at hierarchical level l, in a coordinate fromw and a point cloud cX in the live sensor coordinate

frame c, the objective of this section is to compute the transformation parameters wTc ∈ SE(3)

that can transform cX to coordinate frame w, wX. We first describe the proposed cost function and

then the cost minimization framework.

5.2.1 Point To Distribution Distance

The log-likelihood of a point axi given a Gaussian distribution aθ defined in the same coordinate

frame a is given in Eq. 3.9. For a point cloud aX := {ax0,
ax1,

ax2, . . . ,
axi, . . . ,

axN} the log-

likelihood is the sum of the log-likelihood of individual points. However, for a point cloud cX in a

coordinate frame c, a set of Gaussian distributions wΘ in a different coordinate frame w, and the

coordinate transformation cTw, the log-likelihood computation can be extended by transforming

the Gaussian distributions in the coordinate frame c and then compute the log-likelihood of cX.

We define a function C(i) : R → R as a correspondence function that provides the index of the
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Gaussian distribution cθ that a 3D point cxi is most likely to be sampled from.

l (cX | cTw,
wΘ) =

N∑
i

−1

2
log
(
(2π)d | cRw

wΣC(i)
cRT

w |
)

− 1

2
(cRw

wµC(i) + ctw − cXi)
T
(
cRw

wΣC(i)
cRT

w

)−1
(cRw

wµC(i) + ctw − cXi)

(5.1)

=
N∑
i

−1

2

(
log
(
(2π)d | cRw

wΣC(i)
cRT

w |
)

+ dTi
(
cRw

wΣC(i)
cRT

w

)−1
di

)
,

(5.2)

where di = (cRw
wµC(i) + ctw − cXi).

Raw depth measurements obtained from a COTS depth sensor are noisy. This noise can be

modeled as a zero mean Gaussian distribution,
{
0, cΣ̄i

}
in 3D centered around the observed 3D

point measurement cxi as described in Sec. 4.1.8. Using linearity of addition of normal distribu-

tions (see [39][Eq.355]), the uncertainty of the point can be explicitly added to the cost function

Eq. 5.2

l (cX, cΣunc
i | cTw,

wΘ)

=
N∑
i

−0.5 log
(
(2π)d | cRw

wΣC(i)
cRT

w + cΣunc
i |
)

− 0.5
(
dTi
(
cRw

wΣC(i)
cRT

w + cΣunc
i

)−1
di

)
(5.3)

Explicitly adding the uncertainty of the sensor measurements into the cost function as described in

Eq. 5.3 provides us the log-likelihood of uncertain points cX with known noise model, having been

sampled from a set of distributions wΘ. This cost function is robust to noisy sensor measurements

and is conservative in terms of the probability distribution. The value of this cost function is

maximized at the true cTw and decays smoothly in the local neighborhood of cTw.
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5.2.2 Pose Estimation

The aim of this section is to find the transformation parameters cφ∗c−1 ∈ se(3) that maximize the

log-likelihood, Eq. 5.3, of an uncertain point cloud cX having been sampled from a active map

transformed in the last sensor coordinate frame c−1Θ.

cφ∗c−1 = argmax
cφc−1

l
(
cX, cΣunc

i | cTc−1(
cφc−1),

c−1Θ
)

(5.4)

The noise model described in Sec. 4.1.8, Σunc
v,u, is dependent on the view-point of the sensor and

is inversely proportional to the squared depth measurement. A 3D point cxi is in close vicinity of

the 3D mean cµC(i) of its corresponding distribution cθC(i). Further, COTS depth sensors operate

at high frame rates and therefore the relative transformation cTc−1 is small. Therefore, we can

approximately write,

cΣunc
i (cxi) ≈ cΣunc

C(i)(
cµC(i)) ≈ c−1Σunc

C(i)(
c−1µC(i)) (5.5)

Combining Eq. 5.4 and Eq. 5.5,

cφ∗c−1 = argmax
cφc−1

l
(
cX, cΣunc

i | cTc−1(
cφc−1),

c−1Θ
)

(5.6)

= argmax
cφc−1

N∑
i

−0.5 log
(
(2π)d | cRc−1

c−1 (ΣC(i)
c + c−1Σunc

C(i)
)
RT
c−1 |

)
− 0.5

(
dTi
(
cRc−1

(
c−1ΣC(i) + c−1Σunc

C(i)
)
cRc−1

)−1
di

) (5.7)

Since cRc−1 ∈ SO(3) is an orthogonal matrix (see 3.3), the first term in the summation in Eq. 5.7

is independent on the parameters cφc−1.

cφ∗c−1 = argmin
cφc−1

N∑
i

1

2

(
dTi
(
cRc−1

(
c−1ΣC(i) + c−1Σunc

C(i)
)
cRc−1

)−1
di

)
(5.8)
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The covariance matrix c−1ΣC(i) + c−1Σunc
C(i) is a symmetric positive semi-definite matrix by con-

struction. Its Eigen decomposition provides a diagonal matrix ΛC(i) with non-negative singular

values along the diagonal and an orthogonal matrix c−1UC(i) (see [39][Eq. 459]) whose columns

are the eigenvectors of c−1ΣC(i) + c−1Σunc
C(i).

cφ∗c−1 = argmin
cφc−1

1

2

N∑
i

dTi

((
cRc−1

c−1UC(i)
)

Λ−1C(i)

(
cRc−1

c−1UC(i)
)T)

di (5.9)

(
cRc−1

c−1UC(i)
)

is a square matrix, whose columns represent the eigenvectors of the rotated co-

variance cΣC(i) + cΣunc
C(i). Equation 5.9 can then be reinterpreted as squared distance of a point cxi

to a mean
(
cRc−1

c−1µC(i) + ctc−1
)

along the rotated eigenvectors
(
cRc−1

c−1UC(i)
)

weighted by

the elements of Λ−1C(i),

cφ∗c−1 = argmin
cφc−1

1

2

N∑
i

3∑
j

(
1√
λC(i),j

dTi
cRc−1

c−1uC(i),j

)2

= argmin
cφc−1

1

2

N∑
i

r2i

(5.10)

The cost function described in Eq. 5.10 represents a non-linear least squares optimization prob-

lem, where ri is the residual of ith point in cX. We can therefore employ a Levenberg-Marquardt

optimization routine to minimize the total residual of cX using a local parameterization of mo-

tion parameters (see Sec. 3.4) ∆cφw := [∆ωx,∆ωy,∆ωz,∆tx,∆ty,∆tz], where ω represent the

rotation parameters, t represent the translation parameters, cφ∗c−1 ∈ se(3) and

exp(cφ∗c−1) = cT∗c−1 ∈ SE(3)
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The Jacobian for the residual, ri of ith point in the point cloud with respect to the elements of local

parameterization is given by

Ji =
∂ri

∂∆cφc−1
=

1

2ri

∑3
1 λ
−0.5
C(i),j∂

(
dTi

cRc−1
c−1uC(i),j

)
∂cφc−1

, (5.11)

∂dTi
∂cφc−1

=
[[
cRc−1µC(i) + ctc−1

]
× | I3

]
, and (5.12)

∂cRc−1
c−1uC(i),j

∂cφc−1
=
[[
cRc−1

c−1uC(i),j
]
× | 03

]
. (5.13)

Using the residuals in Eq. 5.10 and Jacobian vectors in Eq. 5.11 we can solve the following linear

system iteratively until convergence:

(H + αDiag(H)) ∆cφc−1 = b (5.14)

H =
N∑
i

JTi Ji, b = −
N∑
i

JTi ri . (5.15)

In real world, the correspondence function C(i) is not exactly known. The projective correspon-

dence computation described in Sec. 4.1.3 finds the best correspondences given an estimate of

cTc−1. Thus, similar to an expectation maximization routine, given a good initialization for the

transformation parameters, cTc−1, we iteratively:

• compute a set of projective correspondences (Sec. 4.1.3

• using the fixed set of correspondences compute the best transformation parameter estimate

using Eq. 5.15,

until convergence.

5.3 Implementation

We assumed the sensor uncertainty model used in Sec. 5.2.2 to be a zero mean Gaussian distri-

bution. Empirically computed noise models may have some bias and variance components. A
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Gaussian noise model with bias b and variance Σunc can be reinterpreted as a zero mean Gaussian

distribution as shown in Sec. 4.1.8. The sensor noise model described in Chapter 4 is used here,

that consists of an empirically derived noise component along the direction of the ray and two

components describing the pixel quantization error in the pixel space.

The pose estimation approach described in Sec. 5.2.2 converges to the closest local minima

of the log-likelihood cost function. Therefore, the convergence is highly influenced by the map

parameters wΘk
t . As described in Chapter 4, the map representation at the highest fidelity rep-

resents the sensor observations very accurately, and therefore, may contain high frequency noise

information that influences the pose estimation cost function negatively. However, the Gaussian

distributions at hierarchical level 1 provide a smoother map representation, that eliminates the high

frequency map information while representing the structure information in the scene with high

accuracy. Therefore, for the pose estimation framework, we compute the log-likelihood cost of cX

with respect to the hierarchical level 1 global model wΘ1
t . Additionally, in real world scenarios,

we observe that the non-uniform scaling of the distinct Gaussian distributions given by their eigen-

values (Λ) in Eq. 5.9 causes the cost function to diverge in complex scenarios. As described in

Sec. 2.1.1, the measurements obtained from depth sensors are spread along the surfaces of objects

in the scene. Therefore, for a standard Gaussian distribution,

λ0 << λ1 < λ2

where λ0 represents the eigenvalue along the direction of the normal of the represented surface.

Due to noisy sensor information, this structure often causes numerical instabilities often leading

to the covariance matrix to become non PSD. To avoid such numerical inconsistencies, we use a

uniform scaling that provides a more stable and smoother cost function for the pose estimation
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pipeline. In practice, we use a fixed Λ:

Λ = Diag
[
1 0.001 0.001

]

This structure enables us to capture the fact that the cost function changes the most along the

direction of the smallest eigenvalue. Additionally, it converts the cost function to an Euclidean

distance function along the first eigenvector for every Gaussian distribution. Thus the cost function

can weight each point in the live sensor scan equally and get a more robust pose estimate.

We use the similar perspective constraints described in Sec. 4.1.9 to sub-select the number of

Gaussian distributions used to compute the point-to-distribution correspondence for pose estima-

tion. This enables us to rapidly sub-select only the components of the map that are updated by

the live sensor measurement efficiently and reduce the computational complexity of computing

point-to-distribution correspondences.

5.4 Evaluation

In this section, we present results of our proposed SLAM strategy on various publicly available

datasets:

1. “Living Room”[62]

2. “Lounge”[62]

3. “Plant Scene 1”[43]

4. “SFM Lab 1”[43]

5. “Freiburg2 XYZ”[52]

We compare the performance of the proposed SLAM implementation to well known ElasticFu-

sion and KinectFusion approaches (see Sec. 2.2). First we compare the Relative Position Error

(RPE) and Absolute Trajectory Error (ATE) of our algorithm, ElasticFusion and KinectFusion
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with ground truth and show the superior performance of our algorithm on all the different datasets.

ATE compares the overall performance of a global SLAM approach for trajectory tracking and

highlights the reliability and robustness of the SLAM approaches to various sensor measurements.

RPE on the other hand compares the frame-to-frame tracking error, thus providing a consistent

metric of comparison even when the absolute position may get lost due to an incorrect position es-

timate. We also show the qualitative 3D reconstruction of these environments generated from our

SLAM approach to show the consistency of our mapping and tracking pipelines. ElasticFusion is

a surface primitive based SLAM algorithm and KinectFusion is a volumetric TSDF based SLAM

approach as described in Sec. 2.2. Comparison with these two approaches highlights the benefits

of using our proposed map representation that add volumetric properties to a disconnected set of

structure primitives.

5.4.1 3D Reconstruction and Trajectory Tracking

We first compare the trajectory tracking performance of our SLAM approach with ElasticFusion

and KinectFusion on publicly available datasets. First we evaluate the performance on the simu-

lated “Living Room” dataset. This dataset provides ground truth locations for a camera moving

through a synthetically generated real looking environment. Further, the 3D ground truth model is

also provided, that enables us to compute the 3D reconstruction accuracy. Reconstruction error is

computed as the distance of a reconstructed point to its closest surface in the ground truth model.

Table 5.1 and Fig. 5.2 compare the tracking and mapping performance of the SLAM systems.

Our trajectory tracking approach outperforms the state-of-the-art SLAM approaches while using

a more compressed map representation. Additionally, the 3D reconstruction provided by our ap-

proach is very similar to the provided ground truth model (Fig. 5.3, Fig. 5.4) and performs as well

as the state-of-the-art approaches. We compute the reconstruction accuracy by sampling points

from the Gaussian distributions and computing the error of the sampled points. Gaussian distribu-
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Figure 5.2: Trajectory tracking comparison on “Living Room” dataset. The proposed approach has the
lowest trajectory tracking error compared to ElasticFusion and KinectFusion. KinectFusion estimate drifts
off due to incorrect handling of degenerate scenarios where the sensor is not observing textured information.

tions have infinite support and therefore resampled points at the edges of the map leads to a larger

reconstruction error of the proposed SLAM approach compared to ElasticFusion. However, the

proposed map representation consumes orders of magnitudes lesser memory than state-of-the-art

SLAM approaches with a marginal accuracy trade-off as shown in Table 5.1.

Method ATE (m) ATE (deg) RPE (m) RPE (deg) Reconstruction Memory
Error (m) (MB)

Proposed 0.0112 0.0042 0.0002 0.0006
0.0062 3.5148
0.0072 .5142
0.0084 0.0645

KinectFusion 2.6938 4.2423 0.0150 0.0144 0.2097 67.108
ElasticFusion 0.0233 0.0140 0.0048 0.0001 0.0064 69.2774

Table 5.1: Surface Reconstruction and Trajectory Tracking Error for “Living Room” dataset.

5.4.2 Trajectory Tracking Performance

We evaluate the trajectory tracking performance of ElasticFusion, KinectFusion and our proposed

approach on a variety of publicly available real-world datasets. The 3D reconstruction obtained

from our framework on multiple datasets is shown in Fig. 5.5. The ground truth models are not
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(a) Reconstruction Θ0
T (b) Sampled 3D points from Θ0

T

(c) Reconstruction Θ1
T (d) Sampled 3D points from Θ1

T

(e) Reconstruction Θ2
T (f) Sampled 3D points from Θ2

T

Figure 5.3: Gaussian distribution based reconstruction of “Living Room” dataset obtained from the pro-
posed SLAM framework. Left Column: Gaussian distributions at the three hierarchical levels obtained
from our SLAM framework. Right column: 3D points sampled from Gaussian distributions at the three
hierarchical levels colored by the error in reconstruction.
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Figure 5.4: Surfel based 3D reconstruction of “Living Room” dataset obtained from ElasticFusion SLAM
framework. Right: Surfel centers colored according to their reconstruction error.

available for these datasets therefore, we cannot compare the 3D reconstruction accuracy. Ta-

ble 5.2 provides the statistics for frame-to-model trajectory tracking for the SLAM approaches and

Fig. 5.6 and Fig. 5.7 show the X − Y − Z plots of the tracked trajectories. We compare both, the

Absolute Trajectory Error (ATE) RMSE and the Relative Pose Error (RPE) RMSE. Our SLAM

approach outperforms the state-of-the-art SLAM approaches in terms of the ATE. The RPE of the

proposed approach is larger than KinectFusion and ElasticFusion for the “Lounge” dataset by ≈ 2

mm. However, the ground truth trajectory provided for this dataset has loop closure corrections

incorporated in the ground truth trajectory. Therefore, the RPE value for this dataset is unreliable.

From Fig 5.6 and Fig. 5.7, we observe that since our proposed algorithm incorporates the sensor

uncertainty into the localization framework, it provides more robust and reliable localization es-

timates over a variety of datasets, whereas state-of-the-art SLAM algorithms ElasticFusion and

KinectFusion fail in certain datasets to provide an accurate localization estimate.

5.4.3 Memory Scaling

Although the Gaussian components require less elements to represent the same map area than com-

parable approaches, the memory usage over time naturally increases linearly. Crucially, however,

due to working with a hierarchy, only a subset of the entire map needs to be retained in active GPU
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(a) “Freiburg2 XYZ” (b) “Lounge”

(c) “Plant Scene 1” (d) “SFM Lab 1”

Figure 5.5: 3D reconstruction obtained from our SLAM framework on various datasets. The coloured ellip-
soids represent 3D Gaussian distributions that are incorporated as new sensor measurements are observed
and registered to the global frame. The blue line is the ground truth trajectory and the red line is the
estimated trajectory from the proposed pipeline.

and CPU memory thus for most scenes the number of active components at any given time across

hierarchy levels remain constant, as shown in Fig. 5.8

5.4.4 Runtime Analysis

The SLAM framework proposed in this thesis is implemented on a Desktop CPU. Due to the iter-

ative nature of the localization section, it is the computational hotspot of the algorithm. However,

the residual computation for each point in the depth measurement is independent of the others

and therefore this section is highly parallelizable. The pose estimation section was implemented
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Figure 5.6: Trajectory tracking performance comparison of the proposed SLAM approach with KinectFu-
sion and ElasticFusion on the real-world datasets: Top: Freiburg2 XYZ dataset, Bottom: Lounge dataset.
All the compared approaches track the camera trajectory well. However, the proposed SLAM approach
performs most robustly and the tracks the camera motion with highest accuracy in datasets with varying
information fidelity and obtained from different sources.

on a NVidia GTX 980 Ti GPU with the rest of the mapping and map update framework on a i7

CPU. Figure 5.9, highlights the average execution time statistics for the various subcomponents

of our proposed SLAM approach on the “Living Room” dataset. The pose estimation subsystem
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Figure 5.7: Trajectory tracking performance comparison of the proposed SLAM approach with KinectFu-
sion and ElasticFusion on the real-world datasets: Top: Plant Scene dataset and Bottom: SFM Lab
1 dataset. ElasticFusion fails to track the camera motion for both these datasets due to the sparsity of
available in these datasets. KinectFusion and proposed approach track the camera motion reliably with the
proposed approach achieving the highest tracking accuracy.

still requires the largest computational resources and operates at approximately 5 Hz. The bars

in red show the run-time of correspondence map computation implemented using OpenGL. Due

to the difference in the information rendered for pose estimation and map update, the average
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Dataset Method ATE (m) ATE (deg) RPE (m) RPE (deg)

“Plant Scene 1”
Proposed 0.1062 0.0813 0.0305 0.01493

KinectFusion 0.1829 0.0876 0.0390 0.0152
ElasticFusion 2.504 1.6330 0.0389 0.0193

“SFM Lab”
Proposed 0.0596 0.5509 0.0104 0.0073

KinectFusion 2.3631 2.6424 0.0308 0.0361
ElasticFusion 4.2693 3.3090 0.0709 0.0358

“Lounge”
Proposed 0.0784 0.4135 0.0055 0.0047

KinectFusion 0.0899 0.6450 0.0037 0.0025
ElasticFusion 0.2109 0.7119 0.0048 0.0028

“Freiburg2 XYZ”
Proposed 0.0481 0.0364 0.0017 0.0042

KinectFusion 0.1007 0.0677 0.0024 0.0053
ElasticFusion 0.0720 0.0455 0.0023 0.0052

Table 5.2: 3D Trajectory tracking error comparison of our approach with state-of-the-art SLAM approaches
on multiple real-world datasets.

Figure 5.8: Number of active, inactive and total number of Gaussian distributions over time that are main-
tained with time during the SLAM framework execution on “Living Room” dataset. The number of total
distributions increases with time as more information is observed about the scene time. However, during
any time step t, a majority of the scene is not visible in the sensor FOV. Therefore, the number of active
components at every hierarchical level stays approximately constant over time as shown by the orange line
while the number of inactive components rises.

runtime is different for the two correspondence map computations. The entire SLAM framework

(map updates and localization) operates at an average rate of 4 Hz. However, the reduction in

the computational complexity of the proposed SLAM pipeline as compared to the state-of-the-art

approaches leaves room for improvement in terms of the algorithmic runtime.
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Figure 5.9: Average runtime statistics of the various subcomponents of our proposed SLAM algorithm on the
“Living Room” dataset. The statistics are collected on an Intel i7 Desktop grade CPU with the localization
component running on a NVidia GTX 980 Ti GPU. On an average, the algorithm operates at ≈ 4 Hz with
the localization component proposed in this chapter, operating at 5 Hz.



Chapter 6

Applications

In Chapter 4, we proposed a hierarchical model reconstruction pipeline using independent Gaus-

sian distributions as structure primitives. We represent the scene at varying information fidelity at

different hierarchical levels with the hierarchical level 2 map being the lowest fidelity and level 0

being the highest. In Chapter 5, a local frame-to-model localization framework is proposed that uti-

lizes the hierarchical map to efficiently track a moving camera in an unknown scene and generate a

consistent 3D reconstruction of that scene. The log-likelihood of each point xi is computed using a

single Gaussian distribution wθj that the point wxi corresponds to. However Gaussian distributions

have infinite support space. Therefore, the probability densities of the Gaussian distributions used

to reconstruct the scene overlap with each other. A more accurate cost function must therefore,

compute the log-likelihood of a point xi with respect to all the Gaussian distributions in the scene.

In this chapter, we extend the localization framework to a global scope and propose a multi-

hypothesis localization framework [12] enabled on a SWaP constrained system, when the 3D re-

construction of the world is known a-priori. We fit a low fidelity GMM wΘ̄ to the global point

cloud data of the world. Global localization is then formulated as a Monte-Carlo log-likelihood

maximization framework with respect to a GMM with fixed model complexity. Additionally, we

describe a collision avoidance framework [13] that uses Gaussian distributions to enable safe nav-

79
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igation for an autonomous system in an unknown environment.

6.1 Gaussian Mixture Model (GMM)

A GMM, Θ̄ is defined as a set of Gaussian distributions θ̄i := {µi,Σi, πi} where πi is the corre-

sponding importance weight such that
∑M

i πi = 1. The likelihood of a point x in d dimensional

space having been sampled from a GMM Θ̄ is:

p
(
x | Θ̄

)
=

M∑
i

πip
(
x | θ̄i

)
(6.1)

6.2 Pose Estimation and Localization

For an agent lost in a known environment, much of the cost of localization can be offset by pre-

computing measures of what the sensor is expected to see; localization can then be cast as the

much simpler problem of a search through these pre-existing “hallucinated” views. However,

exhaustively considering all possible views incurs a prohibitive cost that increases exponentially

with both the dimensionality of the state space and the size of the environment. Further, naı̈ve

pre-rendering approaches can be susceptible to errors caused by perceptual aliasing due to slight

variations in the environment appearance or by regions that are not feature rich, such as blank

walls [3].

In this section, we present a framework enabling rapid computation of sensor data likelihood

via a GMM. The framework models a depth camera observation as being sampled from the GMM

with a likelihood measure that varies smoothly about the true camera pose. We thus exploit the

dramatically reduced storage complexity of the representation and the local spatial regularity of a

fast-to-compute likelihood function to re-cast the pose estimation problem as that of Monte-Carlo

localization [56].

Our framework solves the problem of 6 Degree-of-Freedom pose estimation for Size, Weight,
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Figure 6.1: Comparison of the mean particle filter pose (orange) with that of the integrated process model
trajectory (cyan) from a representative (office) dataset. The filter estimate is initialized with a uniform
distribution away from the true location of the vehicle. As the camera observes more informative data the
filter quickly converges to the correct pose. Top Right: Four views of the raw point cloud sensor data and the
corresponding view of the GMM map from the mean of the particle filter estimates. The GMM components
are superimposed on top of the source point cloud with their 1.5σ bounds visualized as gray ellipsoids.

and Power (SWaP) constrained micro air vehicles operating in a known dense 3D point cloud

environment with an on-board monocular depth camera and Inertial Measurement Unit (IMU). We

assume that the vehicle pitch and roll are obtained from an attitude estimation algorithm using the

IMU in order to constrain the search space to just heading and position. Our main contributions

are:

• A particle filter-based localization strategy based on a high fidelity, memory efficient envi-

ronment representation enabled by a fast likelihood computation approximation; and

• Experimental evaluation of the approach on a desktop and an off-the-shelf mobile GPU

system.

A detailed overview of our global localization framework is shown in Fig. 6.3.
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Figure 6.2: Negative log-likelihood plots of sensor data acquired from camera poses offset from a randomly
chosen true pose in dataset D1 by incremental linear and rotational displacements. Utilizing only the
relevant components using the approximation discussed in Sec. 6.2.3 leads to almost identical likelihoods
as when utilizing all the Gaussian components present in the model.

6.2.1 Estimating the Likelihood of a Camera Pose Hypothesis

As discussed in Sec. 4.1.3, each 3D Gaussian distribution, θ̄ in a GMM wΘ̄ can be projected into

the image plane as a 2D ellipse. We utilize this property to determine relevant components for com-

puting the likelihood of sensor data (Sec. 6.2.3). Given a scan cXt of depth pixels {x1, x2, . . . , xk}

from a sensor scan and a set of 3D GMM parameters wΘ̄, the log-likelihood of the scan being

sampled from the GMM is defined as

l
(
cXt|wΘ̄,Tc

w

)
=

K∑
i

ln
M∑
j

1jπjp
(
Π−1(xi);

cTwµj,
cRwΣj

cRw
T) (6.2)

where 1i is a binary indicator function that signifies if the ith component is used to compute the

log-likelihood, Π−1 is the inverse projection from depth image pixel to 3D points, and K is the

number of pixels in the sensor scan. This likelihood should peak at the true sensor pose and decay
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smoothly in the local neighbourhood, which is indeed observed as shown in Fig. 6.2.

Figure 6.3: Multi-hypothesis particle filter system overview. The algorithm operates on depth image streams
and a source of odometry given a precomputed GMM map of the environment. For each particle, the GMM
components are projected into image space using its current pose hypothesis. Relevant components are
sub-selected and are then used to compute the likelihood of the depth image. The likelihood values for all
the particles are used to resample a new set of particles that are then forward propagated using the process
model.

6.2.2 Tracking Multiple Hypotheses

The discussion above only considers the nature of log-likelihood in the vicinity of the true location;

in practice it is not reasonable to assume that a single viewpoint suffices to localize the system as

perceptual aliasing may arise due to a paucity of data that precludes state observability. Hence, we

require a technique that permits tracking of multiple hypotheses and ensures appropriate weighting

of equally likely viewpoints given the current sensor observations.

A standard approach to tracking multiple hypotheses is a Monte-Carlo filter (or particle filter).

Particle filters operate by continuously sampling candidate particle poses and measure the likeli-
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hood of the current sensor data having originated at the sampled pose. Based on the relative scores

of the samples the particles are resampled and propagated subject to a process model (often a noisy

source of odometry). Convergence is generally achieved as soon as the sequence of observations

made over time render alternate hypotheses inadmissible. Note that due to their inherent structure

particle filters are extremely parallelizable and we exploit this in our implementation.

State Propagation

We assume the presence of some odometry to drive the first order Markov process model and

inject Gaussian noise into it. Note that we assume that we know the pitch and roll that can be

obtained from the attitude and heading reference system onboard a robotic system to a high level

of accuracy.

Importance Weight

The importance weight of a particle in the filter represents a score of how well the sensor scan

matches the GMM map at its location. Since the negative log-likelihood of the current scan cXt

being drawn from the GMM map is a minimum at the true location, as shown in Fig. 6.2, in practice

we use the inverse of the negative log-likelihood. Thus, given the current state estimate c(i)Tw of a

particle i out of N particles at time step t, the corresponding normalized importance weight is

w
(i)
t =

l
(
cXt|wΘ̄, c

(i)
Tw

)−1∑N
j l
(
cXt|wΘ̄, c(i)Tw

)−1 (6.3)

Sampling Strategy

A particle filter should ideally converge to the correct hypothesis after running for a finite amount

of iterations with a reduction in the filter variance signifying the confidence of the filter. At the

same time, an early reduction in the filter variance may cause the filter to diverge to an incorrect

hypothesis and never recover due to low variance. In order to avoid such situations, we implement
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the stratified sampling strategy [32] in combination with low variance sampling [56]. The parti-

cles are divided into random groups of equal weights and in each group we employ low variance

sampling. This approach has low particle variance [56] and works well when the particle filter is

tracking multiple hypotheses at once.

Handling Particle Deprivation

One of the most common failure modalities of a particle filter is that of particle deprivation [57].

Even with a large number of particles, the stochasticity intrinsic to a particle filter might cause it

to diverge from the correct state.

We employ a modified version of Augmented MCL strategy as described by Thrun et al. [56]

where instead of adding new particles we reinitializeNmodify number of particles randomly selected

from the original set using the parameters αslow and αfast. This is done since we cannot increase

the number of particles once the filter is initialized because of implementation limitations. For our

process model we use diagonal covariances for translation, and the final choice of parameters in

all our experiments is shown in Table 6.1.

6.2.3 Fast localization

In order to perform fast localization using the above approach it is essential to compute the likeli-

hood of the data given a proposed pose as quickly as possible.

Equation 6.2 suggests that computing the likelihood of a scan having been sampled from the

GMM map is the summation of the contribution of all the components within the GMM. However,

the key insight here is that not all components have a significant contribution to the likelihood.

The point clouds that we use in our experiments have roughly uniform coverage of points

across the scene. As a consequence, all Gaussian components fit to these point clouds end up

having roughly equivalent mixture weight probabilities. This fact, in addition to the diminishing

probability mass of the Gaussian distribution, permits the approximation of using only the pro-
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jected components within spatial proximity of a certain pixel location for computing the likelihood

of the corresponding 3D point being sampled from the map.

As an added optimization step we perform this membership computation over subdivided

patches of the image. These optimizations have negligible effect on the computed likelihood value

of the sensor data, as demonstrated in Fig. 6.2.

We follow the following steps (graphically illustrated in Fig. 6.4) to obtain the relevant com-

ponents for computing the likelihood of a depth image:

• Divide the image into 32× 32 pixel patches;

• Compute the 2D projection of each Gaussian component on to the image plane of the depth

sensor;

• Inflate the 3σ-bound ellipse of the projected 2D Gaussian of each component by half the

diagonal of the patch along its major and minor axis to generate ellipses Ei; and

• For each patch, check if the center of the image patch cp lies within or on each of the Ei and

update the indicator variable 1i,p accordingly.

1i,p =


1, if cp ∈ Ei

0, otherwise

(6.4)

Given a set of updated indicator variables 1i,p for all the Gaussian components in wΘ̄ and a

depth image, wXt, the likelihood of the image can be computed as the sum of the likelihoods of all

the image patches computed according to Eq. 6.2.

6.2.4 Evaluation

Experiment Design

This section presents performance analysis of our filtering approach on a variety of datasets. First,

we conduct a sensitivity analysis to determine the number of particles we use in our implementa-
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Figure 6.4: Membership computation process. 3D Gaussian components from the GMM representation of
the world are projected to the image plane. The image is subdivided into multiple patches, where for a
selected patch the relevant Gaussian members are determined for computing the likelihood. In order to
determine the latter, we employ the heuristic described in Sec. 6.2.3. For instance the inflated bounds of the
bottom left projected component (red) do not contain the center of the selected patch; in contrast those of
the bottom right (green) do, and the component is thus selected for computing the likelihood of data within
that particular patch.

tion. Second, we analyze metric accuracy of the proposed filter on publicly available datasets and

show that our filter output is consistent with ground truth. Third, we compare the localization per-

formance of our approach with a state-of-the-art RGBD tracking algorithm (ORB-SLAM2 [35])

on the same sequences and demonstrate superior performance for localization. Fourth, we demon-

strate the ability of our approach to incorporate both different odometry algorithms and ground

truth map acquisition methodologies. Finally, we analyze runtime performance of our filter and

show that its runtime is competitive both on a desktop class system and on an embedded platform,

thus enabling SWaP constrained operation.

We evaluate our approach on

• D1: The (a) lounge and (b) copyroom datasets [62];

• D2: The voxblox dataset [37];

• D3: A representative dataset collected in-situ; and

• D4: The TUM Freiburg3 dataset [52] for demonstrating the ability to generalize.
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Process Noise σ
αslow αfastTranslation (m) Yaw (rad)

Desktop 0.02 0.01 0.01 0.001
TX2 0.025 0.1 0.05 0.005

Table 6.1: Filter hyperparameters

In all cases we utilize a fixed number of components (Sec. 6.2.4) to first fit a GMM to the point

cloud using the scikit-learn1 toolkit.

We employ two processing systems for evaluation: (1) A desktop with an Intel i7 CPU and an

NVIDIA GTX 960 Ti GPU, and (2) An embedded NVIDIA TX2 platform.

Sensitivity Analysis

Particle filters can achieve increased performance with large number of particles at the cost of

increased computational complexity. Conversely too few particles can lead to divergence from

the true location due to an inability to represent the true underlying distribution. In order to find

the appropriate number of particles that ensure precision while still being computationally feasible

we compare the filter performance with various number of particles against a ground truth filter

with N = 16200. Assuming the underlying distribution represented by the particle set to be a

unimodal Gaussian (a valid assumption after convergence), we compute the variance of the KL-

Divergence [23] of multiple runs of the filter output with that of the ground truth filter to determine

the empirically optimal parameters to be used in our implementation. A low value of the KL-

Divergence variance indicates similar performance to the ground truth filter.

We compute the optimal number of particles to be N = 1068 based on D3, the dataset with

the largest volumetric span, where the KL-Divergence plot has a knee point as shown in Fig. 6.5 .

This specific parameter choice is further motivated by implementation constraints.

1http://scikit-learn.org/stable/modules/mixture.html

http://scikit-learn.org/stable/modules/mixture.html
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Figure 6.5: Log of variance of KL-Divergence between the ground truth filter (N = 16200) and filters with
reduced particle counts. The knee point implies similar performance to the ground truth filter at particles
counts N > 1000. Evaluated on D3.

Metric Accuracy Analysis

In this subsection we discuss the localization accuracy of our approach. As mentioned in Sec. 6.2.3

since we do not add new particles when the filter observes particle deprivation and instead ran-

domly reinitialize the particles from the original set, the Root Mean Squared Error (RMSE) of the

filter estimate increases when the filter observes particle deprivation. This is highlighted in the

plots as vertical shaded regions. For all our evaluations we run the filter 10 times on each dataset

and report the average of the mean filter estimate. We do not quantify the sensitivity of the like-

lihood values to the AHRS pitch and roll estimates as they are accurate enough to not cause any

significant difference.

Evaluation with Ground Truth Datasets (D1, D2): The objective of using these datasets is

to demonstrate the ability of the filter to converge to the ground truth given perfect odometry. We

generated a GMM map of the environments using the reconstructed point cloud and used the delta

transforms between two consecutive reported sensor poses with added noise as our process model.

In all these experiments, we initialized the particles from a uniform distribution over a 4 m cube

and π radians yaw orientation around the known initial location. D1(a) and D1(b) contain nominal

motion of the sensor, while D2 consists of very aggressive motion in all degrees of freedom.
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Figure 6.6: Mean trajectory (red) of the particle filter estimate of 10 trials on the D1(a) dataset compared
to the process model trajectory (blue). The shaded region around the mean trajectory shows the variance
of the filter estimate over multiple runs. The filter estimates have high variance in the beginning of the
trajectories, but soon converge to the correct location and track the ground truth trajectory (blue).

The filter estimate converged to an incorrect hypothesis for some runs in the initial iterations

due to the highly symmetric nature of the environments about the X axis, as can be seen in Fig. 6.6.

The RMSE of the filter poses for these datasets is presented in Fig. 6.7.

Evaluation with Representative Dataset (D3): The objective of using this dataset is to

demonstrate results on a real-world application of the filter. We no longer use ground truth odome-

try. Additionally, since we don’t have a baseline algorithm to directly compare against, we compare

the localization performance against ORB-SLAM2 which builds its own succinct map representa-

tion. Note that ORB-SLAM2 also utilizes the RGB image data in the dataset whereas we only use

the depth. Finally, we also briefly contrast the performance of the filter on the same dataset.

We generate a ground truth point cloud using a FARO Focus 3D Laser scanner 2 and use an

2https://www.faro.com/products/construction-bim-cim/faro-focus/

https://www.faro.com/products/construction-bim-cim/faro-focus/
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Figure 6.7: RMSE of 10 trials of the particle filter on the D1(a), D1(b), and D2 datasets respectively. The
region in red indicates the time at which the particle filter observes particle deprivation and a consequential
RMSE rise.

ASUS Xtion RGBD camera for acquiring sensor data. An IMU strapped to the camera determines

the roll and pitch of the sensor. For odometry, we only use the frame-to-frame relative transform

as opposed to the global pose output from ORB-SLAM2 as input to the process model. Note that

the global ORB-SLAM2 position we compare to in Fig. 6.8 and Fig. 6.9 is using loop closure to

mitigate the drift in its frame-to-frame estimates.

As ground truth is not available for this dataset, we report the negative log-likelihood values at

the mean particle filter location and the reported ORB-SLAM2 poses. We show results of two runs

in this environment in Fig. 6.8: The first through a nominal path with feature rich data (as shown

in detail earlier in Fig. 6.1) where the estimated positions of the sensor for the two approaches are

very similar (but with worse likelihood values for ORB-SLAM2). The second run demonstrates

the advantage of using particle filters over maximum likelihood estimators in that the former can

converge to the correct result even after moving through a region of low observability. We observe

that the sensor measurements register at the converged filter location better after snapping back

than those for the ORB-SLAM2 estimate, as can be qualitatively seen in Fig. 6.9.

The particles in these experiments are initialized from a uniform distribution over a 4m×8m×

3m for position and π radians in yaw.

Evaluation with TUM Dataset (D4): To demonstrate the ability of our filter to generalize to
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Figure 6.8: Comparison between the position and corresponding likelihood estimates for two runs from
ORB-SLAM2 and our filter, respectively. Top: A nominal path with feature rich data, and Bottom: A path
moving through regions of low observability. Contrast the continually increasing divergence (capped in the
graph) of the ORB-SLAM2 estimate after moving through the feature poor region with the lower snapped
negative likelihood values for the same locations for our filter. The corresponding poses and overlaid depth
scan at approximately 55s is shown in Fig. 6.9. Due to a minimal overlap of the depth scan with the map for
the ORB-SLAM2 frame, the likelihood value is very low.

both different odometry algorithms and datasets we compare the performance with three different

odometry inputs as process models: The Generalized-ICP algorithm [44], ORB-SLAM2 frame-to-

frame relative transform, and ground truth odometry, as shown in Fig. 6.10. The point cloud map

of the environment was created by stitching several sensor scans together using their corresponding

ground truth poses. In spite of the stitched point cloud not being as well registered as that from a

FARO scanner due to sensor and ground truth pose noise, the performance of the filter is similar

(Table 6.2).
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Figure 6.9: Comparison of registration of current sensor measurement at ground truth point cloud (gray)
at ORB-SLAM2 pose estimation (cyan) and at the estimated filter pose (orange). The sensor measurement
aligns with the ground truth point cloud in the filter estimate frame while the accumulated drift in the ORB-
SLAM2 frame due to transition through a less feature rich region leads to poor alignment.

Our Approach ORB-SLAM2
Process Input mean var (cm2)

ORB-SLAM2 Velocity 7.67 0.21
Ground Truth Velocity 7.56 0.28 4.55

G-ICP Velocity 9.07 0.21

Table 6.2: Performance on D4 (RMSE in cm)

Runtime Performance Analysis

As seen in Fig. 6.11, the likelihood evaluation is the most computationally expensive operation.

Execution time for this step varies with the number of Gaussian components used to compute

likelihood for each image patch and therefore is dependent on the fidelity of the model.

The filter runs at an average rate of 80 Hz and 9.5 Hz on the Desktop and embedded class

systems, respectively. This is comparable to the ORB-SLAM2 rates of 47 Hz and 20 Hz on the

respective platforms. Initial convergence on the TX2 is slower due to the implicitly larger odom-

etry steps. However, post convergence the metric performance is not significantly affected. As
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Figure 6.10: Comparison of our particle filter approach using ORB-SLAM2 frame-to-frame odometry (or-
ange) and Generalized-ICP (cyan) as process models with ground truth pose (black) on TUM’s Freiburg 3
Desk Dataset. The GMM representation of the world is created by stitching sensor scans using the ground
truth pose estimates. The higher global error of our approach than that of ORB-SLAM2 can be attributed
to the noisy reconstruction of the environment point cloud from the accumulated scans.

an illustrative example, the impact of the slower runtime performance on the TX2 for D1(a) is

demonstrated in Fig. 6.12.
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Figure 6.11: Execution time comparison for subcomponents of the algorithm for the D1(a) dataset on an
Intel i7 desktop with an NVIDIA GPU and an embedded NVIDIA TX2 platform. Performance scales linearly
with the number of CUDA cores. As a point of comparison ORB-SLAM2 runtime on the same dataset is
faster on the embedded platform than on the desktop.

Figure 6.12: Comparison of the filter performance on the desktop with the NVIDIA TX2 on the D1(a)
dataset. As the filter operates at a slower frame rate on the TX2 it initially exhibits a larger error but once
the sensor observes a uniquely identifiable location, both trial sets converge to the ground truth location.
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6.3 Collision Avoidance

The geometric properties of the Chi squared probability contours of a Gaussian distribution pro-

vides various benefits for algorithms that require general information about the presence or absence

of matter in specific locations in the world. As described in Sec. 4.1.3, the Chi squared probability

contour of a Gaussian distribution is represented by an ellipsoid in R3 space. We exploit this geo-

metric property of the proposed map representation to create a reactive, online collision checking

approach that enables fast obstacle avoidance in unknown, cluttered environments.

The contributions of this section is to present a novel algorithm for generating local maps

using Gaussian distributions and show that the proposed method scales efficiently with incre-

mental sensor measurements. We take a geometric approach for computing collisions given the

4σ-probabilistic bound of each Gaussian component and a trajectory.

We illustrate the proposed algorithm with motion primitive based teleoperation proposed by Yang

et al. [60] to show real-time collision avoidance. Experimental results of a quadrotor teleoperated

through a cluttered environment with Gaussian distribution based local map results in an average

collision checking time of 0.150 to 0.204 milliseconds per trajectory, which outperforms collision

checks against discrete world representations.

6.3.1 Local Map

A reactive collision avoidance strategy does not require the information about the global map that

was constructed in Chapter 4. For this application, the robot requires information about only its

immediate surroundings within and outside its current FOV. To appropriately address this concern,

we deviate from the global mapping strategy proposed previously and use a keyframe based local

mapping strategy. Further, we diverge from the active-inactive segmentation approach proposed

for global mapping and propose a 3D KD-Tree based segmentation approach for component sub-

section. These algorithmic changes are motivated by the application. Since a robot moving in an
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Figure 6.13: A simplified 2D view of the proposed collision avoidance algorithm, illustrated using forward-
arc motion primitives. A set of motion primitives interacting with a local Gaussian distribution based
map (in burgundy) with configuration space inflation (light burgundy) is shown in (a). Each Gaussian
component is reduced to its 4σ geometric representation for collision checking, via (b) sampling points
along trajectories or (c) creating linear approximations to the trajectory based on curvature and solving for
ellipsoid-line intersections. Rejected trajectories are shown in red.

unknown environment may execute trajectories outside its current FOV, the local active map must

be aware of the structure information outside the FOV. The proposed KD-Tree based segmenta-

tion approach enables the algorithm to sub-select all the Gaussian distributions within a particular

radius of the robot and perform collision avoidance with respect to these components.

The local mapping framework generates a spatially consistent local map and a active local map

for collision checking. Since dynamically feasible trajectories often extend past the current FOV

of the sensor, it is necessary to create a local map that encloses the vehicle using all recent sensor

observations. To achieve this, we dynamically select keyframes and integrate subsequent sensor

measurements that provide novel information about the environment to these keyframes. A new

map is initialized when a keyframe is observed. This allows us to create spatially consistent maps

with minimal information redundancy.

Given a history of sensor measurements as well as their corresponding state estimates, we

classify the current sensor frame as a keyframe KF, subframe SF or a bufferframe BF. Novel

information is extracted from the current sensor data, to which we fit a hierarchical map. For

collision checking, we only use wΘ2 that represents the highest hierarchical model at level 2.

The active local map contains the Gaussian distributions that represent the vehicle’s immediate
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Figure 6.14: A graphical representation of a local map Li . The vehicle poses are classified as KF (red), SF
(orange) or a BF (brown) based on the euclidean distance between them. Each SF registers to a KF and a
BF is used to be able to represent dynamic obstacles.

surroundings extracted from the current map wΘ2.

Frame Classification

Each incoming sensor frame is classified as either a

• KF: An anchor frame to which all the subsequent SFs and BFs in the local map Li are

registered to,

• SF: Sensor frames that provide sufficient novel information unobserved in the current map

local map Li,

• BF: Sensor frames that are stored only for a single time step as to accommodate for dynamic

obstacles; but do not get stored in Li

Given the current sensor location in the world frame wTc, the latest KF location wTk, and the

latest SF location wTs, the current frame wFc is classified according to a set of Euclidean distance
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thresholds, αk, αs and βs, as

wFc =



KF, if ‖t (∇{wTk,
wTc}) ‖ ≥ αk

SF, if ‖t (∇{wTs,
wTc}) ‖ ≥ αs

or ‖R (∇{wTs,
wTc}) ‖ ≥ βs

BF, otherwise


(6.5)

where t(∇{T1,T2}) is the translation between transforms T1 and T2, and R(∇{T1,T2}) is the

change in the heading of the vehicle between transforms T1 and T2.

Local map fusion

A new local map Li is constructed when a new KF is spawned. Li consists of the GMM com-

ponents fused to the previous KF and the latest KF. The local map only contains Gaussian com-

ponents learned from a KF or a SF. GMM components learned from a BF are only stored for the

current time step in order to account for dynamic obstacles.

Li =
{
iθ21,i−1,

iθ22,i−1, ..,
iθ2j,i−1, ..

}⋃{
iθi1,

iθi2, ..,
iθij, ..

}
(6.6)

where iθj,i−1 represents the j th SF Gaussian component in the (i–1)st KF transformed in the ith KF

and iθij represents the j th SF Gaussian component learned in the ith KF. A graphical representation

of this process is shown in Fig. 6.14.

Active Map Segmentation

As the local map Li may be spatially expansive depending upon the maximum range of the sensor

and the velocity of the vehicle, we further reduce the size of the map used for collision checking

by segmenting the map as active and inactive local map. We store the means µi of the Gaussian

components in the local map in a KD-Tree, and query an ε-ball around the current pose of the
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vehicle. The query radius ε is determined using the maximum trajectory distance. The Gaussian

components θj , in the local map Li that lie inside the ε-ball forms the active local map; i.e.,

ALi = {Θj : |Θj| < ε, Θj ∈ Li}. This active mapAL is then used to sub-select trajectories that

do not collide with the local map and enable safe traversal of a robot via unknown environments.

6.3.2 Trajectory Pruning

We propose two ways of computing collisions given a time-parameterized trajectory and a Gaus-

sian distribution based local map. The two proposed ways are graphically illustrated in Fig. 6.13

The ellipsoidal representation of a Gaussian distribution wθi in a coordinate frame rotated along

the eigenvectors of its covariance can be represented as (see Sec. 4.1.4):

f(x) = (x− µ)TC(x− µ)− 1, (6.7)

where µ is the center of the ellipsoid, C = Diag(c−21 , c−22 , c−23 ) and ci are the major axes of the

ellipsoid. We represent the configuration space of the vehicle by a sphere with radius r centered

at the robot’s geometric center. Then, we transform the local map to incorporate the configuration

space by inflating the major axes:

f(x) = (x− µ)TD(x− µ)− 1, (6.8)

where D = diag ((c1 + r)−2, (c2 + r)−2, (c3 + r)−2). For sufficiency, we take the ellipsoid defined

by the 4σ probability bound of each Gaussian component, which provides approximately 99.95%

Chi squared probabilistic coverage of the underlying point density.

Suppose a trajectory is given by x(t) = γ(t), where γ(t) is a time-parameterized function with t

defined over some interval t ∈ [t0, tf ], and x(t) = [x(t), y(t), z(t)]T . Then, the ellipsoid-trajectory
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equation becomes:

f(t) = f(x(t)) = (x(t)− µ)TRTDR(x(t)− µ)− 1 (6.9)

f(t) = (x(t)− µ)TA(x(t)− µ)− 1, (6.10)

where R ∈ R3×3 ∈ SO(3) is the rotation matrix to transform the local trajectory into the frame of

the eigenvectors of the covariance of the Gaussian distribution. An intersection or collision occurs

when f(t) ≤ 0.

For arbitrary trajectories x(t), no analytic solutions exist to Eq. 6.10 unless x(t) is affine. In

the following subsections, we present two algorithms for collision checking for arbitrarily complex

trajectories and provide a brief discussion on computational complexities.

Sampling based collision checking

Instead of computing an analytic solution to Eq. 6.10, a simple check would be to sample points

along each trajectory. For M Gaussian distributions, N local trajectories, and S samples per

trajectory, the computational complexity would be O(MNS). This approach is delineated in Al-

gorithm 6.1.

Algorithm 6.1 Collision Checking with Gaussian distribution based Local Map via Sampling
1: Given M Gaussian components, N local trajectories, S samples per trajectory
2: Discretize time interval [t0, tf ] into t = {ti}, i = 1, . . . , S s.t. ti ∈ [t0, tf ]
3: for n = 1 : N trajectories do
4: for m = 1 : M Gaussian distributions wθ do
5: Obtain the eigenvector matrix Rm, centers µm
6: compute Am = RT

mDmRm

7: where Dm = Diag ((cm1 + r)−2, (cm2 + r)−2, (cm3 + r)−2)
8: for each t ∈ t do
9: Query point at time t: xs = x(t)

10: if f(xs) = (xs − µm)TAm(xs − µm) ≤ 1 then
11: Reject trajectory and increment
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Piecewise affine trajectory approximation

If the trajectory is sufficiently smooth, one can generate piecewise affine approximations (PWA)

to the trajectory using heuristics. For each trajectory, suppose s segments of affine approximations

sufficiently approximate the trajectory. Then, over each segment, the affine approximation xs(t) =

ast+bs with as,bs ∈ R3 and t ∈ [ts−1, ts] can be analytically solved in the frame of each Gaussian

distribution.

The ellipsoid-line equation using Eq. 6.8, in the frame of the Gaussian component, can be

written as:

f(xs) = (xs)
TD(xs)− 1 (6.11)

f(t) = (ast+ bs)
TD(ast+ bs)− 1, (6.12)

Without loss of generality, a trajectory can always be transformed into the frame of the mixture

component such that D is diagonal. Collisions are found via solutions to

0 =

(
a21
c21

+
a22
c22

+
a23
c23

)
t2 + 2

(
a1b1
c21

+
a2b2
c22

+
a3b3
c23

)
t

+

(
b21
c21

+
b22
c22

+
b23
c23
− 1

) (6.13)

With the assumption that the trajectory does not begin inside a Gaussian component.

For M distributions, N trajectories, the number of segments is dependent on the curvature of

the trajectory. The computation complexity would be O(MNSn), where Sn ≤ S, n = 1, . . . , N

such that the worst case complexity collapses to that of the sample based approach (with S sam-

ples per trajectory). This approach is delineated in Algorithm 6.2. We provide a heuristic for

determining number of segments for motion primitives in Sec. 6.3.3.
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Algorithm 6.2 Collision Checking with Gaussian distribution based Local Map via PWA Trajec-
tory Approximation

1: Given M Gaussian components, N local trajectories
2: for n = 1 : N trajectories do
3: Heuristically discretize trajectory into Sn segments
4: Compute Sn affine approximations
5: for m = 1 :M Gaussian components do
6: Obtain the eigenvector matrixRm, centersµm, and transform x into the frame of the Gaussian distribution
7: for each s = 1 : Sn do
8: Solve Eq. 6.13 and denote solutions as t∗1,2
9: if t∗1,2 ∈ [ts−1, ts] then

10: Reject trajectory and increment

6.3.3 Local Trajectories: Motion Primitive Library

An example of a family of local trajectories is a motion primitive library. Motion primitives are

dynamically feasible local trajectories parameterized by the input space of the dynamics, which

have been shown to be amenable to online autonomous exploration [53] and teleoperation [60,

61]. This paper follows [60] and uses forward-arc motion primitives. These local trajectories are

formed by propagating the dynamics of a unicycle model with a constant linear velocity vx, angular

velocity ω, and vertical velocity vz for a specified amount of time, T [40]. We direct the readers

towards the forward-arc motion primitives proposed by Yang et al. [60] for a detailed description.

In this thesis, we focus on the impact of the proposed map representation on collision avoidance

using these forward-arc motion primitives.

6.3.4 Evaluation

We evaluate our proposed algorithm in simulation in a cluttered environment as shown in Fig. 6.15

and compare it to KD-Tree maps in our local mapping framework approach, in terms of com-

putational complexity of map generation and collision checking, and also show that our method

provides safety guarantee of at least the configuration bound.”

In the simulation scenario, an operator teleoperates the vehicle using forward-arc motion prim-

2Available at: https://github.com/vibhavg/simulation environments
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Figure 6.15: The cluttered environment used to evaluate our collision avoidance strategy.

itives [60]. We generate a library of 155 motion primitives, using 31 linearly spaced angular

velocities ω ∈ {−3, 3} rad/s, 5 linearly spaced vertical velocities vz ∈ {−1, 1} m/s, and limit the

vehicle to a maximum linear velocity of 2 m/s. We assume a configuration radius of 0.5 m. The

heuristics for frame categorization are: αk = 1.0 m, αs = 0.2 m, and βs = 0.2 radians.

Safety

Safety is evaluated using the minimum distance of the vehicle center to its surroundings. We use

a dense point cloud representation as a baseline map and query the radius of free space around the

vehicle at each iteration. In Fig. 6.16, two 6-8 minute example trials are shown. Throughout each

trial, the vehicle’s configuration space, denoted in blue, is contained within the free space around

the vehicle, denoted in grey, indicating that the vehicle is safe at all times.

Efficiency

Collision checking timing analysis averaged over 10000 trajectories is shown in Fig. 6.17. We ob-

serve 0.737 ms for KD-Tree based collision check per trajectory, 0.204 ms for Gaussian distribution

based local map with sampling-based collision check per trajectory, and 0.150ms for Gaussian dis-

tribution based local map with PWA trajectory approximation. Sufficiently representing the local
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Figure 6.16: A visualization of free space around each vehicle vs. configuration space for example trials
with (a) Gaussian distribution based local map with sampling, and (b) Gaussian distribution based local
map with PWA approximations based collision avoidance. The blue line denotes the pose of the vehicle and
the light blue shading denotes the configuration space of 0.5 m.

map using a low number of components contributes to significant speed-ups over KD-Tree queries.
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Figure 6.17: Timing analysis for per trajectory collision checking with samples and PWA trajectory approx-
imations, as compared to using KD-Tree representations. Gaussian distribution local map based methods
take 0.25 ms for collision checking per trajectory, whereas KD-Tree takes 0.75 ms per trajectory. Error bars
report standard deviation of the mean.

6.4 Summary

In this section, We presented a framework to perform real-time global localization of depth sensors

and another framework to perform collision avoidance using the lowest fidelity map representation

(Chapter 4). Key to being able to do this is the ability to reinterpret a Gaussian distribution as an

ellipsoid in 3D. The projection of an ellipsoid on to the image plane of the sensor to evaluate the
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likelihood of the data for a given pose enables us to efficiently compute the likelihood of a particle

being the true estimate of the sensor location. By utilizing a fast likelihood computation approx-

imation we can then perform robust particle filter localization in real-time even on an embedded

GPU platform. By reinterpreting a Gaussian distribution as strictly a geometric entity, we are able

to efficiently subselect a set of trajectories that are safe, and do not collide with the obstacles in the

environment. This enables a robot to navigate safely through an unknown environment in real-time

using a succinct map representation.



Chapter 7

Conclusion

A complex mobile robot system should be able to efficiently process large scale input sensor data

and operate in response to it. Size Weight and Power constraints on mobile robots impose restric-

tions on the available computational and memory resources. The choice of data representation

utilized by various perceptual pipelines is of paramount importance for enabling real-time opera-

tion of a SWaP constrained system. Often a disconnected system using various independent map

representations and data pre-processing pipelines adds additional burden on the available resources

and impacts the accuracy and real-time performance of the robot.

This thesis presents a computationally feasible solution to perform SLAM on platforms with

computational and memory limitations. A hierarchical Gaussian distribution based map repre-

sentation is proposed that represents the map information at different fidelities. Additionally, a

localization approach is proposed that exploits the hierarchical map representation to enable dense

real-time SLAM with low computational requirements.

We first present a high-fidelity 3D reconstruction pipeline using a generative map representa-

tion in Chapter 4. Fitting a generative model such as a Gaussian Mixture Model (GMM), [16] is

computationally more expensive than commonly used map representations such as voxel grids or

surfels [58]. We presented a model fitting technique that, in contrast to the state-of-the-art genera-

107
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tive model based mapping techniques, maximizes the 3D reconstruction accuracy of the map using

succinct Gaussian distributions as our underlying map representation. The projective constraints

enforced by a commonly available depth sensor enable us to impose a structure on the model fitting

algorithm and make the algorithm computationally efficient and feasible. Quantitative and qual-

itative performance comparison of our mapping approach to state-of-the-art mapping approaches

demonstrate superior performance in terms of the reconstruction accuracy and the memory com-

plexity of the map representation. A hierarchical map reconstruction technique is proposed that

represents the map at multiple fidelities, reducing the memory complexity of the representation at

higher hierarchical levels and improving the reconstruction accuracy at lower hierarchical levels.

Second, we proposed a frame-to-model localization technique that exploits the hierarchical

map representation to track a live camera in a global map robustly and accurately. The hierar-

chical structure of the map representation enables our proposed localization pipeline to utilize

adequately informative map for different tasks, such as scan alignment, correspondence computa-

tion and active-inactive map segmentation. Quantitative analysis of the proposed SLAM approach

demonstrates that our approach outperforms state-of-the-art SLAM approaches and performs ro-

bustly and reliably in challenging environments where state-of-the-art approaches fail.

Finally, we discuss some applications of the proposed map representation. We showed that

given a global map of the world represented as a GMM, we can use the geometric interpretation of

a Gaussian distribution in 3D to implement a computationally efficient multi-hypothesis particle

filter based localization framework on a SWaP constrained system. The compact nature of Gaus-

sian distributions enables us to store adequate information about the structure in the scene that

enables a particle filter to operate efficiently in large scale environments. Further, we proposed a

safe navigation and collision avoidance technique that exploits the ellipsoidal geometry of a fixed

confidence bound of Gaussian distributions. Large structural geometry is efficiently represented

as Gaussian distributions and a local teleoperation pipeline uses these Gaussian distributions to
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search for safe collision free trajectories in unknown environments.

Overall, we propose the utility of Gaussian distributions as 3D structure primitives to enable

real-time autonomy on SWaP constrained systems. Specifically, in this thesis, we demonstrated

a SLAM framework that uses hierarchical Gaussian distribution based map representation that is

more robust, accurate and memory efficient than state-of-the-art frameworks. Additionally, we

demonstrated the applicability of the proposed map representation for common robotics problems

such as global localization for kidnapped robots and efficient collision avoidance in unknown en-

vironments.

7.1 Future Work

The proposed work establishes groundwork for enabling a unified autonomy system that can oper-

ate in real-time, generating high fidelity 3D reconstruction of the world while safely exploring or

inspecting an unknown environment. Some avenues of future work that could enable this vision

include the following:

• Real-time implementation on a SWaP constrained system: The proposed mapping and lo-

calization frameworks are highly parallelizable by design. A GPU implementation of the

framework would enable a majority of the independent processes that operate sequentially

to execute in parallel thus reducing the run-time of the proposed SLAM pipeline.

• Incorporation of loop closures: An accurate frame-to-model localization framework, accu-

mulates drift over time. Enabling an optimization framework in the backend, that can detect

loop closures when the sensor revisits an observed section of the map, using either a factor

graph like approach or a more suitable deformation graph based approach would enable the

pose estimates to recover from large drifts and create more accurate reconstruction of the

world.

• Extension to model occupancy: A large variety of active perception algorithms utilize the
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information about occupancy around the robot safely navigate in unknown environments

and explore environments. The current map representation only stores information about the

occupied spaces in the scene. An elegant solution using hierarchical Gaussian distributions

to represent free spaces in the world, would enable active perception algorithms to operate

on the same map representation that is used for high fidelity 3D reconstruction and mapping,

thus reducing the memory and computational redundancy in the data processing pipeline.
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