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In multi-agent games, the complexity of the environment can grow exponentially
as the number of agents increases, so it is particularly challenging to learn good
policies when the agent population is large. In this paper, we introduce Evolutionary
Population Curriculum (EPC), a curriculum learning paradigm that scales up Multi-
Agent Reinforcement Learning (MARL) by progressively increasing the population
of training agents in a stage-wise manner. Furthermore, EPC uses an evolutionary
approach to fix an objective misalignment issue throughout the curriculum: agents
successfully trained in an early stage with a small population are not necessarily the
best candidates for adapting to later stages with scaled populations. Concretely, EPC
maintains multiple sets of agents in each stage, performs mix-and-match and fine-
tuning over these sets and promotes the sets of agents with the best adaptability to
the next stage. We implement EPC on a popular MARL algorithm, MADDPG, and
empirically show that our approach consistently outperforms baselines by a large
margin as the number of agents grows exponentially.
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Chapter 1

Introduction

Most real-world problems involve interactions between multiple agents and the
problem becomes significantly harder when there exist complex cooperation and
competition among agents. Inspired by the tremendous success of deep reinforce-
ment learning (RL) in single-agent applications, such as Atari games Mnih et al.,
2013, robotics manipulation Levine et al., 2016, and navigation Zhu et al., 2017; Wu
et al., 2018; Yang et al., 2019, it has become a popular trend to apply deep RL tech-
niques into multi-agent applications, including communication Foerster et al., 2016;
Sukhbaatar, Fergus, et al., 2016; Mordatch and Abbeel, 2018, traffic light control Wu
et al., 2017, physical combats Bansal et al., 2018, and video games Liu et al., 2019;
OpenAI, 2018.

The simplest way to adapt single-agent RL algorithms to multi-agent scenarios is de-
centralized learning, which reduces a multi-agent problem to the single-agent case
by taking other agents as part of the environment for each individual agent. How-
ever, this leads to severe unstable learning issue because the environment becomes
non-stationary from each single agent’s perspective as the policies of other agents
keep changing. To handle such non-stationary problem, one solution is to adopt the
actor-critic framework such that each actor (i.e., policy) remains decentralized while
the critic (i.e., value function) is centralized in the sense that it takes global obser-
vations and actions from all the agents Lowe et al., 2017; Foerster et al., 2018. In
this framework, the centralized critic gets rid of the non-stationary issue at training
time while the decentralized actors keep all the desired properties of the multi-agent
tasks at execution time.

A fundamental challenge for multi-agent reinforcement learning (MARL) is that, as
the number of agents increases, the problem becomes significantly more complex
and the variance of policy gradients can grow exponentially Lowe et al., 2017. De-
spite the advances on tackling this challenge via actor-critic methods Lowe et al.,
2017; Foerster et al., 2018, which utilize decentralized actors and centralized crit-
ics to stabilize training, recent works still scale poorly and are mostly restricted to
less than a dozen agents. However, many real-world applications involve a mod-
erately large population of agents, such as algorithmic trading Wellman et al., 2005,
sport team competition Hausknecht and Stone, 2015, and humanitarian assistance
and disaster response Meier, 2015, where one agent should collaborate and/or com-
pete with all other agents. When directly applying the existing MARL algorithms to
complex games with a large number of agents, as we will show in Sec. 5.3, the agents
may fail to learn good strategies and end up with little interaction with other agents
even when collaboration is significantly beneficial. Yang et al. (2018) proposed a
provably-converged mean-field formulation to scale up the actor-critic framework
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by feeding the state information and the average value of nearby agents’ actions to
the critic. However, this formulation strongly relies on the assumption that the value
function for each agent can be well approximated by the mean of local pairwise inter-
actions. This assumption often does not hold when the interactions between agents
become complex, leading to a significant drop in the performance.

In this paper, we propose a general learning paradigm called Evolutionary Population
Curriculum (EPC), which allows us to scale up the number of agents exponentially.
The core idea of EPC is to progressively increase the population of agents through-
out the training process. Particularly, we divide the learning procedure into multiple
stages with increasing number of agents in the environment. The agents first learn
to play in simpler scenarios with less agents and then leverage these experiences to
gradually adapt to later stages with more agents and ultimately our desired popula-
tion.

There are two key components in our curriculum learning paradigm. To process
the varying number of agents during the curriculum procedure, the policy/critic
needs to be population-invariant. So, we choose a self-attention Vaswani et al., 2017
based architecture which can generalize to an arbitrary number of agents with a
fixed number of parameters. More importantly, we introduce an evolutionary selec-
tion process, which helps address the misalignment of learning goals across stages
and improves the agents’ performance in the target environment. Intuitively, our
within-stage MARL training objective only incentivizes agents to overfit a particular
population in the current stage. When moving towards a new stage with a larger
population, the successfully trained agents may not adapt well to the scaled envi-
ronment. To mitigate this issue, we maintain multiple sets of agents in each stage,
evolve them through cross-set mix-and-match and parallel MARL fine-tuning in the
scaled environment, and select those with better adaptability to the next stage.

Concretely, EPC consists of 3 important components:

• A population-invariant policy/critic architecture, which contains a relational mod-
ule with self-attention mechanism Vaswani et al., 2017. Thus, our policy/critic
representation can generalize to an arbitrary number of agents without a sig-
nificant increase in the number of the parameters.

• A population curriculum training paradigm, which starts from a small number of
agents and then scales up the population progressively in a stage-wise manner.
In each stage, we increase the population size by a constant factor and initialize
the agents with the trained ones in the previous stage. Then we train the agents
to play in this scaled environment before moving to the next stage.

• An evolutionary selection process, which ensures progress towards our ultimate
goal of training a desired amount of agents in the target environment through-
out the curriculum training procedure. Intuitively, when moving to a new
stage, we would like to promote the agents in the previous stage that can bet-
ter adapt to the scaled environment and ultimately our target environment.
However, our within-stage MARL training objective, which only incentivizes
agents to overfit a particular population of one stage, is not aligned with such
adaptation ability. Therefore, we maintain multiple sets of agents in each stage,
then evolve them through cross-set mix-and-match and parallel MARL fine-
tuning in the scaled environment, and only select those with the best adapta-
tion performances to the next stage.
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EPC is RL-algorithm agnostic and can be potentially integrated with most existing
MARL algorithms. In this paper, we illustrate the empirical benefits of EPC by
implementing it on a popular MARL algorithm, MADDPG Lowe et al., 2017, and
experimenting on three challenging environments, including a predator-prey-style
individual survival game, a mixed cooperative-and-competitive battle game, and a
fully cooperative food collection game. We show that EPC outperforms baseline ap-
proaches by a large margin on all these environments as the number of agents grows
even exponentially. We also demonstrate that our method can improve the stability
of the training procedure.
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Chapter 2

Related work

2.1 Multi-Agent Reinforcement Learning:

It has been a long history in applying RL to multi-agent games Littman, 1994; Shoham,
Powers, and Grenager, 2003; Panait and Luke, 2005; Wright, Wang, and Wellman,
2019. Recently, deep RL techniques have been applied into the multi-agent sce-
narios to solve complex Markov games and great algorithmic advances have been
achieved. Foerster et al. (2016) and He et al. (2016) explored a multi-agent variant of
deep Q-learning; Peng et al. (2017) studied a fully centralized actor-critic variant; Fo-
erster et al. (2018) developed a decentralized multi-agent policy gradient algorithm
with a centralized baseline; Lowe et al. (2017) proposes the MADDPG algorithm
which extended DDPG to the multi-agent setting with decentralized policies and
centralized Q functions. Our population curriculum approach is a general frame-
work for scaling MARL which can be potentially combined with any of these algo-
rithms. Particularly, we implement our method on top of the MADDPG algorithm in
this paper and take different MADDPG variants as baselines in experiments. There
are also other works studying large-scale MARL recently Lin et al., 2018; Jiang and
Lu, 2018; Yang et al., 2018; Suarez et al., 2019, which typically simplify the problem
by weight sharing and taking only local observations. We consider a much more
general setting with global observations and unshared-weight agents. Additionally,
our approach is a general learning paradigm which is complementary to the specific
techniques proposed in these works.

2.2 Attention-Based Policy Architecture:

Attention mechanism is widely used in RL policy representation to capture object
level information Duan et al., 2017; Wang et al., 2018, represent relations Zambaldi
et al., 2018; Malysheva et al., 2018; Yang et al., 2019 and extract communication
channels Jiang and Lu, 2018. Iqbal and Sha (2019) use an attention-based critic. In
our work, we utilize an attention module in both policy and critic, inspired by the
transformer architecture Vaswani et al., 2017, for the purpose of generalization to an
arbitrary number of input entities.

2.3 Curriculum Learning:

Curriculum learning can be tracked back to Elman (1993), and its core idea is to
“start small”: learn the easier aspects of the task first and then gradually increase
the task difficulty. It has been extended to deep neural networks on both vision and
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language tasks Bengio et al., 2009 and much beyond: Karras et al. (2017) propose
to progressively increase the network capacity for synthesizing high quality images;
Murali et al. (2018) apply a curriculum over the control space for robotic manipula-
tion tasks; several works Wu and Tian, 2016; Florensa et al., 2017; Sukhbaatar et al.,
2017; Wang et al., 2019 have proposed to first train RL agents on easier goals and
switch to harder ones later. Baker et al. (2019) show that multi-agent self-play can
also lead to autocurricula in open-ended environments. In our paper, we propose
to progressively increase the number of the agents as a curriculum for better scaling
multi-agent reinforcement learning.

2.4 Evolutionary Learning:

Evolutionary algorithms, originally inspired by Darwin’s natural selection, has a
long history Bäck and Schwefel, 1993, which trains a population of agents in paral-
lel, and let them evolve via crossover, mutation and selection processes. Recently,
evolutionary algorithms have been applied to learn deep RL policies with various
aims, such as to enhance training scalability Salimans et al., 2017, to tune hyper-
parameters Jaderberg et al., 2017, to evolve intrinsic dense rewards Jaderberg et al.,
2018, to learn a neural loss for better generalization Houthooft et al., 2018, to ob-
tain diverse samples for faster off-policy learning Khadka and Tumer, 2018, and to
encourage exploration Conti et al., 2018. Leveraging this insight, we apply evo-
lutionary learning to better scale MARL: we train several groups of agents in each
curriculum stage and keep evolving them to larger populations for the purpose of
better adaptation towards the desired population scale and improved training sta-
bility. Czarnecki et al. (2018) proposed a similar evolutionary mix-and-match train-
ing paradigm to progressively increase agent capacity, i.e., larger action spaces and
more parameters. Their work considers a fixed environment with an increasingly
more complex agent and utilizes the traditional parameter crossover and mutation
during evolution. By contrast, we focus on scaling MARL, namely an increasingly
more complex environment with a growing number of agents. More importantly,
we utilize MARL fine-tuning as an implicit mutation operator rather than the clas-
sical way of mutating parameters, which is more efficient, guided and applicable to
even a very small number of evolution individuals. A similar idea of using learning
for mutation is also considered by Gangwani and Peng (2018) in the single-agent
setting.
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Chapter 3

Background

3.1 Markov Games:

We consider a multi-agent Markov decision processes (MDPs) Littman, 1994. Such
an N-agent Markov game is defined by state space S of the game, action spaces
A1, ...,AN and observation spaces O1, ...,ON for each agent. Each agent i receives a
private observation correlated with the state oi : S 7→ Oi and produces an action by
a stochastic policy πππθi : Oi×Ai 7→ [0, 1] parameterized by θi. Then the next states are
produced according to the transition function T : S ×A1× ...×AN 7→ S . The initial
state is determined by a distribution ρ : S 7→ [0, 1]. Each agent i obtains rewards as
a function of the state and its action ri : S × Ai 7→ R, and aims to maximize its
own expected return Ri = ∑T

t=0 γtrt
i (s

t, at
i), where γ is a discount factor and T is the

time horizon. To minimize notation, we omit subscript of policy when there is no
ambiguity.

3.2 Policy Gradient (PG):

PG is a popular framework for RL. Let ρπ denote state visitation distribution for a
policy π. PG directly updates the parameter θ of policy πππ to maximize the expected
return J(θ) = Es∼ρπππ ,a∼πππθ

[R] by gradient descent Sutton et al., 2000. Defining the Q-
function by Qπππ(s, a) = E[R|s0 = s, a0 = a], the gradient of objective function can be
written as:

∇θ J(θ) = Es∼ρπππ ,a∼πππθ
[∇θ log πππθ(a|o)Qπππ(s, a)], (3.1)

where o is the agent’s local observation.

3.3 Deterministic Policy Gradient (DPG):

DPG extends PG to deterministic policies µµµθ : S 7→ A Silver et al., 2014. The gradient
of the objective J(θ) = Es∼ρµµµ [R(s, a)] can be written as:

∇θ J(θ) = Es∼D [∇θµµµθ(o)∇aQµµµ(s, a)|a=µµµθ(o)], (3.2)

where D is a replay buffer. In the context of deep RL, an approximate Q function is
also learned at the same time using Bellman update rules.
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3.4 Multi-Agent Deep Deterministic Policy Gradient (MAD-
DPG):

MADDPG Lowe et al., 2017 is a multi-agent variant of the deterministic policy gra-
dient algorithm Silver et al., 2014. It learns a centralized Q function for each agent
which conditions on global state information to resolve the non-stationary issue.
Consider N agents with deterministic policies µµµ = {µµµ1, ..., µµµN} where µµµi : Oi 7→ Ai
is parameterized by θi. The policy gradient for agent i is:

∇θi J(θi) = Ex,a∼D[∇θiµµµi(oi)∇ai Q
µµµ
i (x, a1, ..., aN)|ai=µµµi(oi)], (3.3)

Here D denotes the replay buffer while Qµµµ
i (x, a1, ..., aN) is a centralized action-value

function for agent i that takes the actions of all agents, a1, . . . , aN and the state infor-
mation x (i.e., x = (o1, ..., oN) or simply x = s if s is available). Let x′ denote the next
state from the environment transition. The replay buffer D contains experiences in
the form of tuples (x, x′, a1, . . . , aN , r1, . . . , rN). Suppose the centralized critic Qµµµ

i is
parameterized by φi. Then it is updated via:

L(φi) = Ex,a,r,x′ [(Q
µµµ
i (x, a1, . . . , aN)− y)2], y = ri + γ Qµµµ′

i (x′, a′1, . . . , a′N)
∣∣

a′j=µµµ′j(oj)
,(3.4)

where µµµ′ = {µµµθ′1
, ..., µµµθ′N

} is the set of target policies with delayed parameters θ′i .
Note that the centralized critic is only used during training. At execution time, each
policy µµµθi remains decentralized and only takes local observation oi.
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Chapter 4

Algorithm

In this section, we will first describe the base network architecture with the self-
attention mechanism Vaswani et al., 2017 which allows us to incorporate a flexible
number of agents during training. Then we will introduce the population curricu-
lum paradigm and the evolutionary selection process.

4.1 Population-Invariant Architecture

We describe our choice of architecture based on the MADDPG algorithm Lowe et
al., 2017, which is population-invariant in the sense that both the Q function and the
policy can take in an arbitrary number of input entities. We first introduce the Q
function (Fig. 4.1) and then the policy.

We adopt the decentralized execution framework, so each agent has its own Q func-
tion and policy network. Particularly for agent i, its centralized Q function is repre-
sented as follows:

Qµµµ
i (x, a1, . . . , aN) = hi([gi( fi(oi, ai)), vi]), where vi = attention( fi(oj, aj) ∀j 6= i)

(4.1)

Here fi(oj, aj) is an observation-action encoder (the green box in Fig. 4.1(a)) which takes
in the observation oj and the action aj from agent j, and outputs the agent embedding
of agent j; vi denotes the global attention embedding (the orange box in Fig. 4.1(a))
over all the agent embeddings. We will explain vi and fi later. gi is a 1-layer fully
connected network processing the embedding of the ith agent’s own observation
and action. hi is a 2-layer fully connected network that takes the concatenation of the
output of gi and the global attention embedding vi and outputs the final Q value.

Attention Embedding vi: We define the attention embedding vi by a weighted sum
of each agent’s embedding fi(oj, aj) for j 6= i:

vi = ∑
j 6=i

αi,j fi(oj, aj) (4.2)

The coefficient αi,j is computed by

αi,j =
exp (βi,j)

∑j 6=i exp (βi,j)
, βi,j = f T

i (oi, ai)WT
ψ Wφ fi(oj, aj) (4.3)

where Wψ and Wφ are parameters to learn. βi,j computes the correlation between
the embeddings of agent i and every other agent j via an inner product. αi,j is then
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FIGURE 4.1: Our population-invariant Q function: (a) utilizes
the attention mechanism to combine embeddings from different
observation-action encoder fi; (b) is a detailed description for fi,
which also utilizes an attention module to combine M different en-

tities in one observation.

obtained by normalizing βi,j by a softmax function. Since we represent the obser-
vations and actions of other agents with a weighted mean vi from Eq. 4.2, we can
model the interactions between agent i and an arbitrary number of other agents,
which allows us to easily increase the number of agents in our curriculum training
paradigm.

Observation-Action Encoder fi: We now define the structure of fi(oj, aj) (Fig. 4.1(b)).
Note that the observation of agent j, oj, also includes many entities, i.e., states of all
visible agents and objects in the game. Suppose oj contains M entities, i.e., oj =
[oj,1, . . . , oj,M]. M may also vary as the agent population scales over training proce-
dure or simply during an episode when some agents die. Thus, we apply another
attention module to combine these entity observations together in a similar way to
how vi is computed (Eq. 4.2, 4.3).

In more details, we first apply an entity encoder for each entity type to obtain entity
embeddings of all the entities within that type. For example, in oj, we can have em-
beddings for agent entities (green boxes in Fig. 4.1(b)) and landmark/object entities
(purple boxes in Fig. 4.1(b)). Then we apply an attention module over each entity
type by attending the entity embedding of agent j to all the entities of this type to
obtain an attended type embedding (the orange box in Fig. 4.1(b)). Next, we concate-
nate all the type embeddings together with the entity embedding of agent j as well
as its action embedding. Finally, this concatenated vector is forwarded to a fully
connected layer to generate the output of fi(oj, aj). Note that in the overall critic net-
work of agent i, the same encoder fi is applied to every observation-action pair so
that the network can maintain a fixed size of parameters even when the number of
agents increases significantly.

Policy Network: The policy network µµµi(oi) has a similar structure as the observation-
action encoder fi(oi, ai), which uses an attention module over the entities of each
type in the observation oi to adapt to the changing population during training. The
only difference in this network is that the action ai is not included in the input. No-
tably, we do not share parameters between the Q function and the policy.
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4.2 Population Curriculum

We propose to progressively scale the number of agents in MARL with a curricu-
lum. Before combining with the evolutionary selection process, we first introduce
a simpler version, the vanilla population curriculum (PC), where we perform the
following stage-wise procedure: (i) the initial stage starts with MARL training over
a small number of agents using MADDPG and our population-invariant architec-
ture; (ii) we start a new stage and double1 the number of agents by cloning each
of the existing agents; (iii) apply MADDPG training on this scaled population until
convergence; (iv) if the desired number of agents is not reached, go back to step (ii).

Mathematically, given N trained agents with parameters θθθ = {θ1, ..., θN} from the
previous stage, we want to increase the number of the agents to 2N with new param-
eters θ̃θθ = {θ̃1, ..., θ̃N , ..., θ̃2N} for the next stage . In this vanilla version of population
curriculum, we simply initialize θ̃θθ by setting θ̃i ← θi and θ̃N+i ← θi, and then con-
tinue MADDPG training on θ̃θθ to get the final policies for the new stage. Although
θ̃i and θ̃N+i are both initialized from θi, as training proceeds, they will converge to
different policies since these policies are trained in a decentralized manner in MAD-
DPG.

4.3 Evolutionary Selection

Introducing new agents by directly cloning existing ones from the previous stage
has a clear limitation: the policy parameters suitable for the previous environment
are not necessarily the best initialization for the current stage as the population is
scaled up. In the purpose of better performance in the final game with our desired
population, we need to promote agents with better adaptation abilities during early
stages of training.

Therefore, we propose an evolutionary selection process to facilitate the agents’ scal-
ing adaption ability during the curriculum procedure. Instead of training a single set
of agents, we maintain K parallel sets of agents in each stage, and perform crossover,
mutation and selection among them for the next stage. This is the last piece in our
proposed Evolutionary Population Curriculum (EPC) paradigm, which is essentially
population curriculum enhanced by the evolutionary selection process.

Specifically, we assume the agents in the multi-agent game have Ω different roles.
Agents in the same role have the same action set and reward structure. For example,
we have Ω = 2 roles in a predator-prey game, namely predators and prey, and Ω = 1
role of agents for a fully cooperative game with homogeneous agents. For notation
conciseness, we assume there are N1 agents of role 1, namely A1 = {µµµ1, ..., µµµN1}; N2
agents of role 2, namely A2 = {µµµN1+1, ..., µµµN1+N2}, and so on. In each stage, we keep
K parallel sets for each role of agents, denoted by A(1)

i , . . . , A(K)
i for role i, and take

a 3-step procedure, i.e., mix-and-match (crossover), MARL fine-tuning (mutation) and
selection, as follows to evolve these K parallel sets of agents for the next stage.

Mix-and-Match (Crossover): In the beginning of a curriculum stage, we scale the
population of agents from N to 2N. Note that we have K parallel agent sets of size
Ni for role i, namely A(1)

i , . . . , A(K)
i . We first perform a mix-and-match over these

parallel sets within every role i: for each set A(j)
i , we pair it with all the K sets of the

1Generally, we can scale up the population with any constant factor by introducing any amount of
cloned agents. We use the factor of 2 as a concrete example here for easier understanding.
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same role, which leads to K(K + 1)/2 new scaled agent sets of size 2Ni. Given these
scaled sets of agents, we then perform another mix-and-match across all the Ω roles:
we pick one scaled set for each role and combine these Ω selected sets to produce
a scaled game with 2N agents. For example, in the case of Ω = 2, we can pick one
agent set A(k1)

1 from the first role and another agent set A(k2)
2 from the second role to

form a scaled game. Thus, there are Cmax = (K(K + 1)/2)Ω different combinations
in total through this mix-and-match process. We sample C games from these com-
binations for mutation in the next step. Since we are mixing parallel sets of agents,
this process can be considered as the crossover operator in standard evolutionary al-
gorithms.

MARL Fine-Tuning (Mutation): In standard evolutionary algorithms, mutations
are directly performed on the parameters, which is inefficient in high-dimensional
spaces and typically requires a large amount of mutants to achieve sufficient diver-
sity for evolution. Instead, here we adopt MARL fine-tuning in each curriculum
stage (step (iii) in vanilla PC) as our guided mutation operator, which naturally and
efficiently explores effective directions in the parameter space. Meanwhile, due to
the training variance, MARL also introduces randomness which benefits the over-
all diversity of the evolutionary process. Concretely, we apply parallel MADDPG
training on each of the C scaled games generated from the mix-and-match step and
obtain C mutated sets of agents for each role.

Selection: Among these C mutated sets of agents for each role, only the best K mu-
tants can survive. In the case of Ω = 1, the fitness score of a set of agents is computed
as their average reward after MARL training. In other cases when Ω ≥ 2, given a
particular mutated set of agents of a specific role, we randomly generate games for
this set of agents and other mutated sets from different agent roles. We take its
average reward from these randomly generated games as the fitness score for this
mutated set. We pick the top-K scored sets of agents in each role to advance to the
next curriculum stage.

Overall Algorithm: Finally, when the desired population is achieved, we take the
best set of agents in each role based on their last fitness scores as the output. We
conclude the detailed steps of EPC in Alg. 1. Note that in the first curriculum stage,
we just train K parallel games without mix-and-match or mutation. So, EPC simply
selects the best from the K initial sets in the first stage while the evolutionary se-
lection process only takes effect starting from the second stage. We emphasize that
although we evolve multiple sets of agents in each stage, the three operators, mix-
and-match, MARL fine-tuning and selection, are all perfectly parallel. Thus, the
evolutionary selection process only introduces little influence on the overall train-
ing time. Lastly, EPC is an RL-algorithm-agnostic learning paradigm that can be
potentially integrated with any MARL algorithm other than MADDPG.
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Algorithm 1: Evolutionary Population Curriculum
Data: environment E(N, {Ai}1≤i≤Ω) with N agents of Ω roles, desired

population Nd, initial population N0, evolution size K, mix-and-match
size C

Result: a set of Nd best policies
N ← N0;

initialize K parallel agent sets A(1)
i , . . . , A(K)

i for each role 1 ≤ i ≤ Ω;

initial parallel MARL training on K games, E(N, {A(j)
i }1≤i≤Ω) for 1 ≤ j ≤ K;

while N < Nd do
N ← 2× N;
for 1 ≤ j ≤ C do

for each role 1 ≤ i ≤ Ω: j1, j2 ← unif(1, K), Ã(j)
i ← A(j1)

i + A(j2)
i

(mix-and-match);

MARL training in parallel on E(N, {Ã(j)
i }1≤i≤Ω) for 1 ≤ j ≤ C (guided

mutation) ;
for role 1 ≤ i ≤ Ω do

for 1 ≤ j ≤ C do
S(j)

i ←
Ekt 6=i∼[1,C]

[
avg. rewards on E(N, {Ã(k1)

1 , . . . , Ã(j)
i , . . . , Ã(kΩ)

Ω })
]

(fitness);

A(1)
i , . . . , A(K)

i ← top-K w.r.t. Si from Ã(1)
i , . . . , Ã(C)

i (selection);

return the best set of agents in each role, i.e., {A(k?i )
i |k?i ∈ [1, K] ∀1 ≤ i ≤ Ω};
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Chapter 5

Experiment

We experiment on three challenging environments, including a predatory-prey-style
Grassland game, a mixed-cooperative-and-competitive Adversarial Battle game and
a fully cooperative Food Collection game. We compare EPC with multiple baseline
methods on these environments with different scales of agent populations and show
consistently large gains over the baselines. In the following, we will first introduce
the environments and the baselines, and then both qualitative and quantitative per-
formances of different methods on all three environments.

5.1 Environments

All these environments are built on top of the particle-world environment Mordatch
and Abbeel, 2018 where agents take actions in discrete timesteps in a continous 2D
world.

Grassland: In this game, we have Ω = 2 roles of agents, NS sheep and NW wolves,
where sheep moves twice as fast as wolves. We also have a fixed amount of L grass
pellets (food for sheep) as green landmarks (Fig. 2a). A wolf will be rewarded when
it collides with (eats) a sheep, and the (eaten) sheep will obtain a negative reward
and becomes inactive (dead). A sheep will be rewarded when it comes across a grass
pellet and the grass will be collected and respawned in another random position.
Note that in this survival game, each individual agent has its own reward and does
not share rewards with others.

Adversarial Battle: This scenario consists of L units of resources as green landmarks
and two teams of agents (i.e., Ω = 2 for each team) competing for the resources
(Fig. 2b). Both teams have the same number of agents (N1 = N2). When an agent
collects a unit of resource, the resource will be respawned and all the agents in its team
will receive a positive reward. Furthermore, if there are more than two agents from
team 1 collide with one agent from team 2, the whole team 1 will be rewarded while

FIGURE 5.1: Environment Visualizations
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the trapped agent from team 2 will be deactivated (dead) and the whole team 2 will
be penalized, and vice versa.

Food Collection: This game has N food locations and N fully cooperative agents
(Ω = 1). The agents need to collaboratively occupy as many food locations as pos-
sible within the game horizon (Fig. 2c). Whenever a food is occupied by any agent,
the whole team will get a reward of 6/N in that timestep for that food. The more
food occupied, the more rewards the team will collect.

In addition, we introduce collision penalties as well as auxiliary shaped rewards for
each agent in each game for easier training. All the environments are fully observ-
able so that each agent needs to handle a lot of entities and react w.r.t. the global
state. More environment details are in Appx. A.1.

5.2 Methods and Metric

We evaluate the following approaches in our experiments: (1) the MADDPG algo-
rithm Lowe et al., 2017 with its original architecture (MADDPG); (2) the provably-
converged mean-field algorithm Yang et al., 2018 (mean-field); (3) the MADDPG al-
gorithm with our population-invariant architecture (Att-MADDPG); (4) the vanilla
population curriculum without evolutionary selection (vanilla-PC); and (5) our pro-
posed EPC approach (EPC). For EPC parameters, we choose K = 2 for Grassland and
Adversarial Battle and K = 3 for Food Collection; for the mix-and-match size C, we sim-
ply set it Cmax and enumerate all possible mix-and-match combinations instead of
random sampling. All the baseline methods are trained until the same amount of ac-
cumulative episodes as EPC took. More training details can be found in Appx. A.2.

For Grassland and Adversarial Battle with Ω = 2, we evaluate the performance of
different methods by competing their trained agents against our EPC trained agents.
Specifically, in Grassland, we let sheep trained by each approach compete with the
wolves from EPC and collect the average sheep reward as the evaluation metric for
sheep. Similarly, we take the same measurement for wolves from each method. In
Adversarial Battle, since two teams are symmetric, we just evaluate the shared reward
of one team trained by each baseline against another team by EPC as the metric. For
Food Collection with Ω = 1, since it is fully cooperative, we take the team reward for
each method as the evaluation metric. In addition, for better visualization, we plot
the normalized scores by normalizing the rewards of different methods between 0 and
1 in each scale for each game. More evaluation details are in Appx. A.3.

5.3 Qualitative Results

In Grassland, as the number of wolves goes up, it becomes increasingly more chal-
lenging for sheep to survive; meanwhile, as the sheep become more intelligent, the
wolves will be incentivized to be more aggressive accordingly. In Fig. 5.2, we illus-
trate two representative matches for competition, including one using the MADDPG
sheep against the EPC wolves (Fig. 5.2a), and the other between the EPC sheep and
the MADDPG wolves (Fig. 5.2b). From Fig. 5.2a, we can observe that the MADDPG
sheep can be easily eaten up by the EPC wolves (note that dark circle means the
sheep is eaten). On the other hand, in Fig. 5.2b, we can see that the EPC sheep learns
to eat the grass and avoid the wolves at the same time.
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(A) MADDPG sheep vs EPC wolves (B) MADDPG wolves vs EPC sheep
FIGURE 5.2: Example matches between EPC and MADDPG trained

agents in Grassland

(A) EPC (B) MADDPG
FIGURE 5.3: Adversarial Battle

(A) EPC (B) MADDPG
FIGURE 5.4: Food Collection

In Adversarial Battle, we visualize two matches in Fig. 5.3 with one over agents by
EPC (Fig. 5.3a) and the other over agents by MADDPG (Fig. 5.3b). We can clearly see
the collaborations between the EPC agents: although the agents are initially spread
over the environment, they learn to quickly gather as a group to protect themselves
from being killed. While for the MADDPG agents, their behavior shows little incen-
tives to cooperate or compete — these agents stay in their local regions throughout
the episode and only collect resources or kill enemies very infrequently.

In Food Collection (Fig. 5.4), the EPC agents in Fig. 5.4a learn to spread out and oc-
cupy as many food as possible to maximize the team rewards. While only one agent
among the MADDPG agents in Fig. 5.4b successfully occupies a food in the episode.

5.4 Quantitative Results

Quantitative Results in Grassland

In the Grassland game, we perform curriculum training by starting with 3 sheep and
2 wolves, and gradually increase the population of agents. We denote a game with
NS sheep and NW wolves by “scale NS-NW”. We start with scale 3-2 and gradually
increase the game size to scales 6-4, 12-8 and finally 24-16. For the two curricu-
lum learning approach, vanilla-PC and EPC, we train over 105 episodes in the first
curriculum stage (scale 3-2) and fine-tune the agents with 5× 104 episodes after mix-
and-match in each of the following stage. For other methods that train the agents
from scratch, we take the same accumulative training iterations as the curriculum
methods for a fair comparison.

Main Results: We report the performance of different methods for each game scale
in Fig. 5.5a. Overall, there are little differences between the mean-field approach and
the original MADDPG algorithm while the using the population-invariant architec-
ture (i.e., Att-MADDPG) generally boosts the performance of MADDPG. For the
method with population curriculum, vanilla-PC performs almost the same as train-
ing from scratch (Att-MADDPG) when the number of agents in the environment is
small (i.e., 6-4) but the performance gap becomes much more significant when the
population further grows (i.e., 12-18 and 24-16). For our proposed EPC method, it
consistently outperforms all the baselines across all the scales. Particularly, in the
largest scale 24-16, EPC sheep receive 10x more rewards than the best baseline sheep
without curriculum training.
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(A) Normalized scores of wolves and sheep (B) Sheep statistics
FIGURE 5.5: Results in Grassland. In part (a), we show the normalized
scores of wolves and sheep trained by different methods when com-
peting with EPC sheep and EPC wolves respectively. In part (b), we
measure the sheep statistics over different scales (x-axis), including
the average number of total grass pellets eaten per episode (left) and
the average percentage of sheep that survive until the end of episode
(right). EPC trained agents (yellow) are consistently better than any

baseline method.

Detailed Statistics: Besides rewards, we also compute the statistics of sheep to un-
derstand how the trained sheep behave in the game. We perform competitions be-
tween sheep trained by different methods against the EPC wolves and measure the
average number of total grass pellets eaten per episode, i.e, #grass eaten, and the av-
erage percentage of sheep that survive until the end of an episode, i.e., survival rate,
in Fig. 5.5b. We can observe that as the population increases, it becomes increasingly
harder for sheep to survive while EPC trained sheep remain a high survival rate
even on the largest scale. Moreover, as more sheep in the game, EPC trained sheep
consistently learn to eat more grass even under the strong pressure from wolves.
In contrast, the amount of eaten grass of MADDPG approach (i.e., Att-MADDPG)
drastically decreases when the number of wolves becomes large.

Quantitative Results in Adversarial Battle

FIGURE 5.6: Adversarial
Battle

In this game, we evaluate on environments with differ-
ent sizes of agent population N, denoted by scale N1-N2
where N1 = N2 = N/2. We start the curriculum from
scale 4-4 and the increase the population size to scale 8-8
(N = 16) and finally 16-16 (N = 32). Both vanilla-PC
and EPC take 5× 104 training episodes in the first stage
and then 2× 104 episodes in the following two curricu-
lum stages. We report the normalized scores of different
methods in Fig. 5.6, where agents trained by EPC outper-
forms all the baseline methods increasingly more signifi-
cant as the agent population grows.

Quantitative Results in Food Collection

FIGURE 5.7: Food Collection

In this game, we begin curriculum training with N =
3, namely 3 agents and 3 food locations, and progres-
sively increase the population size N to 6, 12 and fi-
nally 24. Both vanilla-PC and EPC perform training on
5 × 104 episodes on the first stage of N = 3 and then
2 × 104 episodes in each of the following curriculum
stage. We report the normalized scores for all the meth-
ods in Fig. 5.7, where EPC is always the best among all
the approaches with a clear margin. Note that the per-
formance of the original MADDPG and the mean-field approach drops drastically
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(A) Stability comparison: Grassland, (B) Adversarial Battle, (C) Food Collection.

(D) Normalized scores: Grassland, (E) Adversarial Battle, (F) Food Collection.

FIGURE 5.8: Ablation analysis on the second curriculum stage in all
the games over 3 different training seeds. Stability comparison (top)
in (a), (b) and (c): We observe EPC has much less variance compar-
ing to vanilla-PC. Normalized scores during fine-tuning (bottom) in
(d), (e) and (f): This illustrates that EPC can successfully transfer the
agents trained with a smaller population to a larger population by

fine-tuning.

(A) Environment Generalization: Grass-
land.

(B) Adversarial Bat-
tle. (C) Food Collection.

FIGURE 5.9: Environment Generalization: We take the agents trained
on the largest scale and test on an environment with twice the popu-
lation. We perform experiments on all the games and show that EPC

also advances the agents’ generalizability.

as the population size N increases. Particularly, the mean-field approach performs
even worse than the original MADDPG method. We believe this is because in this
game, the agents must act according to the global team state collaboratively, which
means the local approximation assumption in the mean-field approach does not hold
clearly.

Ablative Analysis
Stability Analysis: The evolutionary selection process in EPC not only leads to bet-
ter final performances but also stabilizes the training procedure. We validate the
stability of EPC by computing the variance over 3 training seeds for the same exper-
iment and comparing with the variance of vanilla-PC, which is also obtained from
3 training seeds. Specifically, we pick the second stage of curriculum learning and
visualize the variance of agent scores throughout the stage of training. These scores
are computed by competing against the final policy trained by EPC. We perform
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analysis on all the 3 environments: Grassland with scale 6-4 (Fig. 5.8a), Adversarial
Battle with scale 8-8 (Fig. 5.8b) and Food Collection with scale 6 (Fig. 5.8c). We can
observe that the variance of EPC is much smaller than vanilla-PC in different games.
Convergence Analysis: To illustrate that the self-attention based policies trained
from a smaller scale is able to well adapt to a larger scale via fine-tuning, we pick a
particular mutant by EPC in the second curriculum stage and visualize its learning
curve throughout fine-tuning for all the environments, Grassland (Fig. 5.8d), Adver-
sarial Battle (Fig. 5.8e) and Food Collection (Fig. 5.8f). The scores are computed in the
same way as the stability analysis. By comparing to MADDPG and Att-MADDPG,
which train policies from scratch, we can see that EPC starts learning with a much
higher score, continues to improve during fine-tuning and quickly converges to a
better solution. Note that all baselines are in fact trained much longer. The full con-
vergence curves are in App. A.4.1.
Generalization: We investigate whether the learned policies can generalize to a dif-
ferent test environment with even a larger scale than the training ones. To do so,
we take the best polices trained by different methods on the largest population and
directly apply these policies to a new environment with a doubled population by
self-cloning. We evaluate in all the environments with EPC, vanilla-PC and Att-
MADDPG and measure the normalized scores of different methods, which is com-
puted in the same way as the fitness score. In all cases, we observe a large advantage
of EPC over the other two methods, indicating the better generalization ability for
policies trained by EPC.
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Chapter 6

Conclusion

In this paper, we propose to scale multi-agent reinforcement learning by using cur-
riculum learning over the agent population with evolutionary selection. Our ap-
proach has shown significant improvements over baselines not only in the perfor-
mance but also the training stability. Given these encouraging results on different
environments, we believe our method is general and can potentially benefit scal-
ing other MARL algorithms. We also hope that learning with a large population of
agents can also lead to the emergence of swarm intelligence in environments with
simple rules in the future.





23

Appendix A

A.1 Environment Details

In the Grassland game, sheep gets +2 reward when he eats the grass, -5 reward when
eaten by wolf. The wolf get +5 reward when eats a sheep. We also shape the re-
ward by distance, sheep will get less negative reward when it is closer to grass and
wolf will get less negative reward when it is closer to sheep. This game is adapted
from the original Predator-prey game in the MADDPG paper Lowe et al., 2017 by
introducing grass and allowing agent to die.

In the Adversarial Battle game, agent will get +1 reward when he eats the food, −6
reward when killed by other agents. If N agents kill an enemy, they will be rewarded
+6/N. We shape the reward by distance. Agent will receive less negative rewards
when it is closer to other agents and grass. We want to encourage collision within
agents and also will be easier for them to learn to eat. This game is adapted from
the mean-field MARL paper Yang et al., 2018 by converting it from a grid world to
particle-world, introducing food and only allowing 2-agent cooperative killing.

In the Food Collection game, there are N agents and N food locations. Each agent will
get a shared +6/N reward per timestep when one food is occupied by any agent.
If one agent gets collision with another, all of the agents will get a punish of −6/N.
We shape the reward by distance. Agents will receive less negative rewards when it
gets closer to the food. Since the number of agents and food are equal, we want to
avoid the collision within agents and let the agents to learn to occupy as many food
as possible. This is exactly the same game as the Cooperative Navigation game in the
MADDPG paper. We slightly change the reward function to ensure it is bounded
w.r.t. arbitrary number of agents.

We use the normalized reward as the score during evaluation. For a particular game
with a particular scale, we first collect the reward for each type of agents, namely the
average reward of each individual of that type without the shaped rewards. Then we
re-scale the collected rewards by considering the lowest reward among all methods
as score 0 and highest reward as score 1.

A.2 Training Details

We follow all the hyper-parameters in the original MADDPG paper Lowe et al.,
2017 for both EPC and all the baseline methods considered. Particularly, we use
the Adam optimizer with learning rate 0.01, β1 = 0.9, β2 = 0.999 and ε = 10−8

across all experiments. τ = 0.01 is set for target network update and γ = 0.95 is
used as discount factor. We also use a replay buffer of size 106 and we update the
network parameters after every 100 samples. The batch size is 1024. All the baseline
methods are trained for a number of episodes that equals the accumulative number
of episodes that EPC has taken.
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We set K = 2 in all the games during training except that K = 3 in the food collection
game due to computational constraints. During EPC training, in the grassland game,
we train the scale of 3 sheep 2 wolf for 100000 episodes. We train another 50000
episodes every time the agents number doubles. In the adversarial battle game and
food collection game, we train the first scale for 50000 episodes. We train another
20000 episodes every time the agents number doubles.

In the grassland game, the entity types are the agent itself, other sheep, other wolf
and food. We thus have four types of entity encoders for each of those entity types.
In the adversarial battle game, Similar to grassland game, the entity types are agent
itself, other teammates, enemies and food. We also have four types of entity encoders
for each of those entity types. Since there is only one group in the food collection
game, the entity types are agent itself, other teammates and food. We thus have
three entity encoders in our network.

A.3 Evaluation Details

To evaluate the agents trained in the environment with Ω = 2, we make two roles of
agents trained with different approaches compete against each other. Each competi-
tion is simulated for 10000 episodes. The average normalized reward over the 10000
episodes will be used as the competition score for each side. Note that in our experi-
ments, we let all the methods compete against our EPC approach for evaluation. For
adversarial battle game, we take the average score of two teams as the model’s final
evaluation score, since the two teams in this game are completely symmetric.

In the food collection game, since there is only one role, we simply simulate the
model for 10000 episodes. The average normalized reward over the 10000 episodes
will be used as the score of the model.

A.4 Additional Details on Experiment Results

A.4.1 Full training curves for baselines

All the baseline methods are trained for a number of episodes that equals the accu-
mulative number of episodes that EPC has taken.

The purpose of Figure 5.8e,5.8f is simply showing the transfer performance, i.e., the
initialization produced by EPC from the previous stage is effective and can indeed
leverage past experiences to warm-start. The x-axis of the plot was shrunk for visu-
alization purpose. Here we illustrate the complete convergence curve of baselines,
i.e., ATT-MADDPG and MADDPG, in Figure A.1a,A.1b,A.1c for the 3 games respec-
tive. Although Att-MADDPG takes a much longer time to learn, its performance is
still far worse than EPC.

A.4.2 Raw reward numbers of evaluation results

In this section, we provide the actual rewards without normalization when com-
paring all the baselines with EPC. These scores are corresponding to the histograms
reported in Figure 5.5a, 5.6, 5.7.

Grassland game, wolf rewards, corresponding to wolf in Figure 5.5a:
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(A) Normalized scores: Grassland,

(B) Adversarial Battle, (C) Food Collection.

FIGURE A.1: Full learning curves on the second curriculum stage in
all the games. EPC fine-tunes the policies obtained from the previous
stage while MADDPG and Att-MADDPG are trained from scratch for

a much longer time.

scale MADDPG mean field Att-MADDPG vanilla-PC EPC
3-2 0.596 0.877 0.8145 0.8145 1.407
6-4 3.7735 0.9515 2.5905 2.001 3.7735
12-8 3.1915 3.385 10.2125 9.974 14.377
24-16 14.482 18.272 32.8945 47.6365 61.4245

Grassland game, sheep rewards, corresponding to sheep in Figure 5.5a:

scale MADDPG mean field Att-MADDPG vanilla-PC EPC
3-2 -4.0026 -3.9947 2.66 2.66 8.3846
6-4 -20.2494 -20.5107 0.9892 1.1804 10.1455
12-8 -52.863 -53.6338 -42.4801 -11.3736 3.3774

24-16 -119.1327 -118.5668 -111.0656 -70.1981 -44.1031

Adversarial Battle game, rewards of team 1, corresponding to Figure 5.6:

scale MADDPG mean field Att-MADDPG vanilla-PC EPC
4-4 7.51555 5.81165 22.6357 22.6357 26.86355
8-8 0.6692 -0.58115 43.7801 46.89595 65.75585

16-16 -46.6398 -35.5978 28.8336 109.4406 189.69775
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Food Collection game, team rewards, corresponding to Figure 5.7:

scale MADDPG mean field Att-MADDPG vanilla-PC EPC
3 55.06 42.74 61.6488 61.6488 64.822
6 17.01 3.37 49.3626 58.0014 63.7004
12 6.32 6.735 49.45755 52.3625 59.54
24 10.346075 7.830975 33.435 49.998025 59.47035

Food Collection game, coverage rate:

scale MADDPG mean field Att-MADDPG vanilla-PC EPC
3 0.622 0.610 0.662 0.662 0.723
6 0.198 0.034 0.488 0.588 0.662

12 0.060 0.065 0.424 0.550 0.552
24 0.095 0.077 0.269 0.556 0.568

A.4.3 Pairwise competition results between all methods in competitive
games

For visualization purpose, we only illustrate the scores of the competitions between
baselines and EPC in the main paper. Here we provide the complete competition
rewards between every pair of methods in both Grassland and Adversarial Battle with
the largest population of agents as follows.

Here show the wolf rewards in Grassland with scale 24-16. For wolves trained by
each approach, we compare them against the sheep by all the methods. EPC wolves
always have the highest rewards as in the bottom row. Correspondingly, when dif-
ferent wolves compete against EPC sheep, they always obtain the lowest rewards as
in the rightmost column.

wolf
sheep

MADDPG mean-field Att-MADDPG Vanilla-PC EPC

MADDPG 66.914 67.0945 66.34 23.048 14.482
mean-field 75.7655 74.23 74.7375 28.3705 18.272

Att-MADDPG 103.22 103.326 98.07 49.557 32.8945
Vanilla-PC 110.333 111.3735 101.8975 64.53 47.6365

EPC 120.9025 121.4325 115.956 82.381 61.4245

Here show the sheep rewards in Grassland with scale 24-16. For sheep trained by
each approach, we compete them against the all different wolves. EPC sheep al-
ways have the highest rewards as in the last row. Correspondingly, when compet-
ing different sheep against EPC wolves, the rewards are always the lowest as in the
rightmost column.

sheep
wolf

MADDPG mean-field Att-MADDPG Vanilla-PC EPC

MADDPG -63.5096 -72.5443 -100.4636 -107.825 -119.1
mean-field -63.7089 -71.0714 -100.6304 -108.8917 -118.5

Att-MADDPG -62.9416 -71.3339 -95.0522 -99.1207 -111.0
Vanilla-PC -5.7086 -7.8011 -31.9936 -49.5186 -70.1

EPC 9.2135 10.5892 -6.9846 -27.3475 -44.1
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Here we show the rewards of team 1 in Adversarial Battle with scale 16-16. For agents
trained by each approach, we compare them as team 1 against all different methods
as team 2. When EPC agents as team 1, no matter which opponent is, they always
get the highest rewards as in the last row. When other methods compete against
EPC, the obtained rewards are always the lowest as in the rightmost column.

reported
compared

MADDPG mean-field Att-MADDPG Vanilla-PC EPC

MADDPG 61.4555 17.1591 2.8033 -29.9242 -46.6398
mean-field 104.41315 59.01315 27.9004 11.1891 -35.5978

Att-MADDPG 146.9829 117.3804 81.702 18.57425 28.8336
Vanilla-PC 202.9163 155.2805 174.91965 123.7212 109.4406

EPC 339.63255 318.3223 256.8464 198.3621 189.69775

A.4.4 Variance of Performance Evaluations
We present the performance of all approaches in all three games with the largest
scale. We train all the approaches with 3 different seeds and show the normalized
scores with variance as following. We can see that EPC not only gives better results
but also much smaller variance.

(A) Normalized scores with
variances in Grassland in scale

24-16

(B) Normalized scores with
variances in Adversarial battle

in scale 16-16

(C) Normalized scores with
variances in Food Collection

with 24 agents

A.5 Additional Experiments on the Original Predator-Prey
Game

Grassland is adapted from the Predator-prey game introduced by the original MAD-
DPG paper Lowe et al., 2017. To further validate our empirical results, we addition-
ally study the performances of different algorithms on the unmodified Predator-prey
game as follows.

We first report the normalized score in Fig. A.3 by comparing all the methods against
EPC. EPC is consistently better than all methods in all the scales.

Besides, we also report the raw reward numbers when competing against EPC. Since
the Predator-prey game is a zero-sum game, we simply report the predator rewards
(the prey reward is exactly the negative value).
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FIGURE A.3: Normalized scores in the original Predator-prey game

scale MADDPG mean field Att-MADDPG vanilla-PC EPC
3-2 10.405 7.39 8.675 8.675 12.662
6-4 31.458 25.529 31.747 45.155 54.546

12-8 74.939 64.377 133.261 200.638 214.328

Furthermore, we also demonstrate the results of full pairwise competition between
every two methods for scale 12-8 below. Consistently, we can see that EPC predators
always have the highest scores as in the last row. When competing against EPC prey,
the lowest rewards are observed.

predator
prey

MADDPG mean-field Att-MADDPG Vanilla-PC EPC

MADDPG 229.887 249.4 247.423 122.878 74.939
mean-field 207.022 210.838 228.469 107.811 64.377

Att-MADDPG 569.862 532.611 373.979 204.743 133.261
Vanilla-PC 758.293 737.067 521.486 303.86 200.638

EPC 827.298 764.417 519.319 299.505 214.328
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