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Abstract

We aim to enable robots to visually localize a target person through the
aid of an additional sensing modality – the target person’s 3D inertial
measurements. The need for such technology may arise when a robot is
to meet a person in a crowd for the first time or when an autonomous
vehicle must rendezvous with a rider amongst a crowd without knowing
the appearance of the person in advance. A person’s inertial information
can be measured with a wearable device such as a smart-phone and can be
shared selectively with an autonomous system during the rendezvous. We
describe a method for learning a visual-inertial feature space in which the
motion of a person in video can be easily matched to motion measured by
a wearable inertial measurement unit (IMU). The transformation of the
two modalities into the joint feature space is learned through the use of a
contrastive loss which forces inertial motion features and video motion
features generated by the same person to lie close in the representational
feature space. To validate our approach, we compose a dataset of over
60,000 video segments of moving people along with wearable IMU data.
Our experiments show that our proposed algorithm is able to accurately
identify a target person in a realistic multi-person scenario with 72.4%
accuracy using only 5 seconds of IMU data and video.
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Chapter 1

Introduction

Person localization for a rendezvous is crucial in real-world applications such as

assistive robots [14, 20] and autonomous driving [3, 4, 15, 16, 19, 21, 28, 29, 30,

31, 32, 33, 35, 36]. Consider the scenario where an autonomous vehicle rendezvous

with it’s user for the first time. How does the autonomous vehicle localize the user

without any information about what the user looks like? In this work, we consider

the possibility of using the user’s inertial measurement unit (IMU) data collected by

her smartphone as a unique descriptor of the user’s motion, which can be then used

by the autonomous vehicle to localize the user with a dashboard camera.

Prior work on person localization often utilizes visual-visual feature matching,

assuming that the target person’s appearance information is known in advance.

However, this assumption may not always hold as it requires a data capture process

prior to the rendezvous. To deal with the situation where the target person’s

appearance information is not available, we must rely on other sensor that can

capture target person’s information in the wild. We choose to use the 3D inertial

sensor as the 3D inertial measurement describes the user’s motion and can be matched

with the visual motion information collected by the dash camera for person localization.

Also, the user’s 3D inertial measurement can be easily obtained because modern

smart wearable devices such as smart-phone and smart-watch are often equipped

with an inertial sensor. Moreover, due to its low dimensionality compared to visual

data, we can transmit the inertial measurement to the autonomous vehicle in real

time at a low cost.
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Smartphone IMU data

Optical Flow

Visual-Inertial 
Feature Space

Figure 1.1: Our visual-inertial feature transformer maps IMU motion and image
motion from the same person to a similar location in the feature space.

Our approach is based on visual-inertial feature matching. Specifically, we first

obtain the visual motion information from the dashboard camera by computing the

optical flow [5] for a fixed time window. In the meantime, we obtain the motion

information in 3D space measured by the inertial measurement unit (IMU) for the

same time window. Since directly transforming the local 3D motion measurements

and the 2D motion in the camera frame into same world coordinates is difficult and

requires calibration of a fixed camera, we propose to learn a feature transformer

based on LSTM [11] and Multi-Layer Perceptron (MLP) that can map the motion

information from visual and inertial modalities into a joint feature space. The visual

and inertial features are optimized using a contrastive loss [23] so that the learned

features of the same person lie close in the joint feature space.

As there is no existing dataset suitable for training our feature transformer

for person localization, we collect a new visual-inertial dataset containing time-

synchronized video and inertial data. Our dataset has over 60,000 video segments of

moving people along with their corresponding IMU data. The IMU data is collected

by the smartphones held in people’s hands. Different from existing visual-inertial

datasets which often rigidly attach the inertial sensor on people’s back [9] or body

2
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limbs [13, 26, 27], we let people hold smartphones in their hands naturally to mimic

the real-world scenarios. As a result, our dataset is more realistic but challenging

as the location of the inertial sensor is more flexible and the motion of the inertial

sensor might not always align with the motion of people’s back or limbs.

To validate our approach, we evaluate it on the test split of our visual-inertial

dataset. Our experiments show that our approach is able to accurately identify a

target person with 72.4% accuracy using only 5 seconds of IMU and video data. To

summarize, our contributions are as follows:

1. A new task, namely visual-inertial person localization, which aims to

localize the target without requiring the appearance information of the target

in advance;

2. A new large visual-inertial dataset, which is collected in the wild with

multiple persons without fixed attachment of the inertial sensor to each person’s

body;

3. An effective approach for the proposed task, also being the first learning-

based approach for the task and outperforming competitive baselines we devised

from state-of-the-art techniques.

3
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Chapter 2

Related Work

2.1 Visual-Inertial Person Localization

To the best of our knowledge, [9] is the only work that attempted matching between

visual and inertial data for person localization. First, [9] employs a visual heading

network to predict person’s 3D orientation with respect to the camera from a single

image. Then, they match the person’s 3D orientation predicted from the image with

the orientation integrated from angular velocity obtained from the inertial sensor

to generate image-based person predictions. To rigidly align the orientation of the

inertial sensor with the person’s body orientation and make the orientation prediction

problem easier, [9] attaches the inertial sensor on the back of the target person. This

makes [9] not applicable in the real world scenarios where the inertial sensor can

be flexible. Additionally, [9] employs velocity matching between inertial and visual

data to formulate trajectories of the previously generated imaged-based predictions.

Specifically, the 3D foot position of the person is estimated from an image, which

is then used to compute the 3D velocity of the target person given a pair of images.

Meanwhile, the 3D velocity is also estimated by integrating the linear acceleration

from the inertial data, which can be used to match with the 3D velocity computed

from the visual data. Different from [9] which employs hand-crafted inertial features

(i.e. orientation and velocity obtained by integration) to match with the visual data,

our proposed method learns to transform visual and inertial data into a joint feature

space for matching. Also, our proposed method is more useful in real world scenarios

5
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as we do not restrict the placement of the inertial sensor.

2.2 Visual-Inertial Dataset

Although visual-inertial person localization is under-explored in prior work, there are

existing visual-inertial datasets collected for other vision tasks. The CMU Multi-Modal

Activity Database [8] aims to understand cooking and food preparation activities.

They rigidly attach multiple IMU sensors on person’s body to collect the inertial data.

In the meantime, video data is also collected from multiple viewpoints. The Total

Capture Dataset [24] is designed for human pose estimation. Similarly, [24] contains

synchronized multi-view video and IMU data with the inertial sensor attached to the

human body. However, both [8] and [24] are not suitable for person localization as 1)

they only collect data for one person at a time, 2) the location of the inertial sensor

is fixed, and 3) the data is collected in the indoor setting. Different from existing

datasets, we collect a new visual-inertial dataset with multiple persons outside and the

location of the inertial sensor flexible, in order to mimic the real-world autonomous

driving pick-up scenario.

2.3 Visual Person Localization

Depart from the visual-inertial person localization, prior work has investigated person

localization using only visual data with the re-identification technique. The common

approach is to first obtain the feature embedding from two sources of visual data (one

from an unknown query person and the other from a pre-built database containing

information of the target person), and then perform classification to identify if the

query person is the target person. Once the target person is successfully identified,

the localization is solved. To obtain effective visual embedding for identification

and localization, prior work focuses on image-based [6, 18, 37] and video-based [17]

methods for feature learning. However, visual person localization methods are only

applicable when the pre-built database containing the information of the target person

is available. In other words, if we do not have the target person’s information in

advance, we cannot solve the localization problem with only visual information but
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need the aid of an additional sensor. In this paper, we investigate the possibility of

using the user’s inertial data for localization.

2.4 Visual-Inertial Human Pose Estimation

In addition to person localization, prior work has investigated using inertial and visual

data for other computer vision applications such as human pose estimation. [27]

proposes a Video Inertial Poser (VIP) to perform accurate 3D human motion capture

using 6 to 17 IMUs attached at the person’s body limbs and a single hand-held

moving phone camera. Specifically, they first obtain a set of initial 3D poses from the

IMU data and also obtain 2D human pose keypoints on the 2D video. Then, they

associate the 2D poses and 3D poses and obtain the globally consistent assignment

by jointly optimizing the cost over camera pose, people’s heading angle and 3D poses.

Although the task is different from ours, this work also aims to find the correlation

between the 2D and 3D features from visual and inertial modalities. However, again,

this work relies on a large number of IMU sensors and does not apply to the practical

scenario in our problem setup.

7
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Chapter 3

Method

Given a video with multiple people standing or walking, and the IMU readings from

a smartphone carried by a person in the scene, our goal is to identify which person in

the video the IMU data belongs to, as shown in Fig. 1.1. As described above, we aim

to learn a joint visual-inertial feature space in which the visual and inertial features

from the same person lie close in that space.

Formally speaking, in a video segment (150 frames or 5 seconds), we denote each

person in that video by an index n ∈ [N ], where N is the total number of people.

For each person n, we extract a visual feature gVIS to encode its motion in the video.

Meanwhile, we extract a inertial feature gIMU of the target person from the IMU

data to encode its motion in 3D space. During training, we learn a visual feature

embedding function HVIS : gVIS → f and a inertial feature embedding function

HIMU : gIMU → f to map both features into the same joint visual-inertial feature

space f for matching. At test time, once we find the visual embedding which is the

closest to the inertial embedding of a given inertial query in the joint feature space,

the target person is localized in the video.

3.1 Visual Feature Extraction

In order to extract people’s motion feature from a video segment, we first pre-process

the video by performing person detection using YOLOv3 [22] at all frames and then

associating the detections into trajectories using a multi-object tracker – DeepSORT

9



CHAPTER 3. METHOD

Figure 3.1: (Left) YOLOv3 person detections. (Right) Temporal super-pixels (TSP)
for each tracked person in the video. Average optical flow is computed as the motion
feature for each TSP representing different body parts.

[33]. Once we have obtained a trajectory of boxes for each person, we can now

extract the motion feature. Specifically, we first extract the optical flow for each box

trajectory, and then further decompose it into smaller temporal super-pixels using [5].

The reason for decomposition is that we believe the inertial data measured by the

smartphone is only correlated with a part of the body where the smartphone is held,

instead of the entire body. Without this decomposition, the optical flow representing

the motion of the entire body might not be easily matched with the inertial feature

representing the motion of a part of the body, thus leading to inferior localization

performance.

Formally speaking, given a video segment Vt:t+T with T frames, we denote the

set of temporal super-pixels (TSPs) in the video as ξ = {ξ1, ξ2, . . . , }. We then filter

out the TSPs that do not lie within the trajectories of detection boxes and obtain a

subset of TSPs denoted as ξn ⊂ ξ for each person. To obtain the motion feature for

each TSP, we compute the average optical flow over all pixels for each temporal slice

of a TSP:

vξni = [(dxt, dyt), (dxt+1, dyt+1), ..., (dxt+T−1, dyt+T−1)],

where each vector vξni represents the motion of a part of the human body as shown

10
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in Fig. 3.1.

Furthermore, for each TSP we compute a sequence of gradients for the average

optical flow using finite difference method and the magnitude of gradients at each

time step: |vξni |t =

√
ḋx

2

t + ḋy
2

t . We use magnitude as an additional feature in order

to remove the direction information and only represent the motion intensity in 2D.

Although the TSP features are sufficient to represent the motion information of

different body parts in the video, there is still a gap between the TSP features and the

inertial 3D motion features as the TSP features are computed in the 2D image space,

i.e., the perspective projection of the person’s 3D motion. To alleviate this issue and

bridge the gap between the 2D and 3D space, we include extra information that is

related to the 3D depth and orientation of the person, which can implicitly help the

matching between the learned visual and inertial feature embeddings. Specifically,

we use two types of information obtained from the video segment:

1. The height and width of the person’s bounding box as an indication of the

distance to the camera:

bn = [(ht, wt), (ht+1, wt+1), ..., (ht+T−1, wt+T−1)].

2. The relative positions of the person’s left and right shoulder keypoints to the

bounding box center as an indication of the body orientation relative to the

camera:

kn = [(lst, rst), (lst+1, rst+1), (lst+T−1, rst+T−1)],

where ls and rs are tuples of the keypoint’s x and y coordinates relative to the

box center’s coordinate in the image frame. We choose the shoulder keypoints

because their positions are stable to the body orientation.

For the width and height of each person’s box, we directly use the box trajectories

obtained from YOLOv3 and DeepSORT. To obtain the positions of shoulder keypoints,

we first use AlphaPose [34] to detect 17 keypoints of the full body, and then only

select the two points representing the shoulder joints. We use linear interpolation to

account for occlusion and zero-padding to account for out-of-frame cases.

11
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3.2 Inertial Feature Extraction

To match with the visual motion feature, we also need to extract an inertial feature,

which represents the 3D motion of the smartphone for the target person. Given

the raw IMU data containing the 3D linear acceleration a = [~ax,~ay,~az] and angular

velocity ω = [~ωx, ~ωy, ~ωz] in the smartphone’s local coordinate frame, we construct

the inertial feature for target person n denoted as gnIMU = [~ax,~ay,~az, ~ωx, ~ωy, ~ωz]
T by

concatenating linear acceleration and angular velocity. As a result, the inertial feature

gnIMU is a 6×M matrix where M is the number of frames temporally aligned with the

video segment’s time window. As the IMU frame rate is 100Hz, with a ratio of 3.33:1

to the video frame rate of 30Hz, we uniformly sample the inertial frames so that

M = 3× T , where T is the number of frames in a video segment. Furthermore, we

apply a low-pass filter to reduce high frequency noise in the raw IMU data. Similar

to computing the magnitude of optical flow gradient in visual feature extraction, we

also compute the magnitude of linear accelerations to represent 3D motion intensity

|a|t =
√
a2x + a2y + a2z.

3.3 Learning the Visual-Inertial Feature Space

Although the raw visual feature and the raw inertial feature contain sufficient infor-

mation representing the person’s 3D motion, they still lie in different feature spaces

as they are obtained from different source of data and thus it is difficult to directly

match them. To overcome this issue, we propose to learn a feature transformer that

further transform the raw visual and inertial features into a joint feature space so

that the matching for a same person is possible.

The proposed network for learning the joint feature space is shown in Fig. 3.2.

To transform the raw visual feature into the joint space while model the temporal

dependency, we first apply four LSTM networks for the TSP optical flow features

(LSTM-OpticalFlow), bounding box size data (LSTM-Box), pose keypoints data

(LSTM-Pose), and optical flow magnitude (LSTM-OF-Mag). Then, we concatenate

hidden state output from LSTM-OpticalFlow, LSTM-Box and LSTM-Pose, and feed

it through a fully-connected layer to produce the final output embedding. We keep

the magnitude feature embedding from LSTM-OF-Mag as a separate branch for

12
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Figure 3.2: Proposed Network. Our network has one branch to extract the inertial
feature of the target person and two branches to extract the visual features from
one positive and one negative sample. At each iteration of training, the positive
visual feature is extracted from the target person while the negative visual feature is
from a randomly picked different person. Once the raw inertial and visual features
are extracted, they are fed into our visual-inertial feature transformer so that the
transformed feature embeddings lie in a same feature space. A triplet loss is then
applied to minimize the L2 distance between the inertial embedding and the positive
visual embedding while maximize the L2 distance between the inertial embedding
and the negative visual embedding. At test time, we compute the visual embeddings
for all persons in the video and also compute the inertial embedding of the target
person. The predicted target person in the video is then the person whose visual
embedding has minimum distance to the target person’s inertial embedding.
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matching with inertial magnitude embedding directly.

To transform the raw inertial feature into the joint space, we first use a 1D

convolution layer to reduce the dimensionalities of the inertial feature to be the same

as the visual feature. Then, we also apply an LSTM network (LSTM-IMU) to model

the temporal dependency for the inertial feature. Similarly, we apply a 1D convolution

layer and an LSTM (LSTM-IMU-Mag) to encode the inertial magnitude feature.

Formally, the visual and inertial (magnitude) feature is defined as:

HVIS(vξni ,b
n,kn) = fVIS[fOF(vξni )⊕ fPose(kn)⊕ fBox(b

n)],

HVIS-mag(|vξni |) = fVIS-mag(|vξni |),

HIMU(gnIMU) = fIMU(gnIMU),

HIMU-mag(|a|) = fIMU-mag(|a|),

For training, since each person n has a set of TSPs ξn and thus we have |ξn| final

visual embeddings, we duplicate the number of final inertial embeddings so that we

have the same number of visual and inertial embeddings for each person in a time

window with T frames. We use every pair of the inertial and visual embeddings and

minimize the L2 distance between them if they belong to the same person.

Furthermore, we use the triplet loss as in [10, 12]. Specifically, for each target

person n with the inertial embedding, we use the visual embedding obtained from the

same target person as a positive example and use the visual embedding obtained from

a randomly sampled different person as a negative example. The positive and negative

samples share the same weights in the LSTM networks (i.e., LSTM-OF, LSTM-Pose,

LSTM-Box, LSTM-OF-Mag). Then, the triplet loss is applied to minimize the L2

distance between the inertial and positive visual embedding and maximize the L2

distance between the inertial and negative visual embedding:

L1(g
n
IMU, g

+
VIS(ξi), g

−
VIS(ξj)) = max(||HVIS(g+VIS(ξi))−HIMU(gnIMU)||2−

||HVIS(g−VIS(ξj))−HIMU(gnIMU)||2 + κ1, 0).

14
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We use a separate triplet loss for learning the visual and inertial magnitude

embeddings as they represent only the intensity of the motion:

L2(|an|, |v+
ξni
|, |v−ξni |) = max(||HVIS-mag(|v+

ξni
|)−HIMU-mag(|an|)||2−

||HVIS-mag(|v−ξni |)−HIMU-mag(|an|)||2 + κ2, 0),

κ1, κ2 are the margins separating the positive and negative feature space. The final

loss is defined to be weighted sum over the two triplet losses:

L = αL1 + (1− α)L2.

In our experiments, we use α = 0.5.

At test time, given a video segment Vt:t+T with N people in the scene, we choose

one person as the target person at a time and compute its inertial embedding.

Meanwhile, we compute the visual embedding for all persons in the video. Then, the

predicted target person is the person whose visual embedding averaged over all TSPs

has the minimum distance to the target person’s inertial embedding:

n̂ = arg min
n′∈[N ]

1

|ξn′ |

|ξn
′
|∑

i=1

α||HVIS(gn
′

VIS(ξi))−HIMU(gnIMU)||2

+(1− α)||HVIS-mag(|vξi |)−HIMU-mag(|an|)||2,

where |ξn′ | is the number of TSP’s for person n′.

15
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Chapter 4

Dataset

To train our proposed method for visual-inertial person localization in the wild, we

need a dataset with synchronized video and inertial data that include multiple people

acting freely outside, each carrying a smartphone in their hand. However, existing

visual-inertial datasets [8, 9, 24] do not satisfy these requirements and often have

three limitations: 1) they rigidly attach the inertial sensor to person’s body (e.g., limb

or back) so that the motion of the inertial sensor tightly aligns with the body part; 2)

they often record the data in the indoor setting; 3) only one person is recorded at one

time. As a result, prior datasets are not applicable to our challenging visual-inertial

person localization task, and we collected a new dataset to satisfy the task conditions.

4.1 Video Recording

We set up a HD webcam with a resolution of 1920×1080 on a tripod about one meter

above the ground for video recording, similar to the setting of a dashboard camera in

a car. We choose to record the video outside public buildings in order to mimic the

real world autonomous vehicle pickup scenarios. At each time of the recording, we

Table 4.1: Statistics of the video data collected in our dataset.

Number of people 2 3 4 5 6
Number of videos 17 15 11 7 8
Number of total frames 12,900 19,600 21,400 10,084 5,000
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hire 2-6 different volunteers and assign a smartphone to each of the volunteer during

the video recording. Each video recording is about half to two minutes long with a

frame rate of 30Hz. In total, we have recorded 58 videos with a total of 68984 frames.

We summarize the statistics of our data recording in Table 4.1. Our dataset contains

common types of pedestrian motion such as standing, walking and turning, recorded

in front of different buildings to increase the diversity of the dataset. As we record

the data in the wild, we also allow random people to appear in the video without

recording their inertial data in order to mimic the challenging real-world scenario.

Also, we do not provide and allow to use the calibration parameters of the camera in

our dataset, as in the real world the calibration parameters of the dashboard camera

might vary across vehicles and not available to our approach for person localization.

Each video frame is time-stamped with the UTC time for synchronization with IMU.

4.2 IMU Recording

We use iPhone (model 7 and 8) as the smartphone device to collect the inertial

data. To that end, we have developed an iOS application with the iOS Core Motion

Framework to obtain the linear acceleration and angular velocity data from the

onboard accelerometer and gyroscope. For linear acceleration, we use the processed

data by the device that only reflects the user-generated acceleration after removing

the gravity. The IMU data is recorded at 100Hz with UTC timestamps. At each time

of the recording, we ask the volunteers to start the iOS application on their iPhones

so that the data can be saved to the device. As the data synchronization is handled

by matching the timestamp, volunteers do not need to start the application exactly

at the same time.

4.3 Data pre-processing

As optical flow is needed to obtain the visual embedding, we pre-compute the flow for

all videos in advance so that the online training can be faster. However, computing

optical flow on the raw images with a resolution of 1920× 1080 is very expensive, we

thus downsample the raw images to a resolution of 691× 389 to speed up the pre-
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processing step. Also, as our network can only process a short video segment at a time,

we convert the raw video and inertial data into short segments using a sliding window

approach. Specifically, we experiment with a window size of {100, 150, 180, 200} and

step size of 20 frames. As a result, over 60, 000 synchronized video and inertial data

segments are generated.

As we have the inertial data for all persons in each data segment, we can iteratively

mark each person in the data segment as the target person. This means that each

video segment can serve as m data segment samples during training and evaluation

where m equals to the number of persons in the video. This data augmentation

technique further increases the number of our data segment samples about four times.
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Chapter 5

Experiments

5.1 Evaluation Details

Since our visual-inertial person localization is formalized as a matching problem, we

use the classification rate as our evaluation metric, namely the probability that our

method can output a correct match for the target person. We split our collected

data into train, validation and test set, where each set contains videos with different

number of people. The evaluation of our method and baselines is only conducted

on the test set, while the validation set is used for parameter tuning. Usually, when

there are more people in the scene, it is more likely that people will have similar

motion (e.g., walking in the same direction), which makes the data more difficult

for matching and localization. Naturally, we expect that our visual-inertial person

localization task to become harder when there are more people in the scene. We show

quantitative results with {2, 3, 4, 5} people in the scene.

5.2 Comparison to Baseline Methods

Since this is the first work to address the task of visual-inertial source localization,

we are not able to compare against any available state-of-the-art method. Instead

we have designed several features both hand-designed and learned to compare with

our method. In each of our experiments we use a temporal window of size 5 seconds
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which is K = 150 video frames.

5.2.1 Non-learning Visual-Inertial Matching

We perform direct matching between the processed visual and inertial data sequence

within the aligned temporal window. Specifically, given the query IMU sequence, we

compute the cosine distance between the inertial sequence and all visual sequences

that belong to the candidate people in the video, and predict the target IMU source

person with the minimum feature distance. We design the following four processing

approaches to generate the feature sequences:

Velocity Magnitude Sequence: For the visual feature fvis, we compute a sequence

of magnitudes of the optical flow for each TSP, {(v2x+v2y)
1/2}Kk=1. Likewise for the IMU

feature fimu, we first compute the 3D velocity from 3D linear acceleration measured

by the IMU using integration, ~vt = ~vt−1 + ~at∇t. Then we compute a sequence of

velocity magnitudes {||~vt||2}Kk=1 for the IMU signal. The IMU signal is down-sampled

to ensure that the dimensions match with the visual feature.

Acceleration Magnitude Sequence: For the visual feature fvis, we compute a

sequence of gradient magnitudes of the optical flow for each TSP, {(a2x + a2y)
1/2}Kk=1.

Likewise for the IMU feature fimu, we compute a sequence of linear acceleration mag-

nitudes {||~at||2}Kk=1. The IMU signal is down-sampled to ensure that the dimensions

match with the visual feature.

Velocity Magnitude Histogram: The computation of the velocity magnitudes

follows the velocity magnitude sequence features described above but velocity mag-

nitudes are binned to create a velocity magnitude histogram, where the range of

velocities has been equally divided into 100 bins.

Acceleration Magnitude Histogram: The computation of the acceleration mag-

nitudes follows the magnitude sequence features described above but acceleration

magnitudes are binned to create a magnitude histogram, where the range of accelera-

tions has been equally divided into 100 bins.

5.2.2 Supervised-Learning for Single Modality

3D Orientation Sequence: We re-implemented image-based orientation estimation

technique in [9] where the person’s 3D orientation is predicted from a VGG16-extended
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Figure 5.1: Visual-Inertial Binary Classification

network with RGB image input. We designed a similar network based on VGG16

by adding two fully connected layers to learn the mapping from image to the person

orientation. We used a concatenated person image pair in the tracklet as input and

trained the network to regress the temporally-aligned orientation change using angular

velocity measurement from IMU as ground truth. This results in a sequence of 3D

orientations as the visual features fvis = {~vt}Tt=1. The IMU signal is down-sampled to

ensure that the dimensions match with the visual feature.

Optical Flow Sequence: For the visual feature fvis, we compute a sequence of

magnitudes of the optical flow for each TSP, {(v2x + v2y)
1/2}Kk=1. The IMU feature fimu

is extracted by mapping a sequence of acceleration ~a and angular velocity ~w to a

sequence of 2D velocities. The mapping function is learned by supervised learning

where the observation is (~a, ~ω) and the label is the optical flow. The IMU feature is a

sequence of optical flow estimated from the IMU measurements.

5.2.3 Visual-Inertial Binary Classification

We formulate a binary classification problem for predicting a single probability of

whether the given visual-inertial features match. We extract the same features from

IMU and video and learn the embeddings as described in our proposed method.

Instead of formulating a triplet with positive and negative samples during training,

we only concatenate the inertial and visual features that belong to the same person,

and feed it through a fully-connected layer and a sigmoid function to output a single

score. During testing, given a query IMU, we generate scores between the inertial

feature and all visual features from all persons in the video, and take the person with
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highest probability as the predicted IMU source.

5.2.4 Triplet Model with Motion History Image as Visual

Representation

Motion History Image (MHI) [2] is a compact way of representing temporal motion

information with a static image, where the pixel intensity is a function of recency of

motion. It is widely used for action recognition and motion analysis [1, 7, 25]. MHI is

designed to be sensitive to temporal motion at pixel level while preserving dominant

motion information. We use MHI in place of the visual features with the triplet

model as in Figure 5.2, as another baseline to explore a different visual representation

of human motion. Specifically, for each frame in the video segment of size 150, we

generate an MHI with a history of 20 frames and the synchronized IMU as the input

to our model, with the objective of minimizing the triplet loss. At test time, we

compute the feature distance between all MHIs and IMU sequences in the temporal

window and predict the IMU source with the minimum average feature distance.
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Table 5.1: Quantitative comparison of our method with baselines.

Number of People N=2 N=3 N=4 N=5 Overall

Number of Samples 32 135 102 163 432

Random Guess 0.500 0.333 0.250 0.200 0.276

1) Velocity Magnitude 0.474 0.333 0.294 0.261 0.307
2) Velocity Mag. Histogram 0.519 0.333 0.426 0.291 0.352
3) Acceleration Magnitude 0.766 0.495 0.738 0.313 0.504
4) Accel. Mag. Histogram 0.519 0.366 0.455 0.321 0.381
5) 3D Orientation [9] 0.502 0.344 0.306 0.194 0.290
6) 2D Optical Flow 0.682 0.402 0.392 0.439 0.434
7) Visual-Inertial Binary Classification 0.667 0.697 0.635 0.605 0.645
8) MHI-Inertial Triplet 0.950 0.667 0.717 0.692 0.709

Ours 0.875 0.681 0.784 0.688 0.724

We show quantitative comparison of our method and above baselines in Table

5.1. We can see that baseline methods 1 to 4 with hand-designed feature often

perform poorly as the motion features from the visual and inertial modalities are in

different feature spaces, and it is challenging to directly match them. Also, learning

to transform one modality to the other (i.e., baseline methods 5 and 6) does not

achieve superior performance. This proves again the significant gap between the two

modalities. We show that, only when we transform the features from two modalities

into a joint feature space in our method, significant improvement can be achieved

across videos with different number of people in the scene. Binary classification

trained with only visual-inertial data from the same person achieves competitive

results but still worse than our method, which shows effectiveness of using a triplet

loss to reduce the number of false positives. MHI-Inertial Triplet model has high

accuracy on some cases but the overall performance is slightly worse than ours, which

means MHI is not a consistently good visual feature representation. Practically,

MHI would suffer more from camera ego-motion if the system is extended for videos

captured from a vehicle dash camera, which makes it a less-than-ideal design choice

for visual feature representation. Additionally, we show the qualitative results of our

method on the test set in Fig. 5.3. The results show that our method can predict

a correct match in most of the frames, while in the failure cases the true target is
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Figure 5.3: We show qualitative results of our method for visual-inertial person
localization on three test videos with different number of people in the scene. The
green box indicated as the IMU source is the target person while the blue box is
the predicted target person by our method. When the green and blue boxes fall on
a same person, it is a correct match. We show both successful and failure cases in
the results. Also, we visualize the distance of the visual feature for each TSP to the
inertial feature of the true target person.

often confused with another false predicted target with similar motion (best viewed

in video).

5.3 Ablation Study

5.3.1 Length of the Time Window

As more discriminative motion feature can be found in a longer time window, we believe

the length of time window is an important factor to the performance of our method

and run ablation experiments with respect to it. Specifically, we run experiments

with a window length of 100, 150, 180, 200 frames (i.e., 3, 5, 6, 6.67 seconds). We use

the same step size of 20 frames (0.67 seconds) for all experiments. We found that the

highest accuracy is achieved with a window length of 150 frames. Also, we observed a

performance drop when the window length goes beyond 150 frames. It turns out that

when the window length increases beyond 150 frames, the number of data samples
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Table 5.2: Performance of our method with respect to window length.

Window Length / frames Number of Training Samples Overall Accuracy

100 513 0.622
150 (Ours) 432 0.724

180 397 0.427
200 363 0.568

Table 5.3: Performance of our method with respect to different variations of the
inertial feature representation.

Inertial Feature Representation N=2 N=3 N=4 N=5 Overall

(v̂, a,ω) 0.719 0.563 0.637 0.656 0.627
(a,ω) 0.750 0.632 0.643 0.619 0.638
(v̂,ω) 0.656 0.495 0.461 0.405 0.465

(aLPF,ωLPF) (Ours) 0.875 0.681 0.784 0.688 0.724

drops significantly as most of the person trajectories in our dataset are short due to

heavy occlusion by other persons. As a result, due to limited data samples, training

process of our network becomes unstable and evaluation is not trustable. Additionally,

a longer time window means a larger latency of our method. Therefore, we did not

further investigate longer time window but use the window of 150 frames in our final

model.

5.3.2 Inertial Feature Representation

The use of a different feature representation can result in significant differences in

performance. Here, we first investigate different variations of the inertial feature

representation. In addition to the linear acceleration and angular velocity, we believe

the linear velocity might be also an informative feature for matching with the visual

motion feature. To that end, we integrate the linear acceleration from the IMU to

estimate the linear velocity v̂ = [v̂x, v̂y, v̂z] as an additional 3D motion information.

As we ask the volunteers to stand still at the beginning of each video recording and

then to start moving freely, we can use an initial velocity of 0 for the integration.

Results in Table 5.3 first row (v̂, a, ω) show that concatenating the estimated linear

velocity with the linear acceleration and angular velocity unfortunately performs

slightly worse than without adding the linear velocity as shown in the second row
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Table 5.4: Performance of our method with respect to different variations of the
visual feature representation.

Visual Feature Representation N=2 N=3 N=4 N=5 Overall

TSP optical flow w/ b and k (Ours) 0.875 0.681 0.784 0.688 0.724
TSP optical flow w/ b 0.850 0.562 0.529 0.380 0.507
TSP optical flow w/ k 0.719 0.632 0.637 0.405 0.554
TSP optical flow only 0.624 0.504 0.536 0.312 0.448

Table 5.5: Performance of our method with/without visual-inertial magnitude features.

Visual-Inertial Magnitude N=2 N=3 N=4 N=5 Overall

With (Ours) 0.875 0.681 0.784 0.688 0.724
Without 0.767 0.671 0.641 0.720 0.689

of Table 5.3. Also, we experiment a variant that concatenates the estimated linear

velocity and angular velocity in the third row of Table 5.3, which has a even lower

performance than both the first and second row. These results demonstrate that the

estimated linear velocity through integration might not be accurate enough due to

the error accumulation from the IMU drift and thus we do not use the linear velocity

in our final model.

Additionally, as the inertial data obtained from the IMU sensor often has high-

frequency noise, we experiment the effect of a low-pass filter to our method. Specif-

ically, we apply the filter to both the linear acceleration and angular velocity and

obtain a smoother version of the inertial features (aLPF,ωLPF), which turns out

improving overall performance by 13.5% across settings with different number of

people.

5.3.3 Visual Feature Representation

To verify whether adding the relative positions of person’s shoulder keypoints and the

bounding box size to the visual feature is useful in our model, we ran experiments

with both features, either feature, or none in addition to the optical flow feature

of the temporal super-pixels. From the results in Table 5.4, we observed that both

shoulder keypoints and bounding box size features are indeed useful and improve the

performance on test videos with different number of people.
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Table 5.6: Performance with regard to different levels of motion.

Number of People N=2 N=3 N=4 N=5 Overall

Number of samples 5 45 34 29 113
γ ≤ 0.4 1.000 0.333 0.588 0.275 0.424

Number of samples 27 90 68 134 319
γ > 0.4 0.815 0.867 0.662 0.813 0.796

5.3.4 Visual-Inertial Magnitude Feature

We also compare models with and without the magnitude features from optical flow

and IMU acceleration as a separate triplet branch, to verify whether it is necessary

to include the motion intensity information in our model. From results in Table 5.5,

adding magnitude features improves overall performance by 5%.

5.3.5 Performance with regard to Different Levels of

Motion

From the quantitative results for baseline comparison and ablation studies, we observe

our presumption that larger number of people would cause decrease in prediction

accuracy does not always hold. As our proposed method relies on the motion feature

matching between the inertial and visual modalities, it is difficult to perform the

matching if the target person has nearly no motion. Therefore, we introduce a new

task complexity measurement — motion diversity. We define the threshold as the

sum of standard deviations of IMU acceleration and angular velocity sequences over

the time window: σ({||ω||2}Kk=1) + σ({||a||2}Kk=1) < γ.

We apply a threshold of γ = 0.4 to filter testing samples with large and small

variations in acceleration and angular velocity. Table 5.6 shows performance of

our proposed method on testing set separated by large and small motions. The

prediction accuracy is significantly higher where γ > 0.4, and fails to achieve over

50% for γ ≤ 0.4. In the future, we plan to deal with this limitation with additional

small-motion-sensitive or context features in order to achieve person localization even

the target person has no motion.
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Chapter 6

Conclusions

6.1 Summary

We explore the possibility of using the inertial data to localize the target person in

the video, in the case where we do not have access to the target person’s appearance

information in advance. We term this proposed task as the visual-inertial person

localization. To solve this task, we first collect a new large visual-inertial dataset,

which is significantly different from existing datasets in that our new dataset contains

multiple people in the wild and does not have strict constraint on the attached

location of the inertial sensor. Additionally, we propose an effective approach that

learns a transformer and maps the visual and inertial features into a joint feature

space for matching. Through extensive experiments, we show effectiveness of each

component of our method and demonstrate that the proposed method outperforms

competitive baselines in our challenging dataset.

6.2 Future work

1. Currently, although the dataset contains certain amount of natural and diverse

pedestrian motions, it is still limited in size in terms of number of people and

scenes. Collecting more data at scale is an important next step to see how the

model generalizes to more complex scenarios (e.g.more occlusions where there
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can be more uncertainty in person detection and tracking), and it is necessary

for training the model to avoid overfitting.

2. As our final goal is to deploy this system to mobile robots or autonomous vehicles

for locating specific people in the video stream given their IMUs, one potential

extension to this work is to test on video captured from a moving camera.

Currently each video segment in the dataset used for training and testing is

captured from a webcam fixed on a tripod. For future data collection, video

can be captured from a car-mounted camera to simulate the car approaching a

pick-up location. To adapt our current framework to dynamic videos, further

modification to the model might be necessary, such as background segmentation

and ego-motion estimation, to remove noise from ego-motion.
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