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Abstract

Deep learning object detectors often return false positives with very high
confidence. Although they optimize generic detection performance, such
as mean average precision (mAP), they are not designed for reliability.
For a reliable detection system, if a high confidence detection is made, we
would want high certainty that the object has indeed been detected. To
achieve this, we have developed a set of verification tests which a proposed
detection must pass to be accepted. We develop a theoretical framework
which proves that, under certain assumptions, our verification tests will not
accept any false positives. Based on an approximation to this framework,
we present a practical detection system that can verify, with high precision,
whether each detection of a machine-learning based object detector is cor-
rect. We show that these tests can improve the overall accuracy of a base
detector and that accepted examples are highly likely to be correct. This
allows the detector to operate in a high precision regime and can thus be
used for robotic perception systems as a reliable instance detection method.
Code is available at https://github.com/siddancha/FlowVerify.
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Chapter 1

Introduction

Instance detection is the task of detecting instances of a particular object in a scene.

Here (as in previous work [18, 24, 53]), the term “instance” refers to a specific sub-type

of object (e.g. “coke can” rather than just “can”). For example, a robot may be

shown an example image of a cereal box, and it may be required to detect it in a scene

in order to fetch it, even if it is in a slightly different viewpoint than the example

image. A user may wish to give a robot instructions that refer to a specific object, e.g.

to bring the user’s coffee mug (as opposed to a random coffee mug). Unfortunately,

current systems for object instance detection are not sufficiently reliable for use in real

world applications; most methods will fail in real-world scenarios due to occlusions,

lighting changes, viewpoint variation, and other difficulties.

Traditional non-parametric methods for object instance detection rely on keypoint-

matching [5, 41, 45] or template matching [25, 28] to a set of template images.

However, these methods are not robust to large changes in object viewpoint (i.e.

greater than 25 degrees [24]) and often fail for significant lighting changes. For a

robust home perception system, we cannot always guarantee that the objects being

observed will be viewed from the same conditions as in the templates. Thus we desire

to have an object detection system that is robust to significant changes in the object

viewpoint, as well as lighting, occlusions, and other variations. Recently, a number of

machine learning approaches have been used for object instance detection [21, 24, 34].

However, machine-learning based approaches often produce a large number of false

positive detections. These false detections can prevent deployment of robots in
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CHAPTER 1. INTRODUCTION

Figure 1.1: Pipeline of our instance detection verification system. Base Detector :
generates proposed object instance detections; FlowMatchNet: computes dense
pixelwise correspondences between template images of an object and a proposed
detection; FlowVerify: a suite of verification tests is applied to the detection using
the estimated correspondences. The detection is accepted only if all verification tests
pass.

real-world applications.

Our first insight is that a combination of parametric and non-parametric approaches

can be used to obtain both robust and reliable object detection. While machine

learning methods enable us to leverage large amounts of data to learn necessary

invariances like lighting and viewpoint changes, non-parametric methods that match

candidate detections to template images can ensure that these detections are reliable.

In sections 3 and 4.1 we propose verification tests that operate on top of existing

machine learning detectors; these tests take proposed detections as input and verify

them by matching against template images. Thus, by not throwing away training

data (in contrast to the parametric machine learning approach) and using them to

verify detections at test time, we show that we can increase the accuracy of the

detector, especially in the high-precision regime. This makes our system more precise,

reliable and interpretable, making it more suitable for robotics applications.

Our approach is based on a novel theoretical framework for verified object detection.

Specifically, under our theoretical framework, we prove that under certain conditions,

a series of verification tests will reject all false positive detections. Under these

assumptions, any detection that is verified by our tests is guaranteed to be correct.

These verification tests are based on estimated dense correspondences between the

proposed detection and a set of template images. It is important to note that our

2
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theoretical framework does not make assumptions on the accuracy of the base detector

or the accuracy of the estimated correspondences; the tests can fail due to either a false

positive proposed by the detector or due to inaccurately estimated correspondences.

However, the tests will pass only if the detection is a true positive.

Based on our theoretical framework, we implement an approximate but more practi-

cally suitable version of these tests. In our practical framework, if any of the tests

fail, rather than rejecting the detection, we reduce its initial confidence score. We

show that our method improves the performance of the detector in the high precision

regime and performs no worse in the low-precision regime, thereby improving the

overall accuracy of the detector. Figure 1.1 shows a diagram of our method.

Because our system matches proposed detections to template images, the runtime is

a function of the number of template images used. However, the number of template

images can be varied to obtain an accuracy-speed tradeoff; we demonstrate that the

user of our system can use more templates from different viewpoints to achieve higher

accuracy, or they can choose to use fewer templates to increase speed. We summarize

our contributions as:

• A theoretical framework for verified object instance detection, which guarantees,

under certain assumptions, no false positive detections.

• An approximate implementation of this framework which leads to a practical

instance detection method

• A demonstration that our method leads to significantly improved detector

performance, especially in the high-precision regime.

3
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Chapter 2

Related Work

2.1 Object Instance Detection

General Instance Detection. Traditional methods for object instance detection

rely on keypoint-matching [5, 41, 45] or template matching [25, 28]. Recently, detectors

based on deep neural networks have shown improved performance over these traditional

approaches. Many general object category detectors such as SSD [38] or Faster R-

CNN [46] are still used to solve the instance detection problem. Other methods

[12, 20] leverage synthetic data to attack the instance problem. Target Driven Instance

Detection (TDID) [3] is a state of the art instance detection method based on a

Siamese style neural architecture [32]. We compare to TDID in our work and show

improved performance over this state-of-the-art baseline.

Grocery product recognition. There has been significant effort in recognizing

products on shelves of retail stores [15, 17, 22, 42, 50, 52]. Many works investigate

the features to use for production detection and recognition, such as SIFT [17, 22],

color histograms [17], and HoG [52]. Other works exploit the statistical correlation

between nearby products on shelves [1, 6]. This problem is simpler than the general

object instance recognition problem that we are aiming to solve due to the structured

environment. For example, objects in such scenes are typically placed in front-

facing canonical viewpoints with minimal occlusions and good lighting conditions.

Furthermore, there is often a great deal of contextual information, such as the location

of the product on the shelf. Our method is designed for the more general usage in
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the home or other unstructured locations.

2.2 Verification

Verification for Deep Neural Networks. Due to popularity of deep neural

networks, many efforts have been made to verify certain properties about DNNs

[27, 31, 43, 44]. These works generally attempt to verify consistencies of network

output under small perturbations of inputs [27, 31, 43, 44], which is not directly

related to verifying the accuracy of an detection network. Additionally, they often

have scalability issues [27, 31, 43, 44], and therefore have not been applied to instance

detection due to the large-scale input and network structure. In contrast, we design a

verification framework to directly verify the accuracy of detection network and prove

that it outputs no false positives under certain assumptions; moreover, our method

can apply generally to any deep-learning based instance detectors.

Classification with reject option. The notion of verification is related to the

literature on classification with rejection. Some of these previous approaches assume

a cost function for rejection is provided and find the optimum rejection rule [4, 7, 9]

or learn classification and rejection functions simultaneously [10, 16]. Other works

[23, 48] treat the problem as conformal prediction, where the classification system

can predict any subset of classes, including the null set which stands for rejection.

In contrast, in our work, we verify whether the object class output by the detector is

correct, and we re-score the confidence of detections based on the verification tests.

Verification in grocery product recognition. Tonioni et al. [50] proposes a

method for grocery product recognition, which involves a refinement stage to remove

false positive detections. The method uses a geometric consistency criterion to rerank

detections and remove false positives, which computes the similarity between the

features in the query image and features in the reference image using their spatial

locations relative to the center of the image. This criterion assumes query and the

reference images are at the same canonical viewpoint, which is generally not applicable

to the general instance detection setting. In comparison, we aim to design verification

tests for the more general instance detection problem.

6
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2.3 Dense Pixel Correspondence.

There has been many works on predicting dense pixel correspondences. Specifically,

the task of estimating pixel correspondences between consecutive frames in the video,

or estimating optical flow, has been a traditional computer vision problem and has

wide applications in video analysis and processing. Traditional methods for optical flow

estimation includes variational approaches [26], and variational approaches combined

with combinatorical matching [47]. Recently, deep learning based methods [8, 13, 29]

have obtained state-of-the-art performance.

Many methods use dense pixel correspondences to solve other tasks, such as tracking

[54], video segmentation [51] and robot manipulation [11]. In this paper, we build

upon previous works a matching network to predict dense pixel correspondences.

However, unlike past work, we use these correspondences to improve performance of

object instance recognition.
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Chapter 3

Theoretical Framework

In this section, we lay out a formal framework for high-precision instance detection. We

specify a set of assumptions and prove that under these assumptions, the verification-

based detector will have no false positives. We then discuss a modification of this

method that we implement in practice which improves overall detection accuracy.

Problem Statement. We assume there are O categories of objects that we are

trying to recognize. We also assume access to a dataset which consists of a variety of

images per object, recorded from a set of different viewpoints and lighting conditions.

We refer to these images as ‘template images’ (see Figure 1.1). At test time, we are

given ‘scene images’ – these are real world images that contain (multiple) objects that

need to be detected (see Figure 1.1). We also assume that we have an object instance

detector trained to detect objects of interest; this detector will return detections of

the target objects, along with a proposed object class for each detection. However,

many of these proposed object classes will be incorrect, i.e. false positives. The goal

of our framework is to filter these out.

Notation. We denote by Oi the ith object from the O categories of objects. For

each object Oi, we assume access to a dataset of template images recorded from a

variety of viewpoints and lighting conditions; we denote Mi as the index set for these

template images, and Ii,m as the mth template image for object Oi.

We denote by T : (u1, v1)→ (u2, v2) a 2D mapping from pixels of one image to the

pixels of another image. We overload notation such that T (I) is an application of the

2D mapping T to all pixels in the image I to produce a new image T (I). Let r(T )

9
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denote the “rigidity” of such a transformation, measured by the fraction of inlier

pixel matches under the best approximating rigid transformation. In other words, for

any given transformation T , we find

r(T ) = max
T̄∈TR

∑
u,v 1{||T (u, v)− T̄ (u, v)|| ≤ ε}∑

u,v 1
(3.1)

where 1{·} is the indicator function and ε is a constant. We denote by TR the set of

2D mappings which are perfectly rigid, such that r(T ) = 1. Let D denote a detection

in a scene image (e.g. a crop of a scene image).

We assume access to a similarity classifier which returns a score c(I1, I2) indicating

the confidence that images I1 and I2 each contain the same object class. We also

assume access to a distance metric d(I1, I2) that measures the the distance between

images I1 and I2. Any distance function d : I2 → R+ that satisfies the following two

properties can be used (the properties will be necessary for the proof later):

1. Triangle Inequality: d(I1, I2) ≤ d(I1, I3) + d(I2, I3).

2. Permutational Invariance: d(I1, I2) = d(σ(I1), σ(I2)), where σ is any permuta-

tion of image pixels.

Note that many distance metrics satisfy the above properties, such as the maximum

difference in pixel intensities d(I1, I2) = ||I1 − I2||∞, any Lp norm, or normalized

cross-correlation.

We denote F (I1, I2) as a function that computes a 2D mapping between images I1

and I2. Typically, the objective of this function is to find a rigid 2D mapping that

minimizes some distance metric d, i.e.

arg min
T∈TR

d(T (I1), I2) (3.2)

However, in our framework, we make no assumptions about the output of F (I1, I2);

we will prove that our system will have no false positives, regardless of the output of

F (I1, I2).

Assumptions. We make the below assumptions; we will prove that, with these

assumptions, our algorithm will lead to no false positives. In practice, we will need to

relax these assumptions for a practical implementation; nonetheless, this theoretical

10
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framework provides the basis for our approach.

Assumption 1. (Dense Dataset)

For each detection D of ground truth class Oi, ∃m ∈ Mi, T ∈ TR such that

d(T (Ii,m), D) ≤ γ.

Assumption 2. (Similarity Classifier Smoothness)

We have a similarity classifier c with a corresponding constant δ that satisfies the

following property: for any two images I1 and I2, and for any detection D, if ∃T ∈ TR

such that d(T (I1), I2) ≤ 2γ, then |c(I1, D)− c(I2, D)| < δ.

The first assumption states that our dataset is dense enough such that every detection

can be constructed as a rigid transformation of some image in the dataset, with a

bounded lighting change applied. The second assumption states that the similarity

classifier c is a smooth function: if two images I1 and I2 are sufficiently similar such

that I2 can be created by a rigid transformation and a small lighting change applied

to I1, then the similarity classifier c will output a similar score when comparing I1

and D as when comparing I2 and D.

TheoreticalFlowVerify. Our object detection pipeline proceeds as follows: we

assume that an initial detector finds detections D in an image and proposes an

object class Oi for each detection. We then pass the detection and its corresponding

proposed class to our verification system TheoreticalFlowVerify(i,D) which

returns True if it can verify that D contains an image of class Oi and False otherwise.

We present TheoreticalFlowVerifyin Algorithm ??; this method is a theoretical

version of our practical algorithm FlowVerify described in Section 4.1. The

algorithm proceeds as follows: For any detection D and proposed object class Oi,

TheoreticalFlowVerify iterates over all images Ii,m of the proposed object class

Oi and compares each template image Ii,m to the detection D using VerifyMatch.

VerifyMatch then estimates a set of dense pixel-wise correspondences T̂ between

the detection D and the image Ii,m, and determines whether it can validate the

detection using the following verification tests:

1. Similar Object Comparison: Tests whether an image Ij,n of another object class

Oj looks similar to D according to similarity function c; formally: ∀j 6= i, ∀n ∈
Mj, if c(Ii,m, D) < c(Ij,n, D) + δ, return False

2. Color Comparison: Tests whether the image distance between Ii,m transformed

11
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using T̂ and the detection D is sufficiently small: if d(T̂ (Ii,m), D) > γ, return

False

3. Flow Rigidity: Tests whether the the correspondences T̂ could have been derived

from a rigid object transformation: if r(T̂ ) < 1, return False

This algorithm is designed to return False for all false positive detections. Here we

state and prove the main theorem of our approach:

Theorem 1. (No False Positive Theorem)

Under assumptions 1 and 2, TheoreticalFlowVerify does not produce any false

positives. That is, the following statement always holds: TheoreticalFlowVerify(i,D)

returns False whenever the ground-truth class for detection D is different from Oi.

Note that TheoreticalFlowVerify(i,D) may sometimes return False even if i

is the correct ground-truth class of D if it cannot verify this proposal. In such cases,

TheoreticalFlowVerify will return false for all object classes, meaning that we

cannot verify the category of detection D using our approach. Still, the benefit of

our approach is that, when TheoreticalFlowVerify(i,D) returns true, we can

be assured that detection D is an object of class Oi.

Proof. We need to show that TheoreticalFlowVerify(i,D) returns False when-

ever the ground-truth class of object D is not Oi. Note that from line 17, we need

to prove that for any object class Oi that is not equal to the ground truth class,

every template image Ii,m, for all m ∈ Mi of object Oi needs to be rejected by

VerifyMatch. That is, VerifyMatch(Ii,m, D) = False,∀m ∈Mi, if gt(D) 6= Oi.

Assume that the ground-truth object class of D is Oj . We can partition Mi into three

classes:

1. Mi,1 := {m : ∃T ∈ TR such that d(T (Ii,m), D) ≤ γ}.
2. Mi,2 := {m ∈Mi | d(T̂ (Ii,m), D) > γ}\Mi,1.

3. Mi,3 := Mi\(Mi,1 ∪Mi,2).

Now we show VerifyMatch(Ii,m, D) = False, for each of the three cases above.

1. Case 1: m ∈Mi,1. VerifyMatch will return False at line 6.

Since m ∈Mi,1, we know that ∃Ti ∈ TR such that d(Ti(Ii,m), D) ≤ γ}. In other

words, Mi,1 is a set of images of object class Oi that can be described by a rigid

12
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Algorithm 1 Theoretical Flow Verifier

1: procedure VerifyMatch(Ii,m, D) . returns True if verification succeeds
2: // Test 1: Similar Object Comparison
3: for j ∈ I\{i} do
4: for n ∈Mj do
5: if c(Ii,m, D) < c(Ij,n, D) + δ then
6: return False
7: end if
8: end for
9: end for
10: // Test 2: Color Comparision
11: T̂ ← F (Ii,m, D) . Estimated flow

12: if d(T̂ (Ii,m), D) > γ then
13: return False
14: end if
15: // Test 3: Flow Rigidity
16: if r(T̂ ) < 1 then
17: return False
18: end if
19: return True
20: end procedure
21: procedure TheoreticalFlowVerify(i,D)
22: for m ∈Mi do
23: if VerifyMatch(Ii,m, D) then
24: return True
25: end if
26: end for
27: return False
28: end procedure

13
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transformation and a small lighting change applied to D (which is an object

of class Oj). Thus there are two object classes, Oi and Oj, that both appear

similar to detection D, although detection D is an object of class Oj.

From assumption 1, ∃n ∈ Mj, Tj ∈ TR such that d(Tj(Ij,n), D) ≤ γ. Let us

define a new operator Tij = (Tj)
−1 ◦ Ti, i.e. first apply Ti and then apply

inverse of Tj . First, note that, if Ti ∈ TR and Tj ∈ TR, then Tij ∈ TR since the

composition of these rigid transforms is a rigid transform. Secondly,

d(Tij(Ii,m), Ij,n) = d(Tj ◦ Tij(Ii,m), Tj(Ij,n))

= d(Ti(Ii,m), Tj(Ij,n))

≤ d(Ti(Ii,m), D) + d(Tj(Ij,n), D)

≤ 2γ

The first line holds by the permutation invariance property of d, since Tj

is a permutation of pixels. The second line holds by definition of Tij. The

third line holds by triangle inequality of d. The last line holds because of the

definition of m and Ti that d(Ti(Ii,m), D) ≤ γ, and by definition of n and Tj

that d(Tj(Ij,n), D) ≤ γ.

By assumption 2, since d(Tij(Ii,m), Ij,n) ≤ 2γ, then |c(Ii,m, D)− c(Ij,n, D)| < δ.

This then implies that

c(Ii,m, D) < c(Ij,n, D) + δ

c(Ii,m, D) < max
n

c(Ij,n, D) + δ

Hence, the conditional at line 5 will be true and so VerifyMatch(Ii,m, D)

will return False at line 6.

2. Case 2: m ∈Mi,2. VerifyMatch will return False at line 10.

By definition of Mi,2, we know that d(T̂ (Ii,m), D) > γ. Hence the conditional

at line 9 will be true, so VerifyMatch(Ii,m, D) will return False at line 10.

3. Case 3: m ∈Mi,3. VerifyMatch will return False at line 13.

14
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If m ∈Mi,3, then by definition, m /∈Mi,1 and m /∈Mi,2. Since m /∈Mi,1, then

@T ∈ TR such that d(T (Ii,m), D) ≤ γ. Since m /∈Mi,2, then d(T̂ (Ii,m), D) ≤ γ.

Hence we know that T̂ /∈ TR, so r(T̂ ) < 1. Hence the conditional at line 12 will

be true, so VerifyMatch(Ii,m, D) will return False at line 13.

Hence we have shown that ∀i 6= j,∀m ∈Mi,VerifyMatch(Ii,m, D) = False.

This implies that TheoreticalFlowVerify(i,D) = False whenever i 6= j.

Note that TheoreticalFlowVerify(i,D) returns False whenever it cannot verify

that the ground-truth class of D is Oi. This can sometimes occur even if Oi represents

the ground-truth class of D, if the estimated correspondences T̂ are not accurate.

It will also return false whenever the ground-truth class of D is not Oi. Thus

TheoreticalFlowVerify has 100% precision; every time it returns True, the

proposed object class is the same as the ground-truth. On the other hand, the

recall of the algorithm is not guaranteed; it may return False for an arbitrary

proportion of examples, even if the proposed object class is correct. Note that the

No False Positive Theorem does not make any assumptions on the quality of the

set of predicted correspondences T̂ ; if the correspondences are not accurate, then

TheoreticalFlowVerify will also reject the detection. We will now describe an

approximation of this framework that leads to a practical implementation of this

algorithm.
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Chapter 4

Approach

We will now describe an approximation of the theoretical framework that leads to a

practical implementation of our method. The pipeline for high-precision detection

consists of three stages:

1. Base Instance Detector : We first run an instance detector trained on the objects

of interest. This stage provides candidate bounding box detections for target

objects, as well as a proposed object class Oi for each box. The focus of our

work is verifying these detections, as described below.

2. Dense Pixel-wise Correspondence (FlowMatchNet): We next predict dense

pixel-wise correspondences between template images and each proposed de-

tection, cropped from the scene. See Appendix 5.1.2 for more details on the

network architecture of FlowMatchNet.

3. Verification tests (FlowVerify): Given the proposed detection and template

images and estimated pixel-wise correspondences between the two, we conduct a

set of verification tests to ascertain whether the proposed class of the detection

is correct.

4.1 Verification Tests

We design verification tests that are modifications to our theoretical framework

(Section 3). These tests, which we call ‘FlowVerify’ tests (since they make use of
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predicted flow correspondences), are intended to be stringent; any detection that does

not pass these tests is deemed ‘rejected’ and will receive a lower detection score than

the detections that pass the tests. We can be highly confident that the detections that

pass our verification tests are likely to be true detections, boosting the performance

of our detector in the high-precision regime, as our results demonstrate. The first

three verification tests are derived from our theoretical framework of Section 3:

1. SimObj: This test corresponds to the similar object comparison test in our

theoretical framework. For each detection, there should be only one target object

being matched to it with high confidence. The similar object comparison test is the

following: for each detection D we compute a confidence score c(D) using the initial

detector (such as TDID [3]). We then search whether there is another detection D′ of

another object which has an IoU of at least ηiou with D. If no such detection is found,

SimObj = 1. Otherwise, the similarity score for D is the minimum of the confidence

difference across all other detections D′: SimObj = minD′ max(0, c(D)− c(D′)). We

define the similar object test using a boolean variable given by TSimObj = (SimObj >

ηdiff ).

2. FColor: This test corresponds to the color comparison test in our theoretical

framework. We estimate the pixel-wise correspondences T̂ between a template

image Ii of the proposed object class Oi and the detection D. We then check the

image similarity between D and the template image transformed using the predicted

correspondences T̂ (Ii). We use normalized cross correlation (“ncc”) to measure this

similarity, which lies in [−1, 1]. We define FColor = 1
2
(ncc(T̂ (Ii), D)+1) ∈ [0, 1] and

we define the flow color test using a boolean variable given by Tcolor = (FColor >

αcolor).

3. FRigidity: This test corresponds to the rigidity test in our theoretical framework.

Assuming objects are rigid, if the detection box contains the target object, then we

would expect an ideal mapping between the detection and a corresponding template

image from a similar viewpoint to describe a rigid body transformation. We use

RANSAC [14] to find the best-fit fundamental matrix (using the 8-point algorithm [39])

that maximizes the number of corresponding inlier pairs. The proportion of inliers

under the best-fit mapping is a measure of how rigid the flow is. We define flow
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rigidity as

FRigidity =
#inliers

#total correspondences

and we define a flow rigidity test using a boolean variable Trig = (FRigidity > αrig).

Besides the verification tests motivated by our theoretical framework, we design two

additional tests to evaluate the extent of each bounding box prediction:

4. FPrecision: If we expect the detection box to contain the entire object (and not

be too small), we would expect all pixels in the template image to be mapped to

pixels inside the bounding box. We define flow precision as

FPrecision =
#target correspondences mapped to inside bbox

#total correspondences

and the flow precision test is defined using a boolean variable Tprec = (FPrecision > αprec).

5. FRecall: Complementary to precision, if we expect the detection box to contain

only the detected object (and not be too large), we would expect the flow mapping to

cover all pixels of the detection box. To measure this, we can look at the bounding

box that tightly fits the extent of the mapped pixels in the scene. We define flow

recall as the IoU between the box suggested by flow to the bounding box output by

the detector, and compute a flow recall score as

FRecall = IoU(detector bbox, bbox suggested by flow).

The flow recall test is defined using a boolean variable Trec = (FRecall > αrec).

Our overall verification test is

FlowVerify = TSimObj ∧ Tcolor ∧ Trig ∧ Tprec ∧ Trec,

with given threshold values and parameters ηiou, ηdiff , αcolor, αrig, αprec, αrec ∈ [0, 1],

tuned with a validation set as described in Section 5. For a given object of interest,

we could have multiple template images from different viewpoints and lighting

conditions. In this case, we say that the set of template images for a given class

passes FlowVerify if any one of the template images for that class passes these

tests.

While FlowVerify tests are designed to improve performance in high precision
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regime, they might worsen performance in the low-precision regime as they could

reject true positives. As there are cases where performance in low-precision regime is

also important, instead of completely rejecting detections not passing FlowVerify

tests, we rerank all detections from our base detector based on 1) whether a detection

passes FlowVerify tests and 2) the score predicted by base detector. All detections

that pass FlowVerify are ranked higher than all detections that don’t. The

reranking procedure can be viewed as reducing the confidence of the detections that

do not pass the FlowVerify tests. As we will see, this improves performance in

the high-precision regime while at the same time maintaining performance in the

low-precision regime.
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Experiments

In this chapter, we describe a practical implementation of our framework, and evaluate

its performance on several instance detection benchmarks.

Datasets. We evaluate our framework on two tests sets – the GMU Kitchens test

split [19] and W-RGBD scenes v1 Dataset [35]. Both datasets contain images of

objects placed in indoor scenes such as kitchen surfaces, table tops, and living rooms.

For FlowMatchNet and FlowVerify, at test-time we use 15 equally spaced

viewpoints per object taken from [49] or [33] to form our “template images”. We

also vary the number of template images to explore the speed-accuracy tradeoff of

our system in section 5.2. For GMU, we evaluate on the 11 BigBIRD objects; for

W-RGBD, we evaluate on 9 textured objects.

5.1 Implementation Details

We explain in this section the implementation details of each of the three stages in

our pipeline, as listed in Chapter 5.1.2.

5.1.1 Base Instance Detector

Our method focuses on improving the precision of an existing instance detector. One

could use any instance detector with our approach; we use target driven instance

detection (TDID) [3], as this method produces state-of-the-art results for instance
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detection, including one-shot instance detection that we evaluate on in our work.

In the one-shot scenario, the training and validation objects are separate from the

objects evaluated on at test time; the detector must generalize to novel objects.

TDID showed state-of-the-art performance for this task [3]. Similarly, we train other

components of our system, such as FlowMatchNet, in a one-shot manner, such

that our entire system can be used to detect novel objects.

The base detector TDID is trained on the Active Vision Dataset (AVD) [2], W-RGBD

scenes Dataset [35], and synthetic images from Cut-Paste-Learn [12]. GMU objects

common to the AVD dataset are removed from training so that we can evaluate this

detector in a one-shot manner. In order to evaluate on W-RGBD Scenes dataset in a

one-shot manner as well, for this evaluation we use the TDID model released by [3]

that is trained only on AVD.

FlowMatchNet.

5.1.2 Dense Pixel-wise Correspondence

5.1.3 Network Architecture

We call our network for predicting dense pixel-wise correspondences FlowMatchNet.

For every proposed detection, we pad the detection to square, crop it (which we refer

to as the ‘cropped scene image’), and feed it to FlowMatchNet. FlowMatchNet

also takes an image from the dataset and computes a mapping from every pixel in

the template image to some pixel in the cropped scene image.

We compute pixel correspondence from each template image of the object to the

cropped scene image. We train a deep neural network using a modification of the

FlowNetC neural network architecture [11]. Specifically for FlowNetC, a series of

convolutional layers are applied separately to input images to extract features from

each image. Then, a cross-correlation layer is used to combine features coming from

each image branch, to compare feature in every location in image1 with every location

in image2. However, FlowNetC was designed for optical flow, which is typically

applied to consecutive frames of a video with the assumption that pixels have small

displacements between consecutive frames. Therefore, in the original FlowNetC,

cross-correlation is approximated by considering only a 21× 21 pixel neighborhood

window [11, 30].
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However, we cannot make such a ‘small displacement’ assumption in our case be-

cause the object in the scene crop might have undergone a fairly large rotation and

translation relative to the template image. Hence, we perform a full cross correlation

between all pixel pairs in the scene and template images. Furthermore, flow prediction

is traditionally made in terms of displacement vectors. Since a full cross-correlations

is implemented as unrolling the entire 2D feature map, we reparameterize flow in

terms of global coordinates of pixels being mapped to in the second image. Hence we

concatenate (x, y) pixel coordinates as additional feature maps, following [37].

Training details of FlowMatchNet

Optical flow models are trained using synthetic datasets that have ground truth

flow [11, 30]. Flownet based models have been shown to generalize well when trained

on such synthetic datasets.

For training FlowMatchNet, we train our model successively on synthetic datasets

with increasing difficulty –

1. MS-COCO with affine transformations: we take images from the MS-COCO

dataset [36], crop an area around the object using its annotated bounding box

to simualate detections from a base detector, and apply a random rotation and

translation to create a simulated scene image. These transforations help the

flow model to learn simple affine tranformations. Although the transformations

are relatively simple, MS-COCO has a huge variety of objects; training on such

a diverse set of objects can help the network to generalize to different objects

types. Examples of transformations are in Figure 5.1.

2. BigBIRD + RGBD scenes with homographies : We take objects from the Big-

BIRD dataset [49], crop them out using segmentation masks, and paste them

onto background scenes in the W-RGBD scenes dataset [35]. Since we want

FlowMatchNet to generalize to novel objects, we exclude training on the

11 objects that are part of GMU Kitchens [19], our test set. We apply ran-

dom homographies to the cropped images and blend them into scenes using

Cut-Paste-Learn [12], while simulating randomized lighting conditions and

image blurs. We limit the random homography to ensure that it is not too

unrealistic and does not distort the object too much; specifically we ensure that
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Figure 5.1: (a), (b): Target and scene images from MS-COCO synthetic dataset that
applies affine transformations. (c), (d): Target and scene images from BigBIRD-
RGBD synthetic dataset that applies homography transformations.

the top-left corner of the bounding box is still the top-left corner after applying

the homograph, the bottom-right corner is still at the bottom-right, and so on.

Importantly, since these are controlled synthetic transformations, ground truth

flow can be computed. We train on L2 loss for optical flow similar to [11, 30].

We first trained on the MS-COCO synthetic flow dataset for 1.6M iterations using

Adam optimizer with a learning rate of 10−4 with a batch size of 2. We then finetuned

on the BigBIRD-RGBD synthetic flow dataset for 50,500 iterations using Adam

optimizer with a learning rate of 10−6 and batch size 2.

Verification Tests

We use a validation set to tune the parameters for the tests in FlowVerify. We se

ηiou = 0.5, which is common used for mAP evaluation. As our validation set, we use the

YCB-Video training set, on which we tune the values for αrig, αcolor, αprec, αrec, ηdiff ∈
[0, 1] by optimizing mAP. We find the optimal values to be αrig = 0.9, αcolor =

0.5, αprec = 0.9, αrec = 0.3 and ηdiff = 0.0 (meaning that all other object classes

should have strictly lesser confidence scores if detected).
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Figure 5.2: Precision-Recall (PR) curves for the base instance detector, the detector
improved by FlowVerify, and the SIFTVerify baseline, evaluated on the GMU
(a) and W-RGBD (b) datasets.

5.2 Results

Figure 5.2 shows precision-recall curves of the base instance detector (TDID) and

the improved detector using FlowVerify, on GMU (a) and W-RGBD (b) datasets.

On both datasets, FlowVerify significantly improves detection performance in the

high-precision regime to the left end of the PR curve. For high scoring detections,

it makes significantly fewer errors than TDID as it is able to filter out many false

positive detections using the verification tests. Table 5.1 summarizes mAP and

maximum precision of baseline detectors and FlowVerify on GMU and W-RGBD.

It is worth noting that although FlowVerify is designed to reject false positives

and improve performance in the high-precision regime, the PR curves show that,

with the re-ranking procedure, the performance does not degrade in the low-precision

regime (right side of the curve). In the low-precision regime, FlowVerify nearly

matches the base detector in performance. This shows that verification tests can

make an instance detector more reliable and precise while simultaneously improving

overall performance.

We note that our method presents a tradeoff between precision/accuracy and timing

performance. As more template images are used, the precision/accuracy of our system

increases, but it will take longer to run. Hence, the user of our system can adjust
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GMU-Test RGBD

Method mAP max Precision mAP max Precision time(s)

Base Detector 0.379 0.697 0.222 0.587 0.037

SIFTVerify 0.382 0.780 0.228 0.767 0.940

FlowVerify 0.422 0.939 0.278 0.822 0.872

Table 5.1: Overall performance (mAP) and max Precision results.

the number of template images based on their specific needs. We report the running

times of our method for varying number of template viewpoints in Table 5.2.

GMU-Test RGBD

Method mAP max Precision mAP max Precision time(s)

FlowVerify(15 vp) 0.422 0.939 0.278 0.822 0.872

FlowVerify-12vp 0.413 0.946 0.278 0.838 0.696

FlowVerify-9vp 0.411 0.962 0.275 0.847 0.540

FlowVerify-6vp 0.408 0.898 0.263 0.766 0.379

FlowVerify-3vp 0.405 0.932 0.252 0.783 0.201

Table 5.2: Tradeoff of performance vs speed as we vary the number of viewpoints.

5.3 SIFTVerify Baseline

We implemented and evaluated another verification method using SIFT-based [40, 41]

keypoint correspondences as a baseline for our learning-based dense-correspondences

computed by FlowMatchNet. This baseline is designed to test our hypothesis

that verification tests should make use of both machine learning and non-machine

learning approaches; we use machine learning for computing the correspondences

(FlowMatchNet) but we use the non-learning based verification tests of FlowVer-

ify to verify detections.

In contrast, SIFT [40, 41] is a non-learning based approach for computing correspon-

dences, and we combine it with a non-learning based approach for verification. We

implement verification tests on top of SIFT that are analogous to FlowVerify. In

order to estimate rigidity using the fundamental matrix, we need at least 8 matches.
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However, SIFT matches are often sparse, and have as few as 2-3 matches. Hence, we

simply compute the raw number of SIFT keypoint matches to replace the rigidity

test, which we refer to as the SMatches test. For the precision test, we computes

the proportion of matched pixels that lie inside the predicted bounding box, and refer

to this test as SPrecision. Since SIFT matches are few in number, it is also not

possible to estimate recall the way we do for FRecall, so we omit that test. We find

that these settings give the best performance for this baseline. We call this baseline

SIFTVerify. We run grid-search to find the best thresholds for SIFTVerifyon

YCB following the same procedure as for FlowVerify.

Figure 5.2 and Table 5.1 show the performance on the GMU and W-RGBD datasets.

For both datasets, SIFTVerify slightly improves performance over the base detector,

but performs consistently worse than FlowVerify. This demonstrates the value of

using machine learning for computing correspondences, even if the final verification

tests are not learned.

5.4 Ablation

This section lists detailed results of our ablation analysis in terms of mAP and

maximum precision for FlowVerify, versus dropping each verification test one at a

time. As shown in Table 5.3, FlowVerify has the best performance in terms of

maximum precision and mAP on GMU-Test, as well the second highest maximum

precision on W-RGBD. Dropping FRigidity results in the largest drop in maximum

precision and mAP on both GMU-Test and W-RGBD. This confirms the importance

of flow rigidity test as suggested by our theoretical framework.

We also observe that removing the FColor test leads to very little change in perfor-

mance. We believe that this is because FlowVerify is approximately optimizing

Supplementary Equation 3.2, with a priority on matching colors:

F (Ii,m, D) = T̂ ≈ arg min
T
d(T (Ii,m), D). (5.1)

In other words, FlowVerify= F (Ii,m, D) returns a transform T̂ that tries to match

colors in Ii,m with similar colors in D, thereby minimizing d(T̂ (Ii,m), D). Because the

FColor test rejects the detection if d(T̂ (Ii,m), D) > γ, our system will very rarely
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(a) (b) (c) (d)

Figure 5.3: (a, b): False positives from the base detector filtered by FlowVerify;
(c, d): True positives from the base detector accepted by FlowVerify.

reject a detection based on this criteria.

GMU-Test W-RGBD

Method mAP max Precision mAP max Precision

FlowVerify 0.422 0.939 0.278 0.822

FlowVerify-SimObj 0.412 0.906 0.316 0.732

FlowVerify-FRigidity 0.394 0.807 0.235 0.700

FlowVerify-FColor 0.422 0.933 0.278 0.823

FlowVerify-FPrecision 0.415 0.913 0.280 0.811

FlowVerify-FRecall 0.413 0.887 0.277 0.755

Table 5.3: Ablation analysis.

5.5 Qualitative Analysis

Figure 5.3 (a, b) shows examples of false positive detections output by the base

detector (TDID) but filtered out using FlowVerify. Example (a) is a detection

with high FRigidity, FPrecision, and FRecall scores, but with a low FColor

score. In such cases, the detection is of an object with very different color and texture

from the target object, resulting in low color similarity. Example (b) shows a detection

with high FColor and FPrecision scores but with a low FRigidity score. Here,

the matched colors are fairly similar; however, the correspondences cannot be derived

from a rigid body transformation, and hence the detection has a low FRigidity

score. Examples (c) and (d) in Figure 5.3 show true positive predictions output by

the base detector which pass FlowVerify. We can see that the flow quality is also

quite good by the correct matching of features across the target and the bounding

28



CHAPTER 5. EXPERIMENTS

box area.

5.6 Qualitative Comparison with SIFTVerify

In this section, we perform a comparative and qualitative analysis of our method

FlowVerify with the SIFTVerify baseline. We will first show examples where

SIFTVerify succeeds in filtering out false positives from a base detector and where

it is successful in retaining true positives. Then we will analyze some failure cases

of SIFTVerify, where our model is able to filter false positives and retain correct

detections whereas SIFTVerifyis not.

It is important to note that since we are interested in high-precision detection, we

will analyze detections which were given a very high confidence score (> 0.99) by the

original detector on the GMU Kitchens [19] test set. In order to improve detector

performance in the high precision regime (the leftmost parts of the PR-curve), the

system must be able to filter out high-confidence false positives whilst not rejecting

too many true detections with high confidence.

As a reminder, FlowVerify uses five tests – SimObj, FColor, FRigidity,

FPrecision and FRecall . In order to pass a test, there must exist at least one

viewpoint of the target object whose SimObj, FColor, FRigidity, FPrecision

and FRecall scores are all above their respective thresholds. The thresholds

that were tuned on YCB-Video train for FColor, FRigidity, FPrecision and

FRecall turn out to be 0.5, 0.9, 0.9, and 0.3 respectively, with parameters for

SimObj being ηiou = 0.5, ηdiff = 0.0.

Similarly, SIFT filters detections by computing the number of keypoint matches be-

tween the target image and cropped scene image. If the SMatches and SPrecision

are above their corresponding thresholds, the detection is deemed to be true by the

SIFT baseline. When tuned on YCB-Video Train, the thresholds for SMatches and

SPrecision turns out to be 30 and 0.9 respectively.

5.6.1 Visualization Format

The visualization format is consistent across all Figure 5.4, Figure 5.5, Figure 5.6, and

Figure 5.7 – the top image shows a visualization of matching by FlowMatchNet
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and filtering by FlowVerify, whereas the bottom image shows matching using

SIFTVerify. Each visualization consists of two images. On the left is a ‘target

image’ – it is an image of the object being detected. If the detection passes the

FlowVerify or SIFT verification tests, the displayed viewpoint is the one that passes

all tests and has the largest product of scores, which denotes the “best” viewpoint of

the object that is able to be matched by each of the methods; otherwise, the canonical

viewpoint of the object is displayed in the visualization.

In each visualization, 20 randomly-chosen pixel-wise mappings are depicted. In the

case of SIFT, sometimes there are less than 20 keypoint matches found. In such cases,

all keypoint matches are depicted.

5.6.2 SIFT Successful Cases

In this section, we analyze cases where SIFT matching successfully filters false positives

while retaining true detections.

False Positives rejected by SIFT and FlowVerify

Figure 5.4 contains four examples that denote false detections that are successfully

filtered out by both methods. In these examples , the homography based on flow

computed by FlowMatchNet produces many outliers, and hence are rejected by

the FRigidity test. This happens because when the object are distinct and do not

match, in which case the predicted flow can be arbitrary. SIFT also successfully

rejects all these examples, as it produces very few (< 30) keypoint matches.

True Positives accepted by SIFT and FlowVerify

Figure 5.5 contains fours examples that represent true detections successfully retained

by both methods. In these examples, FlowMatchNetand SIFT matches seem

nearly perfect. This section demonstrates that SIFT features can be effective in

object matching, and our implementation of SIFT is a reasonably strong baseline.

However, we show below that SIFT can also fail on many cases.
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5.6.3 SIFT Unsuccessful Cases

In this section, we analyze cases where SIFT matching fails to filter false positives or

retain high-confidence true detections. We illustrate how FlowVerify successfully

handles these cases, to highlight the strengths of our method over the SIFT baseline.

False Positives accepted by SIFT but rejected by FlowVerify

In Figure 5.6, the four examples represent false detections that SIFT fails to filter

out, but are successfully filtered out our method. In Figure 5.6(a), the target object

is different from the object in the bounding box, but they have the same text in

their logos. SIFT fails in this case since it can find enough keypoint matches just in

the logo area. FlowVerify handles this case successfully since it relies on dense

pixelwise correspondence. As the object in the cropped scene is different from that in

the target image, FlowMatchNet cannot find a rigid transformation that matches

color for all pixels, thereby not passing the FRigidity test.

Figure 5.6(b, c, d) illustrate another difference between dense and sparse pixel-wise

matching. In these examples, the bounding boxes are incomplete and the cropped

scene only contains a part of the target object. As SIFT only needs to match a few

keypoints, even if small parts of two objects seem to match, it is still enough for SIFT

to accept it as a correct detection. FlowVerify combined with FlowMatchNet

successfully rejects these as false detections since FlowMatchNet computes dense

matches across the entire object, resulting in flow fields that have a low FRigidity

score.

True Positives rejected by SIFT but retained by FlowVerify

Figure 5.7 contains four examples that denote true positives, which are successfully

retained by FlowVerify but are incorrectly rejected by SIFTVerify. In all

examples (a, b, c, d) in Figure 5.7, FlowMatchNet produces good-quality pixel-wise

correspondence, leading to high FColor, FRigidity, FPrecision and FRecall

scores. However, for most examples, SIFT can produce very few keypoint matches.

Our experiments show that SIFT struggles to perform reliable keypoint matching

in our setting where there can be drastic changes in viewpoints, lighting conditions
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(a) (b)

(c) (d)

Figure 5.4: False detections which are successfully filtered out by both FlowVerify
and SIFTVerify. In each image, top: FlowVerify, bottom: SIFTVerify.

and even occlusions. We show that in such scenarios, predicting a dense pixel-wise

correspondence and designing subsequent verification tests can improve instance

detectors towards high-precision and verifiable recognition.
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(a) (b)

(c) (d)

Figure 5.5: True detections that are successfully retained out by both FlowVerify
and SIFTVerify. In each image, top: FlowVerify, bottom: SIFTVerify.
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(a) (b)

(c) (d)

Figure 5.6: False detections which are incorrectly retained by SIFTVerify. In each
image, top: FlowVerify, bottom: SIFTVerify.
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(a) (b)

(c) (d)

Figure 5.7: True detections that are incorrectly filtered by SIFTVerify. In each
image, top: FlowVerify, bottom: SIFTVerify.
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FRigid: 0.906, FColor: 0.515, FPrec: 1.000, FRec: 0.389

(a) A false positive of FlowVerify.

FRigid: 0.892, FColor: 0.495, FPrec: 1.000, FRec: 0.418

(b) A false negative of FlowVerify.

Figure 5.8: Failure cases of FlowVerify. (a) is an incorrect detection accepted
by our method; (b) is a correct detection rejected by our method; Blue box in each
example denotes the bounding box prediction from instance detector.

5.7 Failure Cases

In this section, we present some failure cases. We visualize two different kinds of

failure cases in Figure 5.8:

Figure 5.8(a) is a false positive example of our method, meaning that it is an

incorrect detection accepted by FlowVerify, which means that it passes all of

our verification tests. This is actually an example where Assumption 1 is broken,

since the detection does not include any object in our dataset. Unfortunately, our

theoretical framework is currently unable to handle this case, where the detection

does not contain any object in our dataset, but has similar appearance to some object

in the dataset after applying a rigid transformation. Nevertheless, we note that such

scenario is intrinsically challenging to any purely vision based 2d instance detection

tasks, and perhaps need to be handled using extra information or interactions with

the environment. For example, if a robot is allowed to take multiple images of the area

of interest from multiple viewpoints, we will be more likely to identify the example in

Figure 5.8(a) as a false positive. One possible future work along this line is to apply

our method to these scenarios, and verify using detections from multiple perspectives

of the same area.

Figure 5.8(b) is a false negative example of our method, which is a correct detection

rejected by our method. Currently we have no guarantees about true positives, so this

failure is sort of expected. One of a possible future work is to extend the theoretical

framework to true positive detections. Intuitively, if there is some guarantee in the
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accuracy of the predicted correspondences, our method should be able to benefit

from it in terms of recall. We can explore this theoretical extension in the future to

further improve in our verification system. We also observe in Figure 5.8(b) that

the instance is rejected since a significant part of the instance is occluded in the

detection. Currently, our framework does not take account of occlusions. However,

since occlusions are common in many real world scenarios, we can extend our work

to handle it in the future.
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Future Work

To address failure case discussed in Section 5.7, we can extend the framework to

true positives, handle occlusions in our framework, and apply our framework to an

interactive environment to collect and verify multiple detections of the same object.

Additionally, we can further improve the network for predicting dense pixel correspon-

dences. On one hand, increasing accuracy of the correspondence predictions is related

to retaining more true positives; one the other hand, we can extend FlowMatchNet

to predict occlusions in addition to correspondences as one way to handle occlusions.

Furthermore, our current framework only considers rigid objects. If we want to apply

similar verification approaches to deformable objects, we need to devise other metric

to check validity of correspondences instead of the rigidity test we are currently using.

We can further extend the work to rigid multibodies like robot, which has rigid

parts but also non-rigid joints. We can also extend the current method to class-level

detection verification.
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Chapter 7

Conclusion

We have proposed a method to combine machine learning based detection and

correspondence matching with non-learning based verification tests to increase the

accuracy of an existing instance-detection system in the high-precision regime (without

reducing overall detection performance). The verification tests are based on dense-pixel

correspondences computed between the detection and template images; we reduce

the confidence of any detection that does not pass these tests, thereby rejecting many

false positives. Our system is grounded in a novel theoretical framework that we

prove leads to no false positives, under certain assumptions. Furthermore, we use

our method in a one-shot fashion, applying our approach to a novel set of objects at

test time without finetuning. For future work, we would like to extend the current

framework to handle occlusions, and introduce guarantees about true positives with

respect to accuracy of matching predictions. We hope that our system will be useful

for robotic systems that need reliable performance for high confidence detections.
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