
Personalized and Weakly Supervised

Learning for Parkinson’s Disease

Symptom Detection

Ada J. Zhang

CMU-RI-TR-20-01

October 21, 2019

Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Fernando De la Torre, Co-Chair

Jessica Hodgins, Co-Chair
Artur Dubrawski

Anthony Jarc, Intuitive Surgical, Inc.

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2019 Ada J. Zhang

This material is based upon work supported by the CMU Center for Machine Learning and Health Fellow-
ship, the National Science Foundation under Grant No. IIS-1602337, and the National Science Foundation
Graduate Research Fellowship under Grant No. DGE-1252522. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.

Keywords: Personalization, human motion monitoring, in-the-wild, Parkinson’s disease,
tremor detection, transfer learning, domain adaptation, importance re-weighting, Support
Vector Machine (SVM), weakly supervised learning, multiple instance learning, stratified
multiple instance learning.

Abstract

Parkinson’s Disease (PD) is a neurodegenerative disorder that affects approx-
imately one million Americans. Medications exist to manage the symptoms, but
doctors must periodically adjust dosage level and frequency as a patient’s disease
progresses. These adjustments are typically based on observations made during
short clinic visits, which provide an incomplete picture of a patient’s daily quality
of life. To provide a more accurate assessment of a patient’s at-home experience,
this thesis explores the use of wearable accelerometers for monitoring PD in the
wild. A central challenge of this application is human variability, which makes
it difficult for algorithms to generalize to “unseen” subjects who were not in the
training set. This thesis investigates two major approaches to address this issue:
(1) stratified algorithms for learning from in-the-wild data, and (2) personaliza-
tion algorithms to actively adjust for human variability.

A major challenge with in-the-wild data collection is obtaining labels of
tremor symptoms. We developed a data collection protocol in which subjects
used a cellphone app to log the approximate ([0-33%], [33-66%], or [66-100%])
amount of tremor experienced within short time segments and collected in-the-
wild data from six PD patients. We call these approximate percentages stratified
labels, and we present a novel stratified weakly supervised learning technique
that benefits from labels with this structure. Experiments demonstrated that this
new technique leads to higher performance on this dataset compared to standard
weakly supervised learning algorithms. Furthermore, stratified weakly supervised
algorithms performed better on in-the-wild data than fully supervised algorithms
trained on accurately labeled laboratory data. These findings suggest that col-
lecting stratified labels from each subject in the wild is more effective than collect-
ing accurate labels from other subjects in the laboratory. In summary, stratified
learning provides a practical and efficient method for collecting weak labels in-
the-wild that greatly improves accuracy of person-specific PD tremor detection.

This thesis also explores several unsupervised personalization algorithms,
which either reweight the training data to align its distribution with the test data
or learn a regression from distributions to classifiers. We extended these personal-
ization algorithms to the multiclass scenario. In our dataset, the personalization
algorithms demonstrated modest improvement over non-personalized algorithms.
We further analyzed the behavior of these algorithms with synthetic data, gaining
insights into their limitations when learning appropriate weights. We addressed
this issue by developing new constraints to the cost function, which improved
performance on synthetic data, and experimented with global optimization.

iv

Acknowledgments
I must first thank my advisors, Prof. Fernando De la Torre and Prof. Jes-

sica Hodgins, for guiding me through this long journey. Objective functions of
machine learning algorithms used to seem like inscrutable, magical, black box
inventions. Fernando taught me to think of them as mathematical descriptions
of desired solutions, empowering me to make calculated modifications to the ob-
jective functions and tailor them to the problem at hand. Fernando also helped
curb the perfectionist in me, often reminding me to “be practical.” Meanwhile,
Jessica held us to high standards, always making sure we were asking the right
questions and investigating them thoroughly. I also looked to Jessica as a role
model for women in computer science, and I particularly admired her confidence:
she is completely secure in her strengths, but what’s more impressive is her ability
to admit her weaknesses. I hope someday to have Fernando’s machine learning
intuition and practicality, and Jessica’s high standards and confidence.

I would also like to thank Prof. Artur Dubrawski and Dr. Anthony (Tony)
Jarc for serving on my committee. Artur provided valuable insights on machine
learning and encouraged me when I felt like nothing was working. Tony gave
me the opportunity to intern at Intuitive Surgical, Inc., a company I had long
admired, and made sure I addressed the practical applications of my work.

Throughout the years, many different lab members have helped me in many
ways, including brainstorming, moral support, and setting up computers/servers.
Several were vital to the development of the dataset presented in this thesis:
Dr. Andrew Whitford, Alexander Cebulla, and Dr. Stanislav Panev helped collect
the data, Vicent Ortiz and Alexander Cebulla implemented the cell phone app,
Katelyn Stebbins labeled the data, and Dr. Robyn Massa supplied UPDRS scores.

Many friends supported me – too many to name; but three deserve special
recognition. Vincent Chu played a large role in my first paper with Fernando,
helping me design the experiments and the story. Working with Vincent gave
me the momentum I needed to start moving forward and construct my thesis
proposal. Nate Brooks was my first “Pomodoro Buddy.” Every day, we moti-
vated each other to sit down, press “start,” and work. Five months of pomodoros
later, I successfully proposed my thesis. After Nate defended, I was so grateful
to meet Ivan Ruchkin, who stepped in as Pomodoro Buddy #2. Ivan provided
encouragement when everything seemed to be failing and helped me identify the
cognitive distortions present when telling myself that I was a “bad grad student.”
Answering his almost daily questions about machine learning boosted my confi-
dence, showing me how much I had learned in my time at CMU. I thank Vincent,
Nate, and Ivan for getting me through some of the hardest times of my Ph.D.

Last, but certainly not least, I want to thank my family. In particular, I thank
Christian Marcheselli for standing with me through all the ups and the downs,
and for waiting so patiently these eight and a half years.

vi

Contents

1 Introduction 1

2 Related Work 7
2.1 Human Activity Recognition . 7
2.2 Personalization via domain adaptation . 8

2.2.1 Approach #1: Alternate feature representations 8
2.2.2 Approach #2: Reweight the training data 9
2.2.3 Applications of personalization in human applications 10

2.3 Machine learning and wearable sensors for PD 13
2.3.1 In-home PD assessment . 24
2.3.2 Passive monitoring of PD symptoms 26
2.3.3 Weakly supervised learning for PD symptom detection 27

3 Data Collection and Processing 29
3.1 Laboratory recordings (LAB) . 29
3.2 In-the-wild recordings (WILD) . 32
3.3 General training and testing procedures . 36
3.4 Features . 36
3.5 Performance metrics . 37
3.6 Machine learning challenges on this dataset 37
3.7 Lessons learned . 40

4 Personalization Via Domain Transfer 43
4.1 Algorithms . 44

4.1.1 Support Vector Machine . 44
4.1.2 Kernel Mean Matching . 44
4.1.3 Selective Transfer Machine . 46
4.1.4 Transductive Parameter Transfer . 47

4.2 Methods . 49
4.2.1 SVM . 49
4.2.2 KMM . 49
4.2.3 STM . 52
4.2.4 TPT . 52

vii

4.3 Results and discussion . 53

4.4 Conclusions and future work . 57

5 Analyzing the Selective Transfer Machine 59

5.1 Overview of multiclass algorithms . 60

5.1.1 Converting binary classifiers to multiclass 60

5.1.2 Multiclass SVM . 60

5.1.3 Multiclass Selective Transfer Machine 61

5.2 REALDISP dataset . 63

5.3 Preliminary results on REALDISP . 63

5.4 Analysis of multiclass STM on synthetic data 67

5.4.1 Dataset #1 . 70

5.4.2 Dataset #2 . 71

5.4.3 Dataset #3 . 72

5.4.4 Dataset #4 . 73

5.5 Improving the STM objective function constraints 74

5.5.1 Equal weighting of classes . 74

5.5.2 Proportional weighting of classes . 76

5.5.3 Results . 76

5.6 Analyzing the STM objective function . 77

5.6.1 Experiments with global optimization 82

5.7 Conclusions . 83

6 Stratified Weakly Supervised Learning 85

6.1 Algorithms . 86

6.1.1 Naive Support Vector Machine (Naive-SVM) 87

6.1.2 Multiple Instance SVM (MI-SVM) 87

6.1.3 Iterative Discriminative Axis Parallel Rectangle (ID-APR) 88

6.1.4 Expectation Maximization Diverse Density (EM-DD) 89

6.1.5 Stratified Multiple Instance Learning 90

6.2 Methods . 91

6.3 Results and Discussion . 93

6.3.1 Standard Metrics . 93

6.3.2 Proposed Performance Metric . 95

6.4 Conclusion . 96

7 Learning from Wild Vs. Laboratory Data 99

7.1 Methods . 99

7.1.1 Models . 100

7.1.2 Performance metrics . 103

7.2 Results and Discussion . 104

7.3 Conclusion and Future Work . 106

viii

8 Conclusion 109

Bibliography 113

ix

x

List of Figures

3.1 Axivity AX3 accelerometer . 29
3.2 Experimental setup . 30
3.3 Five screenshots from the cell phone app. 32
3.4 Number and type of weak labels submitted by each participant 33
3.5 Labels submitted by each participant over time 34
3.6 Example accelerometer data of non-tremor 38
3.7 Example accelerometer data of tremor . 38

5.1 STM behavior over iterations . 63
5.2 Number of samples in REALDISP for each subject and activity 64
5.3 Performance on REALDISP by activity class 65
5.4 Confusion matrices for WW-SVM and WW-STM 68
5.5 Synthetic Dataset #1 . 70
5.6 Synthetic Dataset #2 . 71
5.7 Synthetic Dataset #3 . 72
5.8 Synthetic Datasets #4a-c . 75
5.9 Comparison of original and improved STM on Subject # 18 78
5.10 Comparison of original and improved STM on Subject #8 79
5.11 Solutions for three versions of STM on Dataset #4b, Subject 2 80
5.12 Solutions for three versions of STM on Dataset #4c, Subject 2 81

6.1 Example of minimax APR . 89
6.2 Example ground truth (30 minutes) and associated standard or stratified labels 90
6.3 Example of Naive-SVM, MI-SVM, and Stratified MI-SVM 92
6.4 Performance comparison using standard metrics 94
6.5 Empirical results of Naive-SVM, MI-SVM, and stratified MI-SVM 95
6.6 Effect of stratification on MAE of detected tremor percentage 97

7.1 Schematic representation of training, validation, and test datasets 101
7.2 Absolute error of Gen-LAB, PS-LAB and PS-WILD on each fold of WILD . 107

xi

xii

List of Tables

1.1 Mathematical notation . 6

2.1 MDS-UPDRS Part III, Motor examination 12
2.2 Related work on automated detection of Parkinson’s Disease 15
2.3 Related work on automated assessment on Parkinson’s Disease severity . . . 18
2.4 Related work on automated detection of Parkinson’s Disease symptoms . . . 21
2.5 Related work utilizing the mPower dataset 25

3.1 Set of actions performed during lab data collection 30
3.2 Summary of data collected in lab . 31
3.3 UPDRS evaluations from lab data . 31
3.4 Number and type of weak labels submitted by each participant 33
3.5 Feature definitions and example values for non-tremor and tremor 39

4.1 Hyperparameter ranges for each algorithm 50
4.2 Results when using accuracy to measure performance during model selection. 54
4.3 Results when using AUC to measure performance during model selection. . . 55
4.4 Results for the highest performing parameter set. 56

5.1 2-fold model selection performance comparison 66
5.2 Gold-standard performance comparison . 66
5.3 Combinations of the three conditions and corresponding datasets 69
5.4 Accuracy of SVM, KMM and three versions of STM on Dataset #4b 80
5.5 Accuracy of SVM, KMM and three versions of STM on Dataset #4c 81
5.6 Accuracy of SVM, KMM, Original STM, and Proportional STM on REALDISP 82
5.7 Comparing solutions from two initializations to BARON solution 83

6.1 Percentage of each type of segment label for varying segment lengths 90
6.2 Mean absolute error of detected tremor percentage within 15-minute windows 96

7.1 Summary of experiments . 102
7.2 Comparing accuracy and AUC on LAB data 105
7.3 Comparing MAE in detected percentage on LAB and WILD data 105

xiii

xiv

Chapter 1

Introduction

Chronic neurogdegenerative disorders like Parkinson’s disease (PD) pose a serious threat to
the elderly population. As many as one million Americans (mostly aged 65 or older) live
with PD [95], which is more than the combined number of people diagnosed with multiple
sclerosis, muscular dystrophy and Lou Gehrig’s disease. The combined direct and indirect
cost of PD, including treatment, social security payments and lost income from inability to
work, is estimated to be nearly $25 billion per year in the United States alone [95]. The
number of PD patients and the cost associated with them can be expected to grow as our
population ages.

People who suffer from PD experience a variety of motor and non-motor symptoms.
Perhaps the most well-known symptom of PD is tremor. However, PD causes additional
motor symptoms such as bradykinesia (slowness of movement), stiffness, and rigidity. These
often result in postural instability, gait problems (which can lead to increased frequency
of falling), and reduced facial expressions. PD also causes several non-motor symptoms,
including cognitive impairment, mood disorders (depression and anxiety), sleep problems,
speech/swallowing problems, and unexplained pain [89]. The combination of motor and non-
motor symptoms can reduce a patient’s ability to remain self-sufficient, affect relationships
with friends and family, and in general, result in a lower quality of life.

There is currently no cure for PD and existing medication can only provide symptomatic
relief. Sensitivity to these drugs decreases over time; patients require larger and more fre-
quent doses. Furthermore, some medications may cause severe side effects, such as dyski-
nesia, which manifests as an involuntary, jerky movement. Therefore, doctors work to find
the minimal dosage that will manage their patients’ symptoms. In this way, they hope to
prolong the efficacy of the medication and postpone the onset of side effects. The current
standard of care is as follows: a patient meets with his or her doctor every three to six
months, self-reporting on symptoms and response to medication. The doctor then performs
a motor function assessment by examining the patient’s performance on motor tasks selected
from Part III of the Unified Parkinson’s Disease Rating Scale (UPDRS) [42]. Finally, the
doctor adjusts medication dosage as necessary.

There are several shortcomings to the current state-of-the-art in PD management:
� Frequent clinic visits are a major contributor to the high cost of PD treatment and

1

are inconvenient for the patient, especially in a population for which traveling may be
difficult.

� Inaccurate patient self-reports and 15-20 minute clinic visits do not provide enough
information for doctors to accurately assess their patients, leading to difficulties in
monitoring patient symptoms and medication response.

� Motor function assessments are not only subjective, but also dependent on the time of
day and time since the last medication intake. All of these factors make it difficult to
monitor disease progression via short and relatively infrequent office visits.

This thesis aims to explore a new paradigm shift in PD management through 24/7, in-
home monitoring using low-cost sensors and machine learning. Specifically, it explores the
use of wearable accelerometers to detect and quantitatively assess the severity of PD motor
symptoms, tremor in particular, during daily living activities in the home environment.
Such a system would result in several positive impacts: (1) clinicians would be better able to
track their patients’ symptom occurrences, medication response and disease progression, (2)
improved monitoring would enable a more personalized drug-therapy regimen, (3) continuous
monitoring of motor function could allow for less frequent clinic visits, and (4) quantitative
assessment of motor symptoms could be developed into an objective measurement of PD
severity, which could facilitate research of novel drugs or neurotherapies, the effects of which
are currently too subtle to detect. In short, such a system would result in greater convenience
to the patient, reduced cost to society and, most importantly, better care.

Using machine learning for in-home detection of PD symptoms from accelerometer signals
is challenging for two reasons:

� Generalization to unseen patients and personalization to specific patients:
Our long-term goal is to build a system that can be distributed to every PD patient.
Because we can only train on a finite, sample population, the machine learning algo-
rithms must be able to generalize to “unseen” people who were not in the training
population. Different people are affected by the progression of PD in different ways,
which implies that accelerometer data will differ greatly across subjects. Studies have
found that algorithms trained on data from specific people perform better on those
people than algorithms trained on a cohort of other people [25, 132]. However, such
algorithms require labeled data from each new user, which, for certain applications,
may not be available. It is a challenge, therefore, to improve the performance of a
generic classifier by personalizing it to a specific person in an unsupervised manner,
i.e., without having access to new labels.

� Generalization from the lab to the wild: Previous work on PD symptom de-
tection (see Table 2.4) has focused on data collected from controlled environments,
where participants are asked to perform a prescribed set of tasks in a particular order
and where the accelerometer data can be accurately labeled by referencing additional
video data. This protocol, with accurate labels of the start and end of each symptom,
allows researchers to use standard, supervised learning techniques. The assumption is
that models trained on such data will maintain their performance when applied “in

2

the wild”: i.e., in patient homes and during routine activities of daily living. It is
unclear if this assumption truly holds: laboratory data has lower variability in the
types of activities performed and participants may move differently in the lab versus
in their own homes. However, to address this assumption, accelerometer data must be
collected in the wild, where accurate labels of the exact start and end of each symptom
are difficult to obtain. Approximate labels of symptom occurrences are more feasible,
but algorithms need to accommodate this additional uncertainty.

This thesis directly addresses these two challenges.

In Chapter 3, I describe a protocol I designed for laboratory and in-the-wild data col-
lection. The laboratory data collection involved motor tests from the Unified Parkinson’s
Disease Rating Scale (UPDRS) and some activities of daily living, such as making a sand-
wich, eating, playing cards, writing a letter, etc. These activities were recorded with three
cameras to minimize occlusion, and the start and end of every symptom occurrence was
labeled by referencing the video data. To allow participants to label their data in the wild,
we built a cellphone app that prompted users approximately every hour to describe the
symptoms they had experienced in the previous five minutes. In particular, they were asked
to select from three options – “Almost none,” “Half the time,” and “Almost always” – to
describe their tremor symptoms in the past five minutes. To prevent users from backdating
entries, the app would not allow users to submit labels more frequently than once per hour,
and it automatically collected time stamps. Users were paid per label to encourage more
frequent labeling.

Several algorithms exist for personalizing classifiers to new subjects given their unlabeled
data. However, these algorithms have not been applied to PD motor symptom detection.
In Chapter 4, I describe three of these algorithms – Kernel Mean Matching (KMM), Selec-
tive Transfer Machine (STM), and Transductive Parameter Transfer (TPT) – and compare
them to a generic Support Vector Machine (SVM). I find that the personalization algorithms
do show some improvement over the generic classifier, especially when optimal parameters
are chosen. However, finding the optimal parameters automatically is difficult and time-
consuming. Results show that STM, when given the best-performing parameters, outper-
forms other algorithms with their respective best-performing parameters. That is, STM has
higher potential for performance improvement. However, in real scenarios, the parameters
that perform best on test data are unknown. Instead, they must be chosen using cross vali-
dation on training data. Under this paradigm, experiments show that KMM leads to greater
improvement.

Chapter 5 presents in-depth experiments on STM to better understand the behavior
from Chapter 4. In particular, STM is applied to a human activity recognition dataset and
several synthetic datasets. Because these datasets are multiclass, this chapter develops a
multiclass formulation of STM. Based on the failure modes of STM found by examining its
behavior on synthetic data, two improvements to the STM objective function are proposed.
These modifications demonstrate good performance on the synthetic data, but have more
modest performance on the activity recognition dataset. These findings lead to an analysis
of local stationary points and global optimization of STM, the results of which imply that

3

the objective function of STM is not monotonically related to accuracy on these datasets.

In Chapter 6, I compare several weakly supervised learning algorithms, which are designed
to learn from weak labels. In contrast to accurate labels, which indicate the exact start and
end of every event, standard weak labels only indicate whether or not events occurred within
a specific window of time. I develop an alternative method of weakly labeling data, which
I call stratified labeling, and which gives more nuanced information than standard weak
labels. I also develop a modification to the standard weakly supervised algorithms that
allows them to process these stratified weak labels. All algorithms are compared to a naive
baseline, which represents the simplest method of applying a fully supervised algorithm to
weakly labeled data. Performance is assessed on the laboratory data, where accurate labels
could be used to compute weak labels on time segments of varying lengths. In this way, the
change in algorithm performance as time segments increased in length could be analyzed.
Results show that the stratified algorithms are more successful at sustaining performance
when segment length increases compared with the non-stratified algorithms.

In Chapter 7, I analyze the legitimacy of the assumption that training on laboratory data
will generalize to in-the-wild data. It is hypothesized that laboratory data differs from in-
the-wild data not only due to differences in activity variability, but also because weak labels
in Chapter 6 were computed from accurate labels, whereas weak labels in wild data could
be subject to varying interpretations by the patients. To test this hypothesis, three models
are trained: (1) a generic (fully supervised) SVM trained on laboratory data of all subjects
excluding the test subject, which represents the standard leave-one-subject-out paradigm; (2)
a person-specific (fully supervised) SVM trained on laboratory data of the test subject only,
and which has previously been shown to have better performance than the generic SVM; and
(3) a person-specific (weakly supervised) SVM trained on in-the-wild data of the test subject.
The performance of these three algorithms is compared on both laboratory and in-the-wild
data. Results show that, for all three algorithms, there is a large discrepancy in performance
between laboratory and in-the-wild data. These findings are consistent with the hypothesis
that differences in activities and label interpretation prevent results on laboratory data from
generalizing to data in the wild. These differences are not present when training and testing
on wild data. However, it is interesting that, when testing on wild data, training on the less
precise labels from wild data outperforms training on accurate labels from laboratory data.

In summary, this thesis explores personalization and weakly supervised learning for im-
proved PD symptom detection in-the-wild. The main contributions of this thesis are as
follows:

� Collection of an in-home, PD tremor dataset using a cellphone application
for labeling tremor symptoms. The app was designed to promote more regular
and frequent submission of labels in addition to higher temporal accuracy compared
to traditional paper diaries. A link to this dataset can be found at http://www.

humansensing.cs.cmu.edu/software.
� Development of a novel form of weak labels, called “stratified” labels, and

associated stratified weakly supervised algorithms. Traditional weak labels only
indicate whether or not an event of interest occurs during a segment of time. These

4

 http://www.humansensing.cs.cmu.edu/software
 http://www.humansensing.cs.cmu.edu/software

labels are useful when such events occur in relatively short time-spans. In contrast, PD
symptoms are often more continuous in nature and could encompass none of the time-
span, all of the time-span, or any percentage between. Stratified labels indicate the
approximate percentage of PD symptoms within a time segment. They are therefore
more nuanced and more appropriate than standard weak labels for this application.
The stratified algorithms developed to process these stratified labels were shown to
have higher performance than their standard counterparts and were able to maintain
their performance even as the length of the time segments increased.

� In-depth analysis of STM on synthetic data and accelerometer data from a
human activity recognition dataset, and development of several extensions
to the STM algorithm. Because human activity recognition is a multiclass prob-
lem, a new objective function was formulated such that STM could solve for multiple
classes simultaneously. Furthermore, based on the behavior of this STM in synthetic
data, two modifications to the constraints of the objective function were developed.
One modification restricted the total weight assigned to each class to be equal. The
other modification restricted the total weight assigned to be proportional to the class
distribution. These modifications were shown to have higher performance than the
original STM in synthetic data. Additional analyses indicated that, while STM has
a local stationary point at a solution with high accuracy on the test set, the STM
objective function is not monotonically related to accuracy.

� Analysis and assessment of several personalization algorithms – KMM,
STM, and TPT – applied to PD data and compared to the generic SVM
counterpart. Interestingly, these personalization algorithms showed more modest im-
provement over the generic algorithm on this dataset than what was previously reported
on other datasets. These findings led to the more in-depth analyses described above.

� Assessment of the validity of the common assumption that results on labo-
ratory data will transfer to the wild. Algorithms were trained on both LAB and
WILD data, and then tested on LAB and WILD data. All algorithms exhibited large
changes in performance between LAB and WILD data, indicating that the two datasets
differ substantially. Interestingly, training on less precise labels from WILD data led
to better performance on WILD data than training on accurate labels from LAB data.
These findings suggest that LAB data are a poor representation of WILD data, and
that it is more beneficial to collect less precise labels in the wild than accurate labels
from the laboratory.

While this thesis focuses on PD tremor detection, the findings and suggestions should be
applicable to other PD symptoms, other motor control diseases, and human motion under-
standing in general. These contributions are detailed in Chapter 8, where I also discuss
avenues for future research.

Table 1.1 lists some of the notation that is consistent throughout the thesis. Superscripts
and subscripts may slightly modify the meaning of the symbols. In these cases, the exact
term will be defined immediately before or after its usage. Notation specific to a particular
algorithm or objective function is defined when those concepts are introduced.

5

Table 1.1: Mathematical notation

Symbol Meaning

N Number of training subjects
ntr Number of training samples
nte Number of test samples
Nseg Number of time segments
d Number of features
m Number of classes
xi A d× 1 feature vector
yi Label of the ith training point, yi ∈ {+1,−1}

X = {xi}ni=1 A set of training samples.

6

Chapter 2

Related Work

This thesis applies techniques from human activity recognition and personalization to the
problem of PD symptom detection. It also extends the current work in PD symptom de-
tection to directly address detection in the wild. The following sections summarize relevant
related work in human activity recognition, personalization (i.e., machine learning under
covariate shift), and applications of machine learning and wearable sensors to automated
PD assessment.

2.1 Human Activity Recognition

Human activity recognition (using video, accelerometers, or motion capture) has been a well-
studied field due to its host of possible applications, including surveillance, human computer
interaction, patient monitoring, exercise assessment and fitness tracking. Much of the early
work in this field focused on activity recognition from video data (see [2] and [69] for a
review). Similar to video data, some work has focused on using 3D data, either from stereo
cameras, motion capture systems, or range sensors, like the Microsoft Kinect (see [3] for
a review). More recently, researchers have moved to other sensing modalities, such as the
accelerometer or GPS sensors within mobile phones (see [64] for a review).

Most relevant to the work in this thesis is that of human activity recognition through
accelerometers. In general, features are computed over windows of the accelerometer sig-
nal, where the window length varies widely and is often application dependent. Numerous
features have been explored, including time-domain features (such as the mean, root mean
square, standard deviation, or mean absolute deviation) and frequency domain features (such
as the energy in a frequency band or entropy). Many different algorithms have also been
explored, including decision trees, naive Bayes, k-nearest neighbors (k-NN), hidden Markov
models, conditional random fields, and SVMs. We refer the reader to [76] for a comprehensive
review.

Three methods are commonly used to evaluate these features and algorithms:
� User specific – Algorithms are trained and tested on data from the same subject.

[14, 107, 125, 142]

7

� k-fold cross validation – The training data are split randomly into k folds. The algo-
rithm is trained on k− 1 folds and tested on the left out fold. This process is repeated
over all k folds and results across the folds are then averaged. [53, 85, 125]

� Leave-one-subject-out (LOSO) – The algorithm is trained on all subjects excluding one,
and then tested on the left out subject. The process is repeated over all subjects, and
the results across the subjects are then averaged. [14, 23, 53, 54, 55, 65, 85, 125]

The LOSO method is one of the most common evaluation methods because it is the most
realistic: systems that are deployed to a broad user base will have to classify activities
performed by people who were not in the training set. However, studies comparing the
different methods generally find that performance worsens when evaluated with LOSO [14,
53, 70, 85, 125].

2.2 Personalization via domain adaptation

In this thesis, personalization refers to leveraging unlabeled data from the left-out or “test”
subject so as to improve upon a classifier or model trained on labeled data from other
people. This problem statement is closely related to the field of domain adaptation (also
called domain transfer and transfer learning). Problems in this broad field are characterized
by having differences between the source (training) and target (test) domains. For example,
one may need to transfer from one feature set to another [61], or from one set of classes to
another [141]. Jiang [66] and Pan and Yang [93] are two well-organized surveys describing the
different types of transfer learning. Cook et al. provide a comprehensive review of transfer
learning in activity recognition [28].

This thesis explores a sub-problem of domain adaptation called covariate shift, which
describes the situation where the source (training) and target (test) data are sampled from
different distributions. Such a situation occurs commonly in human-related applications. In
the case of human activity recognition, the source domain would be composed of data from
many different people encompassing many different styles of movement. In contrast, the
target domain would consist of data from a single person. These data would therefore be
localized around a particular style of movement rather than being sampled uniformly from
all possible styles of movement. Hence, the source and target data are sampled from different
distributions.

The following sections highlight two main approaches to solving the covariate shift prob-
lem and also describe work on personalization specifically for human applications.

2.2.1 Approach #1: Find an alternate feature representation in
which the distributions are more aligned

Many methods for finding new feature spaces have been proposed. The “Frustratingly Easy”
approach, proposed by Daumé [33], simply expands the feature space three fold, allocating
one part of the new feature space to contain only features from the source domain and

8

zeros otherwise, another part to contain only features from the target domain, and the
third part to contain features from both source and target domains. (Note, however, that
this approach requires some labels from the target domain, which does not fulfill the original
assumption stated above of leveraging unlabeled data from the “test” subject.) Using the fact
that the distance between two distributions can be estimated by the distance between their
means in Reproducing Kernel Hilbert Space (RKHS) space, Pan et al. [94] proposed transfer
component analysis (TCA), which maps the source and target domains into a subspace that
minimizes the distance between their means in RKHS space. Gong et al. [43] proposed the
geodesic flow kernel (GFK), which is used to derive low-dimensional representations that
are invariant to the domains. Fernando et al. [39] described a subspace alignment (SA)
technique, where the source and target data are projected into a subspace built from their
eigenvectors, and then a transformation is applied to align the basis vectors from the two
subspaces.

These approaches have generally been applied to language or visual data. On these
datasets, mapping the original features into the proposed subspaces has been shown to help
improve performance on the target domain. However, in medical applications, high value is
placed on the interpretability of machine learning algorithms because it enables clinicians to
understand the reasoning behind an algorithm’s output and thereby make an informed final
decision. Features initially computed from data are often easily understandable (maximum
acceleration, dominant frequency, e.g.), but mapping these features into a new subspace can
obfuscate their meaning. Therefore, this thesis focuses more on methods falling under the
following category of approaches.

2.2.2 Approach #2: Reweight the training data to minimize the
distribution mismatch.

Approaches for finding an appropriate reweighting generally fall into two categories. One
method is to implicitly estimate the distributions of the training and test data, and then cal-
culate the weights (or “importance”) as a ratio of those estimates. The Kullback-Leibler Im-
portance Estimation Procedure (KLIEP) estimates these weights by minimizing the Kullback-
Leibler (KL) divergence between the test distribution and the weighted training distribu-
tion [123]. Later, a more computationally efficient estimation was proposed, called uncon-
strained least-squares importance fitting (uLSIF) [67]. These works are highly theoretical
and were validated on standard classification and regression datasets. In a simpler method
for importance estimation – nearest neighbor-based importance weighting (NNeW), pro-
posed by Loog [83], each test sample adds one to the weight of the nearest training sample.
On the same classification datasets, NNeW was found to generally outperform KLIEP and
uLSIF. The same researchers that developed KLEIP and uLSIF later applied their uLSIF
weights to a probabilitic classifier for distinguishing walking from running, cycling, or taking
a train given accelerometer data from an iPodTouch [48]. They found that all importance
reweighted algorithms performed better than their generic counterparts, and that their prob-
abilistic classifier out performed the Laplacian regularized least-squares and kernel logistic

9

regression algorithms.
Another strategy for estimating importance is to measure the distance between distri-

butions and weight the training data to minimize that distance. One line of research was
built from the dA-distance between two distributions, which intuitively measures the largest
change in probability of a set of points in feature space [72]. Formally, let A be the set of
subsets of the feature space X, and let P and Q be two distributions over X. Then, the
dA-distance is given by

dA(P,Q) = sup
a∈A
|P (a)−Q(a)| .

Building on the dA-distance, Mansour et al. [86] developed the discrepancy distance, which
measures the distance between distributions given a set of classification functions. Formally,
let H be a set of classification functions and let L be a loss function, then the discrepancy
distance is given by

discL(P,Q) = max
h,h′∈H

|LP (h′, h)− LQ(h′, h)| .

Intuitively, if one thinks about h as the true labeling function, then the discrepancy distance
measures how much the loss function value will differ when computed over the source and tar-
get distribution given a hypothetical learned classification function. The goal, therefore, is to
reweight the source distribution so as to minimize the discrepancy distance. Cortes et al. [29]
further extended this concept with their generalized discrepancy distance, which restricts the
set of classification functions considered, thereby allowing the choice of weights to be less
conservative. This algorithm was tested on several baseline domain adaptation datasets and
found to be on par with or slightly better than other domain adaptation algorithms.

An additional method for selecting weights, proposed by Gretton et al. [45], is to estimate
distribution mismatch by measuring the distance between the means of the distributions
in RKHS and learn a set of weights that minimize that distance. This method is called
kernel mean matching (KMM). Chu et al. [25] extended this technique by connecting it
with a support vector machine (SVM) classifier and considering the loss from the current
SVM hypothesis while estimating weights with KMM. This algorithm, called the Selective
Transfer Machine (STM), was applied to facial action unit detection and found to improve
area under the curve values by five to ten points. Another, somewhat related, technique is the
transductive parameter transfer (TPT) algorithm proposed by Sangineto et al. [114]. It does
not explicitly reweight the training data, but it learns a regression from data distributions
to classifiers.

2.2.3 Applications of personalization in human applications

The issue of performance drop on subjects whose data were not in the training set has
been well-documented and there have been many proposed solutions. The majority of these
solutions, however, assume that there is a small amount of labeled data from this subject.
Cvetkovic et al. [31] trained a person-specific and a generic classifier, then used a meta-
classifier to predict the confidence of a label. Samples from the test subject that were labeled

10

with high confidence were added into the training set to update the generic classifier. Results
on a dataset of five subjects performing eight activities showed that the generic classifier was
able to improve over time. In [124], Sun et al. jointly learned the similarity between people
and a person-specific classifier for each person. When tested on 20 individuals from the
ALKAN dataset, results showed that their method performed better than the generic or
regular person-specific models. Lockhart and Weiss [82] built generic, person-specific, and
hybrid (training set includes data from the test subject and other users) models. On a
dataset of 59 users performing six activities with a smartphone, they found that the person-
specific models performed best, although the hybrid models were very similar. Hong et
al. [59] trained many person-specific classifiers and then used a small amount of labeled
data from the test subject to build a new classifier from the set of pre-trained ones. On
a dataset of 28 people wearing seven sensors and performing seven actions, they found
that their personalized model was able to outperform the person-specific model. Bleser et
al. [17] presented a similar approach, except that instead of building a classifier from pre-
trained person specific classifiers, they applied weighted majority voting to those pre-trained
classifiers, where the weights were learned using labeled data from the test subject. On a
dataset of nine subjects performing 18 different activities, their confidence-based AdaBoost
algorithm resulted in a 10% reduction in error rate when compared with a generic AdaBoost
algorithm. Another method of personalization was presented by Rokni et al. [108], where a
convolutional neural net (CNN) was trained using data from other people, and then the final,
classification layer was retrained given labeled data from a new subject. The authors tested
this method on two datasets and found that their model outperformed several standard
machine learning algorithms, although they did not compare their personalized CNN to a
generic one.

The above papers all relied on the availability of labels from the test subject. However, as
mentioned above, this thesis focuses on personalization when labels are not available. This
problem is considerably harder, and therefore has been less well-explored. In [140], Zhao et
al. trained a decision tree using labeled data from one subject of a training population. This
decision tree was then used to define cluster centers for the another subject’s data. These
cluster centers were then used to initialize k-means, and the decision tree was retrained. The
authors found that, over iterations, the performance of the decision tree improved. However,
they did not compare this personalized decision tree to algorithms trained on the entirety
of the training data. Hassan et al. [52] compared several of the importance reweighting
algorithms described above (KLIEP [123], uLSIF [67], and KMM [45]) to emotion recognition
in acoustic data. They found that the performance of the importance reweighted were similar,
offering approximately 5% improvement in accuracy compared to a generic SVM. Barbosa et
al. [15] compared domain adaptation techniques, including KMM [45], TCA [94], NNeW [83],
and SA [39], on two human activity recognition datasets. KMM, NNeW, and SA were
generally able to improve upon the generic classifier accuracy by 5-10%. Meanwhile, TCA
led to worse accuracy than the generic classifier, which they hypothesized was due to only
having a single source dataset, making it more difficult to discover transferable knowledge
between the source and target datasets.

11

Table 2.1: MDS-UPDRS Part III, Motor examination, adapted from Goetz et al. [42]

Item Description

3.1 Speech Volume, modulation, clarity, including slurring,
palilalia (repetition of syllables) and tachyphemia
(rapid speech, running syllables together) are
assessed.

3.2 Facial expression Eye-blink frequency, masked facies or loss of facial
expression, spontaneous smiling and parting of lips
are assessed.

3.3 Rigidity Sit in a relaxed position while examiner manipulates
limbs and neck to assess slow passive movement of
major joints.

3.4 Finger tapping Tap index finger on the thumb 10 times as quickly
and as big as possible.

3.5 Hand movements Make a tight fist and open the hand 10 times as
fully and as quickly as possible.

3.6 Pronation/supination of hands Extend arm in front and turn palm up and down
alternately 10 times as fast and as fully as possible

3.7 Toe tapping While sitting, place heel on the ground and tap the
toes 10 times as big and as fast as possible.

3.8 Leg agility While sitting, raise and stomp the foot on the
ground 10 times as high and as fast as possible.

3.9 Arising from chair Start from sitting in a chair, cross arms across the
chest and then stand up.

3.10 Gait Walk away from and towards the examiner. Stride
amplitude, stride speed, height of foot lift, heel
strike during walking, turning, and arm swing are
assessed.

3.11 Freezing of gait While gait is assessed, also assess any gait freezing
episodes (start hesitation or stuttering movements),
especially when turning and reaching the end of the
task.

Continued on next page

12

Table 2.1: (continued)

Item Description

3.12 Postural stability While the patient is standing, the examiner stands
behind the patient and pulls on the shoulders
briskly and forcefully enough that the patient must
take a step backwards. Number of steps to recover
balance is assessed.

3.13 Posture While standing, flexion, stooped posture, and
side-to-side leaning are assessed.

3.14 Global spontaneity of
movement (body bradykinesia)

Global impression of slowness and presence of
spontaneous movements.

3.15 Postural tremor of hands While arms are stretched out in front of the body,
tremor presence and amplitude are assessed.

3.16 Kinetic tremor of hands Perform at least three finger-to-nose maneuvers,
reaching as far as possible to touch the examiner’s
finger. Tremor presence and amplitude are assessed.

3.17 Rest tremor amplitude While sitting in a chair with hands on the arms of
the chair, tremor presence and amplitude are
assessed.

3.18 Constancy of rest tremor Percentage of tremor presence over the entire
examination period

2.3 Machine learning and wearable sensors for PD

The current gold standard in PD severity assessment and monitoring is the Movement Dis-
order Society Unified Parkinson’s Disease Rating Scale (MDS-UPDRS, or UPDRS) [42]. It
is periodically administered by clinicians and consists of four parts. Part I is a questionnaire
that concerns non-motor aspects of daily living, such as cognitive impairment, depression,
anxiety, and insomnia. Part II is a questionnaire that concerns motor aspects of daily living,
i.e. ability to complete activities of daily living (ADL), such as speaking, eating, dressing,
bathing, and walking. Part III is a motor examination that must be administered by a
clinician (see Table 2.1 for a list of the questions). Part IV concerns motor complications
from medication, such as side effects (dyskinesia) and fluctuations in symptom management.
Each question is rated on a scale of 0 to 4, and ratings are summed to obtain a total score,
either for the entire UPDRS or a particular part.

Despite being the current gold standard, the UPDRS has several weaknesses: Subjective
ratings make it difficult to compare ratings from different clinicians. Because the motor
portion must be administered by a clinician, the UPDRS must be done in the clinic. But

13

because stress, time of day, and temperature can all affect a patient’s symptoms, these
assessments may not accurately reflect a patient’s experience at home. Furthermore, it is
unrealistic to use the UPDRS to monitor patients over short periods of time – for example,
to understand how their symptoms progress throughout the day or respond to medication.

Wearable sensors and machine learning have great potential to improve the current state
of PD assessment and monitoring. There has therefore been a preponderance of interest in
automated and objective analysis of PD, evidenced by several review papers on the topic: [62,
74, 91, 113]. Many researchers have attempted to either diagnose PD or differentiate between
healthy controls and PD patients through a variety of means, such as gait analysis [7, 8,
16, 38, 84, 126, 131], timed up and go test [1], typing on a cellphone keyboard [9], finger
tapping [58, 77], posture [92], voice [11, 81, 120], or force control [20]. These papers are
summarized chronologically in Table 2.2. There are some interesting trends to note. We
can see that, in general, many research groups collect their own datasets, typically with
10-30 PD participants. Also, classification methods are often either simple thresholds on
computed features, or well-known algorithms, such as SVM, multi-layer perceptrons (MLP)
or random forests. In general, researchers are able to achieve classification accuracies of
90-95%. Note that, in many of the papers, the authors explored a large variety of features
and/or algorithms. For brevity, only results from the best performing methods are shown in
Table 2.2. Finally, we can see that as smartphones have become more ubiquitous in society,
researchers have become increasingly interested in using them as the main sensing device.

Researchers have also been interested in automated and objective PD severity estimates
(see Table 2.3). One group built a device in which patients applied force to two force
sensors and were asked to modulate their force to track a target waveform [19, 100]. They
proposed that their device could objectively measure fine changes in PD motor control, and
reported significant correlation between their device and UPDRS scores. Other researchers
have aimed to output UPDRS scores automatically, with the goal of making the UPDRS less
labor-intensive and more objective, which could allow it to be performed at home [56, 68, 77,
78, 96, 103, 127, 130]. Similar to the work on PD classification from healthy controls, we find
that wearable accelerometers are popular prior to 2014, with greater use of smartphones more
recently. We also see similar dataset sizes of approximate 20 PD participants. A common way
to demonstrate efficacy of predicting UPDRS is through significant correlation with UPDRS
scores [68, 77, 78, 130] Other researchers formulated the task as a multi-class classification
problem and report accuracies [96, 103, 127]. In [56], Heldman et al. demonstrated that their
Kinesia� system obtained higher intraclass correlation than clinicians for certain aspects of
the UPDRS, which suggests that their system is more objective and consistent in its ratings.
Interestingly, the authors did not report whether outputs from the Kinesia� correlated with
values assigned by clinicians.

Another application of machine learning and wearable sensors to PD management is
through automated detection and/or evaluation of particular symptoms. This technology
could enable in-home, continuous monitoring, which would allow patients and clinicians to
better understand how symptoms change throughout the day and respond to medication.
Related work on this topic are listed in Table 2.4. Note that, while many of these works report

14

Table 2.2: Related work on automated detection of Parkinson’s Disease

Subjects Sensor(s) Activities Methods Results

Brewer et al.
(2009) [20]

30 control
30 healthy

Device for
measuring force
between thumb
and index

Exert force
following target
waveform (yes/no
distraction)

Linear SVM Acc: 85

Little et al.
(2009) [81]

8 control
(43 samples)

23 PD
(147 samples)

Voice data
(microphone)

Sustained vowel
phonations

Kernel SVM Acc: 91.4

Bakar et al.
(2010) [11]

Dataset from Little et al. (2009) [81] MLP Acc: 92.95

Spadoto et al.
(2010) [120]

Dataset from Little et al. (2009) [81] Optimum-path forest Acc: 75.3

Tien et al.
(2010) [126]

16 control
12 PD w/ gait

disturbance
11 PD w/o gait

disturbance

IMU (foot) Walk RBF SVM Sens.: 93.3
Spec.: 88.9

Barth et al.
(2011) [16]

16 control (C)
14 early PD (E)
13 intermediate

PD (I)

IMU (foot) Walk
Heel-toe tapping
Circle foot

LDA (also boosting
with decision stump
and SVM)

C v. E :
Sens.: 88
Spec.: 85

C/E v. I :
Sens.: 100
Spec.: 100

Continued on next page

15

Table 2.2: (Automated PD detection continued)

Subjects Sensor(s) Activities Methods Results

Fatmehsari
and Bahrami
(2011) [38]

10 control
9 PD

Gyro (R arm)
(other sensor
locations
unused)

Walk
Stand still

Threshold on
Lempel-Ziv Complexity
measure

Sens.: 88.89
Spec.: 100
Acc: 94.74
AUC: 0.967

Hoffman and
McNames
(2011) [58]

35 control
11 PD

IMU
(index finger)

Finger tap
Pronation/

supination

Threshold on
normalized mean
squared error between
true signal and
predicted signal from
forward linear
prediction

AUC: 0.781-0.869

Manap et al.
(2011) [84]

20 control
12 PD

37 reflective
markers (Vicon)
Force plate

Walk MLP Acc: 95.63

Palmerini et
al. (2011) [92]

20 control
20 PD

3D acc
(lower back)

Standing
(eyes open/close)
(yes/no
distraction)
(hard/soft floor)

SVM Acc: 95

Weiss et al.
(2011) [131]

17 control
22 PD

3D acc
(lower back)

Walk Frequency domain
analysis

PD patients have
lower and wider
peaks than controls
(statistically
significant)

Continued on next page

16

Table 2.2: (Automated PD detection continued)

Subjects Sensor(s) Activities Methods Results

Adame et al.
(2012) [1]

10 control (C)
10 early PD (E)
10 late PD (L)

IMU
(lower back)

Timed up and go
(TUG) test

DTW to segment TUG
into sit-to-stand,
turning, turn-to-sit

L takes longer for
sit-to-stand and
turning, than C
and E (statistically
significant)

Arora et al.
(2014) [8]

10 control
10 PD

Smartphone
(acc)

Walk
Stand still
(at home)

Random forest Sens.: 98.5
Spec.: 97.6

Arora et al.
(2015) [7]

10 control
10 PD

Smartphone
(app)

Voice
Stand still
Walk
Finger tapping
Reaction time
(at home)

Random forest Sens.: 96.2
Spec.: 96.9

Lee et al.
(2016) [77]

87 control
57 PD

Smartphone
(app)

Two-target
tapping test

Threshold on feature AUC: 0.92

Arroyo-
Gallego et al.
(2017) [9]

23 control
21 PD

Smartphone
(app)

Typing
(5 mins/person)

Threshold on feature

Linear SVM

Sens.: 0.81
Spec.: 0.81
AUC: 0.91

Sens.: 0.73
Spec.: 0.94
AUC: 0.88

17

Table 2.3: Related work on automated assessment on Parkinson’s Disease severity

Goal
subs
(PD) Sensor(s)/Activities Methods/Results

Van Someren
et al. (2006)
[130]

Automated
detection/
evaluation of tremor

9 Actiwatch (acc)
Regular clinic visit,
UPDRS tremor severity
scored for each minute

Fuzzy logic approach
0.93 corr. to UPDRS score averaged
across the entire observation period
Detection performance not reported

Brewer et al.
(2009) [19]

Objective, sensitive
measure of PD
severity

26 Use index and thumb to
exert force on two sensors,
and modulate force to
track a target waveform.

Ridge regression between output and
UPDRS score.
Mean absolute error = 3.58
Significant corr. with UPDRS score,
R = 0.78

Patel et al.
(2009) [96]

Automated UPDRS
evaluation of tremor,
bradykinesia, and
dyskinesia

12 8 acc (upper/lower
arms/legs)
UPDRS tasks:

Finger-to-nose
Finger tapping
Open/close hand
Pronation/supination
Heel tapping
Quiet sitting

Multi-class (OVA) kernel SVM, trained
within each subject.
Classification accuracies:

96.6 for tremor,
97.8 for bradykinesia,
96.8 for dyskinesia

Pradhan et
al. (2009)
[100]

Develop clinical
progression marker

30 Same as Brewer et al.
(2009) [19]

Significant corr. with UPDRS score,
R = 0.58

Continued on next page

18

Table 2.3: (Automated PD severity assessment continued)

Goal
subs
(PD) Sensor(s)/Activities Methods/Results

Tsipouras et
al. (2011)
[127]

Automated
classification of
dyskinesia severity

24 6 acc (wrists, ankles, torso,
waist), 2 gyros (torso,
waist)

Sit on chair,
dyskinesia severity rated
on 0-3 scale

Artificial neural network
(only 1-2 sensors at a time)

Average classification results across four
severity values:

Acc: 83.3-85.3
Sens: 61.76-73.03
Spec.: 71.86-78.18

Heldman et
al. (2014) [56]

Automated UPDRS
assessment

18 Kinesia, portable kinematic
system (like an IMU)
UPDRS tasks:

Finger tapping
Rest tremor
Postural tremor

Kinesia has higher intraclass correlation
(ICC) than clinicians for speed,
amplitude, and rhythm of finger
tapping.
Not significantly different ICC for rest
and postural tremor.
Correlation of Kinesia to clinicians not
reported.

Printy et al.
(2014) [103]

Classification
between more/less
severe UPDRS
(total score and
bradykinesia
subscore)

18 Smartphone (app)
UPDRS tasks:

Open/close hands
Finger tapping
Two-target tapping
Pronation/supination

RBF SVM
More/less severe UPDRS acc.: 94.5
More/less severe bradykinesia acc.: 65

Continued on next page

19

Table 2.3: (Automated PD severity assessment continued)

Goal
subs
(PD) Sensor(s)/Activities Methods/Results

Arora et al.
(2015) [7]

Automated UPDRS
assessment (total
score)

10 Smartphone (app)
Tasks:

Voice
Stand still
Walk
Finger tapping
Reaction time

(at home)

Random forest
Mean absolute error 1.26 UPDRS
points (range 11 to 34)

Kassavetis et
al. (2016) [68]

Automated UPDRS
evaluation (specific
tasks)

14 Smartphone (app)
UPDRS tasks:

Rest tremor
Postural tremor
kinetic tremor
Pronation/supination
Leg agility
Finger tapping

Significant corr. for all tasks (excluding
kinetic tremor), |R| = 0.5 to 0.75

Lee et al.
(2016) [77]

Automated UPDRS
evaluation (total
score and total
bradykinesia
subscore)

57 Smartphone (app)
Two-target tapping test

Significant corr. total score, R = −0.5,
and bradykinesia subscore, R = −0.32.

Lee et al.
(2016) [78]

Automated UPDRS
evaluation (total
score only)

103 Smartphone (app)
Two-target tapping test
(at home)

Significant corr. with UPDRS score,
R = 0.281 to 0.608

20

Table 2.4: Related work on automated detection of Parkinson’s Disease symptoms

Subjects Sensor(s)/Activities Methods/Results

Salarian et al.
(2007) [111]
Tremor
Bradykinesia

10 control
10 PD (Part I)
11 PD (Part II)

3D gyros (wrists)
Part I:

45 min. ADL
Part II:

5 hr. unscripted

Tremor: Threshold on dominant frequency and
amplitude
Sens. = 99.5 (PD only)
Spec. = 94.2 (controls only)
Significant corr. with UPDRS:
R = 0.86 (Part I), R = 0.85 (Part II).

Bradykinesia: Threshold on gyro features
Significant corr. with UPDRS:
R = −0.83 (Part I), R = −0.81 (Part II).

Bachlin et al.
(2010) [10]
Freezing of
Gait (FoG)

10 PD 3D acc (upper/lower leg and
belt)
Walking

Threshold on feature computed from frequency
domain.
Sens.: 73.1; Spec. 81.6

Cole et al.
(2010) [26]
Tremor
Dyskinesia

4 control
8 PD

3D acc and surface
electromyography
(upper/lower R arm, upper R
leg, lower L leg)

4 hrs. unscripted and
unconstrained activities in
apartment-like environment

Dynamic neural network trained on 10
mins. data from controls and 10 mins. data
from PD subjects with either tremor or
dyskinesia.
Tremor results on left out subjects:

Sens. = 87.2-91.7; Spec. = 92.0-93.0
Dyskinesia results on left out subjects:

Sens. = 93.4-95.7; Spec. = 93.6-94.9

Continued on next page

21

Table 2.4: (Automated detection of PD symptoms continued)

Subjects Sensor(s)/Activities Methods/Results

Zwartjes et al.
(2010) [143]
Tremor
Bradykinesia

7 control
6 PD

IMU (wrist, thigh, and foot of
most affected side, and trunk)
Various UPDRS tasks and
ADL

Decision tree for activity recognition, then
thresholds on features computed from
frequency spectrum.
Tremor results:

Detection acc.: 78.7-94.1
Significant corr. with UPDRS scores,
R = 0.67 to 0.84

Bradykinesia results:
Significant corr. with UPDRS scores,
|R| = 0.57 to 0.72
(for subset of activities)

Handojoseno et
al. (2012) [51]
Freezing of
Gait (FoG)

26 PD Electroencephalogram (EEG)
Timed-up-and-go (TUG)

Neural network
Normal v. FoG onset classification

Acc.: 75.0; Sens.: 72.0; Spec.: 77.2
Normal v. FoG classification

Acc.: 73.9; Sens.: 71.2; Spec.: 77.2

Sama et al.
(2012) [112]
Dyskinesia

20 PD IMU (waist)
Walk, set table, go up/down
stairs

Thresholds on total power in 1-4Hz spectrum
and under 20Hz
Sens.: 0.89; Spec.:0.78

Tsipouras et
al. (2012) [128]
Dyskinesia

5 control
5 PD w/o

dyskinesia
6 PD w/

dyskinesia

6 acc (wrists, ankles, torso,
waist), 2 gyros (torso, waist)

ADL, severity rated on 0-3
scale.

Decision tree
Average classification results across four
severity values:

Sens: 80.35; Spec.: 76.84

Continued on next page

22

Table 2.4: (Automated detection of PD symptoms continued)

Subjects Sensor(s)/Activities Methods/Results

Cole et al.
(2014) [27]
Tremor
Dyskinesia

Training set:
10 PD

Testing set:
4 control
8 PD

3D acc and surface
electromyography (dominant
wrist, shin of most
symptomatic leg)
Scripted/unscripted ADL in
apartment-like environment
Tremor and dyskinesia events
annotated, rated as mild,
moderate, or severe

Dynamic neural network
Tremor results:

Detection acc.: 93.8
Severity classification:

Sens.: 95.2-97.2; Spec.: 97.1-99.3
Dyskinesia results:

Detection: acc.: 91.2
Severity classification:

Sens.: 91.9-95.0; Spec.: 94.6-98.6

Khan et al.
(2014) [71]
Tremor
Dyskinesia

12 PD 3D acc (waist)
ADL

Multi-class (OVA) SVM with RBF kernel
Classification acc. between normal, tremor, and
dyskinesia: 72

Pulliam et al.
(2017) [104]
Tremor
Dyskinesia
Bradykinesia

13 PD 3D gyro and acc (most affect
wrist and ankle)
ADL

Linear mapping of feature computed from
frequency spectrum
Tremor detection:

TPR: 0.90; FPR: 0.20; AUC: 0.89
Dyskinesia detection:

TPR: 0.74; FPR: 0.15; AUC: 0.86
Bradykinesia detection:

TPR: 0.80; FPR: 0.34; AUC: 0.82

23

either correlation with UPDRS scores or multi-class classification accuracies for varying levels
of severity, these works differ from those in Table 2.3 in that they do so while participants
perform activities of daily living (ADL), rather than specific UPDRS motor tasks. We can
see that the datasets for these studies are smaller than those in Tables 2.2 and 2.3, often
limited to approximately 10 PD participants. This trend is likely a reflection of the increased
difficulty in labeling the data: noting the exact start and end of every symptom occurrence is
much more labor-intensive than assigning a UPDRS score for a block of time or annotating
whether data came from a PD or control participant. As before, methods for automated
detection are often either thresholds on features or well-known algorithms, such as neural
networks or decision trees. Note that all of the machine learning methods in these papers
fall under fully supervised learning. That is, the algorithms assume that each segment of
time is precisely annotated as symptomatic or not.

2.3.1 In-home PD assessment

While the aim of the studies listed in Table 2.4 is ostensibly automated in-home symptom
detection, all the data were collected in laboratory settings (so that video data could be
used for annotation). Some researchers, see [26, 27, 111], attempted to make the data more
realistic by including longer time periods of unscripted activity. Nonetheless, these data
may not accurately reflect a patient’s at-home disease state. As such, many researchers have
begun exploring systems for automated at-home disease assessment.

Mera et al. [88] evaluated the feasibility and patient compliance of using the Kinesia� sys-
tem – a wearable motion capture device – for in-home UPDRS evaluation, where 10 PD
patients were asked to perform 3-6 motor assessments per day for 3-6 consecutive days in
addition to annotating their medication intake times. The authors demonstrated significant
differences in scores assigned pre- and post-medication intake. However, no ground-truth
UPDRS scores were used for comparison in this study.

In [7], Arora et al. used a smartphone app to try to evaluate UPDRS scores at home.
Participants were asked to perform specific tasks (see Table 2.3) with the smart phone four
times daily for four weeks. Performance was evaluated by computing the mean absolute
error (MAE) between the predicted UPDRS total scores and those given by clinicians via
remote assessment once/week. The authors demonstrated an MAE of 1.26 UPDRS points
(range 11 to 34).

In 2015, the mPower Mobile Parkinson Disease Study was launched with the aim of
developing a large database of longitudinal motor data from healthy and PD participants
using a smartphone app [18, 110]. Participants were asked to perform five tasks – walking,
voice, tapping, tremor, and memory – and the app suggested that they do so three times per
day. Participants also self-reported demographic information and answered questions from
the UPDRS Parts I and II. Table 2.5 lists several publications utilizing the mPower dataset.

Zhan et al. [137] developed another smartphone app – HopkinsPD – for monitoring PD
through active tests (voice, balance, walking, finger tapping, reaction, rest tremor, and
postural tremor), passive monitoring (IMU data, GPS location, WiFi parameters, phone
usage, location, social behavior), and self-reports of health, mood, and well-being. 121 PD

24

Table 2.5: Related work utilizing the mPower dataset [18, 110]

Data Methods Results

Perumal et
al. (2018) [97]

Tremor Random Forest Acc.: 0.68-0.85; AUC: 0.68-0.80

Pittman et al.
(2018) [99]

Walking Five different common machine
learning algorithms, best
performance from Multi-layer
Neural Network

Healthy classification:
Prec.: 0.89; Recall: 0.80; F-1: 0.84

PD classification:
Prec.: 0.87; Recall: 0.93; F-1: 0.90

Prince et al.
(2018) [102]

Finger Tapping
Memory

Comparison of number of taps
and memory score

Significant differences between healthy and
PD participants for both number of taps and
memory score. Significant correlation
between number of taps and UPDRS scores
(Parts I and II)

Prince et al.
(2018) [101]

Finger Tapping Deep Neural Network on 13
spatio-temporal features

AUC: 65.7; F-1: 61.4; Acc.: 61.2

Wroge et al.
(2018) [134]

Voice Six different common machine
learning algorithms, best
performance from the gradient
boosted decision tree

Acc.: 0.86; F-1: 0.79;
Prec.: 0.85; Recall: 0.73

Schwab and
Karlen (2019)
[115]

Finger Tapping
Walking
Voice
Memory

Hierarchical neural attention
mechanism over neural networks
(various structures depending on
the input data)

AUC: 0.85; F-1: 0.81;
Sens.: 0.54 at 95% specificity

25

and 105 control participants enrolled and were asked to conduct the active tests twice daily
(immediately before and one hour after medication for PD participants, morning and one
hour later for controls). Using a random forest to classify PD participants from controls,
the authors were able to obtain sensitivity, specificity, and accuracy values of 69.3, 72.7, and
71.0 respectively.

Twenty-seven participants from the Parkinson’s Progression Markers Initiative (a large,
longitudinal dataset collected in clinic) were asked to use the Objective Parkinson’s Disease
Measurement (OPDM) system, which has a similar form-factor to a laptop, during several
clinic visits and on a weekly basis at home for three months [21]. Participants were asked to
complete finger tapping, hand tapping, and a pegboard test using the OPDM system weekly
for three months. The authors reported significant correlations with UPDRS scores.

Lipsmeier et al. [80] used a smartphone app to monitor 44 PD patients during a 6-month
phase 1b clinical drug trial when they performed specific tasks on a smartphone: voice, rest
tremor, postural tremor, finger tapping, balance, and gait. Additionally, 35 age-matched
controls participated in a 45-day study completing the same six tasks. All participants
were asked to complete the tasks once daily. The phones also collected passive data of
daily activity via the smartphone sensors. The authors demonstrated significant differences
between PD patients and controls for all features computed from the smartphone data.
Additionally, they demonstrated significant correlations with UPDRS scores for rest tremor,
postural tremor, finger tapping, balance, and gait.

These studies, all within the past five years, reflect the great potential of smartphones and
other portable devices to facilitate in-home monitoring by enabling motor tests that can be
performed in-home and analyzed automatically. In this thesis, wearable accelerometers were
used for data collection. However, the algorithms presented in this thesis could certainly be
applied to data collected from smartwatches and synchronized with a smartphone app for
visualization.

2.3.2 Passive monitoring of PD symptoms

The in-home motor tests described above will enable more frequent assessment of PD symp-
toms. However, all required PD participants to perform multiple tasks either weekly, daily,
or multiple times per day, which can be burdensome for patients. Therefore, we believe
the future in PD monitoring is through passive, continuous monitoring “in-the-wild,” where
the system automatically detects symptoms through a smartphone or smartwatch without
requiring any specific interaction from the user. Several studies have collected this form of
naturalistic data.

Weiss et al. [131] collected in-home gait data over three days from one PD patient and
one healthy control, and found that the PD patient had shorter wider peaks in the frequency
spectrum compared to the control, indicating that the walking pattern of the PD patient
was less consistent.

Griffiths et al. [46] collected upper-extremity data over 10 days on 34 subjects with PD
and 10 age-matched controls. Using a linear combination of mean spectra power in the 0.2-4
Hz band and peak acceleration, they computed a bradykinesia score (BKS) and dyskinesia

26

score (DKS) for each 2-minute window. On in-home data, they found that BKS scores de-
creased and DKS scores increased after reported medication intake. These results suggested
that their algorithm was able to detect bradykiensia and dyskinesia, because medication
leads to a reduction of symptoms but an increase in side effects (dyskinesia).

In an in-home study for essential tremor detection [105], 20 participants with essential
tremor wore the Kinesia� system, developed by Great Lakes NeuroTechnologies Inc., at
home for ten hours per day for two days. Each hour, subjects were asked to complete three
tasks to evaluate rest, postural, and kinetic tremor. These hourly assessments were processed
into 0-4 scores using an algorithm that had previously been demonstrated to be correlated
with clinician UPDRS scores [41]. Another algorithm based on time- and frequency-domain
features (details unspecified) computed a continuous tremor severity estimate. Graphical
results for one patient indicated that the continuous tremor severity estimates were similar
to the hourly assessments computed when the patient completed the tremor tasks. Sum-
mary statistics for how this continuous tremor severity estimate correlated with the hourly
assessments across all patients were not reported.

The large-scale Parkinson@home study asked nearly 1000 participants to interact with
the Fox Wearable Companion app on a smartphone and smartwatch while also wearing a
fall detector for six to thirteen weeks [116, 117]. Statistical analyses of this dataset indicated
that higher severity of motor symptoms was associated less time spent walking [118]. It was
also found that the incidence of falls was higher among PD patients than controls [119].

Zhan et al. [137] and Lipsmeier et al. [80] (described above) included passive data collec-
tion in their experimental design. However, these data were only used to differentiate PD
patients from controls.

None of the data collections described in this section asked participants to label when
they experienced symptoms. Therefore, none attempted to explicitly detect symptoms in
the wild.

2.3.3 Weakly supervised learning for PD symptom detection

Without labels, it is difficult to build a machine learning algorithm to detect when symptoms
occur. Typical machine learning algorithms require accurate labels indicating the exact start
and end of every symptom occurrence. Therefore, a popular strategy is to collect data of par-
ticipants performing activities of daily living while in laboratory settings, where video data
can be used to label symptom occurrences (see all citations in Table 2.4). The assumption
is that machine learning algorithms trained on such data will generalize (i.e., perform simi-
larly) when applied to data from patient homes. Some researchers have attempted to train
their algorithms directly on data collected “in-the-wild.” In these situations, accurate labels
are prohibitively labor intensive to obtain. Therefore, researchers ask study participants to
label approximately when their symptoms occur. These approximate labels are called weak
labels. Chapter 3 of this thesis describes the protocol that was designed to collect weak labels
in the wild while encouraging accurate and frequent labeling.

While weakly supervised learning methods are relatively well-explored (see [5] for a re-
view), few have applied these methods to human activity recognition in time series data.

27

Typically, problems in this domain are formulated as multiple instance learning (MIL). That
is, segments of time, which contain multiple instances, are labeled as containing or not con-
taining an activity of interest. Ali and Shah [4] used MIL slightly differently, in that they
represented actions in video data by several “kinematic modes” and use MIL to learn which
kinematic mode represents each action. Ikizler-Cinbis and Sclaroff [63] used MIL to help
combine object-, scene-, and action-related features computed from Youtube videos for im-
proved activity recognition. Guan et al. [47] developed a generative graphical model based
on an auto-regressive hidden Markov model for MIL and applied it to accelerometer data
of human activity recognition. More related to the work in this thesis is that of Stikic et
al. [121, 122], who used MIL for activity recognition from accelerometer data collected from
real-world settings. From the annotated data, they generated three types of weak labels:
the current activity, the set of activities that were performed in a given time interval, or the
activity that was performed the most in a given time interval. They developed extensions
to the MIL SVM algorithm to handle these different types of labels and showed that their
MIL algorithms were generally able to maintain similar performance as the fully supervised
algorithms, even as the time intervals increased in length. In Chapter 6 of this thesis, weak
labels were also generated from accurate labels and a new type of label, called stratified weak
labels, were developed specifically for the PD tremor detection application.

A small body of work has explored the use of weakly labeled data for in-home PD
symptom detection. Fisher et al. [40] used a neural network to detect dyskinesia in weakly
labeled data collected in the homes of 34 subjects with PD, but treated the data as accurately
labeled before training the network. That is, the label assigned to each hour (either “on”
medication, “off” medication, dyskinetic, or asleep) was assumed to apply to the entire
hour. This assumption may be valid for the labels used in this study, but may be less
accurate for symptoms like tremor, which occur more intermittently than sleeping or on/off
medication state. Nonetheless, the authors reported relatively low sensitivity values (0.56),
although specificity values were reasonable at 0.90. Das et al. [32] compared several weakly
supervised learning techniques on in-home data collected from two subjects. While results
were promising, the algorithms were trained and tested within the same subject because each
subject experienced different symptoms. In our follow-up paper, and presented in Chapter 6
of this thesis, Zhang et al. [138] compared several weakly supervised learning algorithms,
including a novel “stratified” algorithm, on a larger dataset collected in a laboratory setting.
Chapter 7 of this thesis assesses how well laboratory data represents data collected in-the-
wild. Additionally, the performance of algorithms trained on these two types of data is
compared.

28

Chapter 3

Data Collection and Processing

This chapter describes the data collection protocol for both laboratory and in-home (i.e.,
in-the-wild) data. A link to this dataset can be found at http://www.humansensing.cs.

cmu.edu/software.

3.1 Laboratory recordings (LAB)

Figure 3.1: Axivity AX3 ac-
celerometer

Data were collected from 12 subjects (eight male, four female,
ages 66 to 85) who had been diagnosed with PD two to five
years prior. Each subject self-reported tremor in one or both
hands. The subjects wore one Axivity AX3 accelerometer (see
Figure 3.1) on each wrist while they completed several actions,
some of which were taken from the UPDRS, and others from
daily living (see Table 3.1 for a complete list). To synchronize
the accelerometers with each other and the cameras, each par-
ticipant was asked to clap five times at the start and end of
the session. Data were collected at 100 Hz. Note that subjects
1 and 6 did not exhibit any tremor during the data collection
and were thus excluded from the dataset. To give the reader a sense of the overall symptom
severity of our subjects, Table 3.3 shows UPDRS scores of each subject provided by a clinical
expert.

Three cameras were used to record the subjects so as to minimize occlusion (see Figure 3.2
for views from the three cameras). To synchronize the three cameras, a light was flashed
at the start of each session. Using the video recordings, tremor segments were labeled with
ELAN [36]. All participants were labeled twice: In the first phase, five different people labeled
all sessions holding frequent meetings for reaching labeling agreements. In the second phase,
an additional person reviewed and relabeled all the sessions for consistency. The mean
correlation between labels from the two phases is 0.81 with a standard deviation of 0.18.
Although the correlation is high, the second phase helped to detect and correct some errors
and disagreements. For this thesis, the labels from the second round were used because they

29

 http://www.humansensing.cs.cmu.edu/software
 http://www.humansensing.cs.cmu.edu/software

Figure 3.2: Experimental setup

Table 3.1: Set of actions performed during lab data collection

Action Approximate time (minutes)

Sit and talk 5
Rest tremor* (UPDRS 3.17) 3
Postural tremor* (UPDRS 3.15) 6
Kinetic tremor (UPDRS 3.16) 2
Finger tapping (UPDRS 3.4) 1
Open/close hands (UPDRS 3.5) 1
Pronation/supination of the hands 1

(UPDRS 3.6)
Writing 4
Typing 4
Playing chess 10
Playing cards 10
Making a sandwich 5
Eating a sandwich 10
Drinking from a cup 1
Walking 2

* denotes the inclusion of a cognitive distractor (counting backwards by 7’s from 100).
Note: UPDRS item numbers correspond to those given in [42]

30

Table 3.2: Summary of data collected in lab

Subject
Labeled minutes

per hand

% Tremor events

Left hand Right hand

2 74.9 80.0 40.6
3 55.9 55.9 73.7
4 55.2 57.1 37.1
5 88.1 39.0 44.1
7 97.1 26.9 19.3
8 91.3 8.6 37.9
9 96.1 21.9 7.6
10 84.5 7.8 11.7
11 51.5 69.2 26.3
12 74.7 2.0 1.2

Total 769.2 (∼12.8 hours)

Table 3.3: UPDRS evaluations from lab data (provided by a medical ex-
pert)

S
u
b

je
ct

#

MDS-UPDRS task

Resting Postural Kinetic Finger Hand Pron.
tremor tremor tremor tapping mov sup.
(3.17) (3.15) (3.16) (3.4) (3.5) (3.6)

L R L R L R L R L R L R

2 2 2 2 1 1 1 1 1 1 0 3 0
3 1 2 1 2 1 2 1 3 1 2 2 2
4 3 3 2 3 1 1 3 1 3 1 4 3
5 0 0 2 2 2 2 2 1 2 1 2 2
7 0 0 1 1 1 1 1 3 2 3 3 2
8 1 1 0 1 1 1 1 2 1 2 1 2
9 0 0 0 0 0 0 3 2 - 2 - 4
10 0 2 0 0 1 0 2 3 1 1 2 1
11 3 0 3 0 1 0 3 1 1 0 1 0
12 1 1 0 0 0 0 3 2 3 2 2 2

Note: The arm of participant 9 was rigid. Therefore, the hand movement and pronation-supination
tasks were skipped.

31

(a) (b) (c) (d) (e)

Figure 3.3: Five screenshots from the cell phone app. (a) Home page – Allows the participant
to edit the last entry or submit a new entry. Note that participants were be compensated
for submitting entries at most once per hour. (b) Diary entry page – Participant describes
how much tremor was experienced in the past five minutes. (c) Diary entry page continued –
Participant describes general mood, activities performed and whether medication was taken
since the previous entry. (d) Prompt for extra entries. (e) Submission page – Tells the
participant when the next entry will be available, how many entries were submitted today
and in total, and how much money was earned ($0.25 per regular entry, $1.25 per extra
entry, up to $15 per day).

came from a single person and presumably had greater consistency.

Features for time-series data are typically computed over windows. Therefore, the instance-
level labels described above must be converted into window-level labels. In this thesis, I chose
to use three-second windows with a one-second shift. Each three-second window was labeled
as a tremor window if more than 50% of the instances within were labeled as tremor. This
dataset is referred to as LAB data.

3.2 In-the-wild recordings (WILD)

In previous in-home data collections performed by our lab (see Das et al. [32]), participants
were asked to label the data using paper diaries. This protocol had several weaknesses: (1)
for blank diary entries, it was unclear whether the participants had not experienced any
symptoms or whether they simply failed to complete their diary entries, (2) labels were not
well-localized in time, and (3) participants were likely completing diary entries at the end of
the day, leading to probable issues with recall.

In designing the new protocol, I wanted to promote regular and frequent labeling through-
out the day. Thus, I decided to pay participants per entry as opposed to paying them for
simply wearing the sensors. To prevent participants from submitting many entries at one

32

Table 3.4: Number and type of weak labels submitted by each participant

Left hand Right hand

Almost Half Almost Almost Half Almost
P. # none the time always none the time always

2 90 (26.3%) 92 (26.9%) 160 (46.8%) 102 (29.8%) 102 (29.8%) 138 (40.4%)
4 119 (19.6%) 312 (51.5%) 175 (28.9%) 325 (53.6%) 233 (38.4%) 48 (7.9%)
5 91 (15.9%) 468 (82.0%) 12 (2.1%) 94 (16.5%) 467 (81.8%) 10 (1.8%)
10 167 (70.2%) 69 (29.0%) 2 (0.8%) 167 (70.2%) 69 (29.0%) 2 (0.8%)
11 0 (0.0%) 42 (9.1%) 419 (90.9%) 459 (99.6%) 0 (0.0%) 2 (0.4%)
12 93 (85.3%) 9 (8.3%) 7 (6.4%) 72 (66.1%) 26 (23.9%) 11 (10.1%)

Total 560 (24.1%) 992 (42.6%) 775 (33.3%) 1219 (52.4%) 897 (38.5%) 211 (9.1%)

Figure 3.4: Number and type of weak labels submitted by each participant

33

Figure 3.5: Labels submitted by each participant over time

34

time (all entries at the end of the day, for example), an app was designed such that par-
ticipants could earn compensation ($0.25) for regular entries at most once per hour. After
submitting a regular entry, participants were asked if they were available to pay attention to
their symptoms for the next five minutes and submit an additional entry for $1.25. The hope
was that participants would have better recall for these entries, leading them to be more
accurate, because participants would specifically pay attention to their symptoms during
that time. Screenshots from the app are shown in Figure 3.3. Participants were called every
1-2 days to make sure they had no problems with the sensors or the app and to keep them
motivated to submit labels. Researchers also met with the participants each week to change
the sensors (a maximum of two weeks of data could be stored on each sensor) and check that
the data collection was progressing smoothly.

In the initial design of this study protocol, our pilot participant was asked to indicate
whether or not tremor occurred since the most recent entry. However, upon reviewing the
data and speaking with the participant, it was found that tremor can often go unnoticed,
making it difficult to recall whether symptoms occurred in the time period between entries.
Therefore, in order to promote accurate recall about their symptoms, participants were asked
to record the amount of tremor they experienced only in the 5 minutes prior to submitting
the entry. Given the findings presented here in Chapter 6 and published in [138], stratified,
rather than binary, weak labels were used. That is, rather than asking participants whether
or not they experienced tremor within the previous five minutes, participants were provided
three label options (Almost none, Half the time, and Almost always). Additionally, while
results shown Chapter 6 indicate that performance of stratified algorithms remains relatively
consistent between 5- and 10-minute segments, it was expected that participant recall might
more accurate for a shorter time segment.

Participants 2, 4, 5, 10, 11 and 12 agreed to participate in the in-home study. For
some participants, data from their spouses were collected to serve as age-matched controls.
Although these data were not used in this thesis, they have been released as part of the
PD dataset. Participants wore an AX3 accelerometer on each wrist throughout the day for
two to four weeks. All participants made regular entries during the data collection period:
Table 3.4 and Figure 3.4 show the distribution of labels for each participant. Figure 3.5 shows
the labels provided by the participants over time. In general, participants maintained their
labeling frequency throughout the study, although participant 10 submitted fewer labels per
day after week one. Note that, after two weeks, participant 12 decided to withdraw from the
study due to being too busy or stressed to continue submitting entries. All others participants
had no issues with the cell phone app or the study in general and remained in the study
for all four weeks. Most participants elected to remove the sensors while sleeping, and these
segments of time were manually removed from the dataset by looking at the accelerometer
data. These weakly labeled data are subsequently referred to as WILD.

Comparing the distribution of labels in the WILD dataset (Figure 3.4) with the per-
centage of tremor events annotated in the laboratory data (Table 3.2), we can see that the
weak labels given by the participants are generally consistent with the labels assigned by
researchers on the laboratory data. For example, participants 4 and 11 indicated that tremor

35

occurred more frequently in the left hand compared to the right, which is consistent with
the higher percentage of tremor in the left hand in the LAB dataset. Participant 5 reported
low to moderate amounts of tremor at home and experienced tremor approximately 40% of
the time during the laboratory session. Participants 10 and 12 primarily reported “Almost
none” for their tremor symptoms and also demonstrated a low percentage of tremor in the
LAB dataset. One inconsistency between the two datasets is that Participant 2 indicated
that tremor occurred equally between the hands while researchers noted 80.0% tremor in the
left hand versus 40.6% tremor in the right. It is possible that this inconsistency is due to
researchers including low intensity tremor that the participant does not notice at home. It is
also possible that the participant perceived tremor to occur equally between the hands, even
if the right hand actually tremors less. Another artifact of the dataset is the highly homo-
geneous labels submitted by participant 5 after week one. It is unclear whether these labels
reflect the participant’s true symptom experience or whether the homogeneity was due to a
misunderstanding of label interpretation. Nonetheless, the similarities of label proportions
between the LAB and WILD indicate that participants and researchers generally agreed on
what constitutes tremor.

3.3 General training and testing procedures

All experiments in this thesis, unless specifically stated as otherwise, are conducted under
leave-one-subject-out (LOSO) cross validation. That is, the algorithms are trained on the
data of all subjects excluding one, and then tested on the left out subject. Note that,
because people use their left and right hands in very different ways, and because symptoms
of PD often manifest differently on the two sides of the body, data from separate hands
were considered to be from separate subjects. This design consideration affects the STM
and KMM algorithms in Chapter 4, which use unlabeled data from the test subject. It also
affects TPT (Chapter 4) and the person-specific models presented in Chapter 7, which build
models for individual subjects. Note however, that when leaving data out from the training
set, data from both hands are excluded.

3.4 Features

Previous work on automated tremor detection [27, 71, 96, 98, 111] have generally used very
similar features. In this thesis, I use the same features as those described by Patel et al. [96].
The accelerometer signals were first high-pass filtered with a 1 Hz cutoff using an 8th-order
elliptic filter. Twenty-one features were computed over three-second windows of the signal
with one-second window shift. On each window, the range, root mean square, Shannon
entropy, dominant frequency and ratio of energy in the dominant frequency over total energy
were computed over each axis. The peak normalized cross-correlation and the time lag
associated with the peak were computed over each pair of axes. Figures 3.6 and 3.7 show
example accelerometer data (after high-pass filtering) for non-tremor and tremor motion,

36

respectively. Notably, Figure 3.6 (bottom) shows how, for voluntary motion, the energy
in the frequency domain is spread throughout the 0-5 Hz band. In contrast, for tremor
motion, most of the energy is concentrated at a particular, higher frequency (approximately
5Hz for this participant). Table 3.5 gives the mathematical definitions for all features and
feature values for the non-tremor and tremor time segments shown in Figures 3.6 and 3.7. As
expected, tremor shows larger values in both the dominant frequency and the ratio of energy
in the dominant frequency over total energy. Tremor also shows higher peak cross-correlation
values.

3.5 Performance metrics

This section defines several common performance metrics that are used throughout this
thesis.

Accuracy =
correctly classified

events
, (3.1)

F1-score =2 · Precision · Recall

Precision + Recall
, (3.2)

Precision =
true positives

classified as positive
, (3.3)

Recall/Sensitivity/
True Positive Rate (TPR)

=
true positives

ground truth positive events
, (3.4)

Specificity =
true negative

ground truth negative events
, (3.5)

Area Under the ROC
Curve (AUC)

=

∫ 1

x=0

TPR(FPR−1(x)) dx (3.6)

where FPR is the false positive rate,

i.e., # false positives / # classified as negative.

3.6 Machine learning challenges on this dataset

In this dataset, it is difficult to maintain high performance on subjects who were not in the
training population due to high variability between people. Tremor, for example, manifests
differently between people – varying in both amplitude and frequency, and people respond
differently to medication. Environmental factors can also affect a person’s tremor: some of
our subjects reported that they experienced worse tremor when cold or under stress. Finally,
people have different lifestyles and hobbies, which leads to variability in the set of activities
performed by each subject for the WILD dataset.

It is also difficult to generalize from the LAB dataset to the WILD dataset due to differ-
ences between the two. The LAB dataset protocol was designed to include many different
activities of daily living, but did not include all possible activities. Our participants engaged

37

Figure 3.6: Example accelerometer data from a 3-second window of voluntary (non-tremor)
motion. Time domain (top) and frequency domain (bottom).

Figure 3.7: Example accelerometer data from a 3-second window of tremor motion. Time
domain (top) and frequency domain (bottom).

38

Table 3.5: Feature definitions and example values for non-tremor and tremor

Example value Example value
Axis/ for non-tremor for tremor

Feature Definition Axes (Figure 3.6) (Figure 3.7)

Range max f(t)−min f(t)
x 0.32 0.22
y 0.10 0.09
z 0.12 0.18

Root mean square (RMS)

√√√√ 1

n

n∑
t=1

(f(t))2
x 0.04 0.04
y 0.02 0.02
z 0.02 0.03

Shannon entropy
−
∑

i pi logb pi
pi indicates the probability
of a particular value of the signal

x 1.30 1.38
y 0.32 0.34
z 0.60 0.89

Dominant frequency arg max
ξ

f̂(ξ)
x 2.67 5.00
y 0 4.33
z 1 4.67

Ratio of energy
maxξ f̂(ξ)∑

ξ f̂(ξ)

x 0.07 0.13
y 0.09 0.10
z 0.05 0.11

Peak cross-correlation(f, g) max
τ

∞∑
t=−∞

f(t− τ)g(t)
x, y 0.03 0.05
y, z 0.01 0.04
x, z 0.07 0.16

Lag associated with peak arg max
τ

∞∑
t=−∞

f(t− τ)g(t)
x, y 0.04 0
y, z −0.13 0.54
x, z −0.02 0

Note: f(t) is the (discrete) time-domain signal and f̂(ξ) is the signal in the frequency domain.

39

in a variety of hobbies, such as gardening, golf, or boxing, and these activities were not
included in the LAB protocol. Additionally, the proportion of time spent on each activity
in the LAB dataset differs from that in the WILD dataset. For example, approximately one
fourth of the LAB protocol was devoted to making and eating a sandwich, but people do not
typically spend one fourth of their waking hours eating. While modifying the LAB protocol
could mitigate some of these differences, recording a person’s motions in a laboratory setting
makes LAB data fundamentally different from WILD data.

3.7 Lessons learned

The WILD dataset presented here represents a novel protocol designed to increase label
frequency and accuracy compared to the previous standard of paper diaries. However, the
protocol can still be improved on several dimensions.

One weakness is the small dataset: only 6 people participated in the in-home portion, and,
on average, each participant only labeled approximately 36 hours of data per hand out of the
4-week study (∼ 443 samples/participant × 5 minutes/sample). In general, in-home datasets
are difficult to collect because they are more labor intensive for both the participants and
the researchers. Participants must submit frequent labels of their symptoms throughout the
day for many weeks, and researchers must periodically contact the participants to make sure
there are no problems and to exchange sensors. A larger number of participants would make
performances differences between algorithms clearer. While most datasets in this domain
are relatively small (see Table 2.4), Fisher et al. [40] – the most similar dataset to the one
presented here – were able to collect from 34 participants. The Parkinson@home study did
not ask participants to label their symptoms, but the nearly 1000 participants were asked
to interact with a smartphone app and wear a smartwatch. Training on cohorts of this
size should enable higher performance from machine learning algorithms, and more reliable
conclusions could be drawn across subjects.

The data collection and algorithm training/testing protocols were designed to best evalu-
ate generalization across time. Participants submitted labels for four weeks, which is longer
than many other WILD datasets. For example, Fisher et al. [40], Das et al. [32], Pulliam et
al. [105], and Griffiths et al. [46] all collected data for fewer than ten days. Temporal con-
sistency was maintained while partitioning this dataset so that algorithms were not shown
samples across the whole dataset during training. Nonetheless, it is unclear how the learned
models would perform six or twelve months later. Over these longer time-spans, it is possi-
ble that a person’s tremor or activities could change and therefore reduce a model’s tremor
detection performance. Meanwhile, a product’s performance would need to be stable across
months or years, which means that more longitudinal data should be collected for training
and evaluating algorithms. To do so, participants could be asked to label shorter periods of
time spread over a year, i.e., one week every three months.

Anecdotal observations from this study show that several design improvements could be
made with respect to labeling. For example, creating the additional label of “no tremor”
would facilitate machine learning because it would be known that all samples within those

40

time segments would be non-tremor. In contrast, for the “Almost none” label, only 66%
of the samples are assumed to be non-tremor. Participants could be better informed about
how to interpret “Almost none” versus “Half the time” versus “Almost always.” In this
thesis, these labels are assumed to correspond to [0-33%], [33-66%], and [66-100%] tremor
respectively, but it is possible that the participants interpreted the labels differently. Fi-
nally, incorporating active learning into the study design, so that the smartphone app would
prompt the participants for labels of particular interest, could reduce the number of labels
necessary for training.

A final area of improvement for the study protocol is in the sensors used for data col-
lection. At the time of study design, existing commercially available wearable devices were
typically limited to one sensing modality. More recently, smartwatches have been released
that not only include a full inertial measuring system within, but also can measure heart
rate. Substituting the AX3 sensors used here with this newer smartwatches could enable
interesting insights between PD and heart rate without requiring participants to wear more
sensors.

41

42

Chapter 4

Personalization Via Domain Transfer

One of the challenges in automated Parkinson’s Disease (PD) symptom detection is human
variability. Gender, age, and body type all affect how a person moves. People also differ
in their hobbies and level of activity. PD patients in particular are all affected differently
by the progression of the disease. These differences lead to high variability across people in
motion data from accelerometers, while data from individuals may be clustered in distinct
styles. Standard machine learning algorithms often struggle under this scenario because they
assume that the test data are sampled from the same distribution as the training data, which
implies that minimizing loss on the training data approximates minimizing loss on the test
data. However, with human data, an individual’s style is not typically sampled uniformly
from the population’s distribution of all possible styles.

Classifiers trained uniformly on many different subjects may become confused by these
individual differences, leading to poor generalization on a test subject who was not in the
training population, even if the test subject’s data are highly separable and even if there exist
other subjects who are similar to the test subject. Indeed, it has been shown that classifiers
trained specifically on the test subject’s data tend to perform much better than those trained
on a population of other subjects [132]. However, such person-specific classifiers need labeled
data from the test subject, and these data are often difficult to obtain. For example, users
of an activity recognition product would generally expect it to work immediately out of the
box and might find it cumbersome if a product required them to label their own data before
a person-specific activity recognition model could be built.

While labeled data from end users can be difficult to obtain, unlabeled data is almost
trivial to obtain. It is possible, therefore, to leverage knowledge of the distribution of a test
subject or end user’s data and personalize a generic classifier to perform better on that data.
This process is called domain transfer. In particular, modeling the differing distributions
of the training and test data falls under the covariate shift problem. Chapter 2.2 describes
related work in this domain.

Several algorithms for solving the covariate shift problem have been proposed. However,
few have been applied to accelerometer data, and none were applied to the problem of PD
tremor detection. In this chapter, I compare a generic Support Vector Machine (SVM) to
three algorithms designed to personalize an SVM given unlabeled data from a test subject:

43

Kernel Mean Matching (KMM) [45], Selective Transfer Machine (STM) [24], and Transduc-
tive Parameter Transfer (TPT) [114]. These algorithms were chosen for several reasons:

� They are relatively easy to understand;

� They are based on the SVM algorithm, which has been shown to have high perfor-
mance in many domains, but the underlying methods of personalization can be applied
to other classification algorithms; and

� They are interpretable, which is particularly desirable when building machine learning
algorithms for medical applications.

4.1 Algorithms

In this section, I review the formulations of a generic SVM and the three domain transfer
algorithms I compared (KMM, STM, and TPT).

4.1.1 Support Vector Machine

Let Dtr = {xi, yi}ntr

i=1 be a set of ntr training points where yi ∈ {+1,−1} indicates the class of
the sample xi. This algorithm tries to find a hyperplane defined by w and b that separates the
positive and negative classes while maximizing the distance between the hyperplane and the
nearest training points (support vectors). It outputs a classification function f(x) = w> x+b,
such that when f(x) > 0, the test sample is classified as +1 and vice versa. w and b are
chosen by minimizing the following objective function:

min
w,b

1

2
‖w‖2 +

C

2

ntr∑
i=1

L(yi, f(xi)), (4.1)

where L(yi, f(xi)) represents the loss function. Many loss functions exist, but here the
squared hinge-loss is used: L(yi, f(xi)) = max{1− y · f(xi), 0}2. C represents the trade-off
between minimizing the loss and maximizing the margin. The LIBLINEAR library written
by Fan et al. [37] was used to train the SVM.

4.1.2 Kernel Mean Matching

Kernel Mean Matching (KMM), developed by Gretton et al. [45], is a personalization ap-
proach that uses importance reweighting to optimize the decision function for the test data
without knowing the labels, thereby creating a classifier that is personalized for the test
data. The main idea behind KMM is to weight the training data such that the weighted
training distribution approximates the distribution of the test data. The assumption is that
classifiers trained on a distribution that matches the test data will better generalize to the

44

test data. Note that, in contrast to non-personalized algorithms, KMM requires test data
to be available during training and must be retrained for each test subject.

To formulate KMM, I introduce some additional notation. Let Xte = {xi}nte

i=1 be the set
of nte unlabeled test points from a single test subject. Furthermore, let Xtr = {xi}ntr

i=1 be
the set of ntr training samples in Dtr after discarding the labels. Let s ∈ Rntr be a vector
that contains the positive weights si for each training sample xi. KMM aims to find sample
weights si that reduce the mismatch between the weighted training distribution Xtr and the
test distribution Xte by minimizing the distance between the empirical mean of the weighted
training set and the test set in the Reproducing Kernel Hilbert Space (RKHS) H [45]:

min
s

Ωs(X
tr,Xte) =

∥∥∥∥∥ 1

ntr

ntr∑
i=1

siϕ(xtr
i)− 1

nte

nte∑
j=1

ϕ(xte
j)

∥∥∥∥∥
2

H

, (4.2)

=
1

ntr
2
s>Ks− 2

ntr
2
κ>s + const.

subject to

si ∈ [0, B],∣∣∣∣∣ 1

ntr

ntr∑
i=1

si − 1

∣∣∣∣∣ ≤ ε.

ϕ(·) represents the implicit mapping from the feature space into the Hilbert space, s =
[s1, . . . , sntr] is a vector containing the sample weights, K is the kernel matrix with Kij =
k
(
xtr
i ,x

tr
j

)
, and κ is a vector with κi = ntr

nte

∑nte

j=1 k
(
xtr
i ,x

te
j

)
. In this thesis, the Radial Basis

Function (RBF) kernel is used:

k(x,x′) = exp

(
−‖x− x′‖2

2σ2

)
. (4.3)

The first constraint of Eq. 4.2 limits the influence (si) of individual points and the second
enforces the average weighting on points to be within ε of 1. This objective function is
a quadratic programming problem, which is solved using the MOSEK ApS optimization
software [90].

Given the learned weights si, one can train a classifier on the newly weighted training
set. Many different classifiers can be used, but here I present the weighted SVM:

min
w,b

1

2
‖w‖2 +

C

2

ntr∑
i=1

siL(yi, f(xi)). (4.4)

As before, the loss function L(yi, f(xi)) can be any loss function, such as the squared hinge
loss L(yi, f(xi)) = max{1− y · f(xi), 0}2. Note how this objective function is the same as a
standard SVM (Eq. 4.1) except that the loss of each sample is weighted by si. As before,
the LIBLINEAR library [37] was used to solve this weighted SVM problem.

45

4.1.3 Selective Transfer Machine

While KMM does not take sample labels into consideration during training, the Selective
Transfer Machine (STM), built by Chu et al. [24], attempts to leverage sample labels by
finding a set of weights si that not only minimizes the mismatch between the training and
test set distributions, but also is consistent with and can support a classification model.
STM is formulated as minimizing the following objective:

g(f, s) = min
f,s

Rf (Dtr, s) + λΩs(X
tr,Xte). (4.5)

Ωs(X
tr,Xte) is given in 4.2 and λ controls the trade-off between minimizing the distribution

mismatch versus finding a classifier and set of weights that are consistent with each other.
The first term, Rf (Dtr, s), is the SVM empirical risk defined on the decision function f and
the training setDtr, with the loss of each instance xi weighted by si. While non-linear decision
functions can be used, linear methods are compact and fast. Furthermore, they may be less
likely to overfit on smaller datasets. Choosing f to be a linear function, f(xi) = w> x + b,
leads Rf (Dtr, s) to simply be a weighted linear SVM, as shown in 4.4:

Rf (Dtr, s) = Rw,b(Dtr, s) =
1

2
‖w‖2 +

C

2

ntr∑
i=1

siL(yi, f(xi)). (4.6)

As before, L is chosen to be the squared hinge-loss function:

L(yi, f(xi)) = max{1− y · f(xi), 0}2. (4.7)

To solve STM, the weights are first initialized to the KMM solution. When solving for
s, STM differs from KMM (Eq. 4.2) only in the addition of an extra linear term:

min
s
g(f, s) = min

s
Rf (Dtr, s) + λΩs(X

tr,Xte)

= min
s

1

2
‖w‖2 +

C

2

ntr∑
i=1

siL(yi, f(xi)) + λ

(
1

ntr
2
s>Ks− 2

ntr
2
κ>s + const.

)
= min

s

1

ntr
2
s>Ks +

(
C

2λ
`− 2

ntr
2
κ

)>
s + const. (4.8)

where ` is a vector such that `i = L(yi,w
>xi). This objective function is only a slight mod-

ification of Eq. 4.2, and it is also solved using the MOSEK ApS optimization software [90].
Looking at the linear term, we can see that the solution to this function increases the value
of indices si that correspond to training points with low SVM loss li (i.e., those that are
consistent with the current classifier) and high “similarity” with the test points κi, where
similarity is measured using the kernel function k. Furthermore, the quadratic term, which
is equal to

∑
ij si k(xtr

i , x
tr
j) sj, enforces some sparsity by reducing the weight on training

points that have high similarity to each other, particularly if one of them already has high
weight from the linear term.

46

Given the current weight vector s, the separating hyperplane w is found by minimizing
the weighted linear SVM (Eq. 4.6), using the LIBLINEAR library [37]. The algorithm
iterates between fixing w and solving for s, and fixing s and solving for w until convergence,
which is defined to be when the change in w or s is sufficiently small.

In summary, STM finds f and s to simultaneously minimize a weighted SVM empirical
risk Rf (Dtr, s) and a measure of distribution mismatch between the weighted training set and
the test set Ωs(X

tr,Xte). Figure 5.1 in Chapter 5.1.3 gives an example of how the separating
hyperplane changes over iterations of STM. Note that the first iteration represents the KMM
solution. λ > 0 indicates the trade-off between the SVM empirical risk and the distribution
mismatch. For more details, I refer the reader to [24].

4.1.4 Transductive Parameter Transfer

While KMM and STM use importance reweighting to solve the covariate shift problem,
the Transductive Parameter Transfer (TPT) algorithm, developed by Sangineto et al. [114],
attempts to learn a regression from a distribution to a classifier. Suppose there are N

labeled datasets from N different subjects Dtr
1 , . . . ,Dtr

N , where Dtr
i = {xj, yj}n

i
tr
j=1. As before,

let Xte = {xi}nte

i=1 be a set of nte unlabeled test points from a single test subject. Similarly,

let Xtr
i = {xj}n

i
tr
j=1 be the set of points in Dtr

i after discarding the labels.
The first step of TPT is to learn a linear SVM for each subject. The parameters wi and bi

are trained on a single subject’s dataset Dtr
i and combined into a single vector θi =

[
w>i bi

]
,

which represents the separating hyperplane. It is assumed that each θi is dependent on the
distribution P tr

i from which the samples Xtr
i were drawn. Although the distribution P tr

i is
unknown, it can be approximated from the set of samples Xtr

i . Therefore, the goal is to learn
the mapping f(·) from datasets to separating hyperplanes. Then, given the test subject’s
samples Xte, we can apply the mapping and obtain a hyperplane: f(Xte) = θte =

[
w>te bte

]
.

Sangineto et al. [114] formulated the problem of learning the mapping f(·) as a regression
problem, and solved it using the Multioutput Support Vector Regression (M-SVR) framework
proposed by Tuia et al. [129]. In particular, they defined f(·) by the set of parameters
π = (B, c):

f(X) = ϕ(X)>B + c,

where B = [β1, . . . ,βM+1] is the weight matrix, c = [c1, . . . , cM+1] is the bias vector, and
ϕ(·), as with KMM, represents the implicit mapping from the feature space to the Hilbert
space. M is the dimensionality of the samples, i.e., the number of features in the feature
vector. π is found by minimizing the following objective function:

min
π

1

2

M+1∑
i=1

‖βi‖2 + λ

N∑
j=1

E(
∥∥θj − fπ(Xtr

j)
∥∥), (4.9)

where E(·) is a loss function for ε-insensitive loss used by SVR:

E(u) =

{
0 u < ε

(u− ε)2 u ≥ ε
(4.10)

47

Note the similarity of Eq. 4.9 to the SVM objective function Eq. 4.1. The main difference
is in the loss function, where SVM measures the “amount” that a sample is misclassified,
and SVR measures the distance between the desired vector and that output by the current
mapping f(·).

To avoid explicitly representing the non-linear mapping ϕ(·), Tuia et al. [129] use the
representer theorem to express the problem as a linear combination of the training points
Xtr
i :

βi =
N∑
j=1

ϕ(Xtr
j)>vi (4.11)

With this substitution, it turns out that each vi and ci can be solved as follows:[
AK + I a

a>K 1>a

] [
vi
ci

]
=

[
Θi

a>Θi

]
, (4.12)

where Θ = [θ1, . . . ,θN] ∈ RM+1×N and Θi denotes the ith row of Θ. K is the kernel matrix,
where Kij = k(Xtr

i ,X
tr
j), and k(·, ·) is the kernel function, which measures the similarity

between the two input distributions and which is described in detail below. I is the N
dimensional identity matrix. a = [a1, . . . , aN] and A is a diagonal matrix with elements
a1, . . . , aN . At each iteration, each ai is computed as follows:

ai =

{
0 ui < ε

2λ(ui−ε)
ui

ui ≥ ε
. (4.13)

ui is the norm of the error vector for the ith subject’s data. That is,

ui =
∥∥θi − f(Xtr

i)
∥∥ ,

=
∥∥θi − (ϕ(Xtr

i)>B + c
)∥∥ ,

=

∥∥∥∥∥θi −
(

N∑
j=1

k(Xtr
i ,X

tr
j) [v1, . . . ,vM+1] + c

)∥∥∥∥∥ ,
where the final equality comes from applying Eq. 4.11.

The learned values [v1, . . . ,vM+1] and c are computed over iterations. Convergence
conditions were set to be either (a) when the change in [v1, . . . ,vM+1] and c was sufficiently
small, (b) when ai = 0,∀i (which indicates that, ∀i, the error ui < ε and leads the matrix on
the left of Eq. 4.12 to become singular), or (c) when the number of iterations exceeded 100.
Once converged, [v1, . . . ,vM+1] and c can be used to find the separating hyperplane for the
test subject’s data as follows:

f(Xte) =
N∑
j=1

k(Xte,Xtr
j) [v1, . . . ,vM+1] + c (4.14)

As mentioned above, k(·, ·) is the kernel function, which is used to measure the similarity
between the two input distributions. In their paper, Sangineto et al. [114] experimented

48

with three different kernels. I chose to use their best performing kernel: the Earth Mover’s
Distance based kernel. The Earth Mover’s Distance (EMD) was originally proposed by
Rubner et al. in [109]. Computing the EMD-based kernel involves three steps:

1. Compute “signatures” for each input dataset. First, each dataset was clustered using
k-means. The signatures of each dataset were then set to be the centroids of each
cluster and the weights for each cluster were assigned to be the cardinality thereof.
The authors fixed k to be 20.

2. Given the signatures, compute the cost to transform one distribution into the other. I
refer the reader to the EMD paper [109] for details on computing EMD. I used the
MATLAB implementation written by Yilmaz [136].

3. Convert EMD distance into kernel. Let DEMD(Xi,Xj) represent the EMD between
Xi and Xj. Sangineto et al. [114] defined the EMD-based kernel to be the following:

k(Xi,Xj) = exp (−ρDEMD (Xi,Xj)) , (4.15)

where ρ is a user-defined parameter.

For more details, I refer the reader to the original TPT paper [114], the M-SVR pa-
per [129], and the EMD paper [109].

4.2 Methods

In this section, I describe some additional, algorithm-specific data processing, the cross
validation strategies that I used to select the hyperparameters for each algorithm, and the
reasoning used to determine the search range for each hyperparameter. A summary of all
algorithms, their associated hyperparameters and the ranges that were searched is given in
Table 4.1.

For all algorithms, I used the LAB dataset described in Section 3.1 and the features
described in Section 3.4. Algorithm performance was evaluated using leave-one-subject-
out (LOSO) cross validation. For each test subject, training data were normalized to have a
mean of 0 and a standard deviation of 1, and the test subject’s data was adjusted accordingly.
Details of model selection are described for each algorithm below.

4.2.1 SVM

SVM uses one hyperparameter, C, which controls the trade-off between maximizing the
margin and minimizing the classification error. LIBLINEAR’s [37] built in cross-validation
function was used to select C for SVM. For most subjects, LIBLINEAR chose C to be 2−7.

4.2.2 KMM

Recall from Eq. 4.2 that KMM solves a quadratic programming problem involving a ntr×ntr

kernel matrix K. The complete training dataset has approximately 83k samples (depending

49

Table 4.1: Hyperparameter ranges for each algorithm

Algorithm Hyperparameter Description Range

SVM C Trade-off between maximizing the margin and mini-
mizing the error (Eq. 4.1)

Chosen automatically by
LIBLINEAR

KMM

σ Width of the RBF kernel (Eq. 4.3) Median distance between
all pairs of points

B Upper limit for each sample weight si (first constraint
of Eq. 4.2)

1000

ε Maximum value for which mean of weights s can differ
from 1 (second constraint of Eq. 4.2)

0.01

C SVM trade-off between maximizing the margin and
minimizing the weighted error (Eq. 4.4)

[2−13, . . . , 2−1]

STM

σ, B, ε, C Same as KMM above Same as KMM above

λ Trade-off between the SVM empirical risk and the dis-
tribution mismatch 4.5

[20, . . . , 26]

TPT

C Trade-off between maximizing the margin and mini-
mizing the error (Eq. 4.1)

[2−9, . . . , 22]

k Number of centers for k-means when computing the
signatures for each dataset (step 1 of computing the
EMD-based kernel)

20

ρ Width of EMD kernel (Eq. 4.15) [2−5, . . . , 22]

λ Trade-off between regularizing V and minimizing loss
of M-SVR (Eq. 4.9)

{1, 10, 100}

ε Amount of ε-insensitive loss for M-SVR (Eq. 4.10) {10−6, 10−3}

50

on which subject is being excluded as the test subject), and storing a matrix of size ntr×ntr

would require approximately 52GB of RAM. Furthermore, as the size of K increases, so does
the time it takes to solve for s. Therefore, I chose to downsample my data to 1/40 of its
original size by changing my window shift from 1s to 40s. This amount of downsampling
was required for STM (described below) to be able to finish model selection within one day
per subject. Although KMM can finish model selection more quickly and could therefore
handle more data, the amount of downsampling was fixed between KMM and STM for a
fair comparison.

KMM uses four parameters:

� σ controls the width of the RBF kernel. Following the practice of Gretton et al. [45], I
chose to use the median distance between all pairs of points in the (training) dataset.
Looking at Eq. 4.3, we can see that this choice leads half the values in the exponent
to be less than 1/2 and half to be greater.

� B gives an upper bound to the weights si. The limit used by Gretton et al. [45] was
1000 and results presented in this chapter used the same value. I experimented with
several values and, consistent with findings from Gretton et al., I did not see significant
variation in performance and I found that the maximal si value rarely exceeded a few
hundred.

� KMM attempts to assign weights si such that the average weight is 1. ε specifies the
maximal deviation of the average from 1. Interestingly, Gretton et al. [45] suggest that
a good choice of ε should be O(B/

√
(ntr)), which is approximately 32 for this dataset.

A value that large would make the constraint of the maximal deviation of the average
from 1 to be nearly meaningless. Therefore, I chose to use a small value of 0.01.

� After KMM has solved for the weights si, I solve a weighted SVM to learn the separating
hyperplane, which uses the hyperparameter C. Given that the optimal value of C for
the unweighted SVM was typically 2−7, I chose to perform cross validation across the
range of 2−13 to 2−1.

With three of the four parameters set to fixed values, model selection only needed to be
performed on the hyperparameter C. Note that, because KMM relies on the distribution of
the test (or validation) data, the standard practice of choosing validation sets – i.e., random
sampling of the training set – may lead to inaccurate parameter estimates. For validation
sets to better represent the test set, they should each come from a single subject. Therefore,
each choice for C was validated using an inner loop over training subjects: Data from both
hands of a test subject were partitioned off as test data. Data from both hands of one of the
training subjects were then partitioned off as a validation set. Note that, when inputting
the unlabeled Xte data into KMM, data from each hand were input separately, rather than
combining them into a single Xte. All values of C were validated on data from each hand
of the validation subject, and this process was repeated for each subject in the training set.
The C with the best average performance (where performance was measured either using
accuracy or AUC) was then chosen for training KMM. As with the validation subjects, KMM
was run twice, inputting data from each hand of the test subject separately as Xte.

51

4.2.3 STM

As described above for KMM, data was downsampled forty fold such that the kernel matrix
could fit in memory and model selection could complete in a timely manner.

With respect to hyperparameters, STM employs all the same ones as KMM with an
additional λ parameter to control the trade-off between the weighted SVM empirical risk
and the distribution mismatch between the training and test sets. For all parameters shared
with KMM, I chose to use the same values as KMM. To choose the search range for λ,
the two parts of the objective function were analyzed and a range that would balance the
magnitudes was selected. This range was 20 to 26.

The model selection procedure for STM was the same as described above for KMM. With
13 values of C and 7 values of λ, a total of 91 possible pairs of parameters were searched,
which took approximately 1.5 hours. Model selection for each test subject involves evaluating
all parameter pairs across all validation sets (9 validation subjects × 2 hands = 18 validation
sets), and therefore takes approximately 25 hours per subject.

4.2.4 TPT

TPT uses five different hyperparameters:
� Given that TPT is based on an SVM, we again have the hyperparameter C. However,

because TPT trains an SVM on each training subject, rather than on the entire dataset
at once, the number of samples input into the SVM is much less, which means that
the range chosen for C should differ from that used for the generic SVM. Looking at
the performance for various choices of C, I found that the optimal value when training
on a single subject tended to be approximately within 2−8 to 21. Therefore, I chose to
search the range of 29 to 22.

� TPT uses k-means to cluster the data from each subject and then uses the cluster
centers to define a “signature” for each subject. Sangiento et al.[114] fixed the value
of k to be 20, and I did the same for this thesis.

� From Eq. 4.15, we can see that ρ defines the kernel width. For KMM, I chose the kernel
width to be the median distance, leading the median value within the exponent to be
1/2. The median value for DEMD was approximately 2.5. Taking a similar approach
to choosing ρ would lead to ρ ≈ 2−2. Therefore, I chose to search the range 2−5 to 22.

� λ defines the trade-off between regularizing B and minimizing the ε-insensitive loss in
M-SVR. I searched the same set of values that was used in [129]: {1, 10, 100}.

� ε denotes the level of ε-insensitive loss in M-SVR. I used the same set of values described
in [129]: {10−6, 10−3}.

To choose C, the performance of each choice of C was evaluated via five-fold cross-
validation on data from each hand of each training subject. The matrix Θ was built by
using the best performing C to train an SVM on each hand of each subject. As described
above, the number of groups k for computing signatures of each dataset was fixed. The
remaining parameters ρ, λ and ε were selected using an inner loop on validation subjects, as

52

described above for SVM and KMM.

4.3 Results and discussion

All four algorithms were applied to the LAB dataset (see Chapter 3.1). Tables 4.2 and 4.3
show results of the four algorithms when using accuracy and AUC, respectively, during model
selection of the hyperparameters. Currently, LIBLINEAR only supports using accuracy for
model selection. Therefore, SVM results are identical in both tables. For each model,
accuracy and AUC on the test dataset are reported. On average, both tables show that
results of the personalized models (KMM, STM and TPT) do not differ significantly from
the generic SVM.

The performance of TPT is surprisingly low. Tables 4.2 and 4.3 show that using AUC
for model selection improves performance of TPT over using accuracy. However, TPT is
still worse, on average, than the generic SVM in accuracy and AUC regardless of which
performance metric is used during model selection. In their paper, Sangineto et al. [114]
demonstrated a 0.07 improvement (averaged over six different facial action units) in AUC
over a generic SVM on the Extended Cohn-Kanade (CK+) dataset. The CK+ dataset
contains 593 videos from 123 subjects. There are 1 to 11 videos per subject and 4 to 71
frames per video. The authors extracted a 51 dimensional feature vector from each frame. In
comparison, this dataset uses a 21 dimensional feature vector from 10 subjects. Experiments
by Sangineto et al. [114] indicated that performance of TPT was variable with fewer subjects
and that TPT would sometimes perform worse than a generic SVM depending on the subset
of subjects chosen. Differences in the datasets lead to several possible explanations for the
poor performance of TPT:

� Having fewer subjects in this dataset may make it more difficult to learn a good re-
gression function.

� A larger number of samples per subject may require a larger value of k to accurately
represent the distribution with k-means clustering.

� The dataset and/or feature vectors may require different or larger sets of parameters
to be searched.

� It is possible that the variability between subjects in the feature space is higher in this
dataset, or that the feature space is less well-covered, which could lead to difficulty in
learning the regression function.

The Tables 4.2 and 4.3 also show that STM is more sensitive to which performance metric
is used during model selection (greater change in performance between tables), while average
results for KMM seem quite robust to the model selection process. In contrast to the other
algorithms, where accuracy and AUC are loosely correlated, STM will optimize one over the
other: accuracy decreases and AUC increases from Table 4.2 to Table 4.3. It is possible that
for STM, some of the models trained for validation subjects have high accuracy and low
AUC (or vice versa), which could lead to very different choices of parameters depending on
the performance metric used. In contrast, KMM uses only one parameter, which limits the

53

Table 4.2: Results when using accuracy to measure performance during model selection.
Bold indicates best accuracy and best AUC for each test dataset.

Accuracy AUC

Subject Hand SVM KMM STM TPT SVM KMM STM TPT

2
L 72.4 90.4 87.2 74.6 0.85 0.89 0.86 0.86
R 79.5 82.4 82.4 85.3 0.85 0.89 0.89 0.91

3
L 61.3 62.6 58.7 50.1 0.77 0.75 0.73 0.78
R 62.3 65.2 75.1 48.0 0.80 0.79 0.73 0.83

4
L 83.6 81.1 78.5 77.1 0.90 0.88 0.88 0.89
R 88.6 88.3 85.9 68.8 0.91 0.91 0.92 0.63

5
L 67.7 68.1 74.3 64.5 0.77 0.79 0.79 0.76
R 64.2 63.4 70.5 63.5 0.77 0.79 0.78 0.74

7
L 75.8 76.3 74.4 75.0 0.81 0.80 0.75 0.80
R 83.8 83.3 82.2 82.2 0.85 0.85 0.84 0.73

8
L 91.7 91.4 91.5 89.8 0.82 0.82 0.75 0.83
R 81.0 81.2 81.4 81.8 0.88 0.88 0.82 0.88

9
L 78.8 78.8 78.5 79.3 0.64 0.72 0.70 0.65
R 87.5 90.2 90.9 90.0 0.66 0.69 0.59 0.65

10
L 85.2 86.2 84.9 86.7 0.72 0.80 0.81 0.72
R 84.6 85.8 87.3 87.3 0.78 0.82 0.85 0.78

11
L 86.2 85.2 73.4 81.1 0.92 0.91 0.87 0.88
R 83.7 84.6 86.5 72.8 0.89 0.90 0.90 0.69

12
L 86.8 87.0 88.2 80.8 0.87 0.75 0.76 0.85
R 82.9 82.5 97.5 59.9 0.79 0.77 0.79 0.48

Average 79.4 80.7 81.5 74.9 0.81 0.82 0.80 0.77

54

Table 4.3: Results when using AUC to measure performance during model selection. Bold
indicates best accuracy and best AUC for each test dataset.

Accuracy AUC

Subject Hand SVM KMM STM TPT SVM KMM STM TPT

2
L 72.4 89.5 87.9 82.6 0.85 0.88 0.83 0.87
R 79.5 82.4 80.5 81.9 0.85 0.89 0.88 0.88

3
L 61.3 63.4 64.3 53.1 0.77 0.75 0.75 0.78
R 62.3 69.9 72.6 49.3 0.80 0.79 0.73 0.82

4
L 83.6 79.9 78.7 79.2 0.90 0.87 0.87 0.89
R 88.6 88.4 87.8 73.2 0.91 0.90 0.91 0.76

5
L 67.7 72.2 72.9 69.5 0.77 0.79 0.79 0.77
R 64.2 67.4 69.2 67.1 0.77 0.78 0.78 0.73

7
L 75.8 75.7 78.2 75.9 0.81 0.82 0.84 0.80
R 83.8 83.6 84.3 83.0 0.85 0.88 0.89 0.83

8
L 91.7 91.6 79.3 90.0 0.82 0.83 0.78 0.83
R 81.0 79.6 78.8 81.7 0.88 0.86 0.85 0.88

9
L 78.8 79.0 78.7 79.5 0.64 0.72 0.73 0.65
R 87.5 88.7 87.9 88.2 0.66 0.67 0.68 0.67

10
L 85.2 86.4 84.2 86.9 0.72 0.76 0.83 0.73
R 84.6 86.8 87.7 86.6 0.78 0.81 0.88 0.78

11
L 86.2 85.0 85.9 70.6 0.92 0.90 0.93 0.90
R 83.7 84.1 84.8 79.1 0.89 0.89 0.90 0.86

12
L 86.8 86.4 77.7 96.3 0.87 0.74 0.84 0.92
R 82.9 82.4 33.3 93.7 0.79 0.79 0.75 0.83

Average 79.4 81.1 77.7 78.4 0.81 0.82 0.82 0.81

55

Table 4.4: Results for the highest performing parameter set. Bold indicates best accuracy
and best AUC for each test dataset.

Accuracy AUC

Subject Hand SVM KMM STM TPT SVM KMM STM TPT

2
L 72.7 90.5 90.8 89.5 0.85 0.89 0.89 0.89
R 79.7 82.8 83.9 85.3 0.85 0.89 0.91 0.91

3
L 61.4 64.7 70.9 67.6 0.77 0.77 0.75 0.78
R 62.3 72.6 78.7 66.6 0.80 0.79 0.79 0.83

4
L 83.8 82.5 80.4 81.0 0.90 0.89 0.89 0.89
R 89.5 89.0 88.7 86.5 0.92 0.92 0.93 0.90

5
L 67.9 72.2 75.3 72.9 0.77 0.79 0.79 0.82
R 64.4 67.4 70.8 67.1 0.77 0.79 0.79 0.79

7
L 75.8 76.4 80.5 76.3 0.81 0.83 0.86 0.81
R 83.8 84.1 84.9 83.0 0.85 0.88 0.89 0.88

8
L 91.9 91.8 91.7 90.4 0.82 0.83 0.81 0.84
R 81.1 81.2 81.5 81.8 0.88 0.88 0.87 0.88

9
L 78.8 79.4 79.4 79.5 0.64 0.72 0.74 0.74
R 87.5 90.3 91.9 92.2 0.66 0.70 0.68 0.68

10
L 85.3 86.4 86.0 87.0 0.72 0.82 0.83 0.74
R 84.8 86.9 88.3 87.4 0.78 0.85 0.88 0.78

11
L 87.1 88.4 88.3 81.8 0.93 0.94 0.94 0.91
R 83.9 85.5 87.5 84.6 0.89 0.91 0.91 0.87

12
L 87.8 87.0 96.2 96.3 0.87 0.80 0.84 0.92
R 85.0 82.5 98.8 94.1 0.79 0.84 0.88 0.85

Average 79.7 82.1 84.7 82.5 0.81 0.84 0.84 0.84

effect of parameter choice on performance, and TPT learns a regression from distributions to
person-specific “ideal” classifiers, which are less likely to have divergent accuracy and AUC
values.

Model selection is non-trivial and performance can be sensitive to the choice of param-
eters. To compare algorithms independent of the model selection process, Table 4.4 shows
results for the highest performing parameter set for each test set. We can see that STM
has the greatest potential to improve accuracy when the best parameters are chosen, even
though the number of hyperparameters is equal to that of TPT. In fact, the number of
free hyperparameters for STM is only two (C and λ), compared to four free parameters of
TPT (C, ρ, λ and ε). Interestingly, the average AUC values are identical across all three
personalization algorithms.

56

4.4 Conclusions and future work

In this chapter, I compared PD tremor detection performance of a generic SVM to three
methods of personalizing an SVM given unlabeled data from the test subject. Results show
that all three personalization methods have the potential to achieve higher performance
than the generic SVM method given appropriate parameters. However, when using model
selection to choose hyperparameters, TPT tends to do worse than a generic SVM (possibly
due to differences between our dataset and theirs), and STM is sensitive to the method of
model selection (possibly because some of the models learned during model selection have
divergent values for accuracy and AUC). In the next chapter, the behavior of STM is analyzed
in more detail on a dataset for human activity recognition and several synthetic datasets.

As shown in Table 4.1, each of the personalization algorithms requires the user to set
a number of hyperparameters. Choosing an appropriate search range for each parameter
is non-trivial, and running an inner loop across validation subjects to select values for the
hyperparameters is computationally expensive. The parameters suggested by Gretton et
al. [45] seem to work well for KMM (leaving only C to be selected). Meanwhile, it is possible
that the ranges suggested for the M-SVR part of TPT were too restrictive.

Of the three personalization algorithms – KMM, STM and TPT – KMM offers better
performance than TPT (with model selection), is faster than STM, and is more robust to
the model selection procedure. It would be interesting to explore techniques for speeding
up model selection or choosing better parameters, which might enable the personalization
algorithms to achieve their full potential. For example, one could try to reason about ap-
propriate parameter values or ranges given a dataset. Alternatively, making the parameters
agnostic to the size of the dataset could enable model selection to be performed on smaller
datasets, which require less training time. Another interesting avenue of research is to try
to intelligently exclude some of the parameter sets while searching the parameter space.

57

58

Chapter 5

Analyzing the Selective Transfer
Machine

Previous work on STM in facial action unit detection demonstrated improvement from STM
over KMM and SVM on multiple datasets. Results from Chu et al. [25] indicated that the
performance of KMM tended to be on par with, or worse than, a generic SVM, while the
performance of STM was often better. In Sangineto et al. [114], TPT was also able to show
improvement in the task of facial recognition. The results on the PD dataset in Chapter 4.3
– that KMM and STM performed similarly, and the TPT performed worse than the generic
SVM – were surprising. It was possible that differences in the application domain, feature
space, data dimensionality, or the datasets were the cause of these unexpected findings.
This chapter therefore presents in-depth experiments of STM conducted on a human ac-
tivity recognition dataset and on synthetic datasets to better understand its behavior and
performance.

This chapter is organized as follows. Because human activity recognition is often a mul-
ticlass problem, Section 5.1 presents multiclass extensions to SVM and STM. The chosen
human activity recognition dataset, REALDISP [12, 13], is described in Section 5.2, and pre-
liminary results of these multiclass extensions on REALDISP are presented in Section 5.3.
Interestingly, relative performance between SVM, KMM, and STM on REALDISP were sim-
ilar to those reported on the PD data in Chapter 4.3. Section 5.4 describes experiments on
synthetic datasets for further analysis. On these synthetic datasets, STM still struggled to
outperform KMM. Therefore, Section 5.5 describes two modifications to the STM algorithm
that were designed to help improve its performance on the synthetic datasets. Section 5.5
also presents the results on some of the synthetic datasets and the REALDISP dataset.
While these modifications demonstrated improvement in the synthetic datasets, they were
still unable to outperform SVM and KMM on REALDISP. In Section 5.6, the STM objective
function is analyzed and global optimization is explored to try to understand why perfor-
mance of STM is not as high as expected. It is found that, on some datasets, minimizing
the STM objective function does not increase accuracy. While it is unclear why STM was
able to perform so well in the facial action unit domain, results from this chapter suggest
that the STM objective function is not appropriate for the domain of activity recognition

59

from accelerometer data.

5.1 Overview of multiclass algorithms

Human activity recognition is typically a multiclass problem. This section therefore describes
general methods for applying binary classifiers to multiclass problems. It also describes
several different versions of multiclass SVM, either by applying a binary SVM to a multiclass
problem, or by reformulating the SVM objective function to be inherently multiclass. The
concepts of multiclass SVM are then applied to STM to develop a multiclass version STM.

5.1.1 Converting binary classifiers to multiclass

Many classification algorithms can naturally handle multiclass scenarios, such as k-NN or
decision trees. For binary classifiers, however, two main methods exist for applying them to
multiclass problems:

� One-versus-all (OVA) – In the OVA approach, n classifiers are trained – one for each of
the n classes. For the ith classifier, all points labeled as class i are selected as positive
samples and the rest are considered negative samples. A standard binary classifier is
then trained. During testing, all test samples are classified by all n classifiers. Test
samples are labeled with the class of the classifier that outputs the largest score.

� One-versus-one (OVO) – In the OVO approach, n(n−1)
2

binary classifiers are trained –
one for each pair of the n classes. During testing, each classifier votes on the class, and
the class that receives the most votes is chosen.

5.1.2 Multiclass SVM

The SVM algorithm is inherently a binary classifier. As discussed in above, OVA and OVO
are two common methods for adapting binary classifiers to multiclass problems. In the case
of SVM, however, several formulations that solve for all classes at once have been proposed.
These methods are referred to as single machine algorithms.

In general, all single machine formulations follow the same basic structure. Suppose we
have m classes and m decision boundaries defined by wj, with j = 1, . . . ,m. Let fj(xi)
be the decision function of the jth class evaluated on the sample xi. In the linear case,
fj(xi) = w>j xi + bj. Then, the single machine SVM objective function is given by

min
wj

1

2

m∑
j=1

w>j wj + C
ntr∑
i=1

L(yi, f1(xi), · · · , fm(xi)). (5.1)

Note how Eq. 5.1 is very similar to Eq. 4.1, except that we are now summing the norms of
each of the m wj vectors. The various single machine approaches only differ in their loss
function L(yi, f1(xi), · · · , fm(xi)). Three formulations have been extensively studied in the
literature:

60

� Weston and Watkins [133]:

LWW (yi, f1(xi), · · · , fm(xi)) =
∑
j 6=yi

max {2− fyi(xi) + fj(xi), 0} . (5.2)

This loss function implies that the score from the true class should be greater than
that from any other by a margin of 2.

� Crammer and Singer [30]:

LCS(yi, f1(xi), · · · , fm(xi)) = max

{
1− fyi(xi) + max

j 6=yi
fj(xi), 0

}
.

This loss function implies that the score from the true class should be greater than the
highest score from any false class by a margin of 1.

� Lee, Lin and Wahba [79]:

LLLW (yi, f1(xi), · · · , fm(xi)) =
∑
j 6=yi

max

{
fj(xi) +

1

m− 1
, 0

}
,

where m is the number of classes. This loss function implies that the score of a false
class should be less than zero by a margin of 1

m−1
.

Dogan et al. provide a nice comparison of the three methods in terms of training time and
accuracy [35].

Several comparisons of the three multiclass SVM approaches (OVA, OVO, and single
machine) have been published, although the most thorough is that of Hsu and Lin [60]. The
general consensus is that the OVA or OVO methods are simpler to implement and do not
differ significantly in performance from the single machine approaches.

5.1.3 Multiclass Selective Transfer Machine

This section presents the multiclass extensions to the original STM algorithm. As with all
binary classifiers, we can apply a binary STM to multiclass problems by using OVA or OVO.
In this section, we also derive a single machine multiclass STM, which combines the formu-
lations of STM and multiclass SVM using the Weston and Watkins loss function. Hence, it
is called WW-STM. Combining the formulations simply involves replacing the empirical risk
of the penalized binary SVM term, Rf , in Eq. (4.5) with the penalized multiclass SVM:

Rwj
(Dtr, s) = min

wj ,bj ,s

1

2

m∑
j=1

w>j wj +
C

2

ntr∑
i=1

si L(yi, f(xi))f1(xi), · · · , fm(xi).

In general, L(yi, f1(xi), · · · , fm(xi)) could be any of the single machine SVM loss functions as
described in Section 5.1. However, that of Weston and Watkins was chosen for its simplicity,

61

particularly when optimizing in the primal. Furthermore, to ensure differentiability of our
objective function, the L2 version of Eq. (5.2) was used:

LWW (f1(xi), · · · , fm(xi)) =
∑
j 6=yi

max {2− fyi(xi) + fj(xi), 0}2 .

Note how the risk term, Rwj
, is minimized over the m separate w vectors and b scalars.

In order to solve for all classes simultaneously, we now proceed to reformulate it to be over
a single W matrix, where

W =

| |

w1 · · · wm

| |
b1 · · · bm

 .
Let I0 be a (d + 1) × (d + 1) matrix with ones on the diagonal, a zero in the last index of
the diagonal, and zeros everywhere else. Let 1j be a selector vector of length m with 1 in
the jth index and zeros everywhere else. Then, wj = I0W1j. Let x̂i be the concatenation
of xi and 1: x̂i

> =
[
x>i 1

]
.

The multiclass SVM with weighted loss can now be reformulated as follows:

RW(Dtr, s) = min
W,s

1

2

m∑
j=1

(I0W1j)
>(I0W1j) +

C

2

ntr∑
i=1

si LWW (yi,W, x̂i) ,

where
LWW (yi,W, x̂i) =

∑
j 6=yi

max
{

(1j − 1yi)
>W>x̂i + 2, 0

}2
.

Holding s constant, we can solve for W in the primal by following the method suggested
by Chapelle [22]. Because the Ω part of the multiclass STM does not contain W, we only
need to compute the gradient of RW:

∇ =
m∑
j=1

I0W1j1
>
j + C

ntr∑
i=1

si
∂LWW

∂W
,

where
∂LWW

∂W
=
∑
svj

(
(1j − 1yi)

>W>x̂i + 2
)

x̂i(1j − 1yi)
>.

Here, Chapelle’s strategy [22] for differentiating the max term was used, where svj represent
the values j for which, given xi, (1j − 1yi)

>W>x̂i + 2 > 0.
Using the gradient, we can use line search to solve for W. We solve for s using quadratic

programming, as discussed above in Section 4.1.3. The only difference is that the SVM loss
term corresponding to each si is the Weston and Watkins loss, i.e. `i = LWW (yi,W, x̂i) .
As in STM, WW-STM is solved by iteratively solving for W and s.

Figure 5.1 illustrates the process of STM. STM is initialized to SVM, as shown in it-
eration # 1. Then, samples are reweighted according to the training loss and distribution
mismatch. Performance on the test set improves as STM iteratively approaches the ideal
classifier, which is an SVM trained on the test points.

62

1 2 3 4

−1.3123

−1.3122

−1.3121

−1.3120

x 10
5

−1.3124

Number of iterations

O
bj

ec
tiv

e
va

lu
e

Convergence curve Iteration #1
(Te%=85.6,Tr%=93.7)

Iteration #2
(Te%=100,Tr%=88.7)

Iteration #4
(Te%=100,Tr%=77.7)

Ideal classifier
(Te%=100,Tr%=73.3)

Figure 5.1: (Left to right) Convergence curve of the multiclass STM, separation hyperplane
at iterations #1, #2, and #4, and the ideal classifier (SVM trained on the test samples).
Circles (©) and squares (�) indicate training and test samples, respectively. Te% and Tr%
indicate the accuracy on test and training data. Note how, as the STM iteration proceeds,
the STM hyperplane approaches the ideal hyperplane for the test data and the performance
on the training data decreases.

5.2 REALDISP dataset

After comparing many datasets in the activity recognition domain, the REALDISP dataset
[12, 13] for wearable activity recognition was chosen due to its relatively large number of
subjects and diverse number of classes. This dataset consists of 17 subjects performing
33 activities while wearing nine inertial measurement units collecting at 50 Hz. To better
simulate the scenario of activity classification on a smart watch or fitness tracker, only data
from the right wrist sensor was used. Following [12], the mean and standard deviation of the
accelerometer signal were computed on each axis over non-overlapping, six-second windows,
resulting in six features.

Figure 5.2 depicts all 33 classes and the number of samples (feature vectors) per subject,
per activity. Figure 5.3 (left) gives the distribution of the 33 activity classes across all
subjects. Note that some subjects are missing classes and the overall distribution of samples
across the classes is unbalanced.

5.3 Preliminary results on REALDISP

Table 5.1 shows results of multiclass SVM, KMM and STM using the OVA, and WW
paradigms. Interestingly, we can see that OVO consistently outperforms the OVA and WW
methods. This result is consistent with some of the previous findings in the literature [60].
We also note a performance drop in OVO-STM versus OVO-SVM. It is possible that, in
the OVO case, proper sample reweighting is particularly difficult. This difficulty may occur
because, when training each of the OVO classifiers, STM is given training data that contains
only two classes, and tries to match this distribution to the (unlabeled) test data, which
contains many classes. However, in the case of OVA and WW, we can see that the methods
that consider importance reweighting (STM and KMM) offer a significant performance im-

63

Figure 5.2: Number of samples in REALDISP for each subject and activity

provement over SVM (approximately 10 points in the F1-score). We note that WW-STM
offers a slight performance improvement over WW-KMM in accuracy, although there is a
slight decrease in the F1-score between WW-KMM and WW-STM. This decrease may be
due to an imbalance of the class sizes. Some classes in REALDISP have ten times as many
samples as others, as can be seen in Figure 5.3 (left). Because the average F1-score over
all classes was computed, improving classification on one or two samples for a small class
can dramatically affect the averaged F1-score. Figure 5.3 (right) gives the full breakdown
of F1-score by class for WW-SVM, KMM and STM. We can see that STM generally has
comparable or increased performance on the larger classes, but occasionally has reduced
performance on some of the smaller classes. This behavior is likely an effect of the impor-
tance reweighting. Checking the partial confusion matrices in Figure 5.4 of WW-SVM (top)
and WW-STM (bottom), we can see that the confused classes are reasonable, particularly
for classifying from only the right wrist sensor: class 2 (“jogging”) is confused with class 3
(“running”); and classes 4, 5 and 6 (“jump up,” “jump sideways,” and “jump front & back”

64

0 50

100

150

200

W
alking

Jogging
Running
Jum

p up

Jum
p front & back

Jum
p sideways

Jum
p/arm

s open/closed

Jum
p rope

Arm
s outstretched

Elbows bended

W
aist bends forward

W
aist rotation

waist bends

Reach heels backwards

Lateral bend

Lateral bend arm
 up

Repetitive forward stretching

Upper trunk&lower body twist

Arm
s lateral elevation

Arm
s frontal elevation

Frontal hand claps

Arm
s frontal crossing

Shoulders high rotation

Shoulders low rotation

Arm
s inner rotation

Knees to the breast

Heels to the backside

Knees bending (crouching)

Knees bend forward

Rotation on the
knees

Rowing

Elliptic bike
Cycling

Number of samples

Activity
classes

Class WW-SVM WW-KMM WW-STM

1 54.7 71.0 68.4
2 55.7 55.2 60.6
3 52.9 53.1 54.2
4 0.0 25.0 9.3
5 43.1 21.6 27.9
6 19.4 23.9 25.7
7 73.6 78.1 78.1
8 38.7 32.0 12.0
9 72.6 79.2 77.7

10 61.4 69.6 64.0
11 42.2 37.0 52.3
12 43.9 56.5 51.2
13 66.2 55.1 59.0
14 63.2 44.6 60.4
15 29.7 36.3 40.0
16 2.9 39.2 34.4
17 12.5 33.9 45.4
18 4.5 43.3 26.9
19 46.3 67.3 57.7
20 73.6 63.7 60.6
21 80.4 85.3 78.1
22 62.6 68.6 70.2
23 40.0 47.6 50.5
24 0.0 68.7 63.3
25 55.8 71.2 62.3
26 0.0 5.7 9.7
27 0.0 43.2 25.6
28 4.4 14.8 19.8
29 19.8 47.3 54.5
30 50.6 75.6 74.0
31 82.0 88.6 87.9
32 78.1 85.4 83.8
33 89.8 83.9 88.4

Avg 43.0 53.7 52.5

Figure 5.3: Performance on REALDISP by activity class. Left: The number of samples
of each activity class in the REALDISP dataset. Right: The F1-score for each class from
WW-SVM, WW-KMM and WW-STM.

65

Table 5.1: 2-fold model selection performance comparison

Accuracy (%) F1-score
Methods SVM KMM STM SVM KMM STM

OVA 55.6 58.4 57.3 43.0 52.1 52.8
OVO 67.7 63.3 64.8 60.9 58.0 56.6
WW 56.3 59.4 59.9 43.1 53.7 52.6

Table 5.2: Gold-standard performance comparison

Accuracy (%) F1-score
Methods SVM KMM STM SVM KMM STM

OVA − − − − − −
OVO − − − − − −
WW 59.0 60.4 64.5 49.2 54.9 56.5

Note: Results for OVA and OVO are omitted due to com-
putational cost.

respectively) are confused with each other.

Although the performance of OVA- and WW-STM were similar, the training times were
not. It was found found that training OVA-STM took approximately 10 times as long as
WW-STM, which was surprising because previous work has generally found single machine
classifiers to be slightly slower than OVA or OVO [60]. Furthermore, our implementation
of WW-STM used first-order gradient descent to solve for W, whereas the OVA-STM im-
plementation uses a second-order method, which should make it faster. It is likely that
OVA-STM is slow due to the KMM step, where a kernel matrix of size ntr × ntr is created.
WW-STM essentially reduces the cost of this step by the number of classes because all
classes are solved for at once, with the consequence of adding complexity to the solving of
W. Creating the kernel matrix was not a problem in OVO-STM because the size of the
training set is dramatically reduced given that only two classes are considered at once. In
conclusion, in the case of many classes, OVA-STM should be avoided in favor of WW-STM.

We note that the performance increase offered by WW-STM over WW-SVM is not partic-
ularly dramatic on the REALDISP dataset. One cause may be a choice of parameters. Recall
that STM jointly optimizes a decision boundary and the distribution mismatch. Hence, the
weights on the training points and the size of the margin are dependent on the distribution
of the test set. Therefore, if the distribution of the validation and test set do not match, the
validation set may not accurately reflect performance on the test set. That is, the parameters
that perform best on the validation set may not perform best on the test set.

To check performance of STM independent of this model selection issue, gold standard
results are reported in Table 5.2. Gold standard is defined as the performance obtained
by using the best possible parameter set, which is found by evaluating the performance

66

of every classifier on the test set. Note that the gold standard results for OVA and OVO
were excluded because the results for every possible combination of parameters would need
to be computed, which would be computationally too expensive. For a given algorithm,
the number of parameter combinations is given by #classes#parameter values. Therefore, the

number of combinations ranges from 338 for OVA-SVM up to
(

32
2

)64
for OVO-STM. Gold

standard results on the WW method show a more significant performance improvement from
STM over the other algorithms, with an accuracy of 64.5% compared to 60.4% and 59.0%
obtained by SVM and KMM, respectively. These findings are consistent with those from
Chapter 4.3 on the PD dataset, where STM obtained an accuracy of 84.7% compared to
82.1% and 79.7% from SVM and KMM, respectively (Table 4.4). Using a better model
selection paradigm could therefore help increase performance of STM over SVM.

STM has previously been shown to give improvements of approximately 5-10 points in
AUC over SVM and KMM in facial action unit detection [24]. It was therefore surprising
to see the more modest improvements on the PD and REALDISP datasets, even when
comparing gold standard results. There are several possible explanations for this behavior:

� Insufficient data/subjects. Some classes in the REALDISP data had only one
training sample per subject for the algorithm to train on. Furthermore, the PD and
REALDISP datasets had only 10 and 17 subjects respectively. Therefore, it is possible
that these datasets are inadequate for modeling the various styles in which the different
subjects perform certain tasks, particularly when one subject is removed for testing.
That is, if there were little overlap between data from different subjects, data from
training subjects would not be able to support data from the test subject.

� Incorrect choice of points for high weighting. STM may have chosen to give
higher weight to training samples from undesired classes, resulting in decreased perfor-
mance. It is possible that this behavior is due to class imbalance, incorrect parameters,
or, in the case of REALDISP, an increased difficulty from the multiclass setting over
the original binary scenario.

� Variations in feature space. The facial action unit detect tasks used much higher-
dimensional features than the ones used on the REALDISP or PD datasets. It is
possible that nature of the data in the higher-dimensional feature space (i.e., distri-
bution of classes and distribution of each subject’s data) was particularly amenable to
STM.

5.4 Analysis of multiclass STM on synthetic data

In order to explore these issues in more detail, we performed experiments on synthetic data,
where we could control the various properties of the datasets. Recall that STM is a form of
transfer learning. Therefore, it can only demonstrate improvement over baseline algorithms
if the baseline assumption (that the training and test data come from the same distribution)
is violated. Here, we focus on the linear version of STM because a personalized linear
model can lead to the same performance as a kernel-based model, with the benefit of being

67

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

33
32

31
30

29
28

27
26

25
24

23
22

21
20

19
18

17
16

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1

0.02 0 0 0 0 0 0 0 0 0.04 0 0 0 0 0 0 0 0 0 0 0 0.06 0 0.03 0 0 0 0 0 0 0.01 0.08 0.95

0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.05 0 0 0 0 0 0 0 0 0 0 0 0 0.08 0.83 0.02

0.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.91 0.07 0.01

0.01 0 0 0 0 0 0 0 0 0 0 0.11 0 0 0 0.06 0 0 0 0 0 0 0 0 0 0 0 0.02 0 0.83 0 0 0

0.03 0 0 0 0 0 0 0 0.01 0 0 0.12 0 0 0 0 0 0.14 0 0 0 0 0.04 0 0 0 0 0.11 0.64 0.1 0 0 0.01

0.01 0 0 0 0 0 0 0 0.02 0 0.32 0 0.01 0.04 0 0 0.17 0.05 0 0.06 0 0 0 0 0 0 0 0.24 0.06 0 0 0 0

0.01 0 0 0 0.11 0.07 0.13 0.63 0 0 0 0 0 0

0 0.13 0 0 0 0 0 0 0

0 0 0 0 0 0.04 0 0 0 0 0 0 0 0 0 0.06 0 0 0.08 0 0 0 0 0.03 0.8 0 0 0 0 0 0 0 0

0 0.15 0 0.73 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0.02 0 0.05 0 0 0 0.07 0 0 0 0 0.03 0.02 0 0.06 0 0.56 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0.01 0 0 0 0 0 0 0 0 0 0 0.04 0.72 0 0.1 0 0 0 0 0 0 0 0 0

0 0.81 0.06 0 0 0 0 0 0 0 0 0 0 0

0.01 0.04 0 0 0.02 0.04 0 0 0 0 0.04 0 0 0 0 0 0 0.05 0 0.64 0 0 0.02 0 0 0.06 0.06 0.05 0 0 0 0 0.01

0 0 0 0.06 0.07 0.04 0.08 0.11 0 0 0 0 0.01 0 0 0.02 0 0 0.7 0 0 0 0 0.07 0.03 0 0 0 0 0 0 0 0

0 0.05 0.01 0 0 0 0 0 0.04 0 0 0 0 0 0 0 0 0.46 0 0.06 0 0 0.07 0 0 0 0 0.02 0.06 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0.12 0.06 0 0.47 0 0 0 0 0 0 0 0 0 0 0.09 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0.03 0 0 0 0.04 0.39 0 0 0.12 0 0 0.02 0 0 0.09 0 0 0.05 0 0 0 0 0

0.08 0 0 0 0 0 0 0 0 0 0.01 0 0 0.19 0.39 0.06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0.03 0 0 0.61 0.16 0.08 0.13 0 0 0 0 0 0 0 0 0 0 0.06 0 0 0 0 0

0 0 0 0 0 0 0.02 0 0 0 0.05 0 0.73 0 0 0.02 0.07 0.03 0.04 0.02 0 0 0.09 0 0 0 0 0.06 0 0.05 0 0 0

0.01 0 0 0 0 0 0 0 0 0.05 0 0.63 0 0 0 0.12 0 0 0 0 0 0 0 0 0 0 0 0 0.06 0 0 0 0

0 0 0 0 0 0 0 0 0.07 0 0.45 0 0.15 0.04 0.06 0 0.17 0 0 0 0 0 0.04 0 0 0 0 0.23 0 0 0 0 0

0 0.04 0 0 0 0 0 0 0.05 0.79 0 0.05 0 0 0 0 0 0.03 0 0 0.08 0 0 0.03 0.06 0 0 0 0.05 0 0 0 0.01

0 0 0 0 0 0 0 0 0.75 0 0 0 0 0 0 0 0 0.05 0 0.04 0 0 0.16 0 0 0 0 0 0.02 0 0 0 0

0 0.01 0.05 0 0 0.04 0.06 0.67 0 0.01 0

0 0 0 0 0 0 0.78 0.11 0 0 0 0 0 0 0 0 0 0 0.04 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0.01 0.02 0.17 0.17 0.26 0.04 0 0 0 0 0 0 0 0 0.02 0 0 0 0.02 0 0 0 0 0 0.19 0.06 0 0 0 0 0 0

0 0 0.03 0.78 0.59 0.37 0 0.06 0 0 0 0 0 0 0 0.04 0 0 0 0 0 0 0 0 0 0.38 0.19 0 0 0 0 0 0

0.01 0 0.01 0

0 0.19 0.72 0 0.04 0.09 0 0 0 0.03 0 0 0 0 0 0 0 0.03 0 0 0 0 0 0 0 0.06 0 0 0 0 0 0 0

0 0.67 0.16 0 0 0.04 0 0.06 0 0.01 0 0 0.01 0 0 0 0 0.05 0 0.04 0 0 0.02 0 0.03 0.06 0.06 0.02 0 0 0 0.02 0

0.8 0 0 0 0 0 0 0 0 0.05 0.06 0.09 0 0 0.29 0.08 0 0.03 0 0.12 0 0 0 0 0 0 0 0.08 0.1 0.02 0 0 0

0.0

0.2

0.4

0.6

0.8

Figure 5.4: Confusion matrices for WW-SVM (top) and WW-STM (bottom). Columns are
ground truth, rows are classifier output. Each column of the complete confusion matrices
is normalized by the number of samples and sums to 1. Darker colors mean higher values.
Perfect performance would show dark purple along the diagonal with off-white everywhere
else.

68

Table 5.3: All possible combinations of the three conditions and the corresponding synthetic
datasets

Conditions
Corresponding datasets

1 2 3

Ö Ö Ö/X Not possible: Failing condition #1 means the classes are easily
separable in training data (combination of all subjects), which implies
that data from each subject are easily separable, which implies that
condition #2 must be met.

Ö X X -
Ö X Ö Dataset #1

X Ö X -
X Ö Ö Dataset #2

X X Ö Dataset #3

X X X

Dataset #4a: Equal distribution of classes.
Dataset #4b: Unequal distribution of classes.
Dataset #4c: Unequal distribution of classes, and data from test
subjects are missing one (random) class.

much more light weight. In summary, we believe the following three conditions facilitate
improvement of a linear STM over the baseline:

1. Training data must be non-linearly separable. This condition indicates that
there is room for improvement from the baseline performance of a linear SVM.

2. Test data from one subject must be linearly separable That is, when using a
linear SVM, training and testing within one subject must show a performance improve-
ment over training and testing over the entire dataset. This improvement indicates that
an optimal solution exists for a test subject with higher performance than the solution
resulting from training and testing on the entire dataset.

3. Data from different classes must have some overlap. This condition differs
slightly from Condition #1 above. If only Condition #1 holds, and there is no overlap
between classes, then it is likely that KMM (the first iteration of STM) will reach
the optimal solution. However, when classes overlap, it is possible for KMM to place
high weight on points from the wrong class, and there is room for STM to improve
performance.

There are eight possible combinations of meeting or failing the above three conditions, all
listed in Table 5.3 (left). Of these eight possibilities, we created synthetic datasets from four,
as summarized in Table 5.3. Data from 20 subjects were generated to create each of the
following datasets. For Datasets #1-3 and 4a, 20 data points were generated for each of the
three possible classes for all 20 subjects, leading to a total of 3000 data points in 2D space.

In all experiments that follow, the basic algorithm is a linear SVM. However, the prin-

69

ciples can be applied to more complex forms of SVM, such as a version that uses an RBF
kernel. Note that, for the REALDISP experiments reported in Section 5.3, STM was ini-
tialized to the SVM solution. However, on these synthetic datasets, initializing STM to the
KMM solution produced better results.

5.4.1 Dataset #1

In this baseline dataset, the training data are easily separable by the algorithm (fails condi-
tion #1). Because the training data are a union of all the subjects (excluding the left out
subject), each subject must also be easily separable (meets condition #2). In this scenario,
the test data are drawn from the same distribution as the training data, which fulfills the as-
sumptions of a standard SVM. Therefore, STM should not offer any improvement, regardless
of whether the classes are overlapped or not.

The data from class k of subject i were generated from a 2D Gaussian distribution with
mean vector µki and covariance matrix Σ = 0.5 I where I is the identity matrix. These
centers were generated from Gaussian distributions themselves (one for each of the three
classes):

µ1
i ∼ N

([
−4
−4

]
,

[
1 0
0 1

])
∀ subject i

µ2
i ∼ N

([
0
4

]
,

[
1 0
0 1

])
∀ subject i

µ3
i ∼ N

([
4
−4

]
,

[
1 0
0 1

])
∀ subject i

where µ1
i , µ

2
i , and µ3

i , represent the cluster centers for classes 1, 2, and 3 respectively.
This synthetic dataset and results from SVM, KMM, and STM on a sample test subject

are shown in Figure 5.5. Classification accuracies averaged across all synthetic test sub-
jects were 0.98 for SVM, 1 for KMM, and 1 for STM. As expected, the three algorithms
demonstrate similar performance.

Dataset #1 SVM KMM STM

Figure 5.5: Results of SVM, KMM and STM on a sample test subject from Dataset #1.
Each color represents one class. Training data are shown with circles. Test data are shown
with squares. For KMM and STM, the size of the circles indicates the amount of weight
placed on that training point.

70

5.4.2 Dataset #2

In this dataset, the training data are non-linearly separable (meets Condition #1), but the
test data from each subject are also non-linearly separable (fails Condition #2). As with
Dataset #1, the test data are drawn from the same distribution as the training data, fulfilling
the assumptions of a standard SVM. Therefore, STM should not offer any improvement over
SVM, regardless of whether the classes are overlapped or not. However, this dataset should
show generally worse performance than Dataset #1.

For this dataset, 20 points from each class were generated for each subject. Each class
was modeled using two Gaussian distributions, and each point was generated by randomly
selecting one of the two Gaussians:

x1 ∼ N
([
−6
−6

]
,

[
1 0
0 1

])
+N

([
−3
0

]
,

[
1 0
0 1

])
x2 ∼ N

([
0
−6

]
,

[
1 0
0 1

])
+N

([
0
6

]
,

[
1 0
0 1

])
x3 ∼ N

([
−3
0

]
,

[
1 0
0 1

])
+N

([
6
−6

]
,

[
1 0
0 1

])

Here, x1, x2, and x3 represent points from classes 1, 2, and 3 respectively.

This synthetic dataset and results from SVM, KMM, and STM on a sample test subject
are shown in Figure 5.6. Classification accuracies averaged across all synthetic test subjects
were 0.50 for SVM, 0.53 for KMM, and 0.63 for STM. As expected, all three algorithms
perform worse on this dataset than on Dataset #1. However, somewhat surprisingly, STM
shows increased performance over SVM and KMM. We believe the this improvement is due
to STM selectively choosing which test points to ignore so that it can fit to the majority.
Indeed, in Figure 5.6, we can see that training points under the smaller yellow and blue test
clusters have low weight.

Dataset #2 SVM KMM SVM

Figure 5.6: Results of SVM, KMM and STM on a sample test subject from Dataset #2.
Each color represents one class. Training data are shown with circles. Test data are shown
with squares. For KMM and STM, the size of the circles indicates the amount of weight
placed on that training point.

71

5.4.3 Dataset #3

In this dataset, the training data are non-linearly separable (meets condition #1), but data
from each individual test subject are linearly separable (meets condition #2). In this sce-
nario, the test data are drawn from a different distribution than the training data, which
fails the assumption of a standard SVM. Therefore, STM should offer some improvement.
However, because the classes are not overlapped, the first iteration of STM, which is KMM,
should reach the optimal or near optimal solution. Therefore, STM should not offer any
improvement over KMM, although both STM and KMM should be better than SVM.

This dataset was generated similarly to Dataset #1. The data from class k of subject i
were generated from a 2D Gaussian distribution with mean vector µki and covariance matrix
Σ = 0.5 I where I is the identity matrix. These centers were generated from Gaussian
distributions themselves (one for each of the three classes):

µ1
i ∼ N

([
−6
−6

]
,

[
1 0
0 1

])
+N

([
−3
0

]
,

[
1 0
0 1

])
∀ subject i

µ2
i ∼ N

([
0
−6

]
,

[
1 0
0 1

])
+N

([
0
6

]
,

[
1 0
0 1

])
∀ subject i

µ3
i ∼ N

([
−3
0

]
,

[
1 0
0 1

])
+N

([
6
−6

]
,

[
1 0
0 1

])
∀ subject i

Readers may note the similarity to Dataset #2. Here, once the centers µki of each subject’s
Gaussians are chosen, all data from that subject for that class are generated according to
a single Gaussian. For Dataset #2, however, data from one class of one subject come from
two Gaussians.

This synthetic dataset and results from SVM, KMM, and STM on a sample test subject
are shown in Figure 5.7. Classification accuracies averaged across all synthetic test subjects
were 0.53 for SVM, 0.98 for KMM, and 1 for STM. As expected, STM and KMM have
similar performance and show improvement over SVM.

Dataset #3 SVM KMM STM

Figure 5.7: Results of SVM, KMM and STM on a sample test subject from Dataset #3.
Each color represents one class. Training data are shown with circles. Test data are shown
with squares. For KMM and STM, the size of the circles indicates the amount of weight
placed on that training point.

72

5.4.4 Dataset #4

This section describes three versions of Dataset #4. All fulfill the three conditions described
at the beginning of Section 5.4, but they are designed to represent increasing realism and
difficulty.

Version A: equal distribution of classes

This dataset is similar to Dataset #3, except the classes are overlapped. The overlapping
causes KMM to occasionally place higher weight on points from the incorrect class. Here,
STM should offer improvement because it can, over several iterations, selectively choose
points from the correct class.

This dataset was generated in the same way as Dataset #3 except the Gaussians used
to generate each subject’s data had larger covariance (Σ = I) and Gaussian centers for
generating each subject’s mean vector µki were moved closer to each other:

µ1
i ∼ N

([
−4
−4

]
,

[
1 0
0 1

])
+N

([
−2
0

]
,

[
1 0
0 1

])
∀ subject i

µ2
i ∼ N

([
0
−4

]
,

[
1 0
0 1

])
+N

([
0
4

]
,

[
1 0
0 1

])
∀ subject i

µ3
i ∼ N

([
−2
0

]
,

[
1 0
0 1

])
+N

([
4
−4

]
,

[
1 0
0 1

])
∀ subject i

These modifications ensured higher overlap between classes.
This synthetic dataset and results from SVM, KMM, and STM on a sample test subject

are shown in Figure 5.8a. Classification accuracies averaged across all synthetic test subjects
were 0.54 for SVM, 0.78 for KMM, and 0.80 for STM. Surprisingly, results do not show a large
performance improvement of STM over KMM. It was found that, on some of the synthetic
subjects, STM was unable to sufficiently move the the decision boundary and converged to
a solution that divided a cluster (see Figure 5.9a). On other synthetic subjects, STM would
initialize with higher weighted points distributed among two classes instead of three. Over
iterations, the points in this third class would be assigned progressively smaller weight until
that class was no longer considered (see Figure 5.10a).

Version B: unequal distribution of classes

This dataset uses the same distributions as Dataset #4a to generate each subject’s data.
While all datasets described above generated an equal number (20) of samples per subject,
per class, this dataset was built using a different number of samples for each class. In this
way, this synthetic dataset can better represent real data, where different classes often occur
with different frequency. The number of samples generated was as follows:

� Blue class – 35 samples/subject

� Red class – 20 samples/subject

� Yellow class – 5 samples/subject

73

Results are shown in Figure 5.8b. Classification accuracies averaged across all synthetic
test subjects were 0.58 for SVM, 0.87 for KMM, and 0.88 for STM. Similar to Dataset #4a,
STM demonstrates little improvement over KMM.

Version C: missing classes

This dataset was generated in the same manner as Dataset #4b. However, during leave-
one-subject-out cross validation, all samples from one randomly chosen class of the test
subject’s data were removed. This dataset represents the scenario where test subjects are
missing classes. Several subjects in REALDISP are missing classes (see Figure 5.2). This
situation can also occur in real-life scenarios. For example, suppose a user wants to a wearable
device to track running and walking, but never swims. And suppose the user’s device tracks
running, walking, swimming and cycling. Such a user would therefore be missing samples
from the swimming class.

Results are shown in Figure 5.8c. Classification accuracies averaged across all synthetic
test subjects were 0.53 for SVM, 0.87 for KMM, and 0.89 for STM. Again, STM demonstrates
only modest improvement over KMM, displaying the same behavior as with Dataset #4a
(either failing to move the decision boundary or removing a class from consideration).

5.5 Improving the STM objective function constraints

As discussed above, poor performance by STM is often due to an incorrect choice of weight-
ing. Figures 5.9a and 5.10a show two examples of incorrect weighting leading to poor solu-
tions on Dataset #4a. It is possible that better methods of importance reweighting would
improve performance. This section describes two novel adjustments to the STM objective
function constraints. These modifications were designed to better describe the desired solu-
tion for which points should be assigned higher weight.

5.5.1 Equal weighting of classes

One solution to the issue of STM removing a class from consideration is to put constraints
on the KMM portion of STM such that each class must have (approximately) equal total
weight. Recall from Section 4.1.3 that solving for s involves solving the following quadratic
programming problem:

min
s

s>Ks + (`− κ)>s + const.

subject to 0 ≤ si ≤ B, ∀i∣∣∣∣∣ 1n
n∑
i=1

si − 1

∣∣∣∣∣ ≤ ε

The second condition enforces the average value of si to be 1± ε.
Let ntr be the total number of training points, m be the number of classes, nj be then

number of points in the jth class, and sji be the weight of the ith point in the jth class. In

74

(a) Dataset #4a SVM KMM STM

(b) Dataset #4b SVM KMM STM

(c) Dataset #4c SVM KMM STM

Figure 5.8: Results of SVM, KMM and STM on a sample test subject from Datasets #4a-c.
Each color represents one class. Training data are shown with circles. Test data are shown
with squares. For KMM and STM, the size of the circles indicates the amount of weight
placed on that training point.

75

order to equalize the total weight of each class, we want the sum of all weights from one
class to be ntr/m. Therefore, the average weight on points in each class should be within ε
of (ntr/m) /nj, and our new constraint is as follows:∣∣∣∣∣ 1

nj

nj∑
i=1

sji −
ntr/m

nj

∣∣∣∣∣ ≤ ε, ∀j.

This inequality simplifies to ∑
sji ≤

ntr

m
+ njε, ∀j

−
∑

sji ≤ −
ntr

m
+ njε, ∀j.

5.5.2 Proportional weighting of classes

Another solution is to put constraints on the KMM portion of STM such that the proportion
of weight assigned to each class is the same as the proportion of samples belonging to that
class. This constraint is equivalent to restricting the average weight within each class to be
within ε of 1. That is, ∣∣∣∣∣ 1

nj

nj∑
i=1

sji − 1

∣∣∣∣∣ ≤ ε, ∀j.

This inequality simplifies to

∑
sji ≤ nj(1 + ε), ∀j,

−
∑

sji ≤ −nj(1 + ε), ∀j.

5.5.3 Results

Figures 5.9b and 5.10b demonstrate the improved performance of these modifications on
two sample subjects of Dataset #4a. As expected, because Dataset #4a exhibits balanced
classes, the two modifications are equivalent. On average, the improved STMs achieved an
accuracy of 0.92 on Dataset #4, compared to the 0.80 of the original STM.

Table 5.4 compares the performance of all algorithms on Dataset #4b. Figure 5.11
shows the separating hyperplanes learned by the original, equal weighting, and proportional
weighting STM algorithms on subject #2. We can see that the original STM chooses to
assign more weight to training samples of the blue class that are near the test subject’s
yellow samples. The equal weighting method successfully chooses to give more weight to
yellow training samples near the same cluster, but assigns too much weight to these yellow
points, pushing the margin between the yellow and blue clusters too far. The proportional

76

weighting method, however, assigns appropriate weights to the training data, learning a
hyperplane that only misclassifies one point. On average, the proportional weighting STM
demonstrates a large performance improvement on this dataset, with an accuracy of 0.96
compared to 0.88 and 0.89 for the original and equal weighting STMs respectively.

Table 5.5 compares the performance of all algorithms on Dataset #4c. Figure 5.12 shows
the separating hyperplanes learned by the three STM algorithms on subject #2. Unfortu-
nately, neither of the modified STM algorithms are able to demonstrate a large improvement
over KMM. Both modifications make assumptions about the class distribution of the test
subject’s data: the equal weighting method assumes the test subject’s samples are evenly
distributed between all classes, and the proportional weighting method assumes the test sub-
ject’s samples have the same class distribution as the training data. In Datasets #4a and
b, these assumptions are valid, and the algorithms perform well. However, in Dataset #4c,
which represents many realistic scenarios, these assumptions are violated. Results on all
versions of Dataset #4 indicate that in situations where the distribution of the test subject’s
classes can be estimated, these modified STM algorithms have the potential to demonstrate
improved performance over KMM and SVM. However, they do not perform better when no
assumptions can be made about the test subject’s data.

Table 5.6 compares the accuracy of SVM, KMM, the original STM, and the proportional
weighting STM on the REALDISP dataset. The equal weighting method was not included
because it was shown to not perform well on datasets where the class distribution was
unbalanced, as is the case for REALDISP (see Figure 5.3 left). The parameter values of C
and λ were fixed to be those that most frequently led to the gold-standard results shown
in Table 5.2 across all subjects. The overall improvement of the proportional weighting
method over the original STM demonstrates that this idea helps STM to select the correct
points for assigning higher weight. Unfortunately, on this dataset, the performance was not
substantially better than a generic SVM.

5.6 Analyzing the STM objective function

The lack of improvement from all personalization methods (KMM, and two versions of
STM) over a generic SVM, as shown in Table 5.6, was surprising. I hypothesized that the
REALDISP dataset did not satisfy condition #2 described in Section 5.4: that the data from
a single subject be linearly separable. Therefore, an SVM was trained and tested on each
individual subject to determine whether a set of hyperplanes could separate the 33 classes
in the 6-dimensional feature space. Results are shown under “ideal” in Table 5.6. The high
accuracy (0.9 on average) indicates that linear hyperplanes are indeed able to separate the
classes in this feature space. It was therefore perplexing that the KMM and STM algorithms
were not able to get closer to this ideal solution.

I then hypothesized that the STM objective functions may not have a local optimum
at this “ideal” solution. I.e., there may not exist a set of weights on the training data
that would support that set of hyperplanes. To test this hypothesis, both STM algorithms
were initialized to the ideal solution. If the performance from the ideal initialization of

77

(a
)

O
ri

gi
n
al

S
T

M

Iteration 1 Iteration 3 Iteration 5 Iteration 6

(b
)

E
q
u
al

w
ei

gh
ts

Iteration 1 Iteration 2 Iteration 3 Iteration 4

(c
)

P
ro

p
or

ti
on

al
w

ei
gh

ts

Iteration 1 Iteration 2 Iteration 3 Iteration 4

Figure 5.9: Comparison of (a) original and (b-c) improved versions of STM on data from
Subject #18 of Dataset #4a. As expected, the equal weighting and proportional weighting
variants are equivalent when the class distribution is balanced. Classification accuracies
after convergence are 83.3% and 100% from the original and improved STM algorithms,
respectively.

78

(a
)

O
ri

gi
n
al

S
T

M

Iteration 1 Iteration 2 Iteration 5 Iteration 10

(b
)

E
q
u
al

w
ei

gh
ts

Iteration 1 Iteration 2 Iteration 3

(c
)

P
ro

p
or

ti
on

al
w

ei
gh

ts

Iteration 1 Iteration 2 Iteration 3

Figure 5.10: Comparison of (a) original and (b-c)) improved versions of STM on data from
Subject #8 of Dataset #4a. As expected, the equal weighting and proportional weight-
ing variants are equivalent when the class distribution is balanced. For this subject, both
improved STM algorithms converged in three iterations. Classification accuracies after con-
vergence are 65.0% and 90.0% from the original and improved STM algorithms respectively.

79

Table 5.4: Accuracy of SVM, KMM and three versions of STM on Dataset #4b

STM

Subject SVM KMM Original Equal
weights

Proportional
weights

1 0.58 0.97 0.97 0.93 0.98
2 0.58 0.93 0.92 0.93 0.98
3 0.58 1.00 1.00 1.00 1.00
4 0.58 1.00 1.00 1.00 1.00
5 0.58 1.00 1.00 1.00 1.00
6 0.58 0.92 0.92 1.00 0.97
7 0.58 0.92 0.92 0.95 1.00
8 0.58 0.97 1.00 1.00 1.00
9 0.58 1.00 1.00 0.88 1.00
10 0.58 1.00 1.00 1.00 1.00
11 0.58 0.87 0.92 0.92 0.92
12 0.58 0.90 0.88 0.97 0.88
13 0.58 0.75 0.75 0.55 0.85
14 0.58 0.92 0.92 1.00 0.92
15 0.58 0.42 0.42 0.75 0.92
16 0.58 0.32 0.33 0.57 0.90
17 0.58 1.00 1.00 0.80 1.00
18 0.58 0.55 0.58 0.58 0.92
19 0.58 1.00 1.00 1.00 1.00
20 0.58 0.97 1.00 0.98 1.00

Mean 0.58 0.87 0.88 0.89 0.96

(a) Original (b) Equal weights (c) Proportional weights

Figure 5.11: Solutions for three versions of STM on Dataset #4b, Subject 2

80

Table 5.5: Accuracy of SVM, KMM and three versions of STM on Dataset #4c

STM

Subject SVM KMM Original Equal
weights

Proportional
weights

1 0.64 0.96 1.00 0.76 1.00
2 0.88 0.93 0.88 0.82 0.93
3 0.64 1.00 1.00 0.85 1.00
4 0.88 1.00 1.00 1.00 1.00
5 0.00 1.00 1.00 1.00 1.00
6 0.00 0.80 0.80 0.80 0.68
7 0.88 0.88 0.88 0.82 0.97
8 0.64 1.00 1.00 0.95 1.00
9 0.88 1.00 1.00 0.80 1.00
10 0.88 1.00 1.00 0.90 1.00
11 0.00 0.80 0.80 0.92 0.76
12 0.64 0.98 0.96 0.96 0.98
13 0.00 0.80 0.80 0.48 0.64
14 0.88 0.88 0.88 0.88 0.88
15 0.64 0.36 0.36 0.67 1.00
16 0.64 0.38 0.36 0.73 1.00
17 0.64 1.00 1.00 0.96 1.00
18 0.88 1.00 1.00 0.95 0.97
19 0.00 1.00 1.00 0.84 0.56
20 0.00 0.68 1.00 0.60 0.44

Mean 0.53 0.87 0.89 0.84 0.89

(a) Original (b) Equal weights (c) Proportional weights

Figure 5.12: Solutions for three versions of STM on Dataset #4c, Subject 2

81

Table 5.6: Accuracy of SVM, KMM, Original STM, and Proportional STM on REALDISP

Original STM Proportional STM

Subject SVM Ideal KMM Original
init.

Ideal
init.

Original
init.

Ideal
init.

1 0.42 0.94 0.39 0.37 0.94 0.47 0.75
2 0.42 0.93 0.29 0.29 0.93 0.50 0.68
3 0.47 0.76 0.45 0.45 0.76 0.56 0.61
4 0.13 0.89 0.25 0.25 0.87 0.32 0.57
5 0.36 0.97 0.35 0.34 0.97 0.45 0.81
6 0.38 0.87 0.38 0.38 0.87 0.43 0.72
7 0.36 0.82 0.31 0.30 0.71 0.27 0.47
8 0.31 0.91 0.24 0.24 0.92 0.09 0.76
9 0.33 0.74 0.22 0.20 0.74 0.37 0.59
10 0.54 0.92 0.32 0.38 0.93 0.54 0.75
11 0.19 0.90 0.17 0.17 0.92 0.25 0.57
12 0.50 0.93 0.41 0.42 0.93 0.55 0.71
13 0.33 0.90 0.29 0.29 0.90 0.39 0.76
14 0.20 0.98 0.31 0.31 0.98 0.38 0.65
15 0.32 1.00 0.05 0.05 1.00 0.00 0.42
16 0.56 0.92 0.47 0.47 0.89 0.51 0.67
17 0.46 0.94 0.49 0.51 0.94 0.51 0.73

Mean 0.37 0.90 0.32 0.32 0.89 0.39 0.66

STM was similar to the ideal performance, it would indicate that a local optimum existed
near that solution. Results are shown in Table 5.4 under “Ideal init.” We can see that
the original STM maintains very similar performance to the ideal solution (0.89 compared
to 0.90), which indicates that it was able to find a set of weightings to support the ideal
hyperplanes. The proportionally weighted STM, however, demonstrates a significant drop
in performance (down to 0.66), which indicates that the constraints on the sample weights
were too restrictive to support the ideal hyperplanes.

5.6.1 Experiments with global optimization

Given that the ideal solution was a local optimum (at least for the original STM), another
hypothesis for the lack of improvement was that the algorithm was getting stuck in other
local optima. Convex functions are guaranteed to have a single optimum, but biconvex
functions like STM may have many stationary points, including saddle points, in addition
to local optima [44]. The solution, therefore, was to explore global optimization methods of
biconvex functions.

BARON is a solver for global optimization of mixed-integer nonlinear optimization prob-

82

Table 5.7: Comparing solutions from ideal versus regular initialization to global optimum
solution from BARON

Objective
Function

Value

Objective function component values

Optimizer Accuracy 1
2

∑
j ‖wj‖2 1

2

∑
i siL(xi, yi)

1
ntr

2 s>Ks− 2
ntr

2κ>s

Ideal init. 0.78 1.60 3.35 0.0580e-4 0.5556
Original init. 0.68 2.06 14.08 0.1141e-4 1.1253
BARON 0.33 0.27 0.61 0.0000e-4 0.0636

lems [73]. Unfortunately, all values of the W matrix and all weights si (one per training
sample) are considered as variables, making the STM problem on the REALDISP dataset
too complex for BARON. Therefore, Dataset #4a was used instead to test whether the
global optimum of the STM objective function corresponded to high accuracy. The accu-
racy, objective function total value, and objective function component values are compared
in Table 5.7 for the ideal and regular initializations of STM, as well as a solution found by
BARON. Note that BARON terminated due to time out and did not actually find the global
optimum. Nonetheless, the solution found by BARON has an accuracy of only 0.33 (suggest-
ing that the solution classifies everything as a single class), while having the lowest objective
function value. Furthermore, every component of the objective function has a lower value
than those found in the ideal initialization solution, which has the highest accuracy. Even
though BARON did not find the global optimum, these results indicate that minimizing the
STM objective function does not monotonically increase the accuracy.

Global optimization of STM could be explored further. It is possible that, even though
the objective function is not monotonically related to accuracy, the solution at the global
optimum has the highest accuracy. Building an even smaller toy example and finding the
global optimum could shed light on this question. Further experiments on how the dataset
affects the shape of the objective function could inform which datasets would most benefit
from STM over generic algorithms.

5.7 Conclusions

This chapter presents an in-depth comparison of SVM, KMM, and STM on the REALDISP
dataset and several synthetic datasets. Previous work on STM reported performance im-
provements compared to SVM and KMM [25] on several facial action unit detection datasets.
While it is possible that the feature spaces used in this chapter were not amenable to STM,
the relative performance of these algorithms on the datasets in this chapter is consistent
with what was found on the PD dataset, described in Chapter 4.3. Analysis into the STM
solutions on synthetic data indicated that the algorithm failed to assign higher weight to
training samples of the correct class. Therefore, two extensions to STM were developed to
better describe which samples should be given higher weight. These extensions were found

83

to have high performance on the synthetic datasets, but not on REALDISP. Further analysis
into the STM objective function found that, while STM has a stable point (possibly a local
optimum) near the ideal separating hyperplane of each subject, minimizing the objective
function does not generally improve accuracy. These findings suggest that the STM objec-
tive function is not appropriate for these datasets using these feature representations. Other
feature sets or personalization algorithms, such as those presented in Chapter 2.2, could lead
to greater performance improvements over the generic SVM.

84

Chapter 6

Stratified Weakly Supervised
Learning

Previous chapters explored the challenges of building a model for PD symptom detection
that can generalize to (i.e., maintain high performance on) a subject whose data were not
in the training set. This chapter focuses on another challenge of PD symptom detection:
maintaining high performance “in the wild.” Ideally, machine learning models for contin-
uous monitoring of PD motor symptoms “in-the-wild” would be trained on data collected
in-the-wild so that the training data would most accurately mimic the test data. However,
collecting accurate labels in-the-wild is prohibitively time consuming and labor intensive:
either participants would need to be videotaped extensively so that a researcher could re-
view the data and label it, or each participant would need to self-report on the exact starts
and ends of each of their symptoms. Therefore, the most popular strategy for collecting
labeled training data is to have participants perform scripted activities in controlled labo-
ratory settings where video data can be used to label symptom occurrences (see Table 2.4).
Researchers assume that these models trained on laboratory data will generalize to activities
in the wild.

Although accurate labels in the wild are unrealistic, it is feasible for participants to
record the approximate amount of tremor they experience within five-minute segments of
time dispersed throughout the day. These approximate labels are called weak labels, and
they inherently provide less information than the traditional accurate labels. While weakly
supervised learning methods are relatively well-explored (see [5] for a review), few have ap-
plied these methods to PD symptom detection. In [40], Fisher et al. used a neural network
to detect dyskinesia in weakly labeled data collected in patient homes. However, the au-
thors applied the labels of their one-hour time intervals to every sub-interval. That is, if a
patient reported dyskinesia during a one-hour segment, the authors assumed that dyskinesia
occurred during the entire segment. This naive approach introduces many false positive
labels. In this chapter, I compare the naive approach to several algorithms that explicitly
account for the fact that only a portion of a positive segment is the event of interest.

Das et al. [32] compared several weakly supervised learning techniques on in-home data
collected from two patients. One patient suffered from dyskinesia and the other had tremor.

85

Four days of data were collected with labels provided by patient diaries. While this work
was a great proof-of-concept for the utility and necessity of weakly-supervised learning for
in-home data, the number of subjects was limited (only one per symptom type) and there
was no way to verify that symptom detections from trained algorithms were true symptom
occurrences because there were no ground truth labels.

In this chapter, I explore and evaluate the usage of various weakly supervised learning
algorithms for PD tremor detection. In particular, I assess the effect of weak labels on
algorithm performance. Using accurate labels from the laboratory data (see Chapter 3.1),
different levels of weak supervision are simulated by controlling the length of time segments
for which labels are provided. In this way, the change in algorithm performance as label
uncertainty increases can be analyzed. Furthermore, because ground truth labels exist, I
can confirm whether algorithms trained on weakly labeled data are able to discriminate
tremor from non-tremor.

Additionally, I introduce a new method for weakly supervised learning, which I call “strat-
ified weakly supervised learning.” Traditional approaches use labels that indicate whether
a single positive sample (instance of a PD symptom) exists within a segment. The algo-
rithms then only look for a single instance within each positively labeled segment. This
assumption may hold true for some applications, such as labeling images as containing or
not containing a particular object of interest. However, it can be highly inaccurate for PD
symptom detection, where a participant can experience symptoms for none of the segment,
all of the segment, or any proportion in between. In this chapter, I show that symptom de-
tection accuracy can be improved by using more nuanced, “stratified” labels and modifying
several weak learning algorithms to make use of such labels. Some of the findings in this
chapter were published in the proceedings of the 2017 Engineering in Medicine and Biology
Conference [138].

6.1 Algorithms

This chapter compares the performance of several different weakly supervised learning algo-
rithms. In particular, the top three performing algorithms reported by Das et al. [32] – Mul-
tiple Instance Support Vector Machine (MI-SVM) [6], Iterative Discriminative Axis Parallel
Rectangle (ID-APR) [34] and Expectation Maximization Diverse Density (EM-DD) [139] –
are compared to a naive Support Vector Machine (Naive-SVM), which applies segment-level
labels to every subsegment within. I.e., if a segment is labeled as containing some tremor,
Naive-SVM assumes the entire segment consists of tremor, which is the strategy chosen
Fisher et al. [40].

This chapter also presents a modification to the MI-SVM and ID-APR algorithms that
allows them to take advantage of knowing the approximate amount of tremor within a
segment given by stratified segment labels. In the LAB data, the incidence of tremor varies
greatly across subjects (from 1.2% to 80.0% occurrence), as shown in Table 3.2 in Chapter 3.1.
The MI-SVM and ID-APR algorithms are designed to find rare positive examples among
many negative examples. As Table 3.2 shows, this assumption holds well for subject 12 (right

86

hand), where only 1.2% of the data collected was tremor, but fails for subject 2 (left hand),
where 80% was tremor. For subjects with frequent tremor, these algorithms may have low
recall because they will classify very few events as tremor.

Before describing these algorithms, I first define some notation. Let {Xi, yi}Nseg

i=1 be the
set of time segments and their associated labels. Let {xji}

ni
j=1 be the set of all events in

Xi. For the following five standard algorithms, yi ∈ +1,−1, and a segment Xi is labeled as
positive if there exists an event xji ∈ Xi that is positive.

6.1.1 Naive Support Vector Machine (Naive-SVM)

Given time segment labels, this algorithm makes the naive assumption that the segment-level
label applies to every event within (see Figure 6.3b for an example). That is, it applies the
label yi to all xji ∈ Xi. The objective function is therefore only a slight modification from
Eq. 4.1:

min
w,b

1

2
‖w‖2 +

C

2

Nseg∑
i=1

ni∑
j=1

L(yi, f(xji)). (6.1)

As before, I use the squared hinge-loss function: L(yi, f(xi)) = max {1− yi · f(xi), 0}2, and
this algorithm is implemented using the LIBLINEAR SVM library [37].

Naive-SVM is meant to serve as a baseline against the advantage of using more sophis-
ticated, weakly supervised algorithms can be measured.

6.1.2 Multiple Instance SVM (MI-SVM)

This algorithm was originally developed by Andrews et al. [6]. It is similar to a standard
SVM except that it does not make the assumption that all events within a segment share
the label of the segment. Instead, it tries to find a separating margin such that at least one
positive event in each positive segment is classified as positive, and all events in negative
segments are classified as negative. Formally, MI-SVM minimizes the following objective
function:

min
w,b

1

2
‖w‖2 +

C

2

∑
i

(
δ[yi = +1] ξ+

i + δ[yi = −1]
∑
j

ξ−i,j

)
subject to

maxxj
i∈Xi

(
w>xji + b

)
≥ +1− ξ+

i , ∀ yi = +1,

ξ+
i ≥ 0, ∀ i,

w>xji + b ≤ −1 + ξ−i,j, ∀xji ∈ Xi, ∀ yi = −1,
ξ−i,j ≥ 0, ∀ i, j.

This objective function is optimized iteratively. An SVM is first trained on all events in
the negative segments and the mean of each positive segment. Given this initial separating
hyperplane, positive selector variables are chosen to be the event with the maximum score

87

in each segment. All events in negative segments are chosen to be negative selector variables
because negatively labeled segments have no positive events by definition. A new SVM is
trained on the selector variables, and this process is repeated until either the set of selector
variables no longer changes or the maximum number of iterations has been reached. See Fig-
ure 6.3c for an example of how MI-SVM chooses selector variables. Note that this algorithm
has no guarantee to converge and occasionally gets stuck in a loop of two (or more) sets of
selector variables. I refer readers to [6] for more details on how to optimize this objective
function. My implementation of MI-SVM was built around LIBLINEAR SVM from [37].

6.1.3 Iterative Discriminative Axis Parallel Rectangle (ID-APR)

This algorithm was originally developed by Dietterich et al. [34] and is the seminal work
on multiple instance learning. The basic idea is to find the smallest axis parallel rectangle
(APR), which constitutes a set of lower and upper bounds (one for each feature dimension),
such that for each positive segment, there exists at least one event that lies within the APR.

The smallest APR is found over iterations. The APR is first initialized to the minimax
APR: For each feature dimension, let a be the maximum of the minima from each segment
and let b be the minimum of the maxima from each segment:

a = max
i

min
j

xji ∈ Xi

b = min
i

max
j

xji ∈ Xi.

Then, the lower bound of the minimax APR is min(a, b) and the upper bound is max(a, b).
Note that it is possible for the minimax APR to not contain a single point from one of the
positive segments, as shown in Figure 6.1.

Given the current APR, the algorithm finds the sample from each segment that is closest
to the APR using the Manhatten distance. Then, the APR is expanded to include the
closest of those samples. Given the current set of segments that are covered by the APR,
the algorithm checks to see if selecting a different sample from those segments would make
the APR smaller. This process iterates until all segments are covered by this “tight” APR.

If the resulting tight APR does not contain a negative instance, the ID-APR uses a greedy
method to find a subset of the features that are able to exclude all negative instances. A
new tight APR is then found using this subset of features. On the PD dataset, however, the
first APR always contained at least one negative instance. Therefore, the set of features was
never reduced.

Because the tight APR needs only to cover one positive instance in each segment, it may
be so small that none of the test samples are contained within. The authors of [34] therefore
expand the APR such that, with high probability, new positive instances will lie within the
APR. To do so, the authors use kernel density estimation to estimate the distribution of all
samples from positive segments that are contained in the APR. Then the APR is expanded
to contain ε of the resulting probability distribution. The kernel width is chosen such that,
if the kernel function were centered within the APR, τ of the probability would lay within

88

Figure 6.1: Example of minimax APR

the APR bounds. In [34], the authors report performance for τ = 0.99, 0.995, and 0.999 and
found the best performance was obtained for τ = 0.999. For all experiments presented in
this chapter, τ was fixed to be 0.999. Model selection, details given in Section 6.2, was used
to choose the value of ε. For more details on the ID-APR algorithm, I refer readers to [34].

6.1.4 Expectation Maximization Diverse Density (EM-DD)

This algorithm was developed by Zhang et al. [139] as an extension of the Diverse Density
(DD) algorithm developed by Maron and Lozano-Perez [87]. DD is a measure of how many
different positive segments have samples near a particular point and how far negative samples
are from that point. Distance is measured using a weighted Euclidean distance. The goal is
therefore to find a set of weights and a point in feature space that maximizes DD. Maron
and Lozano-Perez optimized this function using gradient ascent. To increase the chance of
finding the global optimum instead of getting stuck in local maxima, the authors chose to
initialize gradient ascent from multiple starting points. In particular, because DD measures
the closeness of positive samples, at least one of the samples from a positive segment must
be close to the global maximum. Therefore, initializing gradient ascent from each of the
samples in positive segments should lead to the global maximum.

To reduce computation time, Zhang et al. [139] chose an expectation-maximization ap-
proach. Rather than using all samples from all positive segments to compute DD, they
choose one sample from each positive segment at each step. In the E step, the current
hypothesis is used to select which sample from each positive segment is most likely to be
the positive one. In the M step, only these selected samples are used to compute the new
hypothesis. I used the EM-DD implementation provided by the MIL Toolkit [135].

89

Table 6.1: Percentage of each type of segment label for varying segment lengths

Segment Standard labels Stratified labels
length Positive Negative 0-33% 33-66% 66-100%

30 s 59.8 40.2 61.2 14.5 24.3
1 min 70.3 29.7 61.4 17.2 21.4
3 min 85.5 14.5 61.9 19.2 18.8
5 min 89.3 10.7 61.7 20.5 17.8
10 min 93.8 6.3 59.0 24.3 16.7

Figure 6.2: Example ground truth (30 minutes) and associated standard or stratified labels

6.1.5 Stratified Multiple Instance Learning

All algorithms described thus far use labels that only indicate whether a segment contains
at least one positive sample or not. Performance of these algorithms could be improved
if they had access to slightly more nuanced labels. For example, labels could contain the
approximate percentage of tremor within a time segment (e.g., 0-33%, 33-66%, 66-100%). In
the scenario where participants are labeling their own in-home data, these stratified segment
labels could correspond to labels of “almost no tremor,” “about half,” and “almost constant
tremor.” Figure 6.3a gives an example of standard versus stratified weak labels on samples
in feature space.

In addition to containing more information, these stratified labels also have the advantage
that they are symmetric between tremor and non-tremor. In contrast, with standard labels,
most segments are labeled as containing tremor as segment length increases (see Figure 6.2)
because increased segment length is associated with a higher likelihood of tremor occurring
within. Very few negative examples can make it difficult for an algorithm to discriminate

90

between tremor and non-tremor. The proportion of each type of stratified label, however,
remains relatively constant as segment length increases (see Table 6.1).

MI-SVM and ID-APR are both solved by iterating between choosing a single event from
each positive segment to serve as a positive selector variable (all events in negative segments
are considered negative selector variables) and solving the decision boundary given the se-
lector variables. Modifying these algorithms to use stratified labels simply involves changing
the number of selector variables pulled from each bag. The number of positive and negative
selector variables is adjusted according to the segment label. For example, given a segment
with a label of 33-66%, we know that at least 33% of the segment must be tremor events,
and at least 33% of the segment must be non-tremor events. Therefore, the highest scoring
33% of the events are chosen to be positive selector variables, and the lowest scoring 33%
are chosen to be negative selector variables. The algorithm is then trained on these selector
variables as normal. Figure 6.3d gives an example of how these selector variables are chosen.
For a naive baseline using these labels, positive labels are assigned to segments with 66-100%
tremor, negative labels to the segments with 0-33% tremor, and then the naive assumption
is applied to the events in these segments and train a linear SVM.

I call these modified algorithms “stratified” and they are closely related to work on
learning from label proportions (LLP) [57, 75, 106]. Much of the work in LLP involves
new, probabilistic models that assume the exact proportions of positive to negative events
are known. Kück and de Freitas allow for uncertainty in the proportions, but do so by
introducing a user-specified parameter to represent this uncertainty [75]. In contrast, my
solution is a simple modification of existing algorithms given approximate proportions of
labels with no additional parameter.

6.2 Methods

For all algorithms, I used the LAB dataset and features described in Chapter 3.1 and 3.4,
respectively. Recall that features were computed over windows, and each window was labeled
as tremor if at least half of the window was tremor. Consecutive windows were collected
into segments of varying lengths (from 30 seconds to 10 minutes). Segments were given two
different types of weak labels:

� Standard weak labels – positive if the segment contains at least one “tremor” window
(event), negative otherwise.

� Stratified weak labels – approximate percentage of tremor (e.g., 0-33%, 33-66%, 66-
100%) witinh the segment.

As mentioned in Chapter 3.3, data were split into training and testing sets using leave-
one-subject-out cross-validation: data from one subject were left out and the algorithm was
trained on data from the remaining subjects. This process was repeated for each subject.

The SVM algorithms require the user-specified parameter C and the ID-APR algorithm
uses the parameter ε. These parameters were selected automatically through model selection.
During training, subjects in the training set were split into three groups, creating three folds

91

(a) Comparison of ground truth sample labels in feature space and associated
standard or stratified weak labels

(b) Naive-SVM assignment of sample labels and final classifier

(c) MI-SVM assignment of sample labels and final classifier

(d) Stratified MI-SVM assignment of sample labels and final classifier

Figure 6.3: Example of standard and stratified weak labels in feature space and comparison
of how Naive-SVM, MI-SVM, and Stratified MI-SVM learn from weak labels. Circles around
samples indicate the set of all samples in feature space belonging to the same time segment.
Colored squares around gray circles indicate labels assigned by the algorithm during training.

92

of the dataset. Models using each parameter value were trained on two folds and validated on
the third fold. Using the same reasoning presented in Chapter 4.2.2, the set of C parameters
to test was C ∈ [2−13, 2−12, . . . , 2−1]. Following what was presented in Dietterich et al. [34],
the set of ε parameters was chosen to be ε ∈ [0.002, 0.004, . . . , 0.038, 0.040]. This process was
repeated for all three permutations of selecting two folds for training and one for validation.
The parameter that resulted in the highest median performance across the three folds was
used to train a model on the full training dataset. Note that performance during model
selection was computed using segment-level labels as opposed to event-level labels because,
in a real scenario, event-level labels would not be available to the algorithm. In particular,
for non-stratified algorithms, performance was measured by segment-level label accuracy.
For stratified algorithms, because the stratified labels are more nuanced, performance was
measured by mean absolute error between output and labeled percentage of tremor (more
details on this metric in Section 6.3.2).

6.3 Results and Discussion

The goal of this chapter is to explore how the performance of weakly supervised algorithms
degrades as labels become less precise (time segments become longer). Results presented here
helped inform the in-home data collection described in Chapter 3, where subjects assigned
coarse labels (approximate amount of tremor) to short time segments throughout the day.

6.3.1 Standard Metrics

Algorithm performance is compared on five standard metrics – accuracy, F1-score, precision,
recall, specificity, and AUC, described in Chapter 3.5. These performance metrics were
computed on event-level labels (as opposed to segment-level labels) to measure whether the
algorithms were able to discriminate tremor from non-tremor after being trained on the
weakly labeled data.

Algorithm performance is summarized in Figure 6.4. We can see that the Naive-SVM
algorithm fails once input segments reach a length of three minutes: specificity falls to zero,
implying that the algorithm has converged to classifying everything as positive (tremor).
This failure demonstrates the necessity of weakly supervised algorithms for accommodating
weakly labeled data.

Performance of the standard weakly supervised algorithms are generally better than the
Naive-SVM, particularly with respect to accuracy, precision, and specificity. Contrary to
what Das et al. found [32], however, the performance of ID-APR is generally worse than
that of MI-SVM and EM-DD. In fact, at 3-minute-length segments, its recall has fallen to
nearly zero, implying that it is classifying nearly everything as non-tremor. Given that ID-
APR is trying to find the smallest APR that includes at least one positive event, it is likely
that the resulting APR for 3-minute segments is far too small, excluding the majority of
tremor events.

93

Figure 6.4: Performance comparison of all seven algorithms over varying lengths of training
time segments using standard metrics.

94

Figure 6.5: Empirical results of Naive-SVM, MI-SVM, and stratified MI-SVM on 30 minutes
of ground truth data. Dark red indicates non-tremor.

As expected, performance of the non-stratified algorithms generally falls as the segment
length increases because the labels become less precise. Meanwhile, the stratified algorithms
are able to maintain consistent performance across all segment lengths. Naive-SVM and MI-
SVM clearly benefit from stratification, with improved accuracy and AUC for all training
segment lengths. Furthermore, stratification increases the F1 score for MI-SVM and only
slightly decreases the F1 score of Naive-SVM. Stratification did not improve performance for
the ID-APR algorithm, most likely because it requires many more samples to be included
within the APR, which may make the APR too large.

For 10-minute-length segments, we see that all non-stratified algorithms have converged
to classifying nearly everything as positive (specificity ≈ 0) or negative (recall ≈ 0). In
contrast, the stratified algorithms (excluding the naive version) avoid this behavior. Fig-
ure 6.5 shows empirical results of Naive SVM, MI-SVM, and stratified MI-SVM on the same
30-minute segment shown in Figure 6.2. The stratified MI-SVM is better at capturing that
this segment contains a mixture of tremor and non-tremor, and correctly shows a reduction
in tremor near the end of the segment. Additional post-processing could help further refine
the output of stratified MI-SVM. It is interesting to note that while stratified Naive-SVM
and stratified MI-SVM have similar accuracy and AUC, stratified MI-SVM has higher F1
and recall, indicating that it is more able to find tremor. Using these metrics it is not clear
which of the stratified methods should be preferred. However, the proposed performance
metric (described below) is able to shed light on which is the superior algorithm.

6.3.2 Proposed Performance Metric

The above section reports performance along many metrics, but it is unclear which is most
important to optimize. AUC has the advantage of being independent of class proportions,
but it is the least interpretable. Meanwhile, accuracy is easily interpretable, but highly
susceptible to being misleading due to class imbalance. All of these metrics measure how
well an algorithm can classify a particular sample or instant of time. However, clinicians
may find the amount of tremor that occurred within a given period of time to be more
informative than whether a particular instant is tremor or not. Therefore, the error in the
detected percentage of tremor within a window versus the true percentage of tremor may

95

Table 6.2: Mean absolute error of detected tremor percentage within 15-minute windows

Training segment length
Algorithm 30 s 1 min 3 min 5 min 10 min

Naive-SVM 39.5 63.3 66.0 66.0 66.2
MI-SVM 22.8 23.3 26.3 28.8 34.4
ID-APR 33.9 26.8 24.9 30.7 32.6
EM-DD 16.1 17.0 21.5 33.8 50.5
Naive-SVM stratified 14.8 16.1 18.0 19.5 20.4
MI-SVM stratified 14.2 14.8 14.5 15.6 16.4
ID-APR stratified 49.7 47.6 38.7 37.7 34.3

be a more clinically relevant performance metric. While it is true that the percentage of
tremor can be computed from the detected instances of tremor, this metric is more forgiving
with respect to errors in temporal shift of tremor events or mislabeling as long as the overall
detected percentage remains the same. 15-minute windows are chosen because this resolution
is short enough to give information about the effect of a patient’s medication while remaining
easily interpretable for clinicians.

Table 6.2 shows the mean absolute error (MAE) in detected tremor for all seven algo-
rithms as they are trained on segments of varying length. We can see that the stratified
MI-SVM shows the best performance in this metric across all segment lengths. Figure 6.6
rearranges the data from Table 6.2 to better show the effect of segment length and the strat-
ified method on the MAE in detected tremor. For all non-stratified algorithms (excluding
ID-APR), increased segment length leads to increased MAE. Meanwhile, stratified Naive-
SVM and stratified MI-SVM are able to maintain performance and demonstrate a significant
reduction in MAE compared to their non-stratified counterparts. ID-APR demonstrates cu-
rious behavior. The increase in MAE from stratification is likely due to the issue of the
APR becoming too large, as discussed above. Interestingly, MAE decreases for stratified
ID-APR as segment length increases, which may be due to increased freedom in choosing
which samples from each segment would need to be included in the APR.

6.4 Conclusion

In this chapter, I simulated the types of labels that will be available from in-home data and
compared the ability of several algorithms to learn from these weak labels. Using the accu-
rately labeled LAB dataset, I could control the length of the training segments and thereby
analyze how algorithm performance degraded as labels were made less precise. Furthermore,
because ground truth labels exist for every time point, the ability of the algorithms to dis-
criminate tremor from non-tremor events could be accurately evaluated. The work in this
chapter thus serves to extend that of Das et al. [32], where only two subjects were used (each
with a different motor symptom) and where ground truth labels were not available. This

96

Figure 6.6: Effect of stratification on the mean absolute error of detected tremor percentage
within 15-minute windows

chapter also describes a novel modification to MI-SVM and ID-APR, which allow them to
take advantage of knowing the approximate amount of tremor within a given time segment.

The analyses in this chapter resulted in two main findings. (1) Contrary to that reported
in Das et al. [32], ID-APR did not have the best performance. I believe my results differ due
to the more thorough analysis of multiple performance metrics and the larger dataset. (2)
My novel, stratified algorithms generally showed improved performance over their standard
counterparts, particularly as the segment length increased. Results show that the stratified
version of MI-SVM gave the best performance overall. Recall that all experiments presented
in this chapter were conducted on laboratory data with weak labels computed from the
accurate labels. In the next chapter, I apply stratified MI-SVM to in-home data and analyze
how well laboratory data approximate in-home data.

97

98

Chapter 7

Learning from Wild Vs. Laboratory
Data

This chapter analyzes the validity of the common assumption that training on laboratory
data will lead to models that can generalize to in-the-wild data. Fully supervised algorithms
were trained on laboratory data and weakly supervised algorithms on in-the-wild data. The
performance of all algorithms was compared on both laboratory and in-the-wild data. These
experiments measure how well laboratory data represents in-the-wild data. They also com-
pare the efficacy of accurate labels, which are only available from laboratory data, to labels
collected in-the-wild, which are necessarily weak and therefore less precise. Results demon-
strate that training on laboratory data does not translate very well to the wild, which,
surprisingly, leads the weak in-the-wild labels to be more effective than accurate laboratory
labels.

7.1 Methods

To compare how well LAB data represents WILD data (data collection details described in
Chapter 3), and to understand what kinds of training datasets would be most effective for
an automated, in-home, tremor monitoring system, I partitioned the dataset into several
different subsets for training Support Vector Machines (SVMs):

� Laboratory data from subjects who were not the test subject, which represents the
standard leave-one-subject-out (LOSO) machine learning paradigm.

� Laboratory data from the test subject, which represents a person-specific model trained
on data collected in controlled settings with accurate labels.

� In-the-wild data from the test subject, which represents a person-specific model trained
on data collected in naturalistic settings with weak labels.

The three partitions are described in detail below.

The SVMs were implemented using the LIBLINEAR library provided by Fan et al. [37].
Features were those described in Chapter 3.4. Training data were normalized to have a mean

99

of zero and a standard deviation of one. (Note that different algorithms used different parti-
tions of the training data, and normalization parameters thus differed across the algorithms.)
In all cases, model selection for the hyperparameter C was chosen through three-fold cross
validation. That is, the training dataset was partitioned into three folds, two of which were
used for training and one for validation. Thirteen models were trained (one for each C in
the range of 2−13 to 2−1 in powers of 2) on the training folds and evaluated on the validation
fold. This procedure was repeated for each of the three possible permutations of selecting
training and validation sets from the three folds. The results were averaged across the three
trials and the highest performing C was then used to train a new model on the entirety of
the training data set (all three folds). Performance of this model was then evaluated on the
test dataset, which was distinct from the dataset used for training.

7.1.1 Models

Below, I describe the three different partitions of the dataset for training and the algorithms
applied to each partition. Each choice of training data led to a different model (classification
hyperplane). A graphical representation of the partitions is shown in Figure 7.1. A summary
is given in Table 7.1, which also includes the number of samples available for training and
testing of each algorithm. Recall from Chapter 3.3 that data from separate hands are
considered to be from separate subjects.

Generic SVM from LAB data (Gen-LAB)

I evaluated a standard, binary SVM on LAB data using leave-one-subject-out cross vali-
dation: i.e., training on all subjects excluding one, and testing on that left out subject. For
model selection, the three folds were chosen such that each fold contained data from one third
of the training subjects. To select C, I chose that which led to the highest average Area
Under the Curve (AUC) value across the three possible validation sets. The final model
was then tested on the test subject’s LAB and WILD data. This experimental protocol
represents a typical machine learning pipeline and is subsequently referred to as Gen-LAB.

Person-specific SVM from LAB data (PS-LAB)

I trained a standard, binary SVM on LAB data from the test subject. The LAB dataset
was first partitioned into three folds, two of which were used for training/validation and
one for testing. Model selection was performed on the training/validation portion. The
learned SVM was then tested on the test partition of the LAB data and the entire WILD
dataset. Results were then averaged across all three learned SVMs, corresponding to three
permutations of selecting the training/validation and test sets from the three folds of the
LAB data. Following the recommendation of [49], all folds were chosen to be temporally
connected segments, rather than selected from randomized samples. It has been shown that
training a person-specific classifier leads to improved performance over a generic classifier
[132], and I compared performance on LAB versus WILD data for such a classifier, which is
subsequently referred to as PS-LAB.

100

Figure 7.1: Schematic representation of training, validation, and test datasets for all exper-
iments. Cross validation (averaging validation results across all folds) was used to do model
selection. For PS-LAB and PS-WILD, the subject’s LAB or WILD data were split into
three folds, two of which were used for training/validation. Three models were trained, one
for each permutation of selecting folds for training and testing. Results were averaged across
all three models.

101

Table 7.1: Summary of experiments

Training Test

Model Dataset Label type Mean # labels / sub Dataset Label type Mean # labels / sub

Gen-LAB LAB (from others) Accurate 83.7k (samples)
LAB Accurate 4.3k (samples)

WILD Weak 388 (segments)

PS-LAB 2⁄3 LAB� Accurate 2.9k (samples)
1⁄3 LAB� Accurate 1.4k (samples)
WILD Weak 388 (segments)

PS-WILD 2⁄3 WILD� Weak 359 (segments)*
LAB Accurate 4.3k (samples)

1⁄3 WILD� Weak 129 (segments)

Note: excluding the training dataset for Gen-LAB, all datasets are from the test subject.
� The corresponding training dataset is partitioned into three folds while maintaining temporal consistency (i.e., not
randomized prior to splitting). Two folds are selected for training. There are three permutations of selecting two folds
for training, therefore three different models are trained. Results from the three models are averaged.
� For these experiments, each model is tested only on the left out fold. Results are averaged across the three folds.
* WILD data have weak labels for 5 minute segments of time, each of which contain 328 samples. At every iteration
of training the stratified MI-SVM algorithm, 66% of the samples from each segment are assigned labels according to
the current hypothesis for the SVM decision boundary. Therefore, the stratified MI-SVM is trained on 216 samples per
segment.

102

Person-specific SVM from WILD data (PS-WILD)

Using the WILD data from the test subject, I trained a stratified, Multiple Instance
SVM (MI-SVM), as was used by Zhang et al. in [138], and described in the previous chapter
in Section 6.1.5. Similarly to the methodology for PS-LAB, the WILD dataset was first
partitioned into three folds (two for training/validation and one for testing). The learned
SVMs were tested on the test partition of the WILD dataset and the entirety of the LAB
dataset. Results were averaged across all three permutations. As with PS-LAB, folds were
chosen to be temporally connected. As shown in Figure 3.5, labeling frequency was relatively
consistent across the data collection period. Therefore, these partitions correspond to similar
numbers of days. Because accurate labels are not available for WILD data, AUC could not
be used for selecting C. Instead, I chose to use mean absolute error (described below in
Section 7.1.2) as the performance metric for model selection. Note that, for some partitions,
training data would lack segments with “Almost none” or “Almost always” labels, making it
not possible to initialize the stratified MI-SVM algorithm with the method described above.
Such partitions were ignored during model selection.

Stratified MI-SVM was trained as follows: Labels of Almost none, Half the time, and
Almost always were assigned approximate tremor percentages of [0-33%], [33-66%], and [66-
100%], respectively. To initialize the stratified MI-SVM algorithm, I computed the mean of
each segment either labeled as Almost none or Almost always. These means were given neg-
ative and positive labels, respectively, and used to train the initial SVM. Training proceeded
as described in Chapter 6.1.5. Termination conditions were set to be either when the set of
selected samples is no longer changing, or when the maximum number of iterations (set to
be 200) is reached. Note that, if the algorithm chooses a set of samples that has already
been chosen, it enters an infinite loop. Therefore, a third termination condition was if the
set of samples for the next iteration has been chosen before. In practice, depending on the
dataset and chosen parameters, any of these termination conditions could occur.

The purpose of training on WILD data is to explore the relative benefits of accurate
labels from other subjects versus the less precise weak labels from the test subject. This
classifier is subsequently referred to as PS-WILD.

7.1.2 Performance metrics

Three performance metrics were used to evaluate the Gen-LAB, PS-LAB, and PS-WILD
models:

� Accuracy (see Chapter 3.5).

� Area under the (Receiver Operating Characteristic) curve (AUC) (see Chapter 3.5).

� Mean absolute error in detected percentage: for each segment, the percentage of tremor
within was computed using the trained model. If the detected percentage was within
the associated range for the given label, the error on that segment was set to be zero.
Otherwise, it was set to be the absolute difference between the detected percentage and
the closest bound. For example, if a segment’s label was Almost always (associated
range of [66-100%]) and the detected percentage of tremor in that segment was 50%,

103

then the absolute error on that segment would be 16%. The absolute error was then
averaged across all segments to get the mean absolute error.

Note that, because accurate labels (exact time points of tremor events) are not available for
WILD data, I could not compute accuracy and AUC on WILD data. To compute mean
absolute error in detected percentage on LAB data, I synthetically generated weak labels on
non-overlapping 5-minute segments. Using the accurate labels, I determined the percentage
of tremor within each segment. Given the percentage of tremor, I assigned weak labels
consistent with how I had assigned tremor percentage ranges to the WILD labels: tremor
percentages within [0-33%], [33-66%], or [66-100%] were assigned labels of Almost none, Half
the time, or Almost always, respectively.

7.2 Results and Discussion

From Figure 3.5, we can see that participants 2 and 4 had highly variable tremor: almost
every day, there were periods with “Almost none,” “Half the time,” or “Almost always”
tremor. This variability makes them ideal candidates for an automated monitoring system.
Furthermore, having a more even distribution of segments into the three types of labels
facilitates machine learning. The remaining four participants had less variability in the
presence/absence of tremor, which makes it more difficult to apply machine learning due
to class imbalance. However, such participants may also benefit less from an automated
symptom monitoring system: if a patient always or never experiences tremor, a monitoring
system may not be needed. Note that, while patient 11 did experience variability between
hands (left hand tremors almost constantly, and right hand has almost no tremor), I did
not combine hands during training, as mentioned above, because such an algorithm would
most likely only learn to differentiate left and right hands, rather than tremor versus no
tremor. Participant 5 is also of interest: after the first week, almost all labels were “Half the
time.” While we did explain the importance of labeling accurately, it is unclear whether these
labels are correct or due to misunderstanding. Nonetheless, results from all participants are
included for completeness.

Table 7.2 shows accuracy and AUC values on LAB data for the Gen-LAB, PS-LAB, and
PS-WILD classifiers. Consistent with previous findings on person specific classifiers [132],
the PS-LAB classifier has the highest performance. The Gen-LAB classifier has slightly
lower accuracy than PS-LAB on average, but very similar AUC values. Meanwhile, PS-
WILD has much lower performance. These results are unsurprising for two reasons: (1)
weak labels are inherently less precise than accurate labels, and (2) LAB and WILD data
are poor representations of each other, as shown by results from Table 7.3 discussed below.

Table 7.3 compares mean absolute error values on LAB and WILD data for the three
classifiers. We can see a large performance drop from LAB to WILD data: all mean absolute
errors increase. The large variations in performance indicate that LAB data may not be very
representative of WILD data. Interestingly, the largest performance deviation occurs with
the PS-LAB classifier, implying that it is likely overfitting to the individual’s LAB data.
Consistent with findings from Hammerla [50], results show that the PS-WILD classifier

104

Table 7.2: Comparing accuracy and area under the curve (AUC) on LAB data (experimental
setup shown in Figure 7.1, left column)

Accuracy AUC

Subject Hand Gen-LAB PS-LAB PS-WILD Gen-LAB PS-LAB PS-WILD

2
L 71.6 89.9 57.2 0.84 0.86 0.64
R 79.9 85.4 29.1 0.85 0.90 0.65

4
L 83.4 79.5 39.6 0.89 0.80 0.72
R 89.5 88.9 28.4 0.92 0.88 0.80

5
L 67.1 74.6 22.1 0.77 0.80 0.49
R 63.4 69.1 20.7 0.76 0.77 0.54

10
L 86.5 87.6 3.2 0.75 0.79 0.56
R 86.0 87.4 2.2 0.79 0.88 0.49

11
L 86.4 88.1 69.3 0.93 0.94 0.80
R 83.2 83.3 0.0 0.88 0.89 0.75

12
L 87.3 97.8 0.3 0.87 0.77 0.53
R 84.0 98.7 0.9 0.79 0.75 0.76

Average 80.7 85.9 22.7 0.84 0.84 0.64

Table 7.3: Comparing mean absolute error (MAE) in detected percentage on LAB and
WILD data

Test on LAB Test on WILD

Subject Hand Gen-LAB PS-LAB PS-WILD Gen-LAB PS-LAB PS-WILD

2
L 8.90 0.22 7.53 9.36 12.55 7.47
R 1.07 0.17 6.84 11.51 13.09 8.51

4
L 1.39 5.11 2.66 9.75 7.68 6.05
R 0.06 0.58 3.80 10.90 10.56 5.46

5
L 12.67 3.54 5.93 14.37 11.16 4.50
R 15.35 10.61 9.39 11.75 8.49 3.80

10
L 1.71 2.22 12.72 6.44 8.93 3.62
R 1.15 1.18 1.44 5.51 7.51 3.12

11
L 1.93 1.50 - 14.48 12.72 -
R 3.67 5.00 16.58 4.64 3.57 0.00

12
L 0.00 0.00 3.52 3.81 7.51 3.23
R 0.43 0.00 8.12 6.53 14.66 5.26

Average 4.03 2.51 7.14 9.09 9.87 4.64

* indicates results were averaged over only two partition. In the third partition, stratified MI-SVM could
not be initialized because the training set was lacking either “Almost none” or “Almost always” segments.
Note: for participant 11 (L) none of the training partitions included any “Almost none” segments.

105

experiences the least variation in performance between LAB and WILD data. Furthermore,
PS-WILD demonstrates the highest performance on WILD data. Figure 7.2 indicates that
these results largely hold for each fold of the WILD data.

It is possible that one reason for the improved performance of PS-WILD is that it was
able to learn the biases of the participants. That is, the participants may have perceived
their tremors to occur more or less frequently than reality, and the algorithm learned to
concur with these skewed perceptions. Alternatively, they may have interpreted the labels
differently, and the algorithm learned each participant’s particular interpretation. However,
while it would certainly be beneficial to clinicians to have completely unbiased symptom
monitoring, the PS-WILD is no more biased than the current gold standard, which is patient
self-reports. Furthermore, PS-WILD can at least help increase the frequency of monitoring
by automating it.

Another possible cause for the high performance of PS-WILD on the WILD data is due
to overfitting. As described in [49], refraining from randomizing the samples before splitting
into folds helps prevent performance estimates from being overly optimistic. However, to
truly test generalizability, one would need to examine performance on data collected several
months later. Nonetheless, these results indicate that training on 2/3 of weakly labeled
WILD data generalizes better to the left out 1/3 than training on accurately labeled LAB
data (as shown in Figure 7.2). It is possible that a laboratory dataset with many more
participants and a broader set of activities could lead to better performance than the PS-
WILD models. However, these findings suggests that, when building a system for automated,
passive, continuous symptom monitoring, it may be more beneficial to personally tailor the
system to specific users by training on their own, in-home, weakly labeled data than to
invest significant resources in building a large, accurately labeled dataset from laboratory
recordings of other people.

7.3 Conclusion and Future Work

In this chapter, I directly analyze how well data collected in laboratory settings represents
data collected in-the-wild for the purpose of continuous, automated PD tremor detection.
Previous work has typically trained machine learning algorithms on laboratory data under
the assumption that results will generalize to in-the-wild data. Other work has collected
data in-the-wild, but not collected labels for training the algorithms and assessing symptom
detection performance on such data. Three different methods of partitioning the dataset
were used to build three models – Gen-LAB, PS-LAB, and PS-WILD – per subject. For
every model, performance on laboratory data differs greatly from that on wild data (see
Table 6.2). Furthermore, while the person-specific classifier trained on LAB data (PS-LAB)
has the highest performance on LAB data, it has the lowest performance on WILD data.
These findings imply that we should not assume in-lab performance will transfer to the wild.

Another interesting finding is that the person-specific classifier trained on WILD data
(PS-WILD) performs better on WILD data than either of the classifiers trained on LAB data
(Gen-LAB and PS-LAB). It is expected that training an algorithm on data from a specific

106

Figure 7.2: Absolute error of Gen-LAB, PS-LAB and PS-WILD for each of the three folds
of WILD. Note that for Gen-LAB and PS-LAB, the same model is used for testing on each
of the WILD folds, whereas for PS-WILD, the training set differs with each WILD test fold.
* indicates that the training set was lacking “Almost none” or “Almost always” segments,
which made it not possible to initialize the stratified MI-SVM algorithm.

107

user/environment will lead to higher performance on that user/environment. However, it is
surprising that training on weak labels from the test subject, which contain less information,
can outperform training on accurate labels from the test subject.

Together, these findings suggest that when developing a system for continuous, automated
symptom detection, higher accuracy can be achieved by asking users to weakly label their
own, in-the-wild data for training than to invest significant resources in building a training
dataset collected from other people. In this way, machine learning algorithms can be tailored
to each user and a person-specific baseline can be established for later comparison during
monitoring.

The work in this chapter serves as a preliminary exploration into LAB versus WILD data.
I envision a system where users might submit labels over the course of one or two weeks, after
which a model would be trained and symptom detection would proceed automatically. It
would be interesting explore how many labels users would need to provide for performance to
stabilize, and whether the distribution of these labels over time affects performance. Before
building a product requiring users to submit their own labels, future work should investigate
whether these findings hold with other feature sets, datasets, and algorithms.

108

Chapter 8

Conclusion

In-home, continuous PD symptom monitoring could revolutionize PD patient care. This
technology would help clinicians understand exactly how their patients’ symptoms respond
to medication; it would help patients understand how factors, such as sleep, stress, or food,
affect their symptoms; and it would enable fine-grained, objective data collection on the
effects of new treatments to prevent, slow the progression of, or cure PD. This thesis explores
the two main challenges of developing this technology: (1) humans are highly variable, which
makes it difficult for machine learning algorithms using wearable accelerometers to perform
well on people who were not in the training set, and (2) it is difficult to obtain labels in the
wild, which makes it difficult to train machine learning algorithms that will perform well in
the wild.

To tackle the issue of human variability, many have formulated the problem as machine
learning under covariate shift, i.e., training and test data come from different distributions.
Given unlabeled test data, the distribution of the test data can be estimated and leveraged
to improve the classifier. This thesis explores several algorithms – Kernel Mean Matching
(KMM) [45], Selective Transfer Machine (STM) [25], and Transductive Parameter Transfer
(TPT) [114] – that have been developed to address the covariate shift problem. In particular,
STM and TPT have been shown to perform well in human facial expression analysis from
video data. Interestingly, in our dataset of PD tremor, none of the three algorithms were
able to demonstrate significant improvement over a generic SVM.

To better understand the lack of improvement from STM, this thesis presents in-depth
experiments on several synthetic datasets and a human activity recognition dataset. A mul-
ticlass version of STM was developed to accommodate these multiclass applications. Based
on observations of performance in the synthetic datasets, this thesis also presents two mod-
ifications to the STM objective function that are meant to better describe the desired sepa-
rating hyperplane. These modifications demonstrate improvement on the synthetic datasets.
However, results are not as positive on the human activity recognition dataset. Further ex-
periments show that, on these datasets, the STM objective function is not monotonically
related to accuracy. Therefore, minimizing the objective function does not necessarily max-
imize accuracy. It would be interesting to conduct further experiments to understand the
conditions necessary for these personalization algorithms to perform well.

109

This thesis also explores how to effectively train machine learning algorithms to perform
well in the wild. A popular paradigm is to collect data in controlled laboratory conditions
where video data would be available for labeling. These data are used for training and
validation, and it is assumed that the learned models will perform similarly in the wild.
Nowadays, with smartwatches and smartphones becoming more ubiquitous, it is easier to
collect data in the wild. However, the labeling problem remains.

Accurate labels (the exact start and end of each event) are not feasible for in-the-wild
data. However, weak labels (the approximate time of an event) are realistic. In this thesis,
laboratory data were used to compute labels of varying levels of weakness (i.e., labels over
time segments of varying lengths) to explore how the performance of several algorithms is
affected as labels become weaker. Additionally, this thesis presents a novel weakly supervised
learning algorithm, called Stratified Multiple Instance Learning, which can be paired with
many different classification algorithms. The assumptions of this algorithm align better with
the reality of PD symptom detection: that symptoms can occur with any frequency, ranging
from not at all to continuously. In contrast, other weakly supervised algorithms assume
positive events occur very infrequently. Experiments demonstrated that standard multiple
instance algorithms struggled as labels were made weaker, but the stratified versions were
able to maintain their performance.

This thesis then applied the stratified algorithm to in-the-wild data. Experiments were
conducted to analyze whether how well laboratory data represents in-the-wild data, and
whether algorithms trained on lab data could perform well on wild data and vice versa.
Results demonstrated that, for all algorithms, performance differed significantly between lab
and wild data. These findings imply that lab data are not a good representation of wild
data, and that researchers should not assume that performance on lab data will translate to
the wild. All things being equal, training on wild data should perform better on wild data
than training on lab data. However, things are not equal: labels on wild data are weak,
whereas accurate labels are available for lab data. Interestingly, experiments show that the
less precise, weak labels from wild data are still more effective for in-the-wild detection than
accurate labels from lab data.

We hope that the technology presented in this thesis could be transferred to a product
for automated symptom monitoring. Such a product would be worn continuously and log
symptoms throughout the day. It would then present symptom prevalence over time to both
the user and their doctor. A new data collection, incorporating the changes suggested in
Chapter 3.7, would help ensure that the algorithms are robust across users and across time.
To be truly useful for all PD patients, such a product would need to detect other motor
symptoms, like bradykinesia, dyskinesia, and freezing of gait. Additional data collections
would be required to build algorithms for monitoring these symptoms and to demonstrate
that accelerometers are an effective sensing modality for these symptoms.

If the findings in this thesis – that weak labels from the wild are more effective than
accurate labels from the lab – hold across larger datasets and other symptoms, then a
product should require users to submit labels of their own data. We envision a system
where users might submit labels over the course of one or two weeks, after which a model

110

would be trained and symptom detection would proceed automatically. This product would
require a well-designed user interface to make submitting labels as easy as possible. To
improve algorithm performance, users could opt in to contributing their labels to a larger
dataset for training algorithms on WILD data of numerous users. Additionally, the algorithm
could choose to only classify samples for which it has high confidence, thereby improving
classification accuracy at the cost of leaving some segments of time unclassified. Detected
symptoms would need to be summarized in a clean and easily digestible format for both
clinicians and patients. Ideally, these data would be sent to a clinician for review and
archived in a patient’s medical chart.

In future work, it would be interesting to see how many labeled samples or weeks of
data are required for algorithm performance to stabilize. Additionally, it is possible that
active learning could be used to help maintain high performance over longer periods of
time with relatively minimal user effort. Another way to reduce labeling load of users is to
apply personalization to the weakly labeled data. Importance reweighting algorithms are
designed to work without labels from the end user. While those algorithms did not show
large improvements on our dataset, it is possible that they could help improve performance
on the weakly labeled data. Furthermore, these algorithms could be used in combination
with a small number of labels from the end user. An extension of STM doing just that
has already been proposed [25], and quite a few other solutions have been proposed, as
described in Chapter 2.2.3. As wearable devices become more ubiquitous, avenues for nearly
unsupervised learning become more feasible: with enough users, broad labels of healthy
versus PD may be sufficient for an algorithm to learn to detect PD symptoms.

While this thesis focuses on PD symptom detection, the findings within should generalize
to other problems in human activity understanding, such as monitoring of other motor
impairments, activity tracking, or sports performance analysis. In these fields, it is often
difficult to obtain sufficiently large, fully supervised datasets because assigning labels (e.g.,
marking the beginning and end of each action in video data) is a highly labor-intensive and
time-consuming task. Furthermore, labeling human behavior is ambiguous, uncertain, and
labeler dependent. Weakly labeled data are often far easier to obtain. For instance, in our
case, it is much easier to label a large segment of time in which a Parkinson’s symptom
occurred rather than precisely labeling the start and end of the motor symptom. Weakly
supervised learning offers a new paradigm for building systems that can explicitly account
for these less precise labels when training classifiers. Furthermore, the stratified version
developed in this thesis should improve results for any application where the event of interest
can occur over longer periods of time as opposed to in discrete instances.

111

112

Bibliography

[1] M Reyes Adame, A Al-Jawad, M Romanovas, MA Hobert, W Maetzler, K Möller, and
Y Manoli. TUG test instrumentation for Parkinson’s disease patients using inertial
sensors and dynamic time warping. Biomedical Engineering/Biomedizinische Technik,
57(SI-1 Track-E):1071–1074, 2012. 2.3, 2.2

[2] Jake K Aggarwal and Michael S Ryoo. Human activity analysis: A review. ACM
Computing Surveys (CSUR), 43(3):16, 2011. 2.1

[3] Jake K Aggarwal and Lu Xia. Human activity recognition from 3d data: A review.
Pattern Recognition Letters, 48:70–80, 2014. 2.1

[4] Saad Ali and Mubarak Shah. Human action recognition in videos using kinematic
features and multiple instance learning. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 32(2):288–303, 2008. 2.3.3

[5] Jaume Amores. Multiple instance classification: Review, taxonomy and comparative
study. Artificial Intelligence, 201:81–105, 2013. 2.3.3, 6

[6] Stuart Andrews, Ioannis Tsochantaridis, and Thomas Hofmann. Support vector ma-
chines for multiple-instance learning. Advances in Neural Information Processing Sys-
tems, pages 577–584, 2003. 6.1, 6.1.2

[7] S Arora, V Venkataraman, A Zhan, S Donohue, KM Biglan, ER Dorsey, and MA Little.
Detecting and monitoring the symptoms of Parkinson’s disease using smartphones: A
pilot study. Parkinsonism & Related Disorders, 21(6):650–653, 2015. 2.3, 2.2, 2.3, 2.3.1

[8] Siddharth Arora, Vinayak Venkataraman, Sean Donohue, Kevin M Biglan, Earl R
Dorsey, and Max A Little. High accuracy discrimination of Parkinson’s disease partic-
ipants from healthy controls using smartphones. In Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2014 IEEE International Conference on, pages 3641–3644. IEEE,
2014. 2.3, 2.2

[9] Teresa Arroyo-Gallego, Maŕıa Jesus Ledesma-Carbayo, Álvaro Sánchez-Ferro, Ian But-
terworth, Carlos S Mendoza, Michele Matarazzo, Paloma Montero, Roberto López-
Blanco, Veronica Puertas-Martin, Rocio Trincado, et al. Detection of motor impair-
ment in Parkinson’s disease via mobile touchscreen typing. IEEE Transactions on
Biomedical Engineering, 64(9):1994–2002, 2017. 2.3, 2.2

[10] Marc Bachlin, Meir Plotnik, Daniel Roggen, Inbal Maidan, Jeffrey M Hausdorff, Nir
Giladi, and Gerhard Troster. Wearable assistant for Parkinson’s disease patients

113

with the freezing of gait symptom. IEEE Transactions on Information Technology
in Biomedicine, 14(2):436–446, 2010. 2.4

[11] Zahari Abu Bakar, Nooritawati Md Tahir, and Ihsan M Yassin. Classification of Parkin-
son’s disease based on multilayer perceptrons neural network. In Signal Processing
and Its Applications (CSPA), 2010 6th International Colloquium on, pages 1–4. IEEE,
2010. 2.3, 2.2

[12] Oresti Baños, Miguel Damas, Héctor Pomares, Ignacio Rojas, Máté Attila Tóth, and
Oliver Amft. A benchmark dataset to evaluate sensor displacement in activity recog-
nition. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing, pages
1026–1035. ACM, 2012. 5, 5.2

[13] Oresti Banos, Mate Attila Toth, Miguel Damas, Hector Pomares, and Ignacio Ro-
jas. Dealing with the effects of sensor displacement in wearable activity recognition.
Sensors, 14(6):9995–10023, 2014. 5, 5.2

[14] Ling Bao and Stephen S Intille. Activity recognition from user-annotated acceleration
data. In International Conference on Pervasive Computing, pages 1–17. Springer, 2004.
2.1

[15] Paulo Barbosa, Kemilly Dearo Garcia, João Mendes-Moreira, and André CPLF de Car-
valho. Unsupervised domain adaptation for human activity recognition. In Interna-
tional Conference on Intelligent Data Engineering and Automated Learning, pages
623–630. Springer, 2018. 2.2.3

[16] Jens Barth, Jochen Klucken, Patrick Kugler, Thomas Kammerer, Ralph Steidl, Jürgen
Winkler, Joachim Hornegger, and Björn Eskofier. Biometric and mobile gait analysis
for early diagnosis and therapy monitoring in Parkinson’s disease. In Engineering in
Medicine and Biology Society (EMBC), 2011 Annual International Conference of the
IEEE, pages 868–871. IEEE, 2011. 2.3, 2.2

[17] Gabriele Bleser, Daniel Steffen, Attila Reiss, Markus Weber, Gustaf Hendeby, and
Laetitia Fradet. Personalized physical activity monitoring using wearable sensors. In
Smart Health, pages 99–124. Springer, 2015. 2.2.3

[18] Brian M Bot, Christine Suver, Elias Chaibub Neto, Michael Kellen, Arno Klein,
Christopher Bare, Megan Doerr, Abhishek Pratap, John Wilbanks, E Ray Dorsey,
et al. The mpower study, Parkinson disease mobile data collected using researchkit.
Scientific Data, 3:160011, 2016. 2.3.1, 2.5

[19] Bambi R Brewer, Sujata Pradhan, George Carvell, and Anthony Delitto. Application
of modified regression techniques to a quantitative assessment for the motor signs of
Parkinson’s disease. IEEE Transactions on Neural Systems and Rehabilitation Engi-
neering, 17(6):568–575, 2009. 2.3, 2.3

[20] BR Brewer, S Pradhan, G Carvell, and A Delitto. Feature selection for classification
based on fine motor signs of Parkinson’s disease. In Engineering in Medicine and
Biology Society (EMBC), 2009 Annual International Conference of the IEEE, pages
214–217. IEEE, 2009. 2.3, 2.2

114

[21] LM Chahine, L Uribe, P Hogarth, James McNames, A Siderowf, K Marek, and D Jen-
nings. Portable objective assessment of upper extremity motor function in Parkinson’s
disease. Parkinsonism & Related Disorders, 43:61–66, 2017. 2.3.1

[22] Olivier Chapelle. Training a support vector machine in the primal. Neural Computa-
tion, 19(5):1155–1178, 2007. 5.1.3

[23] Yen-Ping Chen, Jhun-Ying Yang, Shun-Nan Liou, Gwo-Yun Lee, and Jeen-Shing
Wang. Online classifier construction algorithm for human activity detection using a
tri-axial accelerometer. Applied Mathematics and Computation, 205(2):849–860, 2008.
2.1

[24] Wen-Sheng Chu, Fernando De la Torre, and Jeffery F Cohn. Selective transfer ma-
chine for personalized facial action unit detection. In Proceedings of the 2013 IEEE
Conference on Computer Vision and Pattern Recognition, pages 3515–3522, 2013. 4,
4.1.3, 4.1.3, 5.3

[25] Wen-Sheng Chu, Fernando De la Torre, and Jeffrey F Cohn. Selective transfer machine
for personalized facial expression analysis. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 39(3):529–545, 2016. 1, 2.2.2, 5, 5.7, 8

[26] Bryan T Cole, Serge H Roy, Carlo J De Luca, and S Hamid Nawab. Dynamic neural
network detection of tremor and dyskinesia from wearable sensor data. In Engineering
in Medicine and Biology Society (EMBC), 2010 Annual International Conference of
the IEEE, pages 6062–6065. IEEE, 2010. 2.4, 2.3.1

[27] Bryan T Cole, Serge H Roy, Carlo J De Luca, and S Hamid Nawab. Dynamical learning
and tracking of tremor and dyskinesia from wearable sensors. IEEE Transactions on
Neural Systems and Rehabilitation Engineering, 22(5):982–991, 2014. 2.4, 2.3.1, 3.4

[28] Diane Cook, Kyle D Feuz, and Narayanan C Krishnan. Transfer learning for activity
recognition: A survey. Knowledge and Information Systems, 36(3):537–556, 2013. 2.2

[29] Corinna Cortes, Mehryar Mohri, and Andrés Munoz Medina. Adaptation based on
generalized discrepancy. Journal of Machine Learning Research, 20(1):1–30, 2019.
2.2.2

[30] Koby Crammer and Yoram Singer. On the algorithmic implementation of multiclass
kernel-based vector machines. Journal of Machine Learning Research, 2(Dec):265–292,
2001. 5.1.2

[31] Bozidara Cvetkovic, B Kaluza, M Luštrek, and Matjaz Gams. Semi-supervised learning
for adaptation of human activity recognition classifier to the user. In Proc. of Workshop
on Space, Time and Ambient Intelligence, IJCAI, pages 24–29. Citeseer, 2011. 2.2.3

[32] Samarjit Das, Breogan Amoedo, Fernando De la Torre, and Jessica Hodgins. Detecting
Parkinsons’ symptoms in uncontrolled home environments: a multiple instance learn-
ing approach. In Engineering in Medicine and Biology Society (EMBC), 2012 Annual
International Conference of the IEEE, pages 3688–3691. IEEE, 2012. 2.3.3, 3.2, 3.7,
6, 6.1, 6.3.1, 6.4

115

[33] Hal Daumé III. Frustratingly easy domain adaptation. arXiv preprint arXiv:0907.1815,
2009. 2.2.1

[34] Thomas G Dietterich, Richard H Lathrop, and Tomás Lozano-Pérez. Solving the
multiple instance problem with axis-parallel rectangles. Artificial Intelligence, 89(1):
31–71, 1997. 6.1, 6.1.3, 6.1.3, 6.2

[35] Ürün Dogan, Tobias Glasmachers, and Christian Igel. Fast training of multi-class
support vector machines: Technical report no. 03/2011. Technical report, University
of Copenhagen, 2011. 5.1.2

[36] ELAN. Elan – annotation software. Max Planck Institute for Psycholinguistics, The
Language Archive, Nijmegen, The Netherlands. URL https://tla.mpi.nl/tools/

tla-tools/elan/. Accessed: Nov. 17, 2017. 3.1

[37] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin.
LIBLINEAR: A library for large linear classification. Journal of Machine Learning
Research, 9:1871–1874, 2008. 4.1.1, 4.1.2, 4.1.3, 4.2.1, 6.1.1, 6.1.2, 7.1

[38] Y Rakhshani Fatmehsari and F Bahrami. Lempel-ziv complexity criteria for nonlin-
ear analysis of gait in patients with Parkinson’s disease. In Biomedical Engineering
(ICBME), 2011 18th Iranian Conference of, pages 137–141. IEEE, 2011. 2.3, 2.2

[39] Basura Fernando, Amaury Habrard, Marc Sebban, and Tinne Tuytelaars. Subspace
alignment for domain adaptation. arXiv preprint arXiv:1409.5241, 2014. 2.2.1, 2.2.3

[40] James M Fisher, Nils Y Hammerla, Thomas Ploetz, Peter Andras, Lynn Rochester,
and Richard W Walker. Unsupervised home monitoring of Parkinson’s disease motor
symptoms using body-worn accelerometers. Parkinsonism & Related Disorders, 33:
44–50, 2016. 2.3.3, 3.7, 6, 6.1

[41] Joseph P. Giuffrida, David E. Riley, Brian N. Maddux, and Dustin A. Heldman. Clin-
ically deployable kinesia� technology for automated tremor assessment. Movement
Disorders, 24(5):723–730, 2009. 2.3.2

[42] Christopher G Goetz, Barbara C Tilley, Stephanie R Shaftman, Glenn T Stebbins,
Stanley Fahn, Pablo Martinez-Martin, Werner Poewe, Cristina Sampaio, Matthew B
Stern, Richard Dodel, et al. Movement disorder society-sponsored revision of the Uni-
fied Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale presentation and clini-
metric testing results. Movement Disorders, 23(15):2129–2170, 2008. 1, 2.1, 2.3, 3.1

[43] Boqing Gong, Yuan Shi, Fei Sha, and Kristen Grauman. Geodesic flow kernel for
unsupervised domain adaptation. In Proceedings of the 2012 IEEE Conference on
Computer Vision and Pattern Recognition, pages 2066–2073. IEEE, 2012. 2.2.1

[44] Jochen Gorski, Frank Pfeuffer, and Kathrin Klamroth. Biconvex sets and optimization
with biconvex functions: a survey and extensions. Mathematical Methods of Operations
Research, 66(3):373–407, 2007. 5.6.1

[45] Arthur Gretton, Alex Smola, Jiayuan Huang, Marcel Schmittfull, Karsten Borgwardt,
and Bernhard Schölkopf. Covariate shift by kernel mean matching. In Joaquin

116

https://tla.mpi.nl/tools/tla-tools/elan/
https://tla.mpi.nl/tools/tla-tools/elan/

Quionero-Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D Lawrence,
editors, Dataset Shift in Machine Learning, chapter 8, pages 131–160. The MIT Press,
2009. 2.2.2, 2.2.3, 4, 4.1.2, 4.2.2, 4.4, 8

[46] Robert I Griffiths, Katya Kotschet, Sian Arfon, Zheng Ming Xu, William Johnson,
John Drago, Andrew Evans, Peter Kempster, Sanjay Raghav, and Malcolm K Horne.
Automated assessment of bradykinesia and dyskinesia in Parkinson’s disease. Journal
of Parkinson’s Disease, 2(1):47–55, 2012. 2.3.2, 3.7

[47] Xinze Guan, Raviv Raich, and Weng-Keen Wong. Efficient multi-instance learning
for activity recognition from time series data using an auto-regressive hidden markov
model. In International Conference on Machine Learning, pages 2330–2339, 2016. 2.3.3

[48] Hirotaka Hachiya, Masashi Sugiyama, and Naonori Ueda. Importance-weighted least-
squares probabilistic classifier for covariate shift adaptation with application to human
activity recognition. Neurocomputing, 80:93–101, 2012. 2.2.2

[49] Nils Y Hammerla and Thomas Plötz. Let’s (not) stick together: pairwise similarity
biases cross-validation in activity recognition. In Proceedings of the 2015 ACM Inter-
national Joint Conference on Pervasive and Ubiquitous Computing, pages 1041–1051.
ACM, 2015. 7.1.1, 7.2

[50] Nils Y. Hammerla, James M. Fisher, Peter Andras, Lynn Rochester, Richard Walker,
and Thomas Plotz. PD disease state assessment in naturalistic environments using deep
learning. In Proc. of the Twenty-Ninth AAAI Conference on Artificial Intelligence,
AAAI’15, pages 1742–1748. AAAI, 2015. ISBN 0-262-51129-0. 7.2

[51] AM Ardi Handojoseno, James M Shine, Tuan N Nguyen, Yvonne Tran, Simon JG
Lewis, and Hung T Nguyen. The detection of freezing of gait in Parkinson’s disease
patients using eeg signals based on wavelet decomposition. In Engineering in Medicine
and Biology Society (EMBC), 2012 Annual International Conference of the IEEE,
pages 69–72. IEEE, 2012. 2.4

[52] Ali Hassan, Robert Damper, and Mahesan Niranjan. On acoustic emotion recognition:
compensating for covariate shift. IEEE Transactions on Audio, Speech, and Language
Processing, 21(7):1458–1468, 2013. 2.2.3

[53] Zhen-Yu He and Lian-Wen Jin. Activity recognition from acceleration data using ar
model representation and svm. In 2008 International Conference on Machine Learning
and Cybernetics, volume 4, pages 2245–2250. IEEE, 2008. 2.1

[54] Zhenyu He and Lianwen Jin. Activity recognition from acceleration data based on
discrete consine transform and svm. In Systems, Man and Cybernetics, 2009. SMC
2009. IEEE International Conference on, pages 5041–5044. IEEE, 2009. 2.1

[55] Zhenyu He, Zhibin Liu, Lianwen Jin, Li-Xin Zhen, and Jian-Cheng Huang. Weightless-
ness feature — a novel feature for single tri-axial accelerometer based activity recog-
nition. In Pattern Recognition, 2008. ICPR 2008. 19th International Conference on,
pages 1–4. IEEE, 2008. 2.1

117

[56] Dustin A Heldman, Alberto J Espay, Peter A LeWitt, and Joseph P Giuffrida. Clini-
cian versus machine: reliability and responsiveness of motor endpoints in Parkinson’s
disease. Parkinsonism & Related Disorders, 20(6):590–595, 2014. 2.3, 2.3

[57] Jerónimo Hernández-González, Iñaki Inza, and Jose A Lozano. Learning bayesian net-
work classifiers from label proportions. Pattern Recognition, 46(12):3425–3440, 2013.
6.1.5

[58] Jeffrey D Hoffman and James McNames. Objective measure of upper extremity motor
impairment in Parkinson’s disease with inertial sensors. In Engineering in Medicine
and Biology Society (EMBC), 2011 Annual International Conference of the IEEE,
pages 4378–4381. IEEE, 2011. 2.3, 2.2

[59] Jin-Hyuk Hong, Julian Ramos, and Anind K Dey. Toward personalized activity
recognition systems with a semipopulation approach. IEEE Transactions on Human-
Machine Systems, 46(1):101–112, 2015. 2.2.3

[60] Chih-Wei Hsu and Chih-Jen Lin. A comparison of methods for multiclass support
vector machines. IEEE Transactions on Neural Networks, 13(2):415–425, 2002. 5.1.2,
5.3

[61] Derek Hao Hu and Qiang Yang. Transfer learning for activity recognition via sensor
mapping. IJCAI Proceedings-International Joint Conference on Artificial Intelligence,
22(3):1962, 2011. 2.2

[62] Ryan P Hubble, Geraldine A Naughton, Peter A Silburn, and Michael H Cole. Wear-
able sensor use for assessing standing balance and walking stability in people with
Parkinson’s disease: a systematic review. PloS one, 10(4):e0123705, 2015. 2.3

[63] Nazli Ikizler-Cinbis and Stan Sclaroff. Object, scene and actions: Combining multiple
features for human action recognition. In European Conference on Computer Vision,
pages 494–507. Springer, 2010. 2.3.3

[64] Ozlem Durmaz Incel, Mustafa Kose, and Cem Ersoy. A review and taxonomy of
activity recognition on mobile phones. BioNanoScience, 3(2):145–171, 2013. 2.1

[65] Luciana C Jatoba, Ulrich Grossmann, Chistophe Kunze, Jorg Ottenbacher, and Wil-
helm Stork. Context-aware mobile health monitoring: Evaluation of different pattern
recognition methods for classification of physical activity. In Engineering in Medicine
and Biology Society (EMBC), 2008 Annual International Conference of the IEEE,
pages 5250–5253. IEEE, 2008. 2.1

[66] Jing Jiang. A literature survey on domain adaptation of statistical classifiers, 2008.
URL http://www.mysmu.edu/faculty/jingjiang/papers/da_survey.pdf. 2.2

[67] Takafumi Kanamori, Shohei Hido, and Masashi Sugiyama. A least-squares approach
to direct importance estimation. Journal of Machine Learning Research, 10(Jul):1391–
1445, 2009. 2.2.2, 2.2.3

[68] Panagiotis Kassavetis, Tabish A Saifee, George Roussos, Loukas Drougkas, Maja Ko-
jovic, John C Rothwell, Mark J Edwards, and Kailash P Bhatia. Developing a tool

118

http://www.mysmu.edu/faculty/jingjiang/papers/da_survey.pdf

for remote digital assessment of Parkinson’s disease. Movement Disorders Clinical
Practice, 3(1):59–64, 2016. 2.3, 2.3

[69] Shian-Ru Ke, Hoang Le Uyen Thuc, Yong-Jin Lee, Jenq-Neng Hwang, Jang-Hee Yoo,
and Kyoung-Ho Choi. A review on video-based human activity recognition. Computers,
2(2):88–131, 2013. 2.1

[70] Adil Mehmood Khan, Young-Koo Lee, Sungyoung Y Lee, and Tae-Seong Kim. A
triaxial accelerometer-based physical-activity recognition via augmented-signal fea-
tures and a hierarchical recognizer. IEEE Transactions on Information Technology
in Biomedicine, 14(5):1166–1172, 2010. 2.1

[71] Faisal M Khan, Michael Barnathan, Michael Montgomery, Stanely Myers, Lucien Côté,
and Sheree Loftus. A wearable accelerometer system for unobtrusive monitoring of
Parkinson’s disease motor symptoms. In Bioinformatics and Bioengineering (BIBE),
2014 IEEE International Conference on, pages 120–125. IEEE, 2014. 2.4, 3.4

[72] Daniel Kifer, Shai Ben-David, and Johannes Gehrke. Detecting change in data streams.
In Proceedings of the Thirtieth International Conference on Very Large Data Bases,
volume 30, pages 180–191. VLDB Endowment, 2004. 2.2.2

[73] Mustafa R Kılınç and Nikolaos V Sahinidis. Exploiting integrality in the global opti-
mization of mixed-integer nonlinear programming problems with baron. Optimization
Methods and Software, 33(3):540–562, 2018. 5.6.1

[74] Ken J Kubota, Jason A Chen, and Max A Little. Machine learning for large-scale
wearable sensor data in Parkinson’s Disease: Concepts, promises, pitfalls, and futures.
Movement Disorders, 31(9):1314–1326, 2016. 2.3

[75] Hendrik Kuck and Nando de Freitas. Learning about individuals from group statistics.
arXiv preprint arXiv:1207.1393, 2012. 6.1.5

[76] Oscar D Lara and Miguel A Labrador. A survey on human activity recognition using
wearable sensors. IEEE Communications Surveys & Tutorials, 15(3):1192–1209, 2013.
2.1

[77] Chae Young Lee, Seong Jun Kang, Sang-Kyoon Hong, Hyeo-Il Ma, Unjoo Lee, and
Yun Joong Kim. A validation study of a smartphone-based finger tapping application
for quantitative assessment of bradykinesia in Parkinson’s disease. PloS one, 11(7):
e0158852, 2016. 2.3, 2.2, 2.3

[78] Will Lee, Andrew Evans, and David R Williams. Validation of a smartphone applica-
tion measuring motor function in Parkinson’s disease. Journal of Parkinson’s Disease,
6(2):371–382, 2016. 2.3, 2.3

[79] Yoonkyung Lee, Yi Lin, and Grace Wahba. Multicategory support vector machines:
Theory and application to the classification of microarray data and satellite radiance
data. Journal of the American Statistical Association, 99(465):67–81, 2004. 5.1.2

[80] Florian Lipsmeier, Kirsten I Taylor, Timothy Kilchenmann, Detlef Wolf, Alf Scotland,
Jens Schjodt-Eriksen, Wei-Yi Cheng, Ignacio Fernandez-Garcia, Juliane Siebourg-

119

Polster, Liping Jin, et al. Evaluation of smartphone-based testing to generate ex-
ploratory outcome measures in a phase 1 Parkinson’s disease clinical trial. Movement
Disorders, 33(8):1287–1297, 2018. 2.3.1, 2.3.2

[81] Max A Little, Patrick E McSharry, Eric J Hunter, Jennifer Spielman, Lorraine O
Ramig, et al. Suitability of dysphonia measurements for telemonitoring of Parkinson’s
disease. IEEE Transactions on Biomedical Engineering, 56(4):1015–1022, 2009. 2.3,
2.2

[82] Jeffrey W Lockhart and Gary M Weiss. The benefits of personalized smartphone-based
activity recognition models. In Proceedings of the 2014 SIAM International Conference
on Data Mining, pages 614–622. SIAM, 2014. 2.2.3

[83] Marco Loog. Nearest neighbor-based importance weighting. In 2012 IEEE Interna-
tional Workshop on Machine Learning for Signal Processing, pages 1–6. IEEE, 2012.
2.2.2, 2.2.3

[84] Hany Hazfiza Manap, Nooritawati Md Tahir, and Ahmad Ihsan M Yassin. Statis-
tical analysis of Parkinson disease gait classification using artificial neural network.
In Signal Processing and Information Technology (ISSPIT), 2011 IEEE International
Symposium on, pages 060–065. IEEE, 2011. 2.3, 2.2

[85] Andrea Mannini, Stephen S Intille, Mary Rosenberger, Angelo M Sabatini, and William
Haskell. Activity recognition using a single accelerometer placed at the wrist or ankle.
Medicine and Science in Sports and Exercise, 45(11):2193, 2013. 2.1

[86] Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh. Domain adaptation:
Learning bounds and algorithms. arXiv preprint arXiv:0902.3430, 2009. 2.2.2

[87] Oded Maron and Tomás Lozano-Pérez. A framework for multiple-instance learning.
Advances in Neural Information Processing Systems, pages 570–576, 1998. 6.1.4

[88] Thomas O Mera, Dustin A Heldman, Alberto J Espay, Megan Payne, and Joseph P
Giuffrida. Feasibility of home-based automated Parkinson’s disease motor assessment.
Journal of Neuroscience Methods, 203(1):152–156, 2012. 2.3.1

[89] Michael J. Fox Foundation for Parkinson’s Research. Parkinson’s disease symptoms,
2013. URL https://www.michaeljfox.org/understanding-parkinsons/living-

with-pd/topic.php?symptoms. 1

[90] MOSEK ApS. The MOSEK optimization toolbox for MATLAB manual. Version 9.0.,
2019. URL http://docs.mosek.com/9.0/toolbox/index.html. 4.1.2, 4.1.3

[91] Christiana Ossig, Angelo Antonini, Carsten Buhmann, Joseph Classen, Ilona Csoti,
Björn Falkenburger, Michael Schwarz, Jürgen Winkler, and Alexander Storch. Wear-
able sensor-based objective assessment of motor symptoms in Parkinson’s disease.
Journal of Neural Transmission, 123(1):57–64, 2016. 2.3

[92] Luca Palmerini, Laura Rocchi, Sabato Mellone, Franco Valzania, and Lorenzo Chiari.
Feature selection for accelerometer-based posture analysis in Parkinson’s disease. IEEE
Transactions on Information Technology in Biomedicine, 15(3):481–490, 2011. 2.3, 2.2

120

https://www.michaeljfox.org/understanding-parkinsons/living-with-pd/topic.php?symptoms
https://www.michaeljfox.org/understanding-parkinsons/living-with-pd/topic.php?symptoms
http://docs.mosek.com/9.0/toolbox/index.html

[93] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions
on Knowledge and Data Engineering, 22(10):1345–1359, 2010. 2.2

[94] Sinno Jialin Pan, Ivor W Tsang, James T Kwok, and Qiang Yang. Domain adaptation
via transfer component analysis. IEEE Transactions on Neural Networks, 22(2):199–
210, 2011. 2.2.1, 2.2.3

[95] Parkinson’s Disease Foundation. Statistics on parkinson’s, 2013. URL http://www.

pdf.org/en/parkinson_statistics. 1

[96] Shyamal Patel, Konrad Lorincz, Richard Hughes, Nancy Huggins, John Growdon,
David Standaert, Metin Akay, Jennifer Dy, Matt Welsh, and Paolo Bonato. Monitoring
motor fluctuations in patients with Parkinson’s disease using wearable sensors. IEEE
Transactions on Information Technology in Biomedicine, 13(6):864–873, 2009. 2.3, 2.3,
3.4

[97] Thanneer M Perumal, Meghasyam Tummalacherla, Phil Snyder, Elias Chaibub Neto,
E Dorsey, Lara Mangravite, and Larsson Omberg. Remote assessment, in real-world
setting, of tremor severity in Parkinson’s disease patients using smartphone inertial
sensors. In Proceedings of the 2018 ACM International Joint Conference and 2018
International Symposium on Pervasive and Ubiquitous Computing and Wearable Com-
puters, pages 215–218. ACM, 2018. 2.5

[98] Paola Pierleoni, Lorenzo Palma, Alberto Belli, and Luca Pernini. A real-time system
to aid clinical classification and quantification of tremor in Parkinson’s disease. In
Biomedical and Health Informatics (BHI), 2014 IEEE-EMBS International Conference
on, pages 113–116. IEEE, 2014. 3.4

[99] Benjamin Pittman, Reza Hosseini Ghomi, and Dong Si. Parkinson’s disease classifica-
tion of mpower walking activity participants. In Engineering in Medicine and Biology
Society (EMBC), 2018 Annual International Conference of the IEEE, pages 4253–4256.
IEEE, 2018. 2.5

[100] Sujata D Pradhan, Bambi R Brewer, George E Carvell, Patrick J Sparto, Anthony
Delitto, and Yoky Matsuoka. Relation between ability to track force during dual
tasking and function in individuals with Parkinson’s disease. In Rehabilitation Robotics,
2009. ICORR 2009. IEEE International Conference on, pages 885–892. IEEE, 2009.
2.3, 2.3

[101] John Prince and Maarten De Vos. A deep learning framework for the remote detection
of Parkinson’s disease using smart-phone sensor data. In Engineering in Medicine and
Biology Society (EMBC), 2018 Annual International Conference of the IEEE, pages
3144–3147. IEEE, 2018. 2.5

[102] John Prince, Siddharth Arora, and Maarten de Vos. Big data in Parkinson’s disease:
using smartphones to remotely detect longitudinal disease phenotypes. Physiological
Measurement, 39(4):044005, 2018. 2.5

[103] Blake P Printy, Lindsey M Renken, John P Herrmann, Isac Lee, Bryant Johnson, Emily
Knight, Georgeta Varga, and Diane Whitmer. Smartphone application for classification

121

http://www.pdf.org/en/parkinson_statistics
http://www.pdf.org/en/parkinson_statistics

of motor impairment severity in Parkinson’s disease. In Engineering in Medicine and
Biology Society (EMBC), 2014 Annual International Conference of the IEEE, pages
2686–2689. IEEE, 2014. 2.3, 2.3

[104] C. L. Pulliam, D. A. Heldman, E. B. Brokaw, T. O. Mera, Z. K. Mari, and M. A.
Burack. Continuous assessment of levodopa response in Parkinson’s Disease using
wearable motion sensors. IEEE Transactions on Biomedical Engineering, PP(99):1–1,
2017. 2.4

[105] CL Pulliam, SR Eichenseer, CG Goetz, Olga Waln, CB Hunter, J Jankovic, DE Vail-
lancourt, JP Giuffrida, and DA Heldman. Continuous in-home monitoring of essential
tremor. Parkinsonism & Related Disorders, 20(1):37–40, 2014. 2.3.2, 3.7

[106] Novi Quadrianto, Alex J Smola, Tiberio S Caetano, and Quoc V Le. Estimating labels
from label proportions. Journal of Machine Learning Research, 10(Oct):2349–2374,
2009. 6.1.5

[107] Cliff Randell and Henk Muller. Context awareness by analysing accelerometer data. In
Wearable Computers, The Fourth International Symposium on, pages 175–176. IEEE,
2000. 2.1

[108] Seyed Ali Rokni, Marjan Nourollahi, and Hassan Ghasemzadeh. Personalized human
activity recognition using convolutional neural networks. In Thirty-Second AAAI Con-
ference on Artificial Intelligence, 2018. 2.2.3

[109] Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. The earth mover’s distance as
a metric for image retrieval. International Journal of Computer Vision, 40(2):99–121,
2000. 4.1.4, 2, 4.1.4

[110] Sage Bionetworks. mpower: Mobile Parkinson disease study, 2015. URL http://

parkinsonmpower.org/. 2.3.1, 2.5

[111] Arash Salarian, Heike Russmann, Christian Wider, Pierre R Burkhard, Franios JG
Vingerhoets, and Kamiar Aminian. Quantification of tremor and bradykinesia in
Parkinson’s disease using a novel ambulatory monitoring system. IEEE Transactions
on Biomedical Engineering, 54(2):313–322, 2007. 2.4, 2.3.1, 3.4

[112] A Samà, C Perez-Lopez, J Romagosa, D Rodriguez-Martin, A Catala, J Cabestany,
DA Perez-Martinez, and A Rodriguez-Molinero. Dyskinesia and motor state detection
in Parkinson’s disease patients with a single movement sensor. In Engineering in
Medicine and Biology Society (EMBC), 2012 Annual International Conference of the
IEEE, pages 1194–1197. IEEE, 2012. 2.4

[113] Álvaro Sánchez-Ferro, Morad Elshehabi, Catarina Godinho, Dina Salkovic, Markus A
Hobert, Josefa Domingos, Janet MT Van Uem, Joaquim J Ferreira, and Walter Maet-
zler. New methods for the assessment of Parkinson’s disease (2005 to 2015): A sys-
tematic review. Movement Disorders, 31(9):1283–1292, 2016. 2.3

[114] Enver Sangineto, Gloria Zen, Elisa Ricci, and Nicu Sebe. We are not all equal: Person-
alizing models for facial expression analysis with transductive parameter transfer. In

122

http://parkinsonmpower.org/
http://parkinsonmpower.org/

Proceedings of the 22nd ACM International Conference on Multimedia, pages 357–366.
ACM, 2014. 2.2.2, 4, 4.1.4, 4.1.4, 3, 4.1.4, 4.2.4, 4.3, 5, 8

[115] Patrick Schwab and Walter Karlen. Phonemd: learning to diagnose Parkinson’s disease
from smartphone data. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 33, pages 1118–1125, 2019. 2.5

[116] Ana Ĺıgia Silva de Lima, Tim Hahn, Nienke M de Vries, Eli Cohen, Lauren Bataille,
Max A Little, Heribert Baldus, Bastiaan R Bloem, and Marjan J Faber. Large-scale
wearable sensor deployment in Parkinson’s patients: the Parkinson@home study pro-
tocol. JMIR Research Protocols, 5(3):e172, 2016. 2.3.2

[117] Ana Ĺıgia Silva de Lima, Tim Hahn, Luc JW Evers, Nienke M de Vries, Eli Cohen,
Michal Afek, Lauren Bataille, Margaret Daeschler, Kasper Claes, Babak Boroojerdi,
et al. Feasibility of large-scale deployment of multiple wearable sensors in Parkinson’s
disease. PLoS One, 12(12):e0189161, 2017. 2.3.2

[118] Ana Ĺıgia Silva de Lima, Luc JW Evers, Tim Hahn, Nienke M De Vries, Margaret
Daeschler, Babak Boroojerdi, Dolors Terricabras, Max A Little, Bastiaan R Bloem,
and Marjan J Faber. Impact of motor fluctuations on real-life gait in Parkinson’s
patients. Gait & Posture, 62:388–394, 2018. 2.3.2

[119] Ana Ĺıgia Silva de Lima, Tine Smits, Sirwan KL Darweesh, Giulio Valenti, Mladen
Milosevic, Marten Pijl, Heribert Baldus, Nienke M de Vries, Marjan J Meinders, and
Bastiaan R Bloem. Home-based monitoring of falls using wearable sensors in Parkin-
son’s disease. Movement Disorders, 2019. 2.3.2

[120] André A Spadoto, Rodrigo C Guido, João P Papa, and Alexandre X Falcão. Parkin-
son’s disease identification through optimum-path forest. In Engineering in Medicine
and Biology Society (EMBC), 2010 Annual International Conference of the IEEE,
pages 6087–6090. IEEE, 2010. 2.3, 2.2

[121] Maja Stikic and Bernt Schiele. Activity recognition from sparsely labeled data us-
ing multi-instance learning. In International Symposium on Location-and Context-
Awareness, pages 156–173. Springer, 2009. 2.3.3

[122] Maja Stikic, Diane Larlus, Sandra Ebert, and Bernt Schiele. Weakly supervised recog-
nition of daily life activities with wearable sensors. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 33(12):2521–2537, 2011. 2.3.3

[123] Masashi Sugiyama, Taiji Suzuki, Shinichi Nakajima, Hisashi Kashima, Paul von
Bünau, and Motoaki Kawanabe. Direct importance estimation for covariate shift adap-
tation. Annals of the Institute of Statistical Mathematics, 60(4):699–746, 2008. 2.2.2,
2.2.3

[124] Xu Sun, Hisashi Kashima, and Naonori Ueda. Large-scale personalized human activity
recognition using online multitask learning. IEEE Transactions on Knowledge and
Data Engineering, 25(11):2551–2563, 2012. 2.2.3

[125] Portia E Taylor, Gustavo JM Almeida, Takeo Kanade, and Jessica K Hodgins. Classify-

123

ing human motion quality for knee osteoarthritis using accelerometers. In Engineering
in Medicine and Biology Society (EMBC), 2010 Annual International Conference of
the IEEE, pages 339–343. IEEE, 2010. 2.1

[126] Iris Tien, Steven D Glaser, and Michael J Aminoff. Characterization of gait abnormal-
ities in Parkinson’s disease using a wireless inertial sensor system. In Engineering in
Medicine and Biology Society (EMBC), 2010 Annual International Conference of the
IEEE, pages 3353–3356. IEEE, 2010. 2.3, 2.2

[127] Markos G Tsipouras, Alexandros T Tzallas, Dimitrios I Fotiadis, and Spyridon Konit-
siotis. On automated assessment of levodopa-induced dyskinesia in Parkinson’s disease.
In Engineering in Medicine and Biology Society (EMBC), 2011 Annual International
Conference of the IEEE, pages 2679–2682. IEEE, 2011. 2.3, 2.3

[128] Markos G Tsipouras, Alexandros T Tzallas, George Rigas, Sofia Tsouli, Dimitrios I
Fotiadis, and Spiros Konitsiotis. An automated methodology for levodopa-induced
dyskinesia: assessment based on gyroscope and accelerometer signals. Artificial Intel-
ligence in Medicine, 55(2):127–135, 2012. 2.4

[129] Devis Tuia, Jochem Verrelst, Luis Alonso, Fernando Pérez-Cruz, and Gustavo Camps-
Valls. Multioutput support vector regression for remote sensing biophysical parameter
estimation. IEEE Geoscience and Remote Sensing Letters, 8(4):804–808, 2011. 4.1.4,
4.1.4, 4.1.4, 4.2.4

[130] Eus JW Van Someren, Myrthe D Pticek, Johannes D Speelman, Peter R Schuurman,
Rianne Esselink, and Dick F Swaab. New actigraph for long-term tremor recording.
Movement Disorders: Official Journal of the Movement Disorder Society, 21(8):1136–
1143, 2006. 2.3, 2.3

[131] Aner Weiss, Sarvi Sharifi, Meir Plotnik, Jeroen PP van Vugt, Nir Giladi, and Jeffrey M
Hausdorff. Toward automated, at-home assessment of mobility among patients with
Parkinson disease, using a body-worn accelerometer. Neurorehabilitation and Neural
Repair, 25(9):810–818, 2011. 2.3, 2.2, 2.3.2

[132] Gary Mitchell Weiss and Jeffrey Lockhart. The impact of personalization on
smartphone-based activity recognition. In Workshops at the Twenty-Sixth AAAI Con-
ference on Artificial Intelligence, 2012. 1, 4, 7.1.1, 7.2

[133] Jason Weston and Chris Watkins. Support vector machines for multi-class pattern
recognition. In ESANN, volume 99, pages 219–224, 1999. 5.1.2

[134] Timothy J Wroge, Yasin Özkanca, Cenk Demiroglu, Dong Si, David C Atkins, and
Reza Hosseini Ghomi. Parkinson’s disease diagnosis using machine learning and voice.
In 2018 IEEE Signal Processing in Medicine and Biology Symposium (SPMB), pages
1–7. IEEE, 2018. 2.5

[135] Jun Yang. MILL: A multiple instance learning library. http://www.cs.cmu.edu/

~juny/MILL, 2008. Accessed: Sept. 3, 2019. 6.1.4

[136] Ulas Yilmaz. The Earth Mover’s Distance, 2019. URL https://www.mathworks.com/

124

http://www.cs.cmu.edu/~juny/MILL
http://www.cs.cmu.edu/~juny/MILL
https://www.mathworks.com/matlabcentral/fileexchange/22962-the-earth-mover-s-distance
https://www.mathworks.com/matlabcentral/fileexchange/22962-the-earth-mover-s-distance
https://www.mathworks.com/matlabcentral/fileexchange/22962-the-earth-mover-s-distance

matlabcentral/fileexchange/22962-the-earth-mover-s-distance. 2

[137] Andong Zhan, Max A Little, Denzil A Harris, Solomon O Abiola, E Dorsey, Suchi
Saria, and Andreas Terzis. High frequency remote monitoring of Parkinson’s disease
via smartphone: Platform overview and medication response detection. arXiv preprint
arXiv:1601.00960, 2016. 2.3.1, 2.3.2

[138] Ada Zhang, Alexander Cebulla, Stanislav Panev, Jessica Hodgins, and Fernando De la
Torre. Weakly-supervised learning for Parkinson’s disease tremor detection. In Engi-
neering in Medicine and Biology Society (EMBC), 2017 Annual International Confer-
ence of the IEEE, pages 143–147. IEEE, 2017. 2.3.3, 3.2, 6, 7.1.1

[139] Qi Zhang, Sally A Goldman, et al. Em-dd: An improved multiple-instance learning
technique. In Advances in Neural Information Processing Systems, volume 1, pages
1073–1080, 2001. 6.1, 6.1.4, 6.1.4

[140] Zhongtang Zhao, Yiqiang Chen, Junfa Liu, Zhiqi Shen, and Mingjie Liu. Cross-people
mobile-phone based activity recognition. In Twenty-second International Joint Con-
ference on Artificial Intelligence, 2011. 2.2.3

[141] Vincent Wenchen Zheng, Derek Hao Hu, and Qiang Yang. Cross-domain activity recog-
nition. In Proceedings of the 11th International Conference on Ubiquitous Computing,
pages 61–70. ACM, 2009. 2.2

[142] Chun Zhu and Weihua Sheng. Human daily activity recognition in robot-assisted
living using multi-sensor fusion. In Robotics and Automation, 2009. ICRA’09. IEEE
International Conference on, pages 2154–2159. IEEE, 2009. 2.1

[143] Daphne GM Zwartjes, Tjitske Heida, Jeroen PP Van Vugt, Jan AG Geelen, and Pe-
ter H Veltink. Ambulatory monitoring of activities and motor symptoms in Parkinson’s
disease. IEEE Transactions on Biomedical Engineering, 57(11):2778–2786, 2010. 2.4

125

https://www.mathworks.com/matlabcentral/fileexchange/22962-the-earth-mover-s-distance
https://www.mathworks.com/matlabcentral/fileexchange/22962-the-earth-mover-s-distance
https://www.mathworks.com/matlabcentral/fileexchange/22962-the-earth-mover-s-distance

	1 Introduction
	2 Related Work
	2.1 Human Activity Recognition
	2.2 Personalization via domain adaptation
	2.2.1 Approach #1: Alternate feature representations
	2.2.2 Approach #2: Reweight the training data
	2.2.3 Applications of personalization in human applications

	2.3 Machine learning and wearable sensors for PD
	2.3.1 In-home PD assessment
	2.3.2 Passive monitoring of PD symptoms
	2.3.3 Weakly supervised learning for PD symptom detection

	3 Data Collection and Processing
	3.1 Laboratory recordings (LAB)
	3.2 In-the-wild recordings (WILD)
	3.3 General training and testing procedures
	3.4 Features
	3.5 Performance metrics
	3.6 Machine learning challenges on this dataset
	3.7 Lessons learned

	4 Personalization Via Domain Transfer
	4.1 Algorithms
	4.1.1 Support Vector Machine
	4.1.2 Kernel Mean Matching
	4.1.3 Selective Transfer Machine
	4.1.4 Transductive Parameter Transfer

	4.2 Methods
	4.2.1 SVM
	4.2.2 KMM
	4.2.3 STM
	4.2.4 TPT

	4.3 Results and discussion
	4.4 Conclusions and future work

	5 Analyzing the Selective Transfer Machine
	5.1 Overview of multiclass algorithms
	5.1.1 Converting binary classifiers to multiclass
	5.1.2 Multiclass SVM
	5.1.3 Multiclass Selective Transfer Machine

	5.2 REALDISP dataset
	5.3 Preliminary results on REALDISP
	5.4 Analysis of multiclass STM on synthetic data
	5.4.1 Dataset #1
	5.4.2 Dataset #2
	5.4.3 Dataset #3
	5.4.4 Dataset #4

	5.5 Improving the STM objective function constraints
	5.5.1 Equal weighting of classes
	5.5.2 Proportional weighting of classes
	5.5.3 Results

	5.6 Analyzing the STM objective function
	5.6.1 Experiments with global optimization

	5.7 Conclusions

	6 Stratified Weakly Supervised Learning
	6.1 Algorithms
	6.1.1 Naive Support Vector Machine (Naive-SVM)
	6.1.2 Multiple Instance SVM (MI-SVM)
	6.1.3 Iterative Discriminative Axis Parallel Rectangle (ID-APR)
	6.1.4 Expectation Maximization Diverse Density (EM-DD)
	6.1.5 Stratified Multiple Instance Learning

	6.2 Methods
	6.3 Results and Discussion
	6.3.1 Standard Metrics
	6.3.2 Proposed Performance Metric

	6.4 Conclusion

	7 Learning from Wild Vs. Laboratory Data
	7.1 Methods
	7.1.1 Models
	7.1.2 Performance metrics

	7.2 Results and Discussion
	7.3 Conclusion and Future Work

	8 Conclusion
	Bibliography

