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Abstract

We are interested in the detection and segmentation of anomalies in images
where the anomalies are typically small (i.e., a small tear in woven fabric, bro-
ken pin of an IC chip). From a statistical learning point of view, anomalies have
low occurrence probability and are not from the main modes of a data distribu-
tion. Learning a generative model of anomalous data from a natural distribution
of data can be difficult because the data distribution is heavily skewed towards
a large amount of non-anomalous data. When training a generative model on
such imbalanced data using an iterative learning algorithm like stochastic gradi-
ent descent (SGD), we observe an expected yet interesting trend in the loss val-
ues (a measure of the learned models performance) after each gradient update
across data samples. Naturally, as the model sees more non-anomalous data dur-
ing training, the loss values over a non-anomalous data sample decreases, while
the loss values on an anomalous data sample fluctuates. In this work, our key hy-
pothesis is that this change in loss values during training can be used as a feature
to identify anomalous data. In particular, we propose a novel semi-supervised
learning algorithm for anomaly detection and segmentation using an anomaly
classifier that uses as input the loss profile of a data sample processed through an
autoencoder. The loss profile is defined as a sequence of reconstruction loss val-
ues produced during iterative training. To amplify the difference in loss profiles
between anomalous and non-anomalous data, we also introduce a Reinforcement
Learning based meta-algorithm, which we call the neural batch sampler, to strate-
gically sample training batches during autoencoder training. Experimental results
on multiple datasets with a high diversity of textures and objects, often with mul-
tiple modes of defects within them, demonstrate the capabilities and effectiveness
of our method when compared with existing state-of-the-art baselines.
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Chapter 1

Introduction

Given a small set of labeled images along with a set of unlabeled images, our goal
is to utilize the limited labeled data efficiently to detect and segment the anomalies
in the unlabeled set. Anomaly detection and segmentation is useful for applica-
tions manufacturing industry, optical inspection tasks are concerned with picking
out defective products such that they are not sold to the consumers. Meanwhile,
in safety inspection tasks such as in construction sites, cracks in concrete or rust
on metal may indicate that the structure or the foundation of the building is un-
safe, and would require workers to reinforce the problematic sections such that it
does not pose as safety risks.

Although supervised segmentation algorithms have seen significant advances
in recent years [7,24,29], they are difficult to apply directly to such tasks due to the
rare occurrence of anomalies during data collection. This results in an extremely
imbalanced dataset, with non-anomalous images dominating the data while the
anomalous images only making up a small fraction of the dataset. Furthermore,
the collected anomalies are usually underrepresented, as it is difficult to capture
all possible modes of anomalies during data collection.

Due to these challenges, it is unsurprising that the majority of the work has
been directed towards novelty detection in images using little to no supervision
from anomalous data. A family of work is interested in detecting if a new input
is out-of-distribution when compared with the training data (i.e. from different
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classes), which is commonly referred to as one-class-classification or outlier detec-
tion [11,19,22,26,36,37]. While this type of classification on the class or image level
is important, we are concerned with a different type of “novelty” (or anomaly),
where they usually occur only in small areas in the object or image (i.e., a crack
on a surface as in Fig. 1.1). Some works have investigated this problem with the
prior assumption that there exists a large set of anomaly-free images to be used as
training data, often referred to as unsupervised anomaly detection [1,3,6]. How-
ever, as these methods often use heuristics-based approaches for prediction, they
often suffer from low precision issues.

Figure 1.1: Example of anomalous images and predictions on various objects and
textures from different datasets.

Thus, it is desirable to seek for some middle-ground between fully supervised
methods and unsupervised methods in hopes of improving the precision of pre-
dictions but requiring as little annotated data as possible. To this extent, we ex-
plore semi-supervised methods for anomaly detection and segmentation in im-
ages in our work. To put more generally, the anomaly detection and segmentation
problem can be framed as a binary semi-supervised segmentation task with sig-
nificant skew in its data distribution. We observe that while training a generative
model on the imbalanced data using an iterative learning algorithm like SGD,
the majority of the gradient updates are dominated by the more frequently oc-
curring non-anomalous data, resulting in unstable and possibly non-converging
behaviors for the anomalous data. This suggests that we can use loss profiles as an
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informative cue for detecting anomalies. Thus, we introduce an anomaly classifier
to detect and segment anomalies using the loss profiles of the data from training
an autoencoder. By periodically re-initializing and re-training the autoencoder,
the resulting loss profiles change due to differences in both the initial weights
and sampled training batches, which provides diversified inputs to the classifier,
preventing overfitting.

One question to consider is what the optimal way of sampling training batches
for the autoencoder is, such that it produces the most discriminative loss profiles.
Conventionally, heuristics-based methods such as random sampling are used to
train neural networks with the intention of providing stable gradient estimates,
but that is different from what we desire. Another heuristics-based method is to
sample on non-anomalous regions only, but this can only be done on the small
amount of labeled data as the majority of data is unlabeled. Instead of using
heuristics, we introduce a Reinforcement Learning (RL) based neural batch sam-
pler that is trained to produce training batches from the data for the autoencoder
to maximize the difference of the loss profiles between the anomalies and non-
anomalies. Under this formulation, the neural batch sampler and the classifier
work together such that it achieves satisfactory prediction error on the small la-
beled set of images, while the autoencoder acts as a “proxy” with the sole purpose
of providing loss profiles as input to the classifier.

In summary, the contributions of the thesis is as follows:

• We propose a semi-supervised learning framework for a binary segmenta-
tion task with significant data imbalance, with the application to anomaly
detection and segmentation.

• We introduce an anomaly classifier that takes as input the reconstruction loss
profiles from an autoencoder. The autoencoder is periodically re-initialized
and re-trained, producing diversified loss profiles as input.

• We train a RL-based neural batch sampler that supplies the autoencoder
with training batches. It aims to maximize the difference of the loss profiles
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between anomalous and non-anomalous regions.

• Empirical results on multiple datasets spanning a large variety of objects
and textures show our superiority over existing works.
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Chapter 2

Related Work

Based on the definition of anomalies, existing work can be broadly split into two
categories: anomaly detection and one-class classification. In anomaly detection works,
the anomalies of concern are typically small, and only differ from the normal data
subtly (i.e., scratches on wood, chips on objects). On the other hand, one-class-
classification is concerned about detecting out-of-distribution samples, which are
often samples belonging to other classes (i.e., finding a cat in dataset of dogs), and
differ significantly in terms of visuals. In anomaly detections works, some algo-
rithms also have the capabilities to predict segmentation masks of the anomalies
in images, which is referred to as anomaly segmentation. In the following sections,
we will introduce some existing work from the two categories and how our work
relates to them.

2.1 Anomaly Detection and Segmentation

Existing literature on anomaly detection and segmentation are mostly focused on
what is so called “unsupervised” anomaly detection, where it is assumed that a
known set of non-anomalous images is available as training data. Note that this
is strictly different from the formal definition of unsupervised learning, where no
knowledge on the labels are available. The goal is to then detect and/or segment
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anomalous regions that appears differently (i.e., defects on a surface) from the
training data. A comprehensive review on many different approaches for unsu-
pervised anomaly detection was given by Pimentel et al [21]. In the remainder of
this section, we strict ourselves to the more recent state-of-the-art methods, which
are commonly used as baselines for other unsupervised anomaly detection works.

2.1.1 Reconstruction-based Methods

Traditional reconstruction based methods for unsupervised anomaly detection
learn an image reconstruction algorithm (i.e., feature banks or dictionaries) on
a training set consisting of non-anomalous data only, then apply the learned al-
gorithm to the testing data and evaluate the magnitude of the reconstruction to
determine the anomalies. This is based on the observation that since the data
samples in the training dataset are non-anomalous, the information stored in fea-
ture banks or dictionaries correspond to the non-anomalous samples, resulting in
significant overfitting and poor generalization to other data (i.e., anomalous sam-
ples). As a result, the algorithm fails at reconstructing the anomalous samples,
which translates to higher loss values.

Carrera et al [6] takes inspiration from this line of work and trains a convo-
lutional autoencoder on the non-anomalous images such that it overfits and uses
the magnitude of reconstruction loss on test images to determine anomalous re-
gions. There has also been works that builds upon this, such as replacing tradi-
tional convolutional autoencoders with variational autoencoders for brain MRI
scans [1]. However, they do not report a significant improvement over using con-
volutional autoencoders, which echos the findings of in other work [4]. Another
work proposed to use structural similarity losses over per-pixel MSE losses [4]
and observed an improvement over fabric datasets for anomaly detection, but in
a more recent work which compares many methods over a large variety of objects
and textures [3], using per-pixel MSE losses resulted in higher performance on
more objects and textures.

Our work is the most related to this of work and also uses reconstruction losses
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to predict anomalies. However, instead of assuming that all given data is non-
anomalous, we adopt a more standard semi-supervised setting, where a few an-
notated anomalous images are given in addition to a a large amount of unlabeled
images. We also propose to use the loss history profiles instead of the mentioned
heuristics based approaches (i.e., using final reconstruction loss magnitude) to
predict the labels, which can also capture higher order statistical measures (e.g.,
variance or skewness) to increase the precision of our predictions.

2.1.2 Generative Model Based Methods

Schlegl et al. [28] propose to use GANs [13] to model the manifold of the non-
anomalous data samples in retinal scans. The generator is able to generate re-
alistically looking images and can fool the adversarial discriminator. In effect,
this results in a generator that overfits and can only generate similar looking non-
anomalous samples and a discriminator that can measure the difference between
the test image and the training set, which ideally represents how “non-anomalous”
it looks. During evaluation, the algorithm first searches for a latent vector that best
“reconstructs” a given test image and fools the discriminator, then compares the
generated image with the original queried testing image to determine where the
anomalies are using the loss values. A recent research that compared different
state-of-the-art unsupervised anomaly detection algorithms over a multitude of
different objects and textures found that the method is out-performed by recon-
struction based methods in general [3].

2.1.3 Using Pre-trained or Handcrafted Features

The aforementioned methods tries to learn features directly from the given train-
ing data. A separate line of work utilizes pre-trained CNN features separately
trained on image classification tasks or handcrafted features as a basis to perform
anomaly detection. One approach [20] uses pretrained ResNet [16] features from
ImageNet [10] to distinguish anomalous data. However, their method is restricted
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to per-image predictions instead of spatial anomaly maps. There are also methods
that apply hand-crafted features from non-anomalous images using GMMs [5] or
variational models [32], but they have been shown to achieve subpar performance
compared to the previously mentioned methods [3].

2.1.4 Supervised Methods

There has also been some works on applying supervised learning based approaches
to tasks like crack detection in roads [9, 30]. While supervised segmentation al-
gorithms have seen significant advances in recent years [7, 24, 29], it is generally
difficult to apply to anomaly detection tasks as argued earlier due to the difficulty
in collecting a large amount of anomalous data. In addition, since supervised
methods rely on RGB features, it is also difficult for the learned models to gener-
alize to unseen anomaly modes that is not collected in the training data.

2.2 One-Class Classification

One-class classification, sometimes referred to as outlier detection, is concerned
about detecting out-of-distribution samples relative to the training set. While
this sounds similar to the aforementioned unsupervised anomaly detection task
and can also be broadly encompassed under novelty detection, the definition of
“novelty” is extremely different for the two tasks. One-class classification is con-
cerned about outliers on a class-level or image-level, where the anomalies and non-
anomalies in anomaly detection tasks generally belong to the same class or type
of object. For example, while anomaly detection tasks may be concerned about
finding rust or chips on metal, one-class classification may be interested in distin-
guishing cats from a dataset of dogs.
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2.2.1 Statistical Modeling Methods

Conventional methods for one-class classification focuses on using statistical mod-
eling to model the target class, which is then used to detect out-of-distribution
samples. For example, some works fit distributions on features that are extracted
from samples in the training set and denote samples far from this distribution as
outliers [11,19,37]. Other works [22,36] are based on PCA and assumes that inlier
samples have high correlations and can be spanned in low dimensional subspaces,
often forming large clusters. As a result, samples that don’t accord well in the low
dimension subspace or forming small individual clusters are denoted as outliers.

2.2.2 Self-Representation Based Methods

Some works have shown that self representation can be a powerful tool for one-
class classification for rare events. Cong et al. [8] makes the assumption that out-
liers can not be well represented sparsely and proposed self-representation tech-
niques for detecting anomalous events in videos by learning a sparse model to
separate outliers from inliers. In a similar fashion, Liu et al. [18] learns a low-
rank matrix instead of a sparse representation, and adds a penalty for the sum
of unsquared self-representation errors, which leads to more robustness against
outliers. Some works [35] have also employed autoencoders and reconstruction
losses, which attempts to reconstruct test samples using models trained on inlier
samples only, like in Section 2.1.1.

2.2.3 Adversarial Learning Methods

Another line of work uses deep adversarial learning for one-class classification.
Ravanbakhsh et al. [23] proposed to learn the generator as a reconstructor of nor-
mal events, and labels chunks of events that are not reconstructed well as anoma-
lies. The work by Sabokrou et al. [27] takes a similar approach, but learns a gen-
erator that refines and reconstructs noisy inlier images and distorts noisy outlier
images. This amplifies the difference in reconstruction even further and leads to
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an increase in performance.

2.2.4 Semi-Supervised Methods

Recently, there has been work on semi-supervised one-class classification using in-
formation theoretic approaches [26]. They formulate a training objective to model
the latent distribution of the normal data to have low entropy, and the latent dis-
tribution of anomalies to have high entropy.
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Chapter 3

Method

In this section, we introduce our algorithm for semi-supervised anomaly detection
and segmentation. As with semi-supervised learning, our dataD is split into two
sets. The first set Dl contains a small amount of image-label pairs, in which there
exists some collected anomalous data. The second set Du is a large unlabeled
set of images. Our goal is to leverage the entire dataset (Dl ∪ Du) to predict the
corresponding labels of the images in the unlabeled set Du.

3.1 Overview

On a high level, our framework contains 3 modules, a neural batch sampler, a con-
volutional autoencoder, and an anomaly predictor, as depicted in Figure 3.1. First,
consider what happens when we train an autoencoder over the highly imbalanced
data we have. When we calculate the reconstruction loss for the autoencoder and
update its weights, most of the loss is contributed by the non-anomalous regions.
As a result, the autoencoder mostly optimizes for the reconstruction of the non-
anomalous regions, leading to highly fluctuating loss profiles in the anomalous
regions and more converging loss profiles in the non-anomalous regions. Based
on this observation, we train a CNN-based predictor to classify anomalies based
on the produced loss profiles. To amplify the difference between the loss profiles
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Figure 3.1: High-level overview of our algorithm. The solid lines represent the
pipeline of the forward pass and the red dashed lines represent the flow of the
loss and reward terms to train the modules. Note that we do not perform any
data augmentation nor use the FIFO buffer during inference.

of the anomalous and non-anomalous regions, and make classification easier for
the predictor, a neural batch sampler is trained using Reinforcement Learning to
supply training batches to the autoencoder.

Having gone over the high level concepts, we now elaborate on the specific
designs of the 3 modules. The exact network architecture design can be found in
the supplementary materials.

3.1.1 Neural Batch Sampler

The neural batch sampler is introduced to produce training batches for the au-
toencoder such that the difference between the loss profiles of anomalous and
non-anomalous regions are maximized. There are two possible sources where
this information can be inferred from: the RGB information xi and the current
pixel-wise reconstruction loss li of an image. Intuitively, the neural batch sam-
pler may realize that specific patterns may lead to less discriminative loss profiles
(i.e., patches that contain anomalies), while larger loss values may correspond
to anomalies due to them being harder to train. To give the sampler an idea of
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what has already been sampled, we additionally supply the binary sampling his-
tory hi as input, which are binary values indicating if the pixels in an image have
been previously sampled in the episode. These 3 sources of information (xi, li, hi)
are concatenated to represent the state, then fed into 5 convolutional and 2 fully-
connected layers, producing an output tensor which represents the action prob-
abilities of the policy. The action space of the policy contains 9 actions, which
corresponds to eight different directions in which to shift the center of the ex-
tracted patch in (by a pre-specified value) and an additional action that allows
the neural batch sampler to switch to a (random) new image, with the initial cen-
ter of the patch selected at random. Compared to naive designs where the neural
batch sampler is allowed to directly specify the center of the patch on the image,
our action space is significantly smaller in dimensionality (choosing fromW ×H
pixels compared to choosing from 9 actions). This in turn reduces the complexity
of the learning problem, which drastically eases and speeds up training, at the
cost of sacrificing the expressiveness of the actions. In empirical experiments, we
found that this is a trade-off worth making, as the naive version can sometimes be
very difficult to train, while our design can be trained fairly consistently without
any noticeable degradation in performance.

3.1.2 Autoencoder

The autoencoder is used solely to produce loss profiles for the predictor. As a
result, the design of the autoencoder is fairly standard: it takes the input patch
and compresses it spatially into a 1× 1×K bottleneck tensor using convolutional
layers, then decodes it back into the original input with transpose convolution
layers. Additionally, we add some shortcut connections between the encoder and
decoder to speed up the training. A problem here is that as the autoencoder trains
and converges, the updates become smaller, leading to decreased variety in the
loss profiles. To combat this issue, we periodically re-initialize and re-train the
autoencoder. This is crucial to producing diversified loss profiles for training the
predictor, as every time the autoencoder is re-trained it starts from a different set
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of weights and is optimized towards different local minimas. To store the loss
profiles for training the predictor, we add them to a FIFO buffer of fixed size.

3.1.3 Predictor

Intuitively, the predictor is a classifier performing object segmentation in the “loss
space” instead of the RGB space. As such, we draw many inspirations from ex-
isting object segmentation works [7, 24, 29]. The predictor is implemented with
a fully convolutional network using dilated convolutions, which scales up the re-
ceptive field exponentially w.r.t. the number of layers. It takes as input loss his-
tory profiles of size W × H × T and outputs binary segmentation masks of size
W ×H×1. We perform normalization on the raw loss history profiles as a form of
pre-processing via dividing the loss history profiles by its mean. This allows the
predictor to focus on the relative differences between the loss profiles at individ-
ual pixels instead of their absolute values, which changes dramatically throughout
the training of the autoencoder.

3.2 Training

There are 3 modules that require training: the neural batch sampler, the autoen-
coder, and the predictor. At the high level, training steps for the three compo-
nents are repeated in an alternating fashion until convergence. First, the neural
batch sampler samples training batches for the autoencoder, which the autoen-
coder uses to performs an update and then re-evaluates its reconstruction loss l.
The reconstruction loss is appended to the loss profile h, with the oldest element
popped off (h ← h[1 : ] _ l), and saved to a FIFO buffer. The predictor then
samples loss profiles from the buffer and updates itself, while producing a pre-
diction loss for computing the reward of the neural batch sampler. The neural
batch sampler then uses the reward to perform a Policy Gradient update, and the
whole process repeats. As reference, the pseudocode of the training algorithm is
provided in Algorithm 1. Note that the autoencoder is periodically re-intialized
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every K udpate steps and we skip the first M updates for the neural batch sam-
pler after re-initializing the autoencoder as the starting reconstruction loss values
are too noisy.

Algorithm 1: Training
Input: Labeled data {(xl, yl)} ∈ Dl, unlabeled data {xu} ∈ Du,

hyperparameters K, M
Output: Neural batch sampler θs, predictor θp, best loss history profile h∗

begin
Initialize neural batch sampler θs, autoencoder θe, predictor θp, buffer
B

Perform data augmentation on Dl, Du, giving D′

l , D
′
u

j ← 0, hu ← 0, hl ← 0, lowest loss←∞
while not converged do

Sample patches {pl,i} ∼ D
′

l with θs, compute Rclone, Rcover

Sample patches {pi} ∼ (D′

l ∪ D
′
u) with θs

Group {pi} into mini-batches and train θe
Evaluate reconstruction loss lu and ll on Du and Dl with θe
hl ← hl[1 : ]_ ll, hu ← hu[1 : ]_ lu

Perform data augmentation on (hl, yl) and append to B
Sample (hl, yl) ∼ B, normalize hl, calculate lpred and update θp
if j%K > M then Calculate Rpred and update θs using Eq. 3.1, 3.3,
3.4

if lpred < lowest loss then h∗ ← hu

if j%K = 0 then Reinitialize θe, hu, hl
j ← j + 1

Update β according to Eq. 3.3
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3.2.1 Neural Batch Sampler

The neural batch sampler aims to sample a sequence of patches {p1, p2, ..., pN}
from the dataset D to train the autoencoder such that it produces the most dis-
criminative loss profiles between the anomalies and non-anomalies for the pre-
dictor. To achieve this, we invoke the Reinforcement Learning framework [33],
which assigns credit to the actions (in this case, how the patches are sampled)
taken based on the obtained reward at the end of the sequence of actions. Since
we wish to enhance the contrast of the loss profiles and aid the predictor by se-
lecting the right training batches, we define the reward function Rpred

1 to be the
negative of the prediction loss:

Rpred =

−lpred, t = N

0, otherwise
(3.1)

where the prediction loss lpred is defined as the weighted binary cross entropy
loss to account of the inherent imbalance in the data.

lpred = −
1

K

∑
K

1

WH

∑
W,H

y log ŷ + α(1− y) log (1− ŷ). (3.2)

Here K represents the batch size, α is the empirically calculated re-weighting
factor between the anomalous and non-anomalous pixels, y represents the ground
truth annotations in the small labeled subset Dl, and ŷ is the predicted labels ob-
tained from the predictor at the end of the framework. To prevent images with
larger anomalies from dominating the loss signal, we first take the average over
individual images with dimensionality W ×H in Eq. 3.2.

While we can directly use standard RL algorithms like Policy Gradient meth-
ods to optimize for a batch sampling strategy from scratch by maximizing the
obtained reward, empirical experiments show that such a naive method is ex-
tremely inefficient and makes it hard for the network to train. This is due to the

1To be more precise, this should be written as Rpred, t, but we omit the subscript t in the paper
for simplicity.
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sparse nature of the rewards, which only occurs at the end of each episode as
defined in Eq. 3.1. To alleviate this issue, we make the observation that we do
know of a good but perhaps sub-optimal heuristics-based strategy that allows us
to bootstrap the exploration phase by assigning dense rewards for every patch
sampled via behavior cloning [25]. This allows the neural batch sampler to start
from a meaningful strategy instead of trying to learn everything from scratch.
The heuristics-based strategy is simple: only sample from locations that are non-
anomalous. Intuitively, if the autoencoder has never seen anomalies before, then it
should not have any knowledge on how to encode and decode anomalies, leading
to high loss on anomalies. Thus, we can perform behavior cloning by running the
neural batch sampler on our small labeled subset, Dl, and assign a reward Rclone

for every sampled patch by checking if the corresponding label ypatch contains any
anomalies.

In Rclone, the neural batch sampler is not concerned about the ultimate goal of
improving the contrast between the loss profiles of anomalous and non-anomalous
regions. This results in a peculiar strategy: the batch sampler will repeatedly sam-
ple on regions near the first non-anomalous patch to minimize the risk of sampling
an anomaly. To prevent this, we encourage the neural batch sampler to cover dif-
ferent portion of the data by including a small coverage bonus Rcover. This also
preserves incentive for exploration and prevents the policy from collapsing to a
single mode of action prematurely.

Naively, the training can be done in a stage-wise manner by first optimizing for
Rclone and Rcover for a good initial policy then switch over to optimizing for Rpred

for the goal of obtaining discriminative loss profiles between anomalies and non-
anomalies. However, this rough transition between the two objectives can cause
instability, so we take inspiration from scheduled sampling [2] approaches for a
smoother transition:

R = β (Rclone +Rcover) + (1− β)Rpred, β = max

(
0, 1− j

T

)
(3.3)

where β controls the weighting between the behavior cloning reward and the
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actual optimization goal by putting more emphasis on Rpred as the number of
training steps j increases. In contrast, the reward term R is dominated by the
behavior cloning term when the network has just started training. This achieves
the effect of using the dense rewards from behavior cloning to bootstrap the neural
batch sampler while ensuring a smooth transition to the desired goal of finding a
sampling strategy that improves the prediction results.

Having defined the reward function, we now apply a standard Policy Gradi-
ent algorithm named REINFORCE [34] to update our neural batch sampler. The
update rule for REINFORCE can be written as

∇θJ(θ) = Eτ∼πθ(τ) [∇θ log πθ(τ)r(τ)] , (3.4)

where the sampling strategy πθ(τ) is parameterized by the neural batch sam-
pler and r(τ) is the discounted sum of rewards. The expectation is approximated
using Monte Carlo sampling, and we found empirically that using 1 rollout se-
quence of actions to approximate the gradient works out well and allows us to
use standard backpropogation to update the neural batch sampler.

We would like to note that a common trick aimed to increase the stability of the
algorithm by normalizing the rewards actually harms the training in our scenario,
where the reward is only observed during the final timestep (as defined in Equa-
tion 3.1). While this trick can normalize the size of the gradient steps between
different rollouts and stabilize training, the normalization step actually removes
the reward signal and optimization target during training in our scenario. We
provide a short proof on this behavior below.

Proof. Assume that we have a sparse reward functionRt where the reward is only
provided at the end of each episode (sequence of actions) of the form

Rt =

k, if t = N

0, otherwise,

where the reward signal k only appears at the final timestep (t = N), and k

can take on multiple values depending on the actions taken in the whole episode
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(i.e. k ∈ {K1, K2, . . . }). The discounted reward Qt at each timestep is defined as

Qt = Rt + γRt+1,

where γ ∈ [0, 1] is called the discount factor that dictates how important future
rewards are to the policy. Applying this formula recursively to propagate the
reward signal back to the previous action gives us the relationship

Qt = γN−tk,

which is a geometric series relative to t. A common trick that is used in many
RL implementations is to normalize the discounted rewards by subtracting the
mean followed by dividing the standard variation for stability issues in backprop-
agation, as this restricts the gradient updates contributed by each timestep to be
in some specified range. We can easily calculate the mean and variance of this
geometric series to be

µQ =
k(1− γN)
N(1− γ)

= k · α,

σQ = k

√
1− γ2N
N(1− γ2)

− (1− γN)2
N2(1− γ)2

= k · β,

where α and β do not depend on the reward signal k. Applying the normal-
ization scheme gives us

Qnorm, t =
Qt − µQ
σQ

=
γN−tk − k · α

k · β
=
γN−t − α

β
.

We can see from the result that the reward signal k disappears in the normalized
discounted reward terms Qnorm, t. This implies that no matter the actions taken,
all the rewards seen by the algorithm is same, which means that there is no objec-
tive to be optimized for. Thus, optimizing does not happen, and the policy never
converges.
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3.2.2 Autoencoder

Since the autoencoder’s sole purpose is to provide a large variety of loss profiles,
its training is fairly standard. After the neural batch sampler produces a sequence
of patches, the patches are grouped into multiples of minibatches of size N and
fed into the autoencoder. We evaluate the reconstruction loss lae between the re-
constructed patches p̂i and the input patches pi and backpropogate the loss into
the autoencoder. To generate a diverse amount of loss profiles for training the
predictor, the autoencoder is re-initialized with random weights and re-trained
periodically. Empirically this is done after a fixed number (K) of update steps,
where the weights updates become small as the autoencoder converges.

After each update step, we evaluate the new reconstruction loss of the dataset
D and update the loss profiles. The new reconstruction loss values are used as
input to the neural batch sampler, while the updated loss profiles of the labeled
subset Dl in a FIFO buffer for training the predictor. The best performing loss
profiles of the unlabeled subset Du is saved to disc for inference.

3.2.3 Predictor

Fundamentally, the predictor is just a classifier that makes prediction based on
loss profiles, and thus is trained similarly to normal classifiers. While we can di-
rectly train on the loss profiles produced by the autoencoder, this causes problems
in the mini-batch gradient estimation as loss profiles produced within a similar
time period are highly correlated and dependent on each other, which induces
significant bias in the gradient estimation and leads to training instability. Thus,
we save the loss profiles in a FIFO buffer then sample randomly from it, which
remedies the issue as the samples in a mini-batch are no longer grouped together
temporally and are more likely to be independent. After the predictor outputs the
predicted labels, the weighted binary cross entropy loss is calculated as described
in Eq. 3.2 to update the predictor. Note that the same calculated loss is used for
computing the reward term in Eq. 3.1 for updating the neural batch sampler.
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3.3 Inference

Recall that after training, we have the saved weights of the most promising neural
batch sampler and the predictor in addition to the loss profiles of the unlabeled
set Du. The inference step is very simple: we take the loss profiles and run it
through the predictor again, producing the raw prediction results of Du. A fully
connected CRF [17] is applied to the raw predictions to smooth out the prediction
results, producing the final prediction labels. The kernel of the CRF assumes that
nearby regions with similar RGB values are likely to belong to the same class while
removing small isolated regions in the raw predictions.

3.4 Interpretations

Here we would like to draw some interesting connections and analyze our algo-
rithm in the viewpoints of traditional Computer Vision models and Reinforce-
ment Learning models.

3.4.1 The CV viewpoint

One way to interpret the algorithm is to adopt the traditional image/object classifi-
cation or segmentation view and treat everything before the predictor as a special
operator (i.e., the augmentations, the neural batch sampler, and the autoencoder)
that transforms the input of the predictor from RGB space to “loss profile space”.
In this case, there exists two sources of stochasticity in the transformation: the pe-
riodic re-initialization of the autoencoder, which randomly sets the starting point
in the loss space; and the randomness that arises from the sampling strategy of
the neural batch sampler, which moves the starting point towards local minimas
in the loss space. Combined together with data augmentations on the RGB space
and the loss space, this results in a diverse one-to-many relationship between RGB
images and loss profiles. This is what enables the successful training of a para-
metric model under the scarcity of labeled data.
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3.4.2 The RL viewpoint

Another way to interpret the algorithm is to adopt the Reinforcement Learning
view and consider everything other than the neural batch sampler to be part of
the environment in which a task is defined. In this case, the environment is dy-
namically changing, as the reward evaluation requires evaluating the actions of
the neural batch sampler (i.e., the sampled patches) on an ever-changing autoen-
coder and a slowly converging predictor. Thus, the neural batch sampler must
find a sampling strategy that not only leads to discriminative loss profiles between
the anomalous and non-anomalous regions, but it also must work on different
training phases of autoencoder. This is also one of the reasons that the neural
batch sampler receives the current reconstruction loss as input as described pre-
viously.
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Chapter 4

Experiments and Results

We conduct a thorough evaluation on multiple datasets and compare with other
methods to demonstrate the effectiveness of our algorithm. For the baselines, we
consider two state-of-the-art algorithms that can been applied to anomaly detec-
tion works. The first baseline is the best performing unsupervised anomaly detec-
tion algorithm in the MVTec AD dataset paper [3], which makes predictions based
on the final pixel-wise reconstruction loss after training an autoencoder only on
non-anomalous data. Since their code is not made available publicly, we carefully
re-implemented the algorithm as described in their paper and tried our best to
reproduce the results given in the paper. The second baseline is the U-Net [24], a
state-of-the-art supervised learning method originally for binary object segmen-
tation, and has since been generalized to many other semantic segmentation tasks.
We also apply standard data augmentation techniques with the baselines to help
them generalize better under the scarcity of data.

Since many of these datasets were originally collected for unsupervised anomaly
detection tasks, we create our own data splits for training and testing (i.e., labeled
and unlabeled set) as detailed in the next section.

23



4.1 Datasets

4.1.1 MVTec AD

MVTec AD [3] is a dataset originally created for unsupervised anomaly detection,
where the training set consists of only non-anomalous images and the testing set
being a mix of anomalous and non-anomalous images. The dataset includes im-
age samples from 5 texture classes and 10 object classes, with around 200 to 300

non-anomalous images in the original training set and around 100 images in the
testing set for the majority of classes. The anomalies in the testing set are also
grouped by difference modes for analysis.

For our semi-supervised method and the supervised baseline U-Net, we first
resize all images to 256×256 and randomly sample 5 images from the original test-
ing set in each class so that we get some anomalous samples in the labeled set (i.e.
|Dl| = 5). The remainder of the original testing set is reserved for performance
evaluation. Since the training set is randomly sampled, it is possible that the train-
ing set lacks certain anomaly modes. The unsupervised baseline is preprocessed,
trained, and evaluated exactly as in the original MVTec AD dataset paper, which
uses the original training sets with 200 to 300 non-anomalous images for training
and the entirety of the testing set for performance evaluation. The experiments
were run separately for each class as in the original paper.

4.1.2 NanoTWICE

The NanoTWICE dataset [6] is also originally a dataset collected for unsuper-
vised anomaly detection. The image samples in NanoTWICE are close-up views
of nanofibres, while the anomalies are manufacturing defects such as unnatural
arrangements or clumps in the fibre. As such, the anomalies in NanoTWICE are
often small, consisting only of a handful of pixels (refer to Fig. 4.1 for examples).
The dataset consists of 45 images, in which 5 images are anomaly-free and is orig-
inally used for training the unsupervised methods, with the remaining 40 all con-
taining some form of anomalies. Note that unlike the MVTec AD dataset where
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some testing data are anomaly-free, all testing data in the NanoTWICE dataset
contain some form of anomaly.

For the semi-supervised approach, we create a data split similar to what we
did for the MVTec AD dataset. All images are first resized to 256 × 256, then
we randomly sample 5 images for use as our labeled set Dl. All the remaining
images are placed in the unlabeled set Du. For training the U-Net, we use Dl and
reserve Du for performance evaluation. For the unsupervised method, we follow
the recommended data split, using the 5 anomaly-free images for training and
evaluate on the remainder of the image samples.

4.1.3 CrackForest

CrackForest [30] is originally created for a supervised learning task with 118 im-
ages total. It contains many road images with cracks and is reflective of urban
road surfaces. Being a dataset intended for supervised learning, all 118 images in
the dataset contain some kind of anomaly.

Like with the other datasets, we resize images to 256×256 and randomly sam-
ple 5 images from the whole dataset as the labeled setDl for our semi-supervised
method and U-Net, and reserve the remainder of the dataset as the unlabeled
set Du or for evaluation. Unlike the MVTec AD dataset, the anomalies are not
grouped by type, so we do not know if the sampled data covers all anomaly
modes, but it is highly likely that some modes are not represented in the train-
ing set due to the low number of samples. Since the dataset does not contain
any image samples that are anomaly-free, we do not evaluate the unsupervised
method on this dataset.

4.2 Implementation Details

In this section, we detail the implementation details and the network architectures
used in our experiments for reproduce-ability. We use a fixed size of 64 for the
dimensions of the extracted patch across all experiments such that the patches

25



contain meaningful information of object parts or textures.

4.2.1 Neural Batch Sampler

The policy of the neural batch sampler is defined by a convolutional neural net-
work with 5 convolutional layers and 2 fully-connected layers. In addition, Batch
Normalization is applied to the ReLU outputs following each convolutional layer
(i.e., Conv-ReLU-BN), and a softmax is applied to the outputs of the final fully-
connected layer to produce a probability distribution of the policy. To extract a
patch, we crop the image based on the current center point of the patch (initial-
ized at random). We shift the center point of the patch by a pixel distance of 24 if
the sampled action from the policy corresponds to one of the eight directions and
randomly select a new image (and a random initial center point) if the sampled
action corresponds to change image.

We provide information around the current 64×64 extracted patch to the neu-
ral batch sampler such that it can best decide its actions (shifting patch centers or
changing images) by using a 128 × 128 × 5 tensor as input, which corresponds
to the concatenation of the RGB channels (3 channels), the current reconstruction
loss (1 channel), and the binary sampling history (1 channel) of a 128× 128 win-
dow centered at the current extracted patch. The network structure for the neural
batch sampler is given in Table 4.1.

4.2.2 Autoencoder

The autoencoder is built in the form of an convolutional encoder-decoder with
one added shortcut connection to speed up training. We apply LeakyReLUs with
a negative slope of 0.2 and Batch Normalization to every layer except to the out-
put layers of the encoder and decoder. Since the sampled training batches are
not sampled uniformly from the data, we do not learn the running mean or vari-
ance for the Batch Normalization layers and use the empirical mean and variance
instead as the running mean or variance can differ dramatically across different
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Table 4.1: Network architecture for the neural batch sampler.

Layer Parameters
Input Dimensions Output Dimensions Kernel Size Stride Padding

Conv 1 128× 128× 5 64× 64× 16 3× 3 2 1

Conv 2 64× 64× 16 32× 32× 32 3× 3 2 1

Conv 3 32× 32× 32 16× 16× 32 3× 3 2 1

Conv 4 16× 16× 32 8× 8× 64 3× 3 2 1

Conv 5 8× 8× 64 4× 4× 64 3× 3 2 1

FC 6 1024 256 - - -
FC 7 256 9 - - -

training batches. The network structure for the neural batch sampler is given in
Table 4.2.

4.2.3 Predictor

The predictor takes heavy inspiration from existing object segmentation works
and is built using dilated convolutions. This allows the receptive field to scale
exponentially w.r.t to the number of layers instead of linearly as with normal con-
volutions. In addition, we apply LeakyReLUs with a negative slope of 0.2 and
Batch Normalization to every layer except for the output, where a sigmoid acti-
vation is used to provide the labels. The input is the reconstruction loss profile
of individual pixels in images, which we define to be the 10 most recent losses
in the history across our experiments. The network structure for the predictor
on MVTec AD is given in Table 4.3. For NanoTWICE and CrackForest, we dou-
bled the amount of channels in the hidden layers as we noticed that the predictor
experienced significant underfitting.
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Table 4.2: Network architecture for the autoencoder. Note that we add a shortcut
connection from the output of Conv5 to the output of Deconv3, doubling the input
channels to Deconv4. We set K = 200 for MVTec AD and CrackForest and K =

500 for NanoTWICE due to the more complex textures.

Layer Parameters
Input Dimensions Output Dimensions Kernel Size Stride Padding

Conv 1 64× 64× 3 32× 32× 64 4× 4 2 1

Conv 2 32× 32× 64 32× 32× 64 3× 3 1 1

Conv 3 32× 32× 64 16× 16× 128 4× 4 2 1

Conv 4 16× 16× 128 16× 16× 128 3× 3 1 1

Conv 5 16× 16× 128 8× 8× 256 4× 4 2 1

Conv 6 8× 8× 256 8× 8× 128 3× 3 1 1

Conv 7 8× 8× 128 8× 8× 64 3× 3 1 1

Conv 8 8× 8× 64 1× 1×K 8× 8 1 0

Deconv 1 1× 1×K 8× 8× 64 8× 8 1 0

Deconv 2 8× 8× 64 8× 8× 128 3× 3 1 1

Deconv 3 8× 8× 128 8× 8× 256 3× 3 1 1

Deconv 4 8× 8× 512∗ 16× 16× 256 4× 4 2 1

Deconv 5 16× 16× 256 16× 16× 128 3× 3 1 1

Deconv 6 16× 16× 128 32× 32× 128 4× 4 2 1

Deconv 7 32× 32× 128 32× 32× 64 3× 3 1 1

Deconv 8 32× 32× 64 64× 64× 3 4× 4 2 1

4.3 Experimental Results

We report the precision, recall, and F1 measure in Table 4.4 for the different classes
in MVTec AD and in Table 4.5 for NanoTWICE and CrackForest.

While the unsupervised method has achieves good recall, the precision score
is extremely low, which impacts its overall F1 score. This happens due to a large
number of false positives being predicted from thresholding over a single point

28



Table 4.3: Network architecture for the predictor on MVTec AD. For NanoTWICE
and CrackForest, the amount of channels in the hidden layers are doubled. W and
H corresponds to the width and height of the input.

Layer Parameters
Input Dimensions Output Dimensions Kernel Size Stride Dilation Padding

Conv 1 W ×H × 10 W ×H × 32 3× 3 1 1 1

Conv 2 W ×H × 32 W ×H × 16 3× 3 1 2 2

Conv 3 W ×H × 16 W ×H × 8 3× 3 1 4 4

Conv 4 W ×H × 8 W ×H × 4 3× 3 1 8 8

Conv 5 W ×H × 4 W ×H × 1 1× 1 1 0 0

of reconstruction loss. Such results suggests that while anomalies tend to have
higher reconstruction loss, it is not necessary that only the anomalous regions
incur higher reconstruction loss, which is why simple thresholding leads to sub-
par precision. Interestingly, even with just 5 labeled samples, U-Net serves as a
strong baseline, achieving higher F1 scores when compared to the unsupervised
method, due to a higher precision in many of the categories, even if it scores a
lower recall score than the unsupervised method. On the other hand, our pro-
posed method consistently scores the highest on MVTec and CrackForest, boast-
ing the highest score in almost all performance metrics. On NanoTWICE, the pro-
posed method scores an extremely high recall score, but the precision falls behind
of U-Net, bringing down its F1 score.

Qualitative inspection of the segmentation results produced by our proposed
method in Fig. 4.1 and Fig. 4.3 shows why this is the case on NanoTWICE: our
algorithm struggles with determining the exact size and shape of the anomalies.
This doesn’t come as a surprise, as the architecture of autoencoders compress spa-
tial information during the encoding phase, which often leads to a loss in spatial
resolution during decoding or reconstruction. Due to this, the reconstruction loss
profiles of neighboring pixels are closely related and dependent, which makes
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Table 4.4: Performance of the evaluated methods on MVTec AD. The top 10 classes
are object classes and the lower 5 are texture classes. For each class, the precision,
recall, and F1 measure are given. The best performing method for each class is
bolded.

Unsupervised [3] U-Net [24] Proposed
Precision Recall F1 Precision Recall F1 Precision Recall F1

Bottle 0.24 0.54 0.34 0.25 0.41 0.31 0.79 0.81 0.80
Cable 0.08 0.17 0.10 0.16 0.53 0.25 0.20 0.66 0.31

Capsule 0.05 0.25 0.08 0.04 0.08 0.05 0.10 0.14 0.12
Hazelnut 0.14 0.48 0.22 0.18 0.71 0.29 0.35 0.88 0.50
Metal Nut 0.19 0.30 0.23 0.29 0.28 0.29 0.81 0.84 0.82

Pill 0.06 0.24 0.09 0.19 0.11 0.14 0.29 0.74 0.42
Screw 0.03 0.42 0.06 0.01 0.07 0.01 0.05 0.29 0.08

Toothbrush 0.05 0.44 0.09 0.22 0.39 0.28 0.46 0.59 0.52
Transistor 0.08 0.11 0.09 0.14 0.08 0.10 0.13 0.31 0.18

Zipper 0.07 0.51 0.13 0.18 0.45 0.26 0.66 0.70 0.68
Carpet 0.04 0.42 0.08 0.33 0.62 0.43 0.56 0.69 0.62
Grid 0.01 0.82 0.02 0.07 0.51 0.12 0.10 0.62 0.17

Leather 0.01 0.61 0.02 0.11 0.78 0.20 0.23 0.88 0.36
Tile 0.18 0.24 0.21 0.31 0.46 0.37 0.88 0.50 0.64

Wood 0.11 0.28 0.16 0.28 0.49 0.36 0.41 0.63 0.50

the predicting of the exact anomalies’ boundaries difficult. This behavior greatly
impacts the precision of our method, as it produces many false positives that are
not in the ground truth. This property of our algorithm results in the effect that
the predicted anomalies are almost always larger in size and shape. Since many
anomalies in NanoTWICE are of extremely small with the size of just a hand-
ful of pixels, it makes the effect more dominant in quantitative analysis, which
is why the precision score of our proposed method falls behind U-Net on Nan-
oTWICE. Similar effects can also be observed from the visualizations in Crack-
Forest in Fig. 4.1 and Fig. 4.2, as we can see that the predicted masks are almost
always thicker or wider (often nearly twice as thick) than the ground truth, even
though that the shapes are similar. On MVTec Dataset, we can also see similar
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Table 4.5: Performance of the evaluated methods on CrackForest and Nan-
oTWICE. The precision, recall, and F1 measure are given for each dataset. The
best performing method is bolded.

Unsupervised [3] U-Net [24] Proposed
Precision Recall F1 Precision Recall F1 Precision Recall F1

NanoTWICE 0.02 0.65 0.04 0.37 0.59 0.45 0.21 0.80 0.33
CrackForest N/A N/A N/A 0.15 0.34 0.21 0.26 0.62 0.36

trends in the visualizations as in Fig. 4.4 and Fig. 4.5, where the algorithm is gen-
erally good at pinpointing the location of the anomalies, but tends to mess up on
the exact shape and contour of the anomalies. Despite this, we argue that this
behavior is acceptable in practical applications as we’re usually more concerned
about the location of the anomalies compared to the exact shape and size.

Figure 4.1: Predicted labels on CrackForest (left) and NanoTWICE (right). The
three rows correspond to the original images, predictions, and ground truth.
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Figure 4.2: Predicted labels on additional samples from CrackForest. The three
rows correspond to the original images, the predictions, and the ground truth.

Figure 4.3: Predicted labels on additional samples from NanoTWICE. The three
rows correspond to the original images, the predictions, and the ground truth.
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Figure 4.4: Predicted labels on hazelnuts and bottles from MVTec AD. The three
rows correspond to the original images, the predictions, and the ground truth.
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Figure 4.5: Predicted labels on wood, toothbrush, and tiles from MVTec AD. The
three rows correspond to the original images, the predictions, and the ground
truth.
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Interestingly, our proposed method seems to be able to detect anomaly modes
that are not present during training. Examples of this behavior is given in Fig. 4.6
and Fig. 4.7. In these examples, the presented modes of anomaloes from differ-
ent classes in MVTec were not sampled in the labeled set. While the segmen-
tation masks are not as good when compared to other anomaly modes that are
observed during training and can sometimes fail, we see that our proposed al-
gorithm still has the capability to pick them out in many scenarios. This suggests
that due to the statistically rare occurrence of anomalies, the loss profiles of differ-
ent modes of anomalies have some common trait in them, which can be picked up
and learned by our predictor, leading to some form of generalizability to unseen
anomaly modes. We believe that this is highly beneficial as it can help combat the
difficulty of identifying and collecting all modes of anomalous data during data
collection in real-life scenarios.

Figure 4.6: Predicted labels on unseen modes of anomalies during training for
zippers, grid, and wood in MVTec AD. The three rows correspond to the original
images, the predictions, and the ground truth.
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Figure 4.7: Predicted labels on unseen modes of anomalies during training for
capsules, carpet, tiles, leather, other unseen anomalies modes in zippers, and pills in
MVTec AD. The three rows corresponds to the original images, the predictions,
and the ground truth.

4.4 Failure Analysis

In addition to the difficulties in predicting the precise shape and size of the anoma-
lies, we further note that there exists specific classes within the MVTec AD dataset
that appears to be more difficult than the others: the capsule, screw, transistor, and
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the grid class. Compared to other classes in the dataset, we can see a consistent
and clear drop of performance in these specific classes. In fact, this performance
drop can be observed universally among all 3 methods, which suggests that these
classes share some common property that causes the 3 methods to fail. Visualiz-
ing some samples in the aforementioned classes shows us that the anomalies in
these classes differ from the norm in orientation or structure, instead of differing in
texture, as shown in Fig. 4.8.

The algorithm fails on these kind of structural anomalies due to the usage of
convolutional autoencoders, which struggles with capturing high-level structural
information, to produce loss profiles as our cue to identifying anomalies. Convo-
lutional autoencoders uses sliding convolutional filters across different patches in
an image as operators, with the receptive field increasing linearly as the number
of network layers increase. While this behavior should theoretically allow the con-
volutional autoencoder to capture more large-scale information like structure and
object orientation, they instead are significantly biased towards low-scale textural
information, which has also been observed in general CNN models for classifica-
tion [12] and image generation [14]. Since the textures of the anomalous sections
for these classes are largely similar to the non-anomalous regions, the difference
between the losses (and loss profiles) are often small, and thus makes it hard to
define or learn a good decision boundary during the training process. While U-
Net is based on image segmentation works and uses the RGB space directly as
input to predict anomalies, it also falls into the same problem as it also only uses
convolutional layers, which again tends to ignore structural information and focus
on the textures.

Solving this problem is non-trivial, as it would require us to bias the network
to focus more on large-scale and structural features, and has only started to be
investigated by researchers very recently. Geirhos et al. [12] propose a training
method that augments the RGB images with generated images using style-transfer
to intentionally increase the variety of the style and textures in images. Another
method proposed recently uses a curriculum to gradually control and exposes
textural information slowly through the training process [31]. In addition, it is
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Figure 4.8: Predicted labels on anomalies for screws, grid, capsules, and transistor
in MVTec AD. The three rows correspond to the original images, the predictions,
and the ground truth.

also possible that there exists some other network architectures that is biased more
towards shape and structural information. We hypothesize that by extending our
work in this direction, the algorithm will be able to better detect these kind of
structural anomalies.
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Chapter 5

Discussions

We can observe from the experimental results in Section 4 that by utilizing a
learned training batch sampling strategy combined with loss profiled based clas-
sifiers, we are able to significantly improve the precision and recall of anomaly
segmentation in a wide variety of objects. However, this approach comes with
two drawbacks. The first is the difficulty of producing the correct shape and
size of the anomalies. This problem arises because the reconstruction loss val-
ues of individual pixels are not independent due to the spatial downsampling
and upsampling in autoencoders, thus allowing information to bleed into and
from neighboring pixels. We hypothesize that this is hard to directly improve
upon as it is deeply rooted in the behavior of autoencoders. However, we can ap-
ply a multi-stage pipeline to refine the original prediction results, such as using
a binary clustering algorithm from pixel-level features extracted from pre-trained
neural networks. Another possibility is to introduce auxiliary tasks like predicting
bounding boxes, which has been shown to perform the performance in the line of
Mask R-CNN [15] works for image segmentation. The second difficulty is the de-
tection of the so-called “structural anomalies”, where the anomalous data differ
from the normal in structure (i.e., orientation, alignment) instead of in texture. In
fact, we can observe that all 3 aforementioned methods Section 4 suffer from this
issue, as indicated by similar performance drops in certain classes in MVTec AD.
We hypothesize that this is due to that property that traditionally trained CNNs
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are biased towards textural representations, which has also also investigated in
other recent works [12]. Since CNNs do not encode much structural information
during training, the information is also not reflected in the training loss profiles,
and is likely why our algorithm performs favorably when the anomalies differ in
texture but often fails when they differ in structure. It is possible that by encour-
aging some shape bias, or perhaps employing a multi-modal model operating on
shape and texture, would help mitigate this issue.

The current work can also be combined with integrating human interactions
into the training loop to transform the problem into an “active learning” prob-
lem, as compared to the current approach of passively using what the human has
already annotated. To incorporate active learning into the current problem, the
algorithm would work together with a human in an iterative fashion: the algo-
rithm trains on the limited labeled data, queries the human and asks it to label
some unlabeled data that is the most beneficial to the algorithm, and repeats the
process. The querying algorithm can be based either on simple heuristics, such as
clustering over image or patch features, and outputting the most dissimilar unla-
beled data when compared to the labeled data. Alternatively, we can also apply
more sophisticated machine learning algorithms to learn a good querying algo-
rithm, in a meta-learning fashion, but at the cost of an increase in the difficulty of
training. This would allow the algorithm to continuous improve from the human
feedback while using the least amount of labor possible.
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Chapter 6

Conclusions

We propose a novel semi-supervised learning algorithm for anomaly detection
and segmentation tasks, which can be seen as a specific type of binary segmenta-
tion task with extreme data imbalance. The algorithm consists of a neural batch
sampler and an anomaly classifier which operates on loss profiles, along with a
periodically re-initialized and re-trained autoencoder that is used as a proxy to
produce reconstruction loss profiles to transform the input space from RGB space
to loss profile space for the classifier. From re-initializing and re-training the au-
toencoder with differently sampled batches, we’re able to produce diversified in-
puts from limited supervision to successfully train a classifier.

Our algorithm is thoroughly evaluated and compared against other baselines
on three datasets, MVTec AD, NanoTWICE, and CrackForest, which spans a large
variety of different objects and textures. The experimental results show that by us-
ing the proposed semi-supervised algorithm, we can achieve better performance
even with just a handful of collected anomalous samples, even with some gener-
alization capabilities to unseen anomaly modes. Interestingly, this also suggests
that there exists some meaningful information in loss profiles produced by neu-
ral networks during training which can possibly be utilized in different ways for
other tasks.
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