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Abstract— Accurate global localization is essential for plan-
etary rovers to reach mission goals and mitigate operational
risk. For initial exploration missions, it is inappropriate to
deploy GPS or build other infrastructure for navigating. One
way of determining global position is to use terrain relative
navigation (TRN). TRN compares planetary rover-perspective
images and 3D models to existing satellite orbital imagery
and digital elevation models (DEMs) for absolute positioning.
However, TRN is limited by the quality of orbital data and
the presence and uniqueness of terrain features. This work
presents a novel combination of belief space planning with
terrain relative navigation. Additionally, we introduce a new
method for increasing the robustness of belief space planning
to noisy map data. The new algorithm provides a statistically
significant reduction in localization uncertainty when tested on
elevation data produced from lunar orbital imagery.

I. INTRODUCTION

Accurate absolute localization is a vital component of
planetary exploration missions. Vehicles operating on the
moon that cannot survive lunar night are constrained to
fourteen days of operations, which limits permissible margins
of error when navigating to mission goal locations. Missions
which track time-sensitive phenomena, e.g. capturing specific
views under dynamic lighting conditions, or solar-powered
robots chasing insolation and avoiding shadows [19][1][5],
depend on accurate localization. Many craters and canyons
look alike from a local perspective (Fig. 1); precise absolute
localization alleviates confusion in position that can end a
mission.

(a) Safe entry point into crater (b) No safe entry point into crater

Fig. 1: Entering two craters along the red arrows may ap-
pear similar when viewed from a rover’s cameras. Accurate
localization can ensure that a rover enters the correct crater
(1a) through a safe entry point. Inaccurate localization can
result in entering the wrong crater, causing mission-ending
damage (1b).

Building localization infrastructure for new planetary bod-
ies could be cost prohibitive, or be inappropriate in the

case of initial exploration missions. Absent localization
infrastructure, one can localize relative to terrain features.
Terrain Relative Navigation (TRN) estimates robots’ global
positions by correlating egocentric data with an a priori map
[17][2] produced from orbital data via long-baseline stereo
or photogrammetry [15].

With TRN, localization accuracy depends on the presence
and uniqueness of terrain features; the path taken by a rover
affects its certainty of localization. Thus, it is natural to apply
belief space planning techniques to improve the localization
performance of the rover along the trajectory. This poses two
interesting problems: First, where other approaches rely on
discrete beacons [14], belief space planning in terrain relative
navigation presents, to the resolution of the orbital map, a
continuum of beacons, which may not all be unique. This
can cause planned paths to wander circuitously in order to
gain more information from TRN before heading towards
the goal. Second, compounding this problem, is the fact that
orbital maps are noisy and so the extracted DEMs may not be
accurate representations of the terrain geometry that rovers
will experience on the surface. A naive approach to belief
space planning may be fooled by what appear to be unique
landmarks on the terrain map, but are in fact artifacts of
sensor noise.

To address the first problem, we modified the belief
roadmap algorithm [14] by adding a path length penalty
term to the optimization criterion. To address the second
problem we produced the innovative strategy of sampling
noisy versions the terrain maps in order to find landmarks
that are less likely to be mirages due to inaccuracies in the
constructed DEMs. We show, on data of the lunar surface,
that our approach reduces terminal location uncertainty over
a belief space planner that does not use noisy map sampling,
with statistical significance and moderate effect size.

The benefit of our innovation can be viewed in two
lights. Primarily, it can improve the localization performance
of surface vehicles which are localizing in noisy maps.
Alternatively, the algorithm can be viewed as improving the
operational tolerance for uncertainty in preliminary mapping,
reducing demands on the fidelity of precursor sensors, po-
tentially reducing mission cost.

II. BACKGROUND

A. Terrain Relative Navigation

The most recent Mars rover, the Mars Science Laboratory
(MSL), corrects for odometry drift by relying on humans
on Earth to match terrain features in rover imagery to the



same features spotted in orbital images. This manual corre-
lation is not suitable for high-cadence autonomous rovers.
Automated localization systems have been explored, with
techniques ranging from rover-orbital image matching [7],
horizon matching to DEMs [4], and local 3D matching to
DEMs [12].

SLAM is often used in robotic applications to correct for
drift in localization when there are sufficient loop closures
[16][6][11]. However, SLAM is unnecessary due to already
having prior satellite maps and does not solve the problem
of localizing and reaching mission goals within these maps.

B. Belief Space Planning

The performance of any approach to terrain relative nav-
igation fundamentally depends on the quality of the data
which produce the terrain model (e.g. orbital imagery and
DEMs), the presence of terrain features, and the uniqueness
of those features. Current global planners [10][3] for plan-
etary rover exploration primarily plan to minimize traverse
cost (distance, energy, etc.). These paths may take a rover
into regions with sparse or ambiguous terrain features, result-
ing in high localization uncertainty. Belief space planning
can produce paths that constrain the rover’s localization
uncertainty to within acceptable values.

Belief space planning is the problem of planning with
imperfect state information, considering the predicted uncer-
tainty of future states. This is a challenging problem since
the dimensionality of the belief state space is much larger
than the original state space. Prentice and Roy [14] tackle
this problem with the Belief Roadmap (BRM) algorithm,
which reduces the search space with a Probabilistic Roadmap
(PRM) [9] and combines multiple extended Kalman filter
(EKF) updates into a single linear transfer function for
efficient calculation of posterior belief during planning. This
methods assumes the existence of a finite set of beacons
in the environment that are themselves accurately local-
ized, whereas terrain relative navigation is performed on a
continuum of “beacons,” with each point having its own
utility with respect to localization. Other approaches [13][18]
incorporate variance into an augmented state representation
to find a locally optimal control policy using a linear-
quadratic Gaussian (LQG) framework. These approaches can
only find a locally optimal policy which is highly dependent
on the initialization, and stipulate that observation models
and cost functions need to be sufficiently smooth. While
these assumptions for smoothness may be valid in many
beacon-based navigation scenarios, localization uncertainty
from TRN can be discontinuous if a unique terrain feature
suddenly appears or disappears from view. Other research
investigates the problem of planning under uncertainty where
there is no prior knowledge of the environment [8]. Our
approach does not address this problem, and instead assumes
the existence of prior orbital data.

III. NOISY-DEM-TOLERANT BELIEF SPACE PLANNING

Given a map, start and goal positions, uncertainty in
starting position, a model of localization uncertainty growth

from robot odometry, and a particular method for terrain
relative navigation, our objective is to plan a hazard-free
path from start to goal that minimizes some function of
the localization uncertainty at the goal. Additionally, it is
desirable that this path is minimally affected by noise in
the map that TRN uses for localization. This work uses a
simple implementation of horizon matching as the means
for terrain relative navigation as an example, but is agnostic
of the particular TRN implementation.

The developed method partitions planning into two phases:
1) Pre-processing phase: Prediction of TRN uncertainty,

noisy DEM sampling, and BRM graph construction
2) Query phase: Graph search through the BRM given

start and goal positions

A. Prediction of Terrain Relative Navigation Uncertainty

To predict the horizon matching TRN uncertainty at
a particular position (described by a 2D covariance), the
similarity between two horizons must first be defined and
calculated. The horizon at a position in the DEM is rendered
by ray-tracing 360-degree “panoramas” at 1-degree intervals
(Fig. 2). The similarity between two horizons is defined as
an exponential of the sum of squared differences between
them (described in [4]), where h1 and h2 are the panoramic
elevations of two horizons.

similarity =
1√
2π

exp

(
−
∑360

n=1(h1n − h2n)2

2

)
We assume that a means for estimating orientation (e.g.

sun compass or star tracker) is available, so no rotational
alignment of panoramas is necessary.

Fig. 2: Example of a rendered horizon (bottom) at the cyan
point in a contrived environment (top).

Computing the similarity between a given position’s hori-
zon to all other positions’ horizons yields a positional uncer-
tainty probability distribution of TRN at that given position
(Fig. 3), which is then fit with a 2D covariance centered at
that position. The 2D covariance is only an approximation
of the underlying uncertainty which may actually be multi-
modal and non-continuous, but enables efficient estimation of
uncertainty using the extended Kalman filter when planning.



(a) The horizon at position (90,
50) is less similar to other hori-
zons. This results in a positional
uncertainty with low variance.

(b) The horizon at position (90,
10) is similar to many other hori-
zons. This results in a positional
uncertainty with high variance.

Fig. 3: The positional uncertainty of TRN due to horizon
similarity at different positions in a contrived environment.
Darker = more similar; Lighter = less similar.

The process is repeated for every cell in the DEM to obtain
a prediction of TRN uncertainty at every cell in the map
(Algorithm 1) and can be visualized by plotting the trace of
the covariance at every cell (Fig. 4).

Algorithm 1 Algorithm for computing TRN uncertainty
covariances at every position in the DEM

1: Init covars
2: for pos1 ∈ DEM do
3: Init probDist
4: h1 ← getHorizonAt(pos1, DEM)
5: for pos2 ∈ DEM do
6: h2 ← getHorizonAt(pos2, DEM)
7: probDist[pos2]← computeSimilarity(h1, h2)
8: end for
9: covars[pos1]← computeCovar(probDist)

10: end for

B. Multiple DEM Sampling to Mitigate Noise in DEMs

The described method for estimating the positional uncer-
tainty when performing TRN at a given position is subject to
noise in digital elevation models; a seemingly unique horizon
may only be unique due to noise in the DEM. The effect of
these “false positive” low uncertainty regions is lessened by
sampling multiple noisy DEMs from the original noisy DEM,
generating multiple probability distributions from these noisy
DEMs, and then taking the positional maximum across
all probability distributions before computing covariances
(Algorithm 2). As the DEM noise level increases, more
sample iterations are needed to adequately counteract the
noise. In most of this work, five iterations of noisy samples
are used.

The effect of noisy DEM sampling is that positions which
are unique despite the presence of noise are distinguished
from positions which seem unique only because of noise
(Fig. 5).

C. Belief Roadmap Graph Construction

To reduce the search space, a probabilistic roadmap graph
[9] is constructed. The graph is made up of nodes at

Fig. 4: A plot of the TRN uncertainty at every position
over the contrived environment. Darker areas have lower
uncertainty, and should be favored during planning.

Algorithm 2 Modification of Algorithm 1 to mitigate noise
in DEMs

1: Init covars
2: for pos1 ∈ DEM do
3: Init probDistmax

4: for i ∈ numIters do
5: Init probDisti
6: noisyDEM ← generateNoisyDEM(DEM)
7: h1 ← getHorizonAt(pos1, noisyDEM)
8: for pos2 ∈ DEM do
9: h2 ← getHorizonAt(pos2, noisyDEM)

10: probDisti[pos2] ←
computeSimilarity(h1, h2)

11: end for
12: probDistmax ← max(probDistmax, probDisti)
13: end for
14: covars[pos1]← computeCovar(probDistmax)
15: end for

(a) TRN uncertainty
from ground truth DEM

(b) TRN uncertainty
from noisy DEM

(c) TRN uncertainty
from 5x noisy sampled
DEM

Fig. 5: TRN uncertainty plotted as log(tr(covariance)) of a
lunar DEM. Darker shades indicate lower uncertainty, while
whiter shades indicate higher uncertainty. Dark points of
seemingly low uncertainty in (5b) are false positives and
aren’t actually present in (5a). Sampling the noisy DEM
reduces these false positives (5c).



randomly sampled positions and hazard-free edges between
nodes within a certain distance of each other. Hazards are
defined by cells in the elevation map where the slope exceeds
a pre-defined limit. The slope of a cell s(x, y) is computed as
the average of the slopes for the 4-connected neighbourhood
of the cell (x, y). Where the slope between any two neigh-
bours is computed |M(x, y)−M(x′, y′)|/W , where M(·) is
the elevation map, and W is the width of a cell in the DEM
and (x′, y′) ∈ {(x− 1, y), (x+ 1, y), (x, y − 1), (x, y + 1)}.

Multiple extended Kalman filter updates for each edge
(consisting of many odometry and terrain relative naviga-
tion measurements) are precomputed into one-step transfer
functions for the covariance as described in the original
the belief roadmap (BRM) paper [14]. This enables more
efficient search later on, where an EKF is used to propagate
uncertainty belief.

D. Graph Search Using a Modified BRM Algorithm

To find the lowest cost path from start to goal, the belief
roadmap algorithm keeps track of the covariance, best path,
and lowest cost to each node. Breadth first search is per-
formed, initializing the search queue with the start location
and covariance. The covariance for each neighboring node
is computed by applying the precomputed one-step transfer
functions, and neighbors are only added to the search queue
if the cost to that node is less than the lowest previously
seen cost for that node. Search continues until the queue is
exhausted, at which point the lowest cost path to the goal
will have been found if it exists.

The original BRM algorithm defines the cost function to
be the trace of the goal covariance, tr(Σgoal). While this
works in a domain with a limited number of discrete beacons
for localization, it becomes problematic in the TRN domain.
Here, localization can be performed continuously everywhere
and there exist points with very low localization uncertainty.
Using the original cost function, planned paths may wander
to reach lower uncertainty locations to maximize information
gain from TRN before heading towards the goal. To drive the
path towards the goal, a new cost is defined as pathLength∗
α + tr(Σgoal) ∗ β. The effect of weighted cost can be seen
in Fig. 6.

An example of a path planned by the algorithm is shown
in Fig. 7. Here, the initial starting position is unknown. The
shortest path cannot differentiate between the two valleys,
resulting in a high final uncertainty. The belief-optimal
path exits the valley for more accurate TRN localization to
decrease uncertainty before heading towards the goal.

IV. EXPERIMENT

A. Setup

To evaluate the effectiveness of our approach for planning
low-final-uncertainty paths when performing TRN, a Monte
Carlo study was performed on a DEM near the Nobile crater
region of the Moon (Fig. 8). The DEM covers a 20x15
km area with a resolution of 100 meters per pixel and has
∼ 1.6 km elevation range. To account for the effect of
noise and errors in the DEM, planning is performed on a

(a) α = 0, β = 1
tr(Σgoal) = 0.330
length = 330.0

(b) α = 0.001, β = 1
tr(Σgoal) = 0.331
length = 92.2

(c) α = 0.005, β = 1
tr(Σgoal) = 0.334
length = 50.1

(d) α = 1, β = 1
tr(Σgoal) = 0.427
length = 44.7

Fig. 6: Using the original unweighted BRM cost function
(6a), the path takes circuitous paths that maximize infor-
mation gain from TRN before heading towards the goal
(magenta). Increasing the weighted cost of path length (6b,
6c) trades localization uncertainty for shorter paths. As α is
increased, the belief-state planner converges to the shortest
path planner (6d). Red loci are slope hazards.

(a) The shortest path to the goal
with cannot differentiate between
the two valleys, yielding a high
final uncertainty; the robot could
be at either magenta point.

(b) The belief-optimal path leaves
the valley to drastically lower un-
certainty before heading back to-
wards the goal; the robot knows it
is at the magenta point.

Fig. 7: A comparison between shortest (left) and belief-
optimal (right) paths when the starting position is unknown.
Uncertainty is lowered (tr(Σgoal) = 4.09 vs. 0.40) at the
cost of path length (length = 25.0 vs. 37.1). Red loci are
slope hazards.



version of the DEM with added Gaussian noise on elevation,
while evaluation is done using the original unaltered DEM
serving as “ground truth” to render rover-perspective hori-
zons. The roadmap used for planning has 10,000 nodes and
connectivity between nodes ≤ 1 km apart. Areas with slope
greater than 15 degrees are considered untraversable hazards.
Odometry error is set at σodom = 10% of traversed distance.
α and β in the cost function are experimentally chosen
to be 0.05 and 1 respectively to qualitatively balance path
length and uncertainty. TRN is performed every 100 meters
of traverse. The uncertainty at the start of each traverse is
zero.

Fig. 8: A 20x15 km lunar DEM near the Nobile crater region
of the Moon with a ∼ 1.6 km elevation range.

For each pair of 50 random start and goal points and
over a range of added elevation noise in the DEM (0 ≤
σ ≤ 20 meters), the shortest and belief-optimal paths are
planned. The rover traverse for each path is then simu-
lated, performing terrain relative navigation by matching
the simulated rover-perspective horizon from the unaltered
“ground truth” DEM to horizons rendered from the noisy
DEM and using an extended Kalman filter for localization.
The terminal localization uncertainty for each belief-optimal
path is compared to that of the shortest path.

B. Results

Fig. 10a shows the difference in final localization uncer-
tainty when planning shortest and belief-optimal paths across
50 trials. With no added noise to the DEM (σ = 0m), belief-
optimal planning yields a statistically significant reduction in
terminal pose uncertainty, with p < 0.001 and a moderate
effect size (d=0.671). On average, the final localization
uncertainty is reduced by 21% at the cost of extending
driving distance by only 13%. With increasing levels of
DEM noise, reduction in final uncertainty loses its statistical
significance; it is only statistically significant (p < 0.01)
while DEM noise σ ≤ 10m. With 5x sampling (Fig. 10b),
belief-optimal paths are more robust to the noise in the DEM
when compared to baseline BRM planning, resulting in paths
that are more likely to decrease localization uncertainty as
noise levels rise. Here, reduction in uncertainty is statistically
meaningful to higher levels of DEM noise, up to around
σ ≤ 14m (p < 0.001, d = 0.399), compared to σ ≤ 10m
(p < 0.001, d = 0.447) of the baseline algorithm.

The effect of the number of noisy samples when planning
on a DEM with significant noise (σ = 20m) is illustrated
in Fig. 9 and Table I. When the number of samples is
small (< 10), the performance of the resampling algorithm

is statistically indistinguishable from the baseline BRM.
However, with a sufficient number of samples (>10) we
see a small to moderate improvement in the terminal pose
uncertainty of the vehicle with statistical significance (p <
0.01).

Fig. 9: At a given DEM noise level (σ = 20m), increasing
the number of noisy DEM samples makes the effect of belief-
optimal planning more statistically significant.

# Noisy
samples

Average (± std error) change in
uncertainty (meters2), n = 50 p Cohen’s d

0 29.3 (14.7) N/A N/A
1 14.5 (28.6) 0.561 0.092
5 9.0 (29.6) 0.455 0.123
10 -46.9 (28.3) 0.006 0.478
20 -76.1 (27.5) <0.001 0.677

TABLE I: The result of paired T-tests comparing the effect
of noisy DEM sampling to the baseline BRM algorithm (no
noisy samples) at a given DEM noise level (σ = 20m). The
baseline BRM algorithm does poorly, increasing terminal
position uncertainty compared to shortest path planning.
Increasing the number of noisy samples gives the desired
result: a reduction in uncertainty even under extreme DEM
noise.

Fig. 12 compares the paths planned from the same start
and end points, with and without DEM noise. In the noise-
free case, the baseline BRM path (with the added path length
cost modifier) lowers the goal uncertainty at the cost of path
length. Qualitatively, the path seems to favor the dark ridge
of low uncertainty. When noise is introduced into the DEM,
baseline BRM planning causes the path to deviate to seek out
points of false-positive certainty that do not actually exist,
resulting in both an increase of uncertainty and path length.
When applying noise-tolerant belief-optimal planning with
noisy DEM sampling, the uncertainty is once again lowered
at the cost of path length. Qualitatively, the path more closely
resembles the noise-free path, which suggests that noisy
DEM sampling is effective at reducing the influence of DEM
noise. The trade off between uncertainty and path length is
visualized in Fig. 11 for all 50 random pairs of start and goal
points.



(a) Baseline BRM planning (with path length cost modifier) (b) DEM noise-tolerant planning (5x noisy DEM sampling)

Fig. 10: The difference in terminal position uncertainty (belief-optimal vs. shortest) as a function of DEM noise over 50
pairs of random start and goal points. Baseline BRM planning without noisy DEM sampling (10a) reduces final uncertainty
with statistical significance while DEM noise σ ≤ 10m. With 5x noisy DEM sampling (10b), belief-optimal planning is
statistically effective to higher levels of DEM noise, up to around σ ≤ 14m.

Fig. 11: Each point compares the % change in path length
vs. % change in final uncertainty of belief-optimal planning
compared to shortest-path planning in the case with no
DEM noise for one of 50 trials. In general, the reduction
in uncertainty is greater than the increase in path length.

Fig. 12: A comparison of paths planned (green) from the
same start and end points, with and without σ = 12m of
DEM noise. Darker areas have lower TRN uncertainty. Red
areas are hazards.

V. CONCLUSIONS

We successfully applied belief space planning to terrain
relative navigation for surface vehicles to reduce localiza-
tion uncertainty. Further, we introduced a novel method for
increasing a route’s robustness to noise in digital elevation
models through noisy DEM sampling. This reduces the
likelihood of planned routes seeking out regions of seemingly
low TRN uncertainty that do not actually exist. The method-
ology was evaluated on elevation maps of Lunar terrain
through simulations over many traverses with varying DEM
noise levels. In the case with no DEM noise, belief-optimal
planning always reduced final localization uncertainty when
compared to shortest path planning, with p < 0.001 and
a moderate effect size (d=0.671). It decreased localization
uncertainty by 21% at the cost of extending driving distance
by only 13% when compared to shortest-path planning.
Under the highest DEM noise levels tested (σ = 20m),
the baseline BRM algorithm did poorly, increasing terminal
position uncertainty by an average of 29.3m2 compared to
shortest path planning. Noisy sampling greatly improved
upon this, decreasing uncertainty by an average of 76.1m2

with statistical significance (p < 0.001, d = 0.677). Future
work should characterize the number of noisy samples ap-
propriate for different levels of DEM noise.

This work will enable planetary exploration rovers to reach
science goals more accurately and decrease mission risk by
compensating for fundamental limitations in terrain relative
navigation and DEM quality. Characterizing performance
over different terrain regions, more accurate noise models,
and better capturing the multi-modal aspect of TRN are all
more areas for future work.
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