
Online Connectivity-aware Dynamic
Distribution for Heterogeneous Multi-Robot

Systems
Chendi Lin

CMU-RI-TR-20-03

May 2020

Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Katia Sycara, Chair
Maxim Likhachev

Wenhao Luo

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Robotics.

Copyright c© 2020 Chendi Lin

Keywords: Multi-Robot Systems, Networked Robots, Task Allocation

For my family, my friends, my dream, and myself.

Listen not to the rain beating against the trees.
Why don’t you slowly walk and chant at ease?

Better than saddled horse I like sandals and cane.
O I would fain

Spend a straw-cloaked life in mist and rain.

iv

Abstract
In many multi-robot applications, the robot team often needs to execute multiple

tasks simultaneously with diverse capabilities and task-prescribed controllers. To
ensure effective coordination and collaboration, robots from different tasks not only
need to stay collision-free but also connected within each task subgroups as well
as across different subgroups. In this thesis, we consider the dynamic task alloca-
tion and control problem, where a heterogeneous group of networked robots must
be assigned and moved to multiple dynamic task places (not known beforehand)
to maximize the overall task performance over time. As each task requires vari-
ous capabilities from the assigned robots and has different weights of importance,
the objective is to find the optimal combination of robots assigned to each task and
the controllers to drive the robots towards the task sites, while enforcing safety and
connectivity (global and subgroup) guarantee. In particular, we propose a unified
optimization-based framework for the robots to compute the real-time task assign-
ments with bounded optimality and the controllers that ensure inter-robot collision
avoidance and connectivity maintenance. Such a framework allows for autonomous
task re-assignment and redistribution of robots to improve task fulfillments during
execution in the presence of dynamic task requirements. Simulation and numerical
results are provided to demonstrate the effectiveness of the proposed approaches.

vi

Acknowledgments
Firstly, I would love to express my sincere gratitude to my advisor Prof. Katia

Sycara. She has been very supportive through my master study. Her enthusiasm
towards the work, enormous experiences, and massive knowledge greatly inspired
me during these two years. Her guidance and advice made this thesis possible.

I would also like to thank Prof. Maxim Likhachev as one of my thesis commit-
tee members. His enlightening comments and suggestions furnish this thesis work
further.

Additional thanks to Wenhao Luo, who is also one of my thesis committee mem-
bers from our lab. All the insightful conversations with him are not only the catalysis
of this work, but also great directions for my future career.

Last but not least, I would like to thank my family and all my friends inside and
outside the lab who encourage me and support me the whole time.

viii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Contribution . 3
1.3 Organization . 4

2 Related Work 5

3 Problem Formulation 7
3.1 Notation . 7
3.2 Problem Statement . 7

4 Methods 9
4.1 Greedy Dynamic Task Allocation . 9
4.2 Algorithm Performance Analysis . 11
4.3 Minimum Global and Subgroup Connectivity Maintenance 13
4.4 Redistribution with Heterogeneous Robots . 15

4.4.1 Scaling in Quadratic Programming . 16
4.5 Multi-Capability Generalization . 17

4.5.1 Generalized Problem Formulation . 17
4.5.2 Adaptive Greedy Method for Multi-Capability Heterogeneous Robots . . 17
4.5.3 Redistribution among Multi-Capability Heterogeneous Robots 19

5 Results 21
5.1 Simulation Result . 21
5.2 Numerical Result . 24

6 Conclusion and Future Work 27

Bibliography 29

ix

x

List of Figures

1.1 Illustration of combinatorial task allocation that two types of robots allocated
to two different tasks: 2 blue robots with 3 units of capabilities each and 4 red
robots with 2 units of capabilities each. Task 1 requires 5 units of capabilities,
and Task 2 needs 9 units. With the assignment in (a), Task 1 is over-allocated by
1 extra unit by two blue robots while Task 2 lacks 1 unit. In (b) Task 2 is over-
allocated whereas Task 1 is under-allocated by 1 unit. The combination shown
in (c) can fully meet the requirements of both tasks. 2

1.2 Illustration of issues brought by preserving connectivity within the robot team:
2 blue robots with 3 units of capabilities each and 6 red robots with 2 units of
capabilities each are allocated to two tasks. Task 1 requires 5 units of capabilities,
and Task 2 needs 9 units. Both requirements should be overly fulfilled by 2 units.
However, because of the connectivity constraints, in (a) Task 1 is under-allocated
by 2 units, and (b) Task 2 is under-allocated by 2 units. Only the configuration
shown in (c) can satisfy both demands. 3

5.1 Experiment 1: Simulation example of 40 robots of two types allocated to three
different tasks: 12 blue robots with 3 units of capabilities each and 28 red robots
with 2 units of capabilities each. In (a)-(c), only 2 targets are present. The robots
are distributed to explore them firstly and redistributed based on the updated in-
formation. There are redundant robots in both tasks dragged by connectivity con-
straints, and they will be distributed to the new task appearing in the future. Task
3 pops up at time step = 1000 and (d)-(f) demonstrate the process of dispatching
robots to explore task 3 and rearranging themselves to meet all the demands as
shown in (f). 23

5.2 Experiment 2: The number of robots is not sufficient to cover all the require-
ments. The redistribution algorithm drives the multi-robot system to this final
configuration so that the summation of the remaining requirement from each
task weighted by its importance is minimized. 24

5.3 Numerical results summary. In both figures, the solid lines represent the mean
values and the shaded areas describe the standard deviations of the 20 exper-
iments. (a) weighted remaining needs calculated by

∑m
j=1 vjrj . (b) Average

speed of all robots computed by 1
n

∑n
i=1 ‖ui‖2. 25

xi

xii

Chapter 1

Introduction

1.1 Motivation

Multi-robot systems are powerful in their ability to perform different tasks in parallel. Typi-
cally, the robots are distributed to different tasks based on the their capabilities, the importance,
and the needs of the tasks. A wise and dynamic task allocation are essential in various applica-
tions. For instance, in a surveillance task, different buildings need different numbers of robots to
monitor, based on the size of the building and the mobility of the robots. The importance and the
requirements of each building can be dynamically updated according to the users’ judgements
and the uncertainty of the environment. Also, in a robot soccer game, the players need to be dy-
namically reassigned between attackers and defenders as the game develops. Rapid and adaptive
redistribution is needed to be carried out any time. Such problems are naturally formulated into
combinatorial problems. In a combinatorial problem, the same task demands can be achieved by
various solutions, which escalates the complexity. For example, a task may involve a target that
needs 8 units of capability. It can be supplied by 4 robots, each of which has 2 units of capability,
or by 3 robots, where two have 3 units of capability each and one that has 2 units of capability.

In this work we develop a framework that can adaptively distribute the robot in a dynamic
environment, while taking connectivity constraints into considerations. In this problem, n robots
and m are present. Each task has its value and required units of capabilities, and each robot has
its units of capabilities. The overall system utility in this work is calculated as the summation of
the capabilities provided by the robots to each task weighted by the task’s value. Correspond-
ingly, the remaining system utility is the summation the remaining unfulfilled requirements of
each task weighted by its value. Notice that since we are dealing a changing environment in this
work, the number of target m is fixed over the whole time horizon. The importance and require-
ments may also be unknown beforehand, which requires at least one robot to explore the target.
Moreover, one task may involve a target where the robots would be concentrated in the middle
of the target for better monitoring, whereas another task may require the robots to encircle the
target. Therefore, different controllers would also be needed. In this work, we discuss our ap-
proach using the illustrative example of covering targets that may appear dynamically. However,
the method applies to multiple other tasks. Figure 1.1 shows an example of such problems. In
this example, two types of robots are allocated to two tasks with known locations, areas, and

1

needs. We mark robots with different capabilities by different colors. Allocating more than the
required capabilities (over-allocating) does not bring any more utility. Figure 1.1a and Fig. 1.1b
lead to a lack of 1 unit in one of the tasks whereas the allocation in Fig. 1.1c fulfills the require-
ments of both tasks. Since the number of tasks and their requirements are not known a priori
but are discovered as the robots move, the robots may need to be redistributed as new tasks are
discovered. Since the robots are connected, if a ”front” robot sees a new target, it must notify the
others, so that a reallocation may be done. In this reallocation the traveling time of the robots
that are candidates to be re-assigned to the new target must also be considered.

To achieve collaboration, robots are expected to exchange messages and share information,
which requires the robot members to stay connected within at least one neighbor’s communica-
tion range. Additionally, maintaining connectivity of the whole multi-robot system is important
to ensure that the various robot groups that are assigned to different tasks can rejoin with one an-
other after they have finished their tasks, so as to be re-allocated as new tasks arise. For example,
the robots can be asked to form various formations or surround multiple targets simultaneously.
To achieve such behaviors, multiple subgroups of the multi-robot system must be involved, and
the connectivity both within the subgroups and within the whole systems should be guaranteed.
However, such connectivity constraints add additional complexity into the problem because they
can impede the multi-robot system from following the planned allocation. Figure 1.2 is an il-
lustration of the issue that arises from the connectivity constraints. In all three scenarios, the
capabilities provided by the allocated robots surpass the demands of the tasks. Nonetheless,
some robots might never be able to reach their assigned target areas because of the connectivity
constraints as shown in Fig. 1.2a and Fig. 1.2b. In those situations, we want the robots to be
effectively redistributed to the configuration shown in Fig. 1.2c.

(a) Task 1 is fulfilled but Task 2 is
not.

(b) Task 2 is fulfilled but Task 1 is
not.

(c) Both tasks are fulfilled.

Figure 1.1: Illustration of combinatorial task allocation that two types of robots allocated to two
different tasks: 2 blue robots with 3 units of capabilities each and 4 red robots with 2 units
of capabilities each. Task 1 requires 5 units of capabilities, and Task 2 needs 9 units. With the
assignment in (a), Task 1 is over-allocated by 1 extra unit by two blue robots while Task 2 lacks 1
unit. In (b) Task 2 is over-allocated whereas Task 1 is under-allocated by 1 unit. The combination
shown in (c) can fully meet the requirements of both tasks.

2

(a) Task 1 is fulfilled but Task 2 is
not.

(b) Task 2 is fulfilled but Task 1 is
not.

(c) Both tasks are fulfilled.

Figure 1.2: Illustration of issues brought by preserving connectivity within the robot team: 2
blue robots with 3 units of capabilities each and 6 red robots with 2 units of capabilities each
are allocated to two tasks. Task 1 requires 5 units of capabilities, and Task 2 needs 9 units.
Both requirements should be overly fulfilled by 2 units. However, because of the connectivity
constraints, in (a) Task 1 is under-allocated by 2 units, and (b) Task 2 is under-allocated by 2
units. Only the configuration shown in (c) can satisfy both demands.

1.2 Thesis Contribution

Most of the existing works deal with static task allocation or dynamic assignment at an ab-
stract level [1], [2], where the detailed configuration of the robot team is usually not addressed.
In this thesis, we propose an online connectivity-aware and dynamic redistribution method to
accommodate the changing environment systematically and address the limitations in fulfilling
the requirements of tasks brought by connectivity constraints. The problem is formulated into
an optimization problem which yields the sub-optimal assignment and controllers of the robots,
constrained by connectivity, so that both the unfulfilled requirements of the tasks prioritized by
their values and the control efforts are minimized. Since the tasks are discovered during exe-
cution, at each time step, the combinatorial allocation problem is solved via a greedy algorithm
with provable optimality bound and polynomial computation complexity. With the task and the
primary controller assigned to each robot, we solve a quadratic programming (QP) problem by
minimizing the difference between its current control and the desired control, weighted by the
importance and the unfulfilled requirements of its assigned task, with connectivity maintenance
and collision avoidance. The collision avoidance and connectivity maintenance are expressed us-
ing control barrier functions [3, 4] and the minimally disruptive global and subgroup connectivity
maintenance is achieved using our previous work in Behavior Mixing [4].

The contributions of our work are: (1) it presents a systematic framework that combines
combinatorial task allocation with the low-level control to generate different robot configurations
with connectivity constraints that maximizes the overall system utility; (2) it proposes a problem
with dynamic and uncertain environment that requires exploration and it solves the problem by
applying our framework; (3) it provides the sub-optimality proof of the greedy assignment, along
with the simulation results and the numerical analysis.

3

1.3 Organization
As discussed in Section 1.2, this thesis presents a systematic framework that achieve a dy-

namic combinatorial task allocation strategy that can be easily generalized and adaptive control
that execute the assignment to the greatest extent while reserving the connectivity constraints.
The rest of the thesis is organized as the following.

In Chapter 2 we present the related work in efficient task allocation and dynamic robots
redistribution. Various formulations and approaches that solve dynamic distribution of robots
are briefly discussed.

Chapter 3 shows the definition of the problem. In Section 3.1, the notations in this thesis are
introduced. In Section 3.2, we describe the problem that we are solving and the mathematical
optimization formulation of the problem.

Chapter 4 presents the methods and algorithms to embed the dynamic redistribution at the
control level. In Section 4.1, a greedy method is presented to greedily allocate the robots in
a dynamic environment. In Section 4.2, we analyze and prove the optimality bound of this
algorithm. In Section 4.3, the enforcement of connectivity maintenance in control rendering is
described. In Section 4.4, we present a redistribution method that drives the multi-robot system
to a more desirable configuration and generates the control outputs for the robots to execute at
every time step.

In Chapter 5 we show the simulation results and numerical results. In Section 5.1, we il-
lustrate some experiments in different scenarios and demonstrate how the multi-robot system
configures itself adaptively in a changing environment. In Section 5.2, we present the numerical
outcomes, comparisons, and analysis of the experiments.

Chapter 6 concludes the evaluation and future work.

4

Chapter 2

Related Work

For multi-robot systems, task allocation is a crucial and extensively studied topic [5], [6]. In a
Multi-Robot Task Allocation (MRTA) problem [6], multiple tasks with different priorities require
various capabilities from heterogeneous robots which is also known as a complex task problem
following Zlot’s definition of task types [7]. Instead of considering the required number of robots,
we want to provide an ideal combination of capabilities (e.g. sensor payloads) to fulfill the
requirement of each task. The problem is formulated as an NP-hard combinatorial optimization
problem [8]. Such problems can commonly be solved by mixed integer nonlinear programming
(MINLP) [9], or be formulated into a distributed constraint optimization problems (DCOPs) [10]
that can be solved by self-adjusting algorithms like MGM [11] and the Distributed Stochastic
Algorithm (DSA) [12], [13]. These distributed methods can solve the problem rapidly with good
scalability. Combinatorial Auction-based algorithms are also widely applied, for example, on
allocation of virtual machine instances [14].

Along with the algorithms that solve the task allocation problems for heterogeneous groups,
many papers present works on the dynamic redistribution to adapt the failures of the robots or
the modifications of the knowledge about missions in a changing environment. In [15] and [16],
the authors utilized constraint-based optimization to dynamically allocate heterogeneous robots
along with the task execution controls. In [1] and [17], the reallocation is characterized as transi-
tion rates for the robot groups based on their trait distribution. [18] presents a method to quickly
reconfigure the network of the heterogeneous multi-robot system when their shared resources
fail. In [19], the authors presented an approach to dynamically reassign the homogeneous robots
to multiple locations in accordance with the changes in the environment. These dynamic re-
distribution strategies mostly neglect the actual arrangement and controls of the robot team and
the existence of connectivity constraints. In contrast, this thesis studies the case when multiple
robots are executing different tasks with diverse importance and requirements and have connec-
tivity constraints. Both the allocation plan and control execution are produced adaptively to meet
the combinatorial task requirements.

To exchange messages and achieve collective behaviors, connectivity maintenance is es-
sential to a multi-robot system. Many researchers have proposed various connectivity control
methods in three main categories: local connectivity [20, 21, 22], global algebraic connectivity
[23, 24, 25], and control barrier function based connectivity [4, 26, 27, 28]. In this thesis, to
ensure the connectivity among multiple subgroups performing different behaviors, the connec-

5

tivity is constructed using Minimum Connectivity Constraint Spanning Tree (MCCST) [4, 27],
and the controls are rendered by Behavior Mixing [4]. In Behavior Mixing, the goal is to min-
imize the difference between the output revised controller and the original controller subject to
the constraints using the control barrier functions of connectivity reservation [4] and collision
avoidance [3]. This problem is formulated as a quadratic programming (QP), which has the ad-
vantages in computational efficiency and convergence [29]. With the help of this framework, the
combinatorial task allocation problem is solved adaptively at every time step and the distribution
of the robots is adjusted at the control level according to the current state without paying extra
computational costs.

6

Chapter 3

Problem Formulation

3.1 Notation
Consider a multi-robot system with n heterogeneous robots that operates in a planar space.

Denote the robot set as A = {1, 2, ..., n}. Each robot i has its capability quantified by ci, and its
location is defined by a 2-dimensional vector xi. In the problem, m tasks are given and the task
set is encoded as J = {1, 2, ...,m} 1. The location of each task j is denoted as yj , which is also
a 2-dimensional vector. The task assignment is defined as a set S containing robot-task pairs. It
is equivalent to a binary matrix S of size n × m, i.e., robot i is assigned to task j if and only
if Sij = 1. Since each robot can only be allocated to at most one task, ∀i ∈ A,

∑m
j=1 Sij ≤ 1.

Naturally, we denote the set of robots assigned to task j as Aj . Notice that, at the beginning the
robots are all assigned to task 0 to indicate that they are available. The importance of each task
j is evaluated as a non-negative constant vj , and the number of its required capability units is
given as wj . At each time step, we assess the remaining required capability of task j as rj , which
is always larger than or equal to 0. The robots are expected to execute the task the moment they
enter within range L from the task.

3.2 Problem Statement
Our objective is to achieve an adaptive distribution so that the overall utility of the robot

team can be maximized and allocation to the newly discovered targets can be solved while, in
addition to the required capabilities and target importance, we also consider traveling costs and
connectivity constraints.

Consider a team of n heterogeneous robots with their capabilities given as a vector c of size n.
Before the exploration, the values of tasks along with their requirements are unknown. As robots
start to move, they discover new targets. Target discovery requires at least one robot to visit the
target j to acquire the information on the targets importance vj and required capabilities wj . At
every time step, after an assignment has been made that covers some of the target requirements,
the remaining requirement of task j, rj , is calculated as the original requirement wj minus the

1Since we solve the assignment problem at each time step, the number m of tasks that are present is known but
changing as execution proceeds.

7

sum of capabilities of all the robots that are executing the mission and is lower bounded by 0.
The discovered target’s position is is given as a 2-dimensional vector yj . Notice that the number
of targets m is known at every time step when solving the allocation problem, but it is not a fixed
constant for the whole problem horizon because new tasks can appear in the middle of mission
executions. The goal is to minimize the weighted sum of the total remaining requirements along
with the traveling distance of each robot. To achieve that, an optimal assignment matrix S∗ is
produced and controls u∗ ∈ R2n are provided to distribute the robots. The objective is expressed
as

S∗,u∗ = arg min
S,u

m∑
j=1

vjrj − α∑
i∈Aj

1

1 + ‖xi − yj‖2

 (3.1)

S∗,u∗ = arg min
S,u

m∑
j=1

vj(max(0, wj −
∑
i∈Aj

ci))− α
∑
i∈Aj

1

1 + ‖xi − yj‖2

 (3.2)

S∗,u∗ = arg max
S,u

m∑
j=1

vj(min(wj,
∑
i∈Aj

ci)) + α
∑
i∈Aj

1

1 + ‖xi − yj‖2

 (3.3)

S∗,u∗ = arg max
S,u

vT min(w, STc) + α
m∑
j=1

∑
i∈Aj

1

1 + ‖xi − yj‖2

 (3.4)

The first term of the objective function is the effective utilities of the robots, and the second
term is the inverse of the traveling costs with normalization, in which α is a scaling constant that
determines how important the traveling cost is in our problem.

8

Chapter 4

Methods

In this chapter, our framework to obtain an optimal allocation plan and controls for the prob-
lem defined in Section 3.2 is described as following: In Section 4.1, we design a greedy algorithm
that can quickly and adaptively generate a sub-optimal assignment at each time step, which is
passed to the control-level optimization for further improvement. By proving the submodularity
and monotonicity of our objective function in Section 4.2, we can deploy a greedy algorithm that
has known suboptimality bound. In Section 4.3, we review a connectivity maintenance technique
MCCST [4], which is utilized to produce minimum connectivity constraints of our optimization
problem. Because of the connectivity constraints however, during most of the executions, robots
cannot reach the ideal configurations. To address this issue, in Section 4.4, we present a con-
trol optimization framework, which extends the Behavior Mixing scheme with task allocation to
achieve the desired configurations. In Section 4.5, we generalize the formulation to the multi-
robot systems with multiple capabilities.

4.1 Greedy Dynamic Task Allocation
At every time step, we want to first obtain a allocation plan served as a baseline for the control

rendering. Since task allocation is a strongly NP-hard problem [8], greedy methods are efficient
and flexible choices with provable optimality [30, 31, 32] and polynomial computational com-
plexity. In our work, the greedy algorithm is constructed to provide both the initial assignment
and the adaptive re-assignments and is as following:

From Line 2 to Line 12, the rewards of all possible robot-task pairs are determined. The
reward of matching task j to robot i is calculated as the summation of three terms gain gij , loss
lij , and cost hij (Line 4 - 10), where j′ is the original task that robot i is assigned to. If robot i is
available, j′ = 0 and its loss term is 0. Therefore, the reward pij is calculated as

pij = gij − lij + αhij (4.1)

where α is a scaling constant as stated in the explanations of the objective function.
In Line 13-16, the maximal reward among all pairs is found. Notice that the lower bound of

pi is α. If the maximal reward is equal to α, then the best strategy for all the remaining robots in
set A is to stay with their original tasks and the assigning process can be early terminated (Line

9

Algorithm 1: Greedy Algorithm
Result: The assignment matrix S

1 while A is not empty do
2 for robot i ∈ A do
3 for task j = 0 : m do
4 gij = vj min(ci,max(0, wj));
5 if j′ = 0 then
6 lij = 0;
7 else
8 lij = vj′ max(0,min(wj′ + ci, ci));
9 end

10 hij = 1
1+‖xi−yj‖2

;

11 pij = gij − lij + αhij;
12 end
13 Find the maximal price pi from task jbest to robot i or say marginal gain;
14 end
15 Collecting the reward pi from all the robots;
16 Choose robot i∗ with the largest reward among all;
17 if pi∗ == α then
18 break ;
19 else
20 j∗ = jbest ;
21 end
22 Si∗j′ = 0;
23 Si∗j∗ = 1;
24 wj∗ = wj∗ − ci∗;
25 wj

′ = wj′ + ci∗;
26 A \ i∗ ;
27 w0 = 0;
28 end

10

18). A robot will be assigned to a task different from the one it was assigned earlier only when
the improvement in requirement fulfillment is greater than the traveling cost (Line 20). After
that, the assignment matrix S is updated, and so is the requirement vector w. The selected robot
i∗ is removed from the robot set A, and the demand of task 0 (stay still) is reset back to 0 (Line
22-27). The assignment process takes at most n rounds and for each round it requires at most
mn reward evaluations. Thus, it can be easily proven that the computational complexity of the
algorithm is O(mn2) in the worst case. However, in most scenarios since the algorithm is early
terminated, the complexity is O(1) when there is no update about tasks’ information.

4.2 Algorithm Performance Analysis

In this section, we show that using this greedy algorithm, the solution quality is bounded by
proving the submodularity and the monotonicity of our objective function. Let V be a finite set,
which is also the grounded set of our problem. Denote the optimal assignment as Sopt ⊆ V . The
objective function as defined before is

f(S∗) = F (S∗) = vT (min(w, S∗
T

c)) + α
∑
i

hi (4.2)

which is always non-negative.
Corollary 1 The solution S obtained from our greedy algorithm is guaranteed that f(S∗) ≥
1
2
f(Sopt)

To prove this corollary, we can apply the conclusion from Fisher’s work [30] that if a function
f : 2V → R is submodular and monotone, the greedy algorithm (taking the largest marginal gain
at each step) is guaranteed a constant optimality bound as 1/2. To prove them, we need to define
submodularity and monotonicity firstly.

Definition 1 (Submodularity [33]) A function f : 2V → R is submodular if and only if for any
X ⊆ Y ⊆ V , ∀e ∈ V \ Y , the following inequality holds

∆f (e|X) ≥ ∆f (e|Y) (4.3)

where ∆f (e|S) is defined as

∆f (e|S) = f(S ∪ {e})− f(S) (4.4)

Definition 2 (Monotonicity [33]) A function f : 2V → R being monotonic is equivalent to show
that

∀X ⊆ Y ⊆ V , f(Y)− f(X) ≥ 0 (4.5)

We prove the monotonicity as following.

11

f(Y) =
m∑
j=1

vj(min(wj,
∑
i∈Yj

ci)) +
∑
i∈Yj

hi (4.6)

=
m∑
j=1

vj(min(wj,
∑
i∈Xj

ci)) +
∑
i∈Xj

hi +
∑

i∈(Y\X)

hi

+
m∑
j=1

vj(min(max(0, wj −
∑
i∈Xj

ci),
∑

i∈(Y\X)j

ci))

(4.7)

where Sj refers to the set containing all the robots assigned to task j in assignment S. So we can
rewrite it as

f(Y)− f(X)

=
m∑
j=1

vj(min(max(0, wj −
∑
i∈Xj

ci),
∑

i∈(Y\X)j

ci)) +
∑

i∈(Y\X)

hi
(4.8)

Notice that here f(Y) − f(X) ≤ f(Y \ X) because when the requirement of the task is
overly satisfied, designating more robots to it cannot lead to further improvements. The term
min(max(0, wj −

∑
i∈Xj

ci),
∑

i∈(Y\X)j
ci) in Eqn. 4.8 summarizes the marginal gain of Y com-

pared to X in all scenarios, which are listed out as below:
1. When neither assignment Y nor X can fulfill the requirement of task j, the improvement

of Y compared to X with respect to task j is
∑

i∈(Y\X)j
ci.

2. When task j is overly satisfied with assignment Y but not with assignment X , the en-
hancement of Y as to X is wj −

∑
i∈Xj

ci.
3. When the requirement of task j is met by both assignment Y and X , the improvement of

Y compared to X regarding task j is 0.
Since all the terms above are non-negative,

f(Y)− f(X) ≥ 0 (4.9)

Thus, our objective function f is monotonic.
To prove the submodularity, by applying Eqn. 4.4, we can write Eqn. 4.3 as

∆f (e|Y)−∆f (e|X) ≤ 0 (4.10)
f(Y ∪ {e})− f(Y)− f(X ∪ {e}) + f(X) ≤ 0 (4.11)

(f(Y ∪ {e})− f(Y))− (f(X ∪ {e})− f(X)) ≤ 0 (4.12)

12

To prove that, we can rewrite the left hand side using Eqn. 4.8,

(f(Y ∪ {e})− f(Y))− (f(X ∪ {e})− f(X)) (4.13)

=
m∑
j=1

vj(min(max(0, wj −
∑
i∈Yj

ci), eijci)) + hei

−
m∑
j=1

vj(min(max(0, wj −
∑
i∈Xj

ci), eijci))− hei

(4.14)

=
m∑
j=1

vj(min(max(0, wj −
∑
i∈Yj

ci), eijci))−
m∑
j=1

vj(min(max(0, wj −
∑
i∈Xj

ci), eijci)) (4.15)

=
m∑
j=1

vj

min(max(0, wj −
∑
i∈Yj

ci), eijci)−min(max(0, wj −
∑
i∈Xj

ci), eijci)

 (4.16)

where eij = 1 if and only robot i is assigned to task j in assignment e. Otherwise, eij = 0.
Since X is a subset of Y , we know that there are fewer assignment pairs existing in X , so ∀j the
following inequality always holds

∑
i∈Yj

ci ≥
∑
i∈Xj

ci (4.17)

wj −
∑
i∈Yj

ci ≤ wj −
∑
i∈Xj

ci (4.18)

max(0, wj −
∑
i∈Yj

ci) ≤ max(0, wj −
∑
i∈Xj

ci) (4.19)

min(max(0, wj −
∑
i∈Yj

ci), eijcj) ≤ min(max(0, wj −
∑
i∈Xj

ci), eijcj) (4.20)

vj(min(max(0, wj −
∑
i∈Yj

ci), eijcj)) ≤ vj(min(max(0, wj −
∑
i∈Xj

ci), eijcj)) (4.21)

Therefore, by plugging Eqn. 4.21 back to Eqn. 4.16, we can see that Eqn. 4.12 holds, and thus,
the objective function f is proven to be submodular.

With both properties proven, applying the conclusion from [33], the optimality bound of this
algorithm is proven to be f(S∗) ≥ 1

2
f(Sopt) as stated in Corollary 1.

4.3 Minimum Global and Subgroup Connectivity Maintenance
To collaborate, a multi-robot system is required to stay connected so that the robots can send

peer to peer messages to each other. We define the constant communication range for all robots as
Rc. The framework of Behavior Mixing [4] is employed to enable the multi-robot system to split
into connected subgroups so that each subgroup can cover dynamically appearing targets, while

13

the global connectivity is preserved so that, after each subgroup has finished its task, it can rejoin
the other groups. To secure connectivity among robots, a communication graph of the multi-
robot system is maintained. The graph is defined as G = (V , E), in which each vertex v ∈ V
represents a robot and each undirected edge (vi, vj) ∈ E represents the communication link. The
communication link is established between robot i and robot j if the distance between these two
robots is equal or less than Rc. At each time step, based on the current configuration, a minimum
connectivity constraint spanning tree (MCCST) is built [4] so that the constructed Minimum
Spanning Tree defines the optimal connectivity topology to preserve that satisfies global and
subgroup connectivity while are least likely to be violated given the robots’ original controllers
at the moment. With that, we can define the feasible set of x for which the connectivity can
always be preserved. In the communication graph, the communication link between robot i and
robot j is preserved using the following expressions:

hci,j(x) = R2
c − ‖xi − xj‖22 (4.22)

Hc
i,j = {x ∈ R2n : hi,j(x)c ≥ 0} (4.23)

With the MCCST graph Gc = (V , Ec), we can create a feasible set for x so that any connected
pairs, i.e. communication links, in Gc should be in the setHc(Gc), which is expressed as

Hc(Gc) = ∩
(vi,vj)∈Ec

Hc
i,j (4.24)

Similarly, the safe set for inter-robot collision avoidance between robot i and j is defined as

hsi,j(x) = ‖xi − xj‖22 −R2
s (4.25)

Hs
i,j = {x ∈ R2n : hsi,j ≥ 0} (4.26)

Hs = ∩
(vi,vj)∈V:i>j

Hs
i,j (4.27)

To avoid collision, we apply the barrier certificate function described in [3]

Bs(x) = {u ∈ R2n : ḣsi,j(x) + γhsi,j(x) ≥ 0, ∀i > j} (4.28)

Following the barrier certificate function used for collision avoidance, we can write a barrier
function for connectivity maintenance as

Bc(x,Gc) = {u ∈ R2n : ḣci,j(x) + γhci,j(x) ≥ 0,∀(vi, vj) ∈ Ec} (4.29)

where γ is a user-defined parameter to enclose the available set. It is proven that bothHc andHs

are forward invariant sets if the joint control input u stays in Bc ∩ Bs [26], [3]. Equation 4.29
will serve as the connectivity constraint in our optimization for controls, which is discussed in
the next section, while Eqn. 4.28 serves as the collision avoidance constraint in the optimization.
By using behavior mixing with global and subgroup connectivity, we enforce MCCST here to
preserve an optimal subset of communication link with connectivity guarantee.

14

4.4 Redistribution with Heterogeneous Robots
As we mentioned in Section 1.1, because of the connectivity constraints, even given a good

allocation, the missions still cannot be carried out as desired. For example, when a new task
appears, one of robots will be assigned to explore it. Yet, constrained by all of its neighbors,
it is impossible for this robot to examine the new task, unless there is a mechanism to help
the robot drag its neighbors to the new goal while ensuring that the majority of the system is
still performing their tasks. Here, we develop a method to achieve a minor adjustment in the
distribution of the robots at the control level.

Without the connectivity constraints, assuming all the robots can reach their assigned targets,
we calculate the remaining requirement of each task as

rj = max(0, wj −
∑
i∈Aj

ci) (4.30)

Then we can calculate vector r as

r = max(0,w − STc) (4.31)

As mentioned in Section 3.1, here we assume the mission is executed when robots rendezvous
within range L around the task. Also, as a result of the connectivity constraints, not all robots
are able to arrive at their allocated areas. In other words, the true remaining requirements r̂ can
be different from the ideal remaining requirements r shown in Eqn. 4.31. The true remaining
requirement of task j is calculated as

r̂j = max

0, wj −
∑
i∈Aj

ciH(L− dij)

 (4.32)

where dij is the l2− norm of the distance between the current position of robot i and the position
of its assigned task j, calculated as dij = ‖xi − yj‖2. H is a Heaviside Step Function [34],
which is defined as a function of x:

H(x) =

{
1, if x ≥ 0

0, if x < 0
(4.33)

With that in mind, we calculate controls by employing the quadratic programming (QP) as
following,

u∗ = arg min
u

n∑
i=1

‖ui − ûi‖2 (4.34)

s.t. u ∈ Bs(x) ∩ Bc(x,Gc) (4.35)

where ûi is the primary controller for robot i’s assigned task and u∗ ∈ R2n contains the control
inputs of all robots. For simplicity without losing generality, single integrator dynamics is used

15

for the task-related controller of each robot, i.e., ûi = −Kp(xi − yj), and as defined in the
previous section, yj is the location of task j assigned to robot i.

Here, we want to to maximize the utility function, which is equivalent to reducing the
weighted remaining unfulfilled requirements by assigning higher weights to the robots whose
assigned tasks are of higher priority and less fulfilled. For each robot i that is assigned to task j,
its coefficient ai in the QP is calculated as

ai = civj r̂j (4.36)

In matrix form, we can write it as

a = c� (S(v � r̂)) (4.37)

where � is the element-wise vector multiplication.
Hence, how much the robot’s primary controller is preserved depends on the value and the

remaining unfulfilled requirements of its assigned task, and also the capability of the robot, which
indicates how much improvement the robot can contribute to the task. Thus, the more capable
robot will be encouraged to fulfill the gap of the more important and less fulfilled task, and the
others will tend to serve as connectivity nodes.

When solving the QP, it is important that the objective function is differentiable. Now we
have a step function H in the coefficient, and thus the robots might bounce back and forth near
the boundaries. To avoid that, we want to replace it to be a differentiable function. A scaled and
shifted sigmoid function σ is used here to replace the Heaviside step function. So we have

ai = civj r̂j (4.38)

= civj(max(0, wj −
∑
i∈Aj

ciσ(k(L− di) + b))) (4.39)

where k is a scale factor, and b is a shift constant. At the control level, to further endorse the
robots moving towards more demanding tasks, we want to solve the QP as

u∗ = arg min
u

n∑
i=1

(ai + 1)‖ui − ûi‖2 (4.40)

s.t. u ∈ Bs(x) ∩ Bc(x,Gc) (4.41)

A constant “1” is added to the coefficient ai to avoid the lack of ranks in quadratic programming
when all the requirements are fully satisfied.

4.4.1 Scaling in Quadratic Programming
Since the values and requirements of the tasks can be arbitrarily large as defined by users, the

numerical stability of the quadratic programming solver can be drastically affected. To address

16

this issue, we need to scale the coefficients a to a proper magnitude. The coefficients are scaled
as following,

a = a/(max(a) + ε) ∗ 10 (4.42)

where ε is a small constant added in the denominator to avoid division by zero when all the needs
are satisfied. Therefore, the coefficients ai + 1 are scaled to be about the order of magnitude 1,
which provides solutions more stably as shown in [35, 36].

4.5 Multi-Capability Generalization

One of the biggest advantages of this framework is that it is easy to be generalized with the
multi-robot systems that have various capabilities. For instance, in a rescue mission, we may
need to allocate different types of robots to different jobs like exploring, carrying loads, and
defending against the enemies, with respect to their capabilities in various fields like sensing,
mobility, load capacity, and etc. In this section, the generalization of the framework is presented
to encompass more general multi-robot systems.

4.5.1 Generalized Problem Formulation

To accommodate the multi-capability generalization, we need to slightly revise the formula-
tion. Suppose we are considering o capabilities in total. Now instead of a scalar, the required
capability units of task j is noted by a vector wj of size o. Similarly, the remaining requirements
of task j is denoted as a vector rj of size o. The other notations should remain the same. Now
the objective function becomes

f(S∗) = F (S∗) =
m∑
j=1

vj
 o∑

s=1

(min(wjs,
∑
i∈Aj

cis))

 + α
∑
i∈Aj

1

1 + ‖xi − yj‖2

 (4.43)

It is trivial to show that this revised objective function still owns the properties of submodularity
and monotonicity. Thus, the quality of the solution from a greedy algorithm is still bounded as
f(S∗) ≥ 1

2
f(Sopt).

We will discuss about the revision for the algorithms in the next sections.

4.5.2 Adaptive Greedy Method for Multi-Capability Heterogeneous Robots

To accommodate the multi-capability formulation, the greedy algorithm is revised as in Al-
gorithm 2.

A main amendment is the calculation of the gain gij and the loss lij , as they are the summation
of the gains and losses of all the capabilities in every field. Also, when the requirements are
updated, the whole vector is modified instead of one scalar.

17

Algorithm 2: Revised Greedy Algorithm
Result: The assignment matrix S

1 while A is not empty do
2 for robot i ∈ A do
3 for task j = 0 : m do
4 gij = vj (

∑o
s=1(min(cis,max(0,wjs))));

5 if j′ = 0 then
6 lij = 0;
7 else
8 lij = vj′ (

∑o
s=1(max(0,min(wj′s + cis, cis))));

9 end
10 hij = 1

1+‖xi−yj‖2
;

11 pij = gij − lij + αhij;
12 end
13 Find the maximal price pi from task jbest to robot i or say marginal gain;
14 end
15 Collecting the reward pi from all the robots;
16 Choose robot i∗ with the largest reward among all;
17 if pi∗ == α then
18 break ;
19 else
20 j∗ = jbest ;
21 end
22 Si∗j′ = 0;
23 Si∗j∗ = 1;
24 wj∗ = wj∗ − ci∗;
25 wj′ = wj′ + ci∗;
26 A \ i∗ ;
27 w0 = 0;
28 end

18

4.5.3 Redistribution among Multi-Capability Heterogeneous Robots
Recall that to generate controls, we solve the following Quadratic Programming Problem,

u∗ = arg min
u

n∑
i=1

(ai + 1)‖ui − ûi‖2 (4.44)

s.t. u ∈ Bs(x) ∩ Bc(x,Gc) (4.45)

This optimization formulation stays the same for multi-capability systems. Nonetheless, we
calculate the coefficients ai now as

ai = vj

o∑
s=1

cisr̂js (4.46)

= vj

 o∑
s=1

cis(max(0,wjs −
∑
i∈Aj

cisσ(k(L− di) + b)))

 (4.47)

Since here we have more capabilities, potentially the calculated coefficients grow larger.
Thus, the scaling technique mentioned in Section 4.4.1 becomes more crucial.

19

20

Chapter 5

Results

5.1 Simulation Result

Simulation experiments are shown here to illustrate how the multi-robot system can reconfig-
ure itself adaptively along with the changing environment with this framework. For a more clear
visualization without losing generality, in all experiments, only one capability is considered.

An example of simulation tests is demonstrated in Fig. 5.1. In this test case, the value of
exploration is chosen to be 50, and the weight on traveling costs α = 0.5. Two targets are present
at the beginning. The top right target moves towards the center and the robots assigned to it
should follow it in order to monitor the target. The task values and requirements are unknown and
must be explored, as shown in Fig. 5.1a. We have 12 blue robots with 3 units of capability each
and 28 red robots with 2 units of capability each, of which two robots are dispatched to explore
the tasks. In the state represented in Fig. 5.1b, the information of both targets is revealed because
at least one robot reaches the targets’ visibility ranges. Task 1 needs 30 units of capability and
its value is 3. Task 2 needs 20 units of capability with 5 as its value. The robot team is quickly
reallocated based on the updated information to fulfill all the requirements. Because the number
of robots is more than sufficient for both missions, both requirements are satisfied nicely as
presented in Fig. 5.1c. In the next state shown in Fig. 5.1d, a new task with hidden importance
and requirements pops up at the bottom right and one robot is reassigned to explore it. In spite of
the connectivity constraints, the attraction of the exploration is strong enough to drag the robot
along with its neighbors to the goal, as demonstrated in Fig. 5.1e. As the explorer acquires the
knowledge of the new task, which requires 25 units of capabilities and is valued as 7, the system
is rapidly redistributed and eventually fulfills all the requirements as presented in Fig. 5.1f.

21

(a) Time Step = 0 (b) Time Step = 370 (Both tasks explored)

(c) Time Step = 650 (Both fulfilled) (d) Time Step = 1000 (Third task appears)

22

(e) Time Step = 1620 (Third task explored) (f) Time Step = 3270 (Final configuration)

Figure 5.1: Experiment 1: Simulation example of 40 robots of two types allocated to three
different tasks: 12 blue robots with 3 units of capabilities each and 28 red robots with 2 units
of capabilities each. In (a)-(c), only 2 targets are present. The robots are distributed to explore
them firstly and redistributed based on the updated information. There are redundant robots
in both tasks dragged by connectivity constraints, and they will be distributed to the new task
appearing in the future. Task 3 pops up at time step = 1000 and (d)-(f) demonstrate the process
of dispatching robots to explore task 3 and rearranging themselves to meet all the demands as
shown in (f).

A naturally raised question would be, what if the number of robots is not large enough to
cover all the requirements from the tasks plus satisfying the connectivity constraints? The second
experiment here is to demonstrate that in such scenarios, this framework will drive the multi-
robot system to the configuration that minimizes the unfulfilled requirements weighted by their
importance.

In the second experiment, everything is set up exactly the same as in experiment 1, except
the locations of the tasks are changed. Task 1 needs 30 units of capability and its value is 3.
Task 2 needs 20 units of capability with 5 as its value. Task 3 requires 25 units of capabilities
and is valued as 7. These numbers are unknown beforehand and shall be explored. We still
have 12 blue robots with 3 units of capability each and 28 red robots with 2 units of capability
each. However, in this experiment, as shown in Fig. 5.2, the three tasks are spread out further
away from each other so that to maintain the connectivity, more robots are asked to serve as the
connectivity nodes and fewer robots can actually execute their assigned tasks. We can observe
from the figure that, in total 8 robots have to stay in the open space to reserve the connectivity.
Because of the dynamic redistribution algorithm, the system is reconfigured so that only Task 1,
which is the least important task among the three, lacks 2 units of the capability. The robots are
allocated and distributed this way to minimize the remaining requirements weighted by tasks’

23

values, and thus maximizing the overall utility of the multi-robot system.

Figure 5.2: Experiment 2: The number of robots is not sufficient to cover all the requirements.
The redistribution algorithm drives the multi-robot system to this final configuration so that the
summation of the remaining requirement from each task weighted by its importance is mini-
mized.

5.2 Numerical Result
To validate the reliability and efficiency of our method, we test the Experiment 1 mentioned

in Section 5.1 for 20 times with different initialization of spawn locations. Because two robots
are likely to be trapped in deadlock with the existence of collision avoidance and connectivity
constraints when they are moving in the opposite direction, the robot team may not converge to
the ideal final configurations within 3500 time steps. Figure 5.3a illustrates the trend of remaining
requirements weighted by the importance of the tasks. From time step = 0 to 1000, the robot team
is allocated to satisfy both requirements. At t = 1000, as a result of the appearance of a new
task, we see the first bump. Between t = 1500 and t = 1700, the third task is reached and new
demands are exposed, so the second bump is observed. Due to the various timings of arrival,

24

(a) Weighted remaining vs time (b) Average speed (norm of velocity) vs time

Figure 5.3: Numerical results summary. In both figures, the solid lines represent the mean values
and the shaded areas describe the standard deviations of the 20 experiments. (a) weighted remain-
ing needs calculated by

∑m
j=1 vjrj . (b) Average speed of all robots computed by 1

n

∑n
i=1 ‖ui‖2.

the variance during this time period is huge. After that, the weighted remaining unfulfilled
requirements drop consistently and end with 7.8 averagely at t = 3500. Figure 5.3b represents
the average speed profile of all robots, which is calculated as the mean of the norms of the
robots’ velocities. The whole robot team stays connected throughout all the experiments. At the
end of the experiment when t = 3500, the average speed converges to 0 with significantly small
variance, which indicates the whole crew reaches a steady state in most cases.

25

26

Chapter 6

Conclusion and Future Work

In this thesis, we present a task allocation method that dynamically distributes robots with
different units of some capability in an uncertain environment where tasks appear dynami-
cally, while considering connectivity maintenance, collision avoidance and heterogeneity of con-
trollers. We proposed a greedy algorithm that takes traveling costs into considerations with prov-
able optimality bound and a redistribution mechanism at the control level to mitigate the loss due
to the connectivity constraints. We show experimental results to demonstrate the efficiency of
our algorithm in maximizing the utility of the robot team and the convergence to steady states.

Future work will include scheduling by adding the temporal dimension in task allocation to
further reduce the costs resulted from change of targets during traveling. Also, we can fully
decentralize the algorithm so that the whole framework does not solely rely on one central hub
and the robustness can be greatly improved.

27

28

Bibliography

[1] A. Prorok, M. A. Hsieh, and V. Kumar, “Fast redistribution of a swarm of
heterogeneous robots,” in Proceedings of the 9th EAI International Conference on
Bio-inspired Information and Communications Technologies (Formerly BIONETICS), ser.
BICT’15. ICST, Brussels, Belgium, Belgium: ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering), 2016, pp. 249–255. [Online].
Available: http://dx.doi.org/10.4108/eai.3-12-2015.2262349 1.2, 2

[2] J. Liu and R. K. Williams, “Submodular optimization for coupled task allocation and in-
termittent deployment problems,” IEEE Robotics and Automation Letters, vol. 4, no. 4, pp.
3169–3176, 2019. 1.2

[3] U. Borrmann, L. Wang, A. D. Ames, and M. Egerstedt, “Control barrier certificates
for safe swarm behavior,” IFAC-PapersOnLine, vol. 48, no. 27, pp. 68 – 73,
2015, analysis and Design of Hybrid Systems ADHS. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S240589631502412X 1.2, 2, 4.3, 4.3

[4] W. Luo, S. Yi, and K. Sycara, “Behavior mixing with minimum global and subgroup con-
nectivity maintenance for large-scale multi-robot systems,” in IEEE International Confer-
ence on Robotics and Automation (ICRA). IEEE, 2020. 1.2, 2, 4, 4.3

[5] B. P. Gerkey and M. J. Matarić, “A formal analysis and taxonomy of task allocation in
multi-robot systems,” The International Journal of Robotics Research, vol. 23, no. 9, pp.
939–954, 2004. [Online]. Available: https://doi.org/10.1177/0278364904045564 2

[6] G. A. Korsah, A. Stentz, and M. B. Dias, “A comprehensive taxonomy for multi-robot
task allocation,” The International Journal of Robotics Research, vol. 32, no. 12, pp.
1495–1512, 2013. [Online]. Available: https://doi.org/10.1177/0278364913496484 2

[7] R. M. Zlot, “An auction-based approach to complex task allocation for multirobot teams,”
Ph.D. dissertation, Carnegie Mellon University, Pittsburgh, PA, December 2006. 2

[8] B. Korte, J. Vygen, B. Korte, and J. Vygen, Combinatorial optimization. Springer, 2012,
vol. 2. 2, 4.1

[9] J. Lee and S. Leyffer, Mixed integer nonlinear programming. Springer Science & Business
Media, 2011, vol. 154. 2

[10] M. Yokoo and E. H. Durfee, “Distributed constraint optimization as a formal model of
partially adversarial cooperation,” 1991. 2

[11] J. P. Pearce and M. Tambe, “Quality guarantees on k-optimal solutions for distributed con-

29

http://dx.doi.org/10.4108/eai.3-12-2015.2262349
http://www.sciencedirect.com/science/article/pii/S240589631502412X
http://www.sciencedirect.com/science/article/pii/S240589631502412X
https://doi.org/10.1177/0278364904045564
https://doi.org/10.1177/0278364913496484

straint optimization problems.” in IJCAI, 2007, pp. 1446–1451. 2

[12] W. Zhang, G. Wang, Z. Xing, and L. Wittenburg, “Distributed stochastic search
and distributed breakout: properties, comparison and applications to constraint
optimization problems in sensor networks,” Artificial Intelligence, vol. 161, no. 1,
pp. 55 – 87, 2005, distributed Constraint Satisfaction. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0004370204001481 2

[13] V. Lisy, R. Zivan, K. Sycara, P. M, V. Lisy, R. Zivan, K. Sycara, and P. M, “Deception
in networks of mobile sensing agents,” in 9th Internationnal Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2010), Toronto, Canada, May 2010, pp. 1031–
1038. 2

[14] Z. Duan, W. Li, and Z. Cai, “Distributed auctions for task assignment and scheduling in mo-
bile crowdsensing systems,” in IEEE 37th International Conference on Distributed Com-
puting Systems (ICDCS), June 2017, pp. 635–644. 2

[15] G. Notomista and M. Egerstedt, “Constraint-driven coordinated control of multi-robot sys-
tems,” in American Control Conference (ACC). IEEE, 2019, pp. 1990–1996. 2

[16] G. Notomista, S. Mayya, S. Hutchinson, and M. Egerstedt, “An optimal task allocation
strategy for heterogeneous multi-robot systems,” in 18th European Control Conference
(ECC). IEEE, 2019, pp. 2071–2076. 2

[17] A. Prorok, M. A. Hsieh, and V. Kumar, “Formalizing the impact of diversity on perfor-
mance in a heterogeneous swarm of robots,” in IEEE International Conference on Robotics
and Automation (ICRA), May 2016, pp. 5364–5371. 2

[18] R. K. Ramachandran, J. A. Preiss, and G. S. Sukhatme, “Resilience by reconfiguration:
Exploiting heterogeneity in robot teams,” arXiv preprint arXiv:1903.04856, 2019. 2

[19] A. Halász, M. A. Hsieh, S. Berman, and V. Kumar, “Dynamic redistribution of a swarm
of robots among multiple sites,” in IEEE/RSJ international conference on intelligent robots
and systems. IEEE, 2007, pp. 2320–2325. 2

[20] M. M. Zavlanos, A. Jadbabaie, and G. J. Pappas, “Flocking while preserving network con-
nectivity,” in 2007 46th IEEE Conference on Decision and Control. IEEE, 2007, pp.
2919–2924. 2

[21] M. M. Zavlanos, M. B. Egerstedt, and G. J. Pappas, “Graph-theoretic connectivity control
of mobile robot networks,” Proceedings of the IEEE, vol. 99, no. 9, pp. 1525–1540, 2011.
2

[22] M. Ji and M. Egerstedt, “Distributed coordination control of multiagent systems while pre-
serving connectedness,” IEEE Transactions on Robotics, vol. 23, no. 4, pp. 693–703, 2007.
2

[23] L. Sabattini, N. Chopra, and C. Secchi, “Decentralized connectivity maintenance for coop-
erative control of mobile robotic systems,” The International Journal of Robotics Research,
vol. 32, no. 12, pp. 1411–1423, 2013. 2

[24] P. Yang, R. A. Freeman, G. J. Gordon, K. M. Lynch, S. S. Srinivasa, and R. Sukthankar,
“Decentralized estimation and control of graph connectivity for mobile sensor networks,”

30

http://www.sciencedirect.com/science/article/pii/S0004370204001481
http://www.sciencedirect.com/science/article/pii/S0004370204001481

Automatica, vol. 46, no. 2, pp. 390–396, 2010. 2

[25] R. K. Williams, A. Gasparri, G. S. Sukhatme, and G. Ulivi, “Global connectivity control for
spatially interacting multi-robot systems with unicycle kinematics,” in IEEE international
conference on robotics and automation (ICRA). IEEE, 2015, pp. 1255–1261. 2

[26] L. Wang, A. D. Ames, and M. Egerstedt, “Multi-objective compositions for collision-free
connectivity maintenance in teams of mobile robots,” in IEEE 55th Conference on Decision
and Control (CDC). IEEE, 2016, pp. 2659–2664. 2, 4.3

[27] W. Luo and K. Sycara, “Voronoi-based coverage control with connectivity maintenance
for robotic sensor networks,” in International Symposium on Multi-Robot and Multi-Agent
Systems (MRS). IEEE, 2019, pp. 148–154. 2

[28] ——, “Minimum k-connectivity maintenance for robust multi-robot systems.” 2

[29] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY, USA: Cambridge
University Press, 2004. 2

[30] M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey, An analysis of approximations
for maximizing submodular set functions—II. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1978, pp. 73–87. [Online]. Available: https://doi.org/10.1007/BFb0121195
4.1, 4.2

[31] R. K. Williams, A. Gasparri, and G. Ulivi, “Decentralized matroid optimization for topol-
ogy constraints in multi-robot allocation problems,” in IEEE International Conference on
Robotics and Automation (ICRA), May 2017, pp. 293–300. 4.1

[32] H.-S. Shin, T. Li, and P. Segui-Gasco, “Sample greedy based task allocation for multiple
robot systems,” arXiv preprint arXiv:1901.03258, 2019. 4.1

[33] S. Fujishige, Submodular functions and optimization. Elsevier, 2005. 1, 2, 4.2

[34] M. Abramowitz, I. A. Stegun, and R. H. Romer, “Handbook of mathematical functions with
formulas, graphs, and mathematical tables,” 1988. 4.4

[35] J. Nocedal and S. Wright, Numerical optimization. Springer Science & Business Media,
2006. 4.4.1

[36] D. R. Herber and J. T. Allison, “Unified scaling of dynamic optimization design formula-
tions,” in ASME 2017 International Design Engineering Technical Conferences and Com-
puters and Information in Engineering Conference. American Society of Mechanical
Engineers Digital Collection, 2017. 4.4.1

31

https://doi.org/10.1007/BFb0121195

	1 Introduction
	1.1 Motivation
	1.2 Thesis Contribution
	1.3 Organization

	2 Related Work
	3 Problem Formulation
	3.1 Notation
	3.2 Problem Statement

	4 Methods
	4.1 Greedy Dynamic Task Allocation
	4.2 Algorithm Performance Analysis
	4.3 Minimum Global and Subgroup Connectivity Maintenance
	4.4 Redistribution with Heterogeneous Robots
	4.4.1 Scaling in Quadratic Programming

	4.5 Multi-Capability Generalization
	4.5.1 Generalized Problem Formulation
	4.5.2 Adaptive Greedy Method for Multi-Capability Heterogeneous Robots
	4.5.3 Redistribution among Multi-Capability Heterogeneous Robots

	5 Results
	5.1 Simulation Result
	5.2 Numerical Result

	6 Conclusion and Future Work
	Bibliography

