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Abstract

Early prediction of the potential for neurological recovery after resuscitation from cardiac

arrest is difficult but important. Currently, no clinical finding or combination of findings are

sufficient to accurately predict or preclude favorable recovery of comatose patients in the

first 24 to 48 hours after resuscitation. Thus, life-sustaining therapy is often continued for

several days in patients whose irrecoverable injury is not yet recognized. Conversely, early

withdrawal of life-sustaining therapy increases mortality among patients who otherwise

might have gone on to recover. In this work, we present Canonical Autocorrelation Analysis

(CAA) and Canonical Autocorrelation Embeddings (CAE), novel methods suitable for identi-

fying complex patterns in high-resolution multivariate data often collected in highly moni-

tored clinical environments such as intensive care units. CAE embeds sets of datapoints

onto a space that characterizes their latent correlation structures and allows direct compari-

son of these structures through the use of a distance metric. The methodology may be par-

ticularly suitable when the unit of analysis is not just an individual datapoint but a dataset,

as for instance in patients for whom physiological measures are recorded over time, and

where changes of correlation patterns in these datasets are informative for the task at hand.

We present a proof of concept to illustrate the potential utility of CAE by applying it to

characterize electroencephalographic recordings from 80 comatose survivors of cardiac

arrest, aiming to identify patients who will survive to hospital discharge with favorable func-

tional recovery. Our results show that with very low probability of making a Type 1 error, we

are able to identify 32.5% of patients who are likely to have a good neurological outcome,

some of whom have otherwise unfavorable clinical characteristics. Importantly, some of

these had 5% predicted chance of favorable recovery based on initial illness severity mea-

sures alone. Providing this information to support clinical decision-making could motivate

the continuation of life-sustaining therapies for these patients.
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Introduction

Cardiac arrest is the most common cause of death in high-income nations [1]. In the United

States alone, over 350,000 people suffer out-of-hospital cardiac arrest each year [2]. Despite

advances in care, only a minority of those that are resuscitated and survive to hospital admis-

sion are discharged alive, and even fewer enjoy a favorable neurological recovery [2, 3].

Among non-survivors, the most common proximate cause of death is withdrawal of life-sus-

taining therapy based on perceived poor neurological prognosis [3, 4]. This decision may be

motivated by the rarity of favorable recovery, the emotional and financial hardship placed on

families faced with the prospect of even a few days of intensive care, or fear of survival with

severe disability.

Unfortunately, accurate neurological prognostication after cardiac arrest is challenging,

particularly in the first 3 to 5 days after resuscitation [5]. Life-sustaining therapy is still often

withdrawn before prognosis is certain, unnecessarily reducing rates of favorable recovery [3, 6,

7, 8]. At the same time, patients with brain injury that is ultimately deemed irrecoverable are

often supported for days while providers gather sufficient data to make such an assessment.

Multiple modalities which might inform early prognostication have been explored [9, 10,

11, 12]. Of particular interest is the rich electroecephalographic (EEG) data that may be

obtained. Research indicates that EEG signals can improve prediction accuracy [10, 13, 14].

Qualitatively, some EEG patterns such as seizures suggest severe brain injury [15]. Quantita-

tively, patterns with strong correlations between channels or over time are suggestive of diffuse

cortical damage seen after non-survivable brain injury [14, 16]. Within EEG, as in many bio-

logical systems, entropy is a marker of information content [17]. By contrast, strong spatial or

temporal correlations are an ominous predictor of severe brain injury [10, 14, 16]. Because

these correlations may be subtle and/or complex, they may be inapparent to providers qualita-

tively interpreting the EEG, leading to growing interest in quantitative EEG analysis. Fig 1

shows an example of an EEG of a post-arrest patient with mild brain injury who goes on to

enjoy a favorable recovery and an example of an EEG of a patient with severe brain injury, for

which correlations across channels are very strong. Motivated by this, our goal is to character-

ize patients in terms of their multivariate, non-linear structures of correlation and use the

resulting featurization to identify patients who likely have the potential for favorable neurolog-

ical recovery.

We propose Canonical Autocorrelation Analysis (CAA) as a method for automated discov-

ery of multiple-to-multiple correlation structures within a set of features. Through the intro-

duction of a distance metric between CAA correlation structures, we are able to define

Canonical Autocorrelation Embeddings (CAE), a feature space embedding in which each

Fig 1. (Left) EEG of a post-arrest patient who goes on to recover. (Right) EEG of a patient with poor neurological prognosis.

https://doi.org/10.1371/journal.pone.0210966.g001
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individual/object is represented by the set of its multivariate correlation structures. In this fea-

ture space embedding, traditional machine learning algorithms that rely on distance metrics,

such as nonparametric clustering and k-nearest neighbors (k-nn), can be applied to compare

correlation structures.

This methodology is particularly fitting to tasks where multiple potentially correlated data

points are recorded over space or time for each individual or unit of study. For example, in

clinical medicine several vital signs or other physiological measures may be repeatedly sampled

for each patient being monitored. Because physiological processes are interdependent and

interact, analyzing the correlation structure between several such processes may reveal other-

wise unrecognized patterns that may characterize the current state of the patient [16, 18]. In

this work, we demonstrate the utility of CAE by presenting a specific clinical example: predict-

ing future neurological recovery in a cohort of comatose survivors of cardiac arrest using sets

of quantitative EEG autocorrelations.

Because of the difficulty identifying patients with potential for recovery and desire to limit

futile care described above, patients may be at risk for withdrawal of life-sustaining therapy

when their potential to recover goes unrecognized [3]. To reduce this risk, we propose a deci-

sion-support system that provides recommendations to the clinician whenever it is confident

that a patient is likely to have a positive neurological recovery and defers in all other instances.

Therefore, rather than always providing a recommendation, the algorithm only does so when

it is confident life-sustaining therapies should be continued, a prediction it reaches based on

patterns in multivariate correlation structures of the EEG that the clinician might not have

observed. In all other cases the algorithm will defer to the clinician’s judgment.

In the remainder of this paper, Section 1 presents a brief review of related work. Section 2.1

discusses the task and data in more detail. In Section 2.1, CAA and CAE are introduced, as

well as the use of a k-nn algorithm in the resulting embedded space. Section 3 contains the

experimental results, Section 4 discusses our findings and Section 5 summarizes the conclu-

sions and future work.

1 Related work

Canonical Correlation Analysis (CCA) is a statistical method first introduced by [19], useful

for exploring relationships between two sets of variables. It is used in machine learning, with

applications to medicine, biology and finance, e.g., [20, 21, 22, 23]. Sparse CCA, an ℓ1 variant

of CCA, was proposed by [23, 24]. This method adds constraints to guarantee sparse solu-

tions, which limits the number of features being correlated. Given two matrices X 2 Rn�p

and Y 2 Rn�q
, CCA aims to find linear combinations of their columns that maximize the cor-

relation between them. Usually, X and Y are two disjoint matrix representations for one set

of objects, so that each matrix is using a strictly different set of variables to describe them.

Assuming X and Y have been standardized, the constrained optimization problem is shown

in Eq 1. When c1 and c2 are small, solutions will be sparse and thus only a few features are

correlated.

maxu;vuTXTYv

jjujj2
2
� 1; jjvjj2

2
� 1 jjujj1 � c1; jjvjj1 � c2

for 0 � c1 � 1; 0 � c2 � 1

ð1Þ

The extension of Sparse CCA for discovery of multivariate correlations within a single set

of features to study brain imaging has been previously explored in [20, 21]. Using the notion

of autocorrelation, the authors attempt to find underlying components of functional magnetic
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resonance imaging (fMRI) and EEG, respectively, that have maximum autocorrelation. The

types of data used in these works are ordered, both temporally and spatially.

Canonical Autocorrelation Analysis (CAA), the methodology we propose, is a generalized

approach to discovering multiple-to-multiple correlations within a set of features. Fig 2 illus-

trates the different use cases of Sparse CCA and CAA. The proposed formulation also allows

for the user to select sets within which correlations are forbidden, which is useful when trivial

correlations should be avoided. Moreover, we introduce a distance metric between canonical

autocorrelation structures, which gives substantially more power to CAA-based methodology,

making it useful for various learning tasks, such as clustering and classification on datasets and

distributions.

Other methods for finding sparse representations of data comprised in a single matrix

include the well-known Sparse Principal Component Analysis (Sparse PCA). While CAA

resembles Sparse PCA in the sense that it finds sparse representations of data contained in one

matrix, Sparse PCA maximizes retained variance of data in one-dimensional projections,

while CAA finds two-dimensional projections where correlation across two subsets of features

is maximized. CAA specifically seeks projections composed by pairs of strongly correlated lin-

ear combinations of features, enabling discovery of hidden characteristic correlations in data,

which cannot be easily found with other methods such as Sparse PCA. S2 File explores the dif-

ference between the two methods in more detail and from a theoretical perspective.

Extraction of informative projections has been tackled in the past [25, 26]. Our work differs

from the existing methodology in two primary ways. First, each of the CAA projection axes is

defined by a linear combination of features, rather than a single feature, which helps discover

complex structures if they exist. Secondly, rather than finding projections where classes are

well-separated, the proposed methodology is unsupervised and it is aimed at characterizing

objects or individuals that have a batch of data points associated to them, yielding an embed-

ding where standard machine learning methodologies can be used with minor modifications.

In that sense, the extracted projections are different both in their form and in their purpose.

The comparison of correlation structures and principal components has been explored in

the literature for decades. Most prominently, [27] discusses comparison of principal compo-

nents between groups. To do so, they propose a metric inspired by the concept of congruence

coefficient [28], which corresponds to the cosine of the angle between the two p-dimensional

vectors. Also related to our task is [29], where a metric between covariance matrices is pro-

posed. The notion of a distance metric between canonical autocorrelation structures differs

from these because CAA finds a factorization of the correlation matrix where each portion of

the correlation matrix is expressed as the outer product of a pair of orthonormal vectors,

which define a bi-dimensional space in which the projected data follows a linear correlation.

Section 2.3 discusses the proposed metric.

Fig 2. Comparison between scenarios where Sparse CCA and CAA can be used. (Left) Sparse CCA finds sparse

multiple-to-multiple linear correlations between subsets of the features in matrix X and subsets of features in matrix Y.

(Right) CAA extends this to cases where it is not known a priori how to group the features into two sets.

https://doi.org/10.1371/journal.pone.0210966.g002
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Learning to defer has been studied in the literature as a means to effectively combine algo-

rithmic and human decision-making [30, 31]. When decision-makers are knowledgeable

domain experts, as is the case of clinicians providing care to comatose survivors of cardiac

arrest, it is desirable to provide a framework in which the algorithm only provides suggestions

when confident, and defers to the human in all other cases. Our work incorporates a deferral

notion, and the proposed system only provides recommendations for a subset of cases where it

is confident of its predictions.

2 Methods

2.1 Data sources

This study was approved by the University of Pittsburgh Institutional Review Board with a

waiver of informed consent. The data used in this case study are derived from 451 comatose

survivors of cardiac arrest treated at a single academic medical center between 2010 and 2015

[10, 32]. For each patient, raw EEG data (recorded at 256Hz across 20 electrode channels dis-

tributed in space across the scalp) were signal-processed using commercially available FDA-

approved software (Persyst(R) Version 12, Persyst Development Corp, Prescott AZ), using

standard clinical signal processing engines. The resulting quantitative EEG (qEEG) measures

were summarized at a resolution of 1Hz and are available for continuous EEG recordings aver-

aging about 36 hours per patient. The total number of qEEG features is 66 and include seizure

probability, amplitude-integrated EEG for the left and right hemispheres of the brain, epilepti-

form spike detections, suppression ratio, summary frequency measures, and other metrics

physicians find informative. The raw EEG data were not available. The full list of features can

be found in S1 Table.

Also available for each patient are time-invariant clinical characteristics and outcomes,

including survival to hospital discharge. For those who lived, the quality of their functional

recovery at discharge was measured using two standard outcome scales: Cerebral Performance

Category and modified Rankin Scale. We considered “favorable recovery” to be either a Cere-

bral Performance Category of 1 or 2 or a modified Rankin Scale score of 0-2 at hospital dis-

charge. For those who died, the proximate cause of death is known. Fig 3 shows this

Fig 3. Patient labels indicating survival, outcome and cause of death. (Left) Survival and outcome. (Right) Cause of death.

https://doi.org/10.1371/journal.pone.0210966.g003
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information in detail. The data used in our experiments is limited to patients who survived

hospital discharge and who were monitored for at least 36 hours, which corresponds to a total

of 80 patients, half of whom had a favorable recovery. Table 1 includes the demographic and

clinical characteristics of this cohort. The reasons for limiting our analysis to this subset are

explained more in detail in Section 3.

2.2 Canonical Autocorrelation Analysis

The goal of CAA is to find multivariate sparse correlations within a single set of variables. In

the Sparse CCA framework, this could be understood as having identical matrices X and Y.

Applying Sparse CCA when X = Y results in solutions u = v, corresponding to Sparse PCA

solutions for X [24]. We overcome this issue by introducing a penalty for overlapping feature

support. The resulting optimization problem for CAA is shown in Eq 2.

maxu;vuTXTXv

s:t:

jjujj2
2
� 1; jjvjj2

2
� 1 jjujj

1
� c1; jjvjj1 � c2

Xm

i¼1

juivij ¼ 0

for 0 � c1 � 1; 0 � c2 � 1

ð2Þ

This can be understood as a new generalization of the Penalized Matrix Decomposition

[24]. Note that the equality constraint in Eq 2 can be seen as a weighted L1 penalty when either

u or v are fixed. Replacing the equality constraint by an inequality constraint gives a biconvex

problem, while resulting in the same solution. Therefore, we can solve it through alternate con-

vex search [33], as shown in Algorithm 1.

Table 1. Demographic and clinical characteristics of cohort of patients considered in the study.

Characteristic Overall cohort

(n = 80)

Favorable outcome

(n = 40)

Unfavorable outcome

(n = 40)

Age (years) 56 ± 17 51 ± 16 61 ± 14

Gender (F = 1) 23 (29%) 8 (20%) 15 (38%)

Out-of-hospital arrest 61 (76%) 35 (88%) 26 (65%)

Shockable initial rhythm 36 (45%) 24 (60%) 12 (30%)

Pittsburgh Cardiac Arrest Category

ii 42 (53%) 63 (25%) 17 (43%)

iii 19 (24%) 6 (15%) 13 (33%)

iv 19 (24%) 9 (23%) 10 (25%)

Cardiac etiology 55 (69%)) 21 (53%)) 34 (85%))

Cardiac catheterization 33 (41%)) 22 (55%)) 11 (28%))

Temperature management

33˚C 67 (84%)) 35 (88%)) 32 (80%))

36˚C 9 (11%)) 4 (10%)) 5 (13%))

None 4 (5%) 1 (3%)) 3 (8%))

Hospital length of stay

(days)

20 [13–27] 16 [11–24] 21 [17–30]

https://doi.org/10.1371/journal.pone.0210966.t001
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Algorithm 1: CAA via alternate convex search
1 Initialize v s.t. ||v||2 = 1;
2 repeat
3 u arg max

u
uTXTXv

4 s.t. jjujj2
2
� 1, ||u||1 � c1,

Pm
i¼1
juijjvij ¼ 0

5 v arg max
v

uTXTXv

6 s.t. jjvjj2
2
� 1, ||v||1 � c1,

Pm
i¼1
juijjvij ¼ 0

7 until u, v converge;
8 d  uTXTXv;

At each iteration, the resulting convex problem can be solved through the Karush-Kuhn-

Tucker (KKT) conditions. The pseudo-code for solving the convex problems at each iteration

of the alternate convex search is provided in Algorithm 2, where we solve for u without loss of

generality. For a detailed derivation see S1 File.

Algorithm 2: CAA alternate convex search iteration via KKT conditions

1 l1 ¼ max
i

jðXTXvÞi j
jvi j

;

2 if jj
SFðvl1 ;0Þ

ðXTXvÞ

jjSFðvl1 ;0Þ
ðXTXvÞjj2

2

jj
1
� c1 then

3 return u ¼ SFðvl1 ;0Þ
ðXTXvÞ

jjSFðvl1 ;0Þ
ðXTXvÞjj2

2

4 else

5 Binary search to find λ2 s.t. jj
SFðvl1 ;l2Þ

ðXTXvÞ

jjSFðvl1 ;l2 Þ
ðXTXvÞjj2

2

jj1 ¼ c1;

6 return u ¼
SFðvl1 ;l2 Þ

ðXTXvÞ

jjSFðvl1 ;l2 Þ
ðXTXvÞjj2

2

7 end
To find multiple pairs of CAA canonical vectors, Algorithm 1 can be repeated iteratively,

replacing XTX with a matrix from which the already found correlations are removed, as shown

in Eq 3, where d = uTXTXv.

XTX � dðuvT þ vuTÞ ð3Þ

In order to enable the discovery of non-linear correlations by extending the feature space

with subsequent powers of the original features [34], we modify the optimization problem to

extend the concept of disjoint support to sets of features. This also prevents the discovered cor-

relations to be dominated by relationships between features that are already known to be cor-

related by design. Assuming each feature xi has a subset Si of associated indices of other

features that should not be included as correlates of xi, the resulting optimization problem fol-

lows Eq 4.

maxu;vuTXTXv

jjujj2
2
� 1; jjvjj2

2
� 1 jjujj

1
� c1; jjvjj1 � c2

Xm

i¼1

X

j2Si

juivij ¼ 0

for 0 � c1 � 1; 0 � c2 � 1

ð4Þ

The new constraint for disjoint support can still be understood as a weighted-L1 penalty at

each iteration of the biconvex optimization algorithm. Hence, the problem can still be solved

as discussed above, with the only difference that the parameters of the soft-thresholding opera-

tor will change.
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2.3 Canonical Autocorrelation Embeddings

CAA allows us to find bi-dimensional projections where the data closely follows a linear distri-

bution. Each axis of these projections corresponds to a linear combination of the original fea-

tures, and their respective coefficients are represented in a pair of vectors u; v 2 Rm
. We call

each pair u, v a CAA canonical space, and each CAA model may consist of one or more of

such canonical spaces.

Since the correlations discovered by CAA are defined by pairs of vectors inRm
, we can mea-

sure the distance between two CAA canonical spaces in terms of Euler angles defining the rota-

tion from one pair of axes to the other. Measuring the angle between two vectors is equivalent

to measuring the arc between them, and ||u||2 = ||v||2 = 1 8i, therefore, the distance between

two CAA canonical spaces C1 and C2 can be defined as shown in Eq 5. This yields an embed-

ding that we refer to as Canonical Autocorrelation Embedding (CAE).

dðC1;C2Þ ¼ min ðjju1 � u2jj2 þ jjv1 � v2jj2 ; jju1 � v2jj2 þ jjv1 � u2jj2Þ ð5Þ

It is easy to show that this metric satisfies the necessary conditions for a well-defined dis-

tance, see S3 File for the proof.

Even though we believe that Eq 5 provides a good distance metric that captures what we

desire to measure, we do not claim this is the only nor necessarily the best such metric, and it

is appropriate to continue exploring alternatives. S4 File contains a short discussion of why

“principal angles”, a metric that is commonly used to measure distance between subspaces and

which naturally comes to mind in this setting, is actually not well-suited in this case.

2.4 K-Nearest correlations

Having formulated a distance metric between pairs of CAA canonical spaces enables us to

employ a range of distance-based machine learning algorithms, such as k-means, hierarchical

clustering, or k-nn, to leverage similarities among correlation structures present in data. One

additional complexity in our case is that each subset of data being compared may be repre-

sented by more than one CAA canonical space, and therefore more than one point in the

embedding.

This setting can be incorporated into the k-nn framework by calculating the class probabil-

ity for each correlation structure through the votes of their k nearest neighbors, and then

aggregating over all correlations associated to an object using log-odds, as shown in Eq 6,

where np,i,j denotes the class label of the jth neighbor of the ith correlation of patient p.

qi ¼
Pk

j¼1
np;i;j

k

ŷp ¼ log
Ymp

i¼1

qi

1 � qi

 ! ð6Þ

However, it is likely that some type of correlation structures will be common to both classes,

while others are discriminative. To reduce noise and allow for those discriminative correla-

tions to lead the decision, we incorporate a threshold t, so that log-odds are only calculated

over those correlation structures with a class probability that is discriminative enough, as

shown in Eq 7. Incorporating this threshold also enhances interpretability of the comparisons,

as it reduces the number of structures that are used for making a prediction, making it easier

for practitioners to understand which correlations appear relevant for the task at hand.

The parameters k, indicating the number of neighbors, and t can be tuned through cross-
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validation.

ŷp ¼ logð
Ymp

i¼1

Iðjqi � 0:5j>tÞ
qi

1 � qi
Þ ð7Þ

3 Results

Our principal goal is to help improve care given to comatose survivors of cardiac arrest

through a decision support system that can boost the accuracy and timeliness of prognostica-

tion. To do so, we propose a new way to characterize patients using their latent multivariate

correlation structures, and use the resulting featurization of data to build predictive models.

The results presented in this section leverage data collected over a five year period at an aca-

demic medical center to provide a proof of concept of the proposed methodology.

As seen in Fig 3, the main cause of death for this patient population is withdrawal of life-

sustaining therapy due to perceived poor neurological prognosis. However, as mentioned in

Section 1, it is possible that in some cases treatment might be withdrawn too early, a decision

which nearly invariably leads to death and precludes favorable recovery. Including those

patients in our training set could result in the model replicating mistakes clinicians may be

making, leading to a self-fulfilling prophecy. Considering this and the fact that our goal is to

predict positive neurological outcome rather than survival alone, we train our model using

only those patients who lived, making our target label whether they had a good or a poor neu-

rological outcome. This also reduces the risk for unaccounted treatment effects, since presum-

ably all patients who are kept on live support receive a minimum standard of appropriate care,

while therapeutic nihilism may influence outcomes for patients for whom life-supporting ther-

apies are interrupted.

For each patient, their entire qEEG record is available, with lengths varying from less than

an hour to more than a week. We aim to predict recovery as early as possible, but the earlier

we attempt prediction, the more challenging it is. For the purposes of this experiment, we tar-

get prediction after 36 hours of monitoring. We use CAA to characterize a two hour epoch

between hours 34 and 36. We choose 36 hours because we are interested in a period where the

EEG is relatively static so that we do not need to account for temporal trends within the ana-

lyzed epoch. Clinically, patients are cooled down for 24 hours then allowed to rewarm at about

0.25-0.5C/hr. Both temperature and medications used to suppress shivering can alter the EEG

[10]. At 36 hours, patients are back to a normal body temperature. The specific question the

proposed model answers is: can the correlations present during this epoch predict whether the

patient will go on to enjoy a favorable recovery? We consider only two hours because it can be

expected that each patient’s state fluctuates over time, and the resulting variance could obfus-

cate important patterns of correlation. Identifying temporal trends, or inferring meta-correla-

tion structures that describe these trends, is an important subject of future work beyond the

scope of current analysis. Fig 4 illustrates the process of characterization of multiple patients’

EEG data with CAA.

In order to avoid spurious results, we only consider CAA canonical projections that yield

correlations with R2 > 0.25. Moreover, to ensure that only reasonably close neighbors are

used for matching, we prune connections by only considering distances smaller than
ffiffiffi
2
p

, a

threshold that corresponds to a 90˚ rotation over one axis. Empirical results of k-Nearest

Correlations with CAE obtained through 10-fold cross-validation, with tuning parameters k
and t in an internal 10-fold cross-validation loop within each training fold, are presented in

Figs 5 and 6.

Predicting neurological recovery with Canonical Autocorrelation Embeddings

PLOS ONE | https://doi.org/10.1371/journal.pone.0210966 January 28, 2019 9 / 17

https://doi.org/10.1371/journal.pone.0210966


For baseline comparison, we use a popular approach: extract features based on metrics cal-

culated over windows of time and apply standard classifiers to the resulting featurization [35,

36, 37]. We calculate quartiles for each input feature over two hours preceding the 36-hour

mark, and provide them as features to logistic regression with lasso regularization [38] and k-

nn with Euclidean distance. We refer to these as logistic regression on sets and k-nn on sets,
respectively. To emphasize the importance of considering a window of time rather than a

snapshot, we also compare against the same two algorithms taking as input the last data point

after 36 hours of monitoring, that is, the recording at one time step. We refer to this approach

as logistic regression on points and k-nn on points, respectively. The parameters are chosen

through 10-fold cross-validation. The results are included in Figs 5 and 6.

Finally, we apply the resulting system to those patients who were withdrawn from life-sus-

taining therapies. Amongst 31 patients who received life-sustaining therapies for at least 36

hours before withdrawal of life-sustaining therapies, five patients would have been marked by

our classifier as very likely to recover at a threshold of FPR equal to 0.025.

4 Discussion

Recall that the proposed decision-support system is one that only makes recommendations

when it has strong indications that the patient is likely to have a positive neurological recovery,

and defers in all other cases. We evaluate the performance of the algorithm at the thresholds at

which it would make recommendations, which we characterize through low false positive rates

(FPR). The true positive rate (TPR) at a given FPR indicates what portion of positives–TPR—

would be retrieved while assuring that no more than a given rate of negatives–FPR—will be

incorrectly labeled as positive.

Due to the gravity of errors in this scenario, the tolerance for false positives should be

extremely low. Receiver Operator Curves (ROC) shown in Figs 5 and 6 display true positive

rates at different false positive rates, with the x-axis in log-scale to emphasize the low FPR

region. While Area Under the Curve (AUC) is reported, it is important to note that this perfor-

mance metric is not particularly relevant in our case (nor in any other case in which there is a

fixed threshold at which decisions are made). AUC is a measure that allows us to aggregate

performance over all possible FPR thresholds, but what we really care about is the performance

at the thresholds that are chosen for deployment.

The results presented in Fig 5 show that the proposed methodology has predictive power,

and the comparison to k-nn using Euclidean distance highlights the role of CAE. While the

performance of all other methods at low FPR is no better than random, the performance of

Fig 4. Diagram illustrating CAA patient characterization using EEG features as inputs.

https://doi.org/10.1371/journal.pone.0210966.g004
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CAE at low FPR is promising, with a TPR of 0.325 and corresponding 95% confidence interval

[0.125, 0.46] at a FPR of 0.025 (Fig 6A). This means that with very low probability of making a

Type I error, we are able to confidently identify at least 12.5% of the patients who will go on to

have a positive neurological recovery. If the deployment setup changed, an ensemble model

including CAE and logistic regression could be used to draw benefits from both of its compo-

nents: high recall at low FPR of CAE, and overall good separability between outcome classes of

logistic regression.

Even though consensus guidelines advocate maintaining life-sustaining therapies for at

least 72 hours after cardiac arrest [7, 8], the burden associated to continuing life-support for

patients who will not have a positive neurological recovery still often leads clinicians to with-

draw treatment earlier [3]. Thus, the ability of CAE to confidently identify patients that will

likely recover with a good outcome has the potential to save lives.

Fig 5. ROC curves showing performance of CAE, logistic regression on sets, logistic regression on points, k-nn on sets and k-nn on points. X-axis in log-scale to

emphasize low FPR region.

https://doi.org/10.1371/journal.pone.0210966.g005
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To appropriately estimate the potential impact of such a decision support system in terms

of lives saved, it is useful to compare against physicians’ assessments to validate if the predic-

tions made with the proposed approach are non-redundant to what doctors already know.

Each patient in our dataset is classified by Pittsburgh Cardiac Arrest Category, a 4-level, vali-

dated prognostic indicator assigned in the first six hours of their stay [39]. This classification

indicates whether the patient is awake with little brain injury (category i), in a mild to moder-

ate brain injury with good heart and lung function (category ii), in a mild to moderate brain

injury but poor heart and/or lung activity (category iii), or severe brain injury with loss of

Fig 6. ROC curves with 95% confidence intervals for CAE (AUC = 0.71 with 95% confidence interval of [0.6, 0.82]) and logistic regression on sets (AUC = 0.81

with 95% confidence interval of [0.71, 0.91]), x-axis in log-scale. (A) CAE, TPR vs. FPR. (B) CAE, TNR vs. FNR. (C) Logit on sets, TPR vs. FPR. (D) Logit on sets,

TNR vs. FNR.

https://doi.org/10.1371/journal.pone.0210966.g006
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some brainstem reflexes (category iv). While patients in category i have an associated probabil-

ity of survival of 80%, and 60% probability of having a positive neurological recovery, patients

in category iv have probabilities of 10%, and 5%, respectively. At a FPR lower than 0.025, the

proposed methodology correctly identified a category iv patient who later went on to have a

positive recovery. This constitutes a preliminary indication that the patterns of correlations in

neurological activity measured with EEG constitute novel findings and have the potential to

improve reliability of prognostication.

As discussed in Section 3, amongst those patients whose cause of death is withdrawal of

life-sustaining therapy for perceived neurological prognosis, 5 out of 31 patients who received

life-sustaining therapies for at least 36 hours would have been marked by our system as likely

to have a positive recovery. Two of these patients had received a Pittsburgh Cardiac Arrest Cat-

egory of iv. The remaining three received an initial Pittsburgh Cardiac Arrest Category of ii.
While we do not have ground truth regarding counterfactuals of what would have happened if

life-sustaining therapies had been continued for these patients, these results provide further

indication that CAE is not simply leveraging patterns that are already being used by

physicians.

While it would also be desirable to identify patients who have a very small probability of

neurological recovery, we note that neither of the models would be able to provide confident

recommendations to withdraw life-sustaining therapies while guaranteeing low false negative

rates (FNR). Fig 6B and 6D show the results for CAE and logit on sets at low FNR. These nega-

tive results may in part be explained by the fact that the available labeled data encodes positive/

negative outcomes, but these are not limited to just neurological activity. A patient could have

a positive neurological recovery but have other medical complications that limit function and

thus result in a bad outcome label. Meanwhile, the positive recovery label is sure to indicate

positive neurological recovery (as well as positive recovery in other areas).

A research direction that could further improve the performance of CAE is correlation tra-

jectory modeling. While our model captures correlations observed within an interval of time,

and in that sense it goes beyond a purely stationary approach, leveraging the sequential struc-

tures in data and using all data collected during a patients’ stay is desirable. Methodologically,

this calls for the development of models for trajectory modeling of multivariate correlation

structures. This could also encompass further exploration of additional distance metrics that

could incorporate other types of information. By leveraging more information, such an

approach would have the potential of providing earlier and more specific predictions.

An additional direction for performance enhancement comes from the fact that our charac-

terization of brain activity with CAA is motivated by the importance clinicians place on corre-

lations. However, the correlations they know to be informative are across raw EEG channel

measurements, and it is likely that at the current level of data aggregation, a big portion of the

information may be to some extent obfuscated. This does not constitute a risk in terms of the

validity of the results presented in this paper, but it means that further promising results may

be expected from characterizing correlations in raw EEG signals. Such models could also lead

to biological insights that may not be easily derived with the current approach.

An important challenge that arises in this setting is the selective labels problem [40]. Selec-

tive labels is a common yet understudied problem that occurs whenever historical decision-

making blinds us to the true outcome for certain instances. In the case of predicting neurologi-

cal recovery, we may only observe the true outcome when the clinicians decide to extend life

sustaining therapy, while we are blind to the conterfactual of what would have happened in

those cases for which life sustaining therapy is withdrawn early. If patients for whom treatment

was stopped early are significantly different from those for whom it was not, which is possibly
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the case, machine learning models trained only on the observed outcomes might have a lower-

than-desired performance for that group.

5 Conclusions and future work

Cardiac arrest is a leading cause of death around the world, coma after cardiac arrest is com-

mon, and good neurological recovery is rare. Everyday, clinicians are tasked with making a

prediction that determines whether they will continue life-sustaining therapies for their

patients in coma or not. Motivated by the emphasis the clinicians place on potential infor-

mativeness of the correlation structures in EEG data, we have proposed a way to characterize

and compare patients based on the latent structures of multivariate correlations, and use

such information to predict positive neurological recovery. To do so, we have proposed a

new formulation of Canonical Autocorrelation Analysis (CAA), a method that automatically

finds subsets of features of data that form strong multiple-to-multiple correlations. We

have also introduced Canonical Autocorrelation Embeddings (CAE) to enable the compari-

son of discovered correlation structures. CAE makes powerful and well established machine

learning methodologies that rely on the use of distance metrics applicable to the task at

hand.

The results presented in this paper constitute a proof of concept. Future work involves col-

lecting more data to train and validate the model. It is reasonable to believe that there may be a

substantial heterogeneity across patients, hence experiments using more data of more subjects

are a necessary next step. Applying CAE to the raw EEG channels rather than to the aggregated

featurizations of data would also be interesting to explore once that data becomes available.

In addition, we are developing machine learning methodology to tackle the selective label-

ing problem by incorporating clinicians’ domain knowledge while not reproducing their mis-

takes. Developing proper evaluation metrics to assess performance under selective labels, and

finding ways to tackle the blindness that may result from this problem, is an important ingre-

dient needed to successfully use machine learning to save lives in clinical settings.
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