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Figure 1: Results of our approach: (a) input image; (b)(c) geometrically-consistent depth and surface normal estimation; (d)
ground segmentation; (e) ground plane normal estimation; (f) computed horizon line from the estimated ground plane normal.

ABSTRACT
We focus on estimating the 3D orientation of the ground plane
from a single image. We formulate the problem as an inter-mingled
multi-task prediction problem by jointly optimizing for pixel-wise
surface normal direction, ground plane segmentation, and depth
estimates. Specifically, our proposed model, GroundNet, first esti-
mates the depth and surface normal in two separate streams, from
which two ground plane normals are then computed determinis-
tically. To leverage the geometric correlation between depth and
normal, we propose to add a consistency loss on top of the computed
ground plane normals. In addition, a ground segmentation stream
is used to isolate the ground regions so that we can selectively back-
propagate parameter updates through only the ground regions in
the image. Our method achieves the top-ranked performance on
ground plane normal estimation and horizon line detection on the
real-world outdoor datasets of ApolloScape and KITTI, improving
the performance of previous art by up to 17.7% relatively.
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1 INTRODUCTION
Estimating the 3D orientation of the ground plane is an important
pre-processing step for ground robots [27], wearable camera sys-
tems [52] and autonomous driving [46]. An accurate estimate of the
ground plane can serve as an important prior for many perception
and planning tasks, e.g., 3D object detection [7, 23, 51], 3D object
tracking [21, 50], 3D semantic segmentation [1], image data synthe-
sis [24], free space estimation [34], camera placement estimation
[59], 3D reconstruction [18], and scene analysis [16, 17]. While
many sensors can be used to directly estimate the ground plane
(e.g., depth camera, stereo camera, laser scanner), we are primarily
interested in innovating ground plane estimation algorithms for
mobile platforms that are equipped with only a single RGB camera.

Perhaps the most classical approach to ground plane estimation
makes use of multi-view geometry or motion cues to first trian-
gulate points in 3D or directly obtain the 3D point cloud using
depth sensors like LIDAR. Then a large plane is fitted to the 3D
points using a robust model fitting algorithm like RANSAC [28].
When only a single image is available, parallel lines detected on
the ground plane can be used to estimate vanishing points and
the horizon line [15]. While these geometry-based approaches are
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exact with noiseless input, their performance is highly dependent
on the reliability of low-level computer vision algorithms to extract
corner points or line segments. Not to mention that outdoor scenes
typically lacks 3D architectural prior (i.e., the vertical relationships
between walls, floor, and ceiling), making existing geometry based
method insufficient for the estimation.

An alternative approach that can be used to estimate the ground
plane is the use of monocular surface normal estimation [2]. The
basic idea of this approach is to use small image patches to estimate
the distribution of surface normals using local visual information.
Most prior work in this area are pixel-wise normal estimation mod-
els. They are tailored to indoor scenes and are typically not designed
to deal with the outdoor scenes which involve heavy noise, includ-
ing diverse objects (e.g., vehicles, pedestrians) and natural ‘stuff’
(e.g., vegetation, sky) with dynamic motion. For this reason, the
estimated normals often suffer from heavy local noise.

To leverage the advantages of both approaches, we propose the
GroundNet, which computes the ground plane normal using the
depth and surface normal cues in two separate streams: (1) in the
surface normal estimation stream, we obtain a pixel-wise surface
normal map of the ground region and then take the average over
pixels as the ground plane normal; (2) in the depth estimation
stream, we lift the ground regions in the input image to a point
cloud using the estimated depth. Then a ground plane is fitted to
the point cloud using the differentiable RANSAC (DSAC) [4].

In order to remove the effect caused by diverse objects on or
nearby the ground in the outdoor scenes, a ground segmentation
stream is used to isolate the ground regions. We then selectively
back-propagate parameter updates only through the ground regions
in the image. We share the backbone encoder network for all three
networks: ground region segmentation, depth estimation and pixel-
wise normal estimation.

In addition, our insight is that the estimated depth and surface
normal should be geometrically consistent, meaning that the com-
puted ground plane normals from the depth and surface normal
streams should be nearly the same. However, this is not necessarily
true in reality. To introduce this geometric consistency between the
depth and surface normal streams, we propose to add a consistency
loss to minimizes the angular difference between the computed
ground plane normals in two streams. This supervision signal is
flown back to the surface normal and depth estimation streams such
that our GroundNet can implicitly learn to predict the geometrically-
consistent depth and surface normal in two streams. We argue that
this consistency constraint can resolve the geometrical ambiguity
when estimating the depth or normal alone from a single image.

The proposed GroundNet is shown in Figure 2. To show the
effectiveness of our method, we evaluate on the real-world outdoor
datasets of ApolloScape and KITTI, which involves heavy noise
from objects. As the images in these two datasets lack of variety of
the ground plane normal, we augment the images by adding random
roll and pitch so that estimating the ground plane normal becomes
challenging. Our method achieves the state-of-the-art performance
on the datasets either with or without the augmentation.

Our contributions are summarized as follows: (1) we propose a
novel network for end-to-end outdoor ground plane normal estima-
tion; (2) we introduce a ground segmentation stream to isolate the
ground regions so as to avoid the noise caused by irrelevant objects

in outside scenarios; (3) we propose to learn the essential corre-
lation between depth and normal by geometric consistency loss,
allowing better learning of 3D information through multi-modality
interaction and refinement. (4) though extensive evaluation on the
real-world outdoor datasets of KITTI and ApolloScape, the pro-
posed GroundNet achieves the state-of-the-art performance on the
task of ground plane normal estimation and horizon line detection,
improving the previous state-of-the-art by up to 17.7% relatively.

2 RELATEDWORK
Ground Plane Normal Estimation. Existing methods for ground
plane estimation can be classified into geometry-based methods and
learning-basedmethods. Geometry-basedmethods often extract the
3D scene structure (e.g., usingmulti-view cues, motion cues or depth
sensors) and then the ground plane is fitted to the 3D points using
a robust model fitting algorithm like RANSAC. [28] identifying the
ground using the 3D point cloud from LIDAR. [31] obtains the video
frame rate depth maps from the time-of-flight (TOF) cameras and
exploits 4D spatiotemporal RANSAC for ground plane estimation.
[39] generates the 3D point cloud under a stereo setup and then
estimates the ground plane by the disparity. Assuming the scene is
static, simultaneous localizing and mapping (SLAM) and structure
from motion (SFM) approaches can also be used for extracting the
3D scene structure [29, 33, 38, 41, 57, 63], making ground plane
estimation possible.

When only a single image is available, parallel lines detected
on the ground plane can be used to estimate vanishing points and
the horizon line [15]. Also, [30] shows how grouping detected line
segments into quadrilaterals can be used to find orthogonal planes.
However, these geometry-based methods are highly dependent on
the reliability of low-level computer vision algorithms (e.g., planar
homography estimation, line segment detection), especially when
given only a single image.

The secondary category methods focus on applying machine
learning technique to estimate the ground plane normal either di-
rectly or indirectly from related tasks. There are only a few prior
works are direct methods. [13, 14] learn a classifier to classify local
planar image patches and their orientations first. Then a Markov
random field (MRF) [54] model is learned to segment the image
into dominant plane segments. [32] achieves the ground plane
recognition by learning the lighting-invariant texture feature us-
ing regularized logistic regression model. However, these methods
make use of shallow learning model and do not benefit from the re-
cent significant progress in deep learning. Also, they do not model
the geometric relationship existing in the image. To the best of
our knowledge, GroundNet is the first work of direct ground plane
estimation which leverages the strong capacity of the deep neural
network and the geometry consistency.

Also, one can estimate the ground plane implicitly by solving a
related task. One such example of the task is 3D surface layout recov-
ery [18, 60, 64]. These methods are capable of creating a simple in-
door layout reconstruction from a single image and then the ground
plane normal is able to be estimated. Another example task could
be monocular surface normal estimation [2, 3, 6, 11, 25, 37, 45, 47],
which usually formulate the problem as a dense pixel-wise pre-
diction problem and learn a feed-forward deep neural network
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Figure 2: GroundNet: a single image is fed into the front-end encoder and then outputs three streams, namely surface normal
estimation, depth estimation and ground segmentation. (1) The ground segmentation is used to isolate the ground regions so
that we can selectively back-propagate parameter updates through only the ground regions in the image. (2) Depth stream:
we convert the ground region in the image into a point cloud using the estimated depth, and then compute the ground plane
normal nd by fitting a plane to the point cloud using the Differentiable RANSAC module. (3) Normal stream: we calculate the
ground plane normal nn by taking the average of surface normal vectors of all pixels in the ground region. The final output
of our ground plane normal is the average of the ground plane normals computed from the depth and normal streams.

classification model. On top of the estimated pixel-wise normals,
one can group the pixels with similar normals into the dominant
planes and then compute the average normal for each plane. Al-
though these methods achieve significant progress, most of them
are tailed only for the indoor scene while our method is not limited
to the scene and can work significantly well on the real-world out-
door datasets. In addition, since these prior works do not explicitly
estimate the plane normal, the fact that the ground plane is often
a flat and smooth surface is ignored. In contrast, we parameterize
the output of our methods to be a planar surface normal explicitly
and in the meantime leverage the successful architecture design
from the surface normal estimation methods.

Self-Supervised Learning via Geometric Consistency. Geo-
metric consistency is proved to be a useful and free supervision
signal in many tasks. [62] learns to predict dense flow field between
different instances of the same category object consistently across
the synthetic and real domain. [44, 48, 49] propose the cycle con-
sistency loss as a free supervision to learn a tracker. [36] jointly
optimizes the 3D surface point positions and normals to be consis-
tent with the observed light refraction effect. [9] learn the keypoint
detector, which is consistent across either different viewpoints or
adjacent frames. In order to force the predicted 3D bounding box to
be consistent with its 2D proposal, [51] proposes a 2D-3D bounding

box consistency loss. [5] learns a depth estimator under a stereo
setting by enforcing estimated depth in two views to be consis-
tent with the disparity. Also, the consistent camera pose estimator
and 3D shape predictor are learned via the multi-view projection
consistency loss in [42]. [8] learns a 3D geometrically-consistent
feature map for reconstruction, segmentation and classification
from multi-view observations. [26, 61] enforces the estimated ego-
motion consistent with the computed motion using 3D (iterative
closest point) ICP on the estimated depth between two frames.

Perhaps [35, 55, 56] are closest to our work in the aspect of pre-
dicting geometrically consistent depth and surface normal. It has
been shown in prior works that the depth and normal are com-
plementary and thus jointly optimizing the two with consistency
constraints can improve the performance on both tasks. In our
proposed method, we also propose to leverage this consistency loss.
Different from prior works, the consistency loss is applied to the
estimated ground plane normals from two streams (i.e., the normal
estimation stream and depth estimation stream).

3 GEOMETRIC DEFINITION
Parameterization. Given a single RGB image as input, our goal
is to estimate the 3D orientation of the ground plane if existing
in the image, which is usually represented by an normal vector
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n = [nx ,ny ,nz ] in the world coordinate. In addition, we can also
represent the normal vector n as (θ ,ψ ), where θ andψ are the roll
and pitch with respect to the up-axis. Furthermore, we can convert
the (θ ,ψ ) representation into a horizon line representation (θ , ρ),
where θ is the angle that the horizon line makes with the horizontal
axis, and ρ is the perpendicular distance from the principal point
to the horizon line. This allows us to compare our method against
other horizon line estimation methods (see Sec. 5.3).

Pinhole Camera Model. In this paper, we assume the images are
captured by a pinhole camera. Suppose [ui ,vi ]T is the location
of a 2D point Pi on the image plane and Qi = [xi ,yi , zi ]T is the
corresponding 3D location in the camera coordinate, we have

xi = (ui − cx ) ∗ zi/fx ,
yi = (vi − cy ) ∗ zi/fy ,

(1)

where [cx , cy ]T represents the principle point on the image plane
and zi is the depth of the point. fx and fy are the focal length
along the x and y directions respectively. It can be also written in
homogeneous coordinate as

Pi =


λui
λyi
λ

 =

fx 0 cx
0 fy cy
0 0 1



xi
yi
zi

 = KcQi (2)

where Kc is intrinsic matrix. From Eq. 1 and 2, we know that given
a 2D point Pi = [ui ,vi ], the depth in camera coordinate zi and
camera intrinsic matrix Kc , we can calculate its 3D location in the
camera coordinate Qi = [xi ,yi , zi ]. We will use this formulation
later in depth stream to convert the image into a point cloud.

4 METHOD
4.1 Approach Overview
Figure 2 depicts the network architecture of the proposed Ground-
Net. Given a single input image, a front-end fully convolutional
encoder first outputs three streams, including a surface normal
estimation stream, depth estimation stream and a ground segmen-
tation stream. (See Sec. 5.4 for detailed encoder and stream design.)
The segmented ground is used to isolate the ground region in the
estimated depth and surface normal, getting rid of the irrelevant
objects and noises. We then compute the ground plane normals
from the isolated surface normal and depth estimates.

So far, the problem has been formulated as a multi-task predic-
tion problem, including depth estimation, normal estimation and an
auxiliary ground segmentation task. However, a vital information is
left unused — the geometric correlation between depth and normal.
While multi-task learning provides us with informative features
and enables cross-modality interactions, geometric consistency is
the core constraint that allows the multi-modality information to
mutually and correctly refine the prediction. To enforce explicit
geometric consistency during training, we add a consistency loss
between two ground plane normals computed from the depth and
normal streams. During inference, the final output of our ground
plane normal is the average of the ground plane normals com-
puted from two streams, although they are already very close after
training with the geometric consistency loss.

4.2 Depth Estimation Stream
Given an image I , we first estimate the pixel-wise depth D(I ) on
the entire image. Then, a ground mask M(I ) is used to remove the
non-ground region from the estimated depth D(I ),

D̂(I ) = D(I ) ⊙ M(I ) (3)

As a result, D̂(I ) contains only depth of the ground region, which
we call the isolated depth. Following Eq. 1 and Eq. 2, we can project
every pixel i in D̂(I ) to 3D space as Q(xi ,yi , zi ) given the depth
D̂(i) to obtain a 3D point cloudC for points on the ground. We then
use a plane fitting algorithm f (·) to get the ground plane normal
nd = f (C) from the point cloud, where function f (·) can be either
least square module, as used in [35], or RANSAC-based module.

Least Square (LS) Module. When using the LS module, it is typi-
cally assuming that all points in the point cloud C lie on the same
plane without any outlier point. Therefore,

Cn = b (4)

where n is the normal vector of the plane, b ∈ Rn×3 is a constant
vector. In the least square equation, wewant tominimize ∥Cn − b∥2,
which leads to a close-form solution as below

n =
(CTC)−1CT 1

(CTC)−1CT 1

 (5)

where 1 ∈ RK is a constant vector with all 1 elements. Eq. 5 is
differentiable and thus can be used in neural network for gradient
propagation.

RANSAC-based module. To get rid of the adverse effect from
the outliers, it is more suitable to use RANSAC than the LS. As
the original RANSAC method is non-differentiable and cannot be
used in neural network, we use the differentiable RANSAC (DSAC)
proposed in [4]. Instead of using deterministic hypothesis selection
(arдmax), DSAC proposes to use a probabilistic selection, i.e., the
probability of selecting a hypothesis is higher when the hypothesis
contains more inliers and has a higher score. We will show in Table
1 of the experiment section that the differentiable RANSAC module
out-performs the lease square module as the differentiable RANSAC
module is robust to outliers.

4.3 Surface Normal Estimation Stream
In general, surface normal estimation methods suffer from diverse
objects when applied to outdoor scenes. Therefore, similar to the
depth stream, a ground mask M(I ) is used to isolate the ground
region from the entire normal map N (I ), which we estimate from
the input image I .

N̂ (I ) = N (I ) ⊙ M(I ) (6)

As a result, N̂ (I ) contains the normal only for pixels on the ground,
whichwe call the isolated normalmap. Then, to compute the ground
plane normal (i.e., a single normal vector representing the ground
plane) from the pixel-wise isolated normal map, we simply take the
average of normal vectors of all pixels on the ground in N̂ (I ):

nn =
1
M

∑
pi ∈M (I )

N̂ (pi ) (7)
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Figure 3: Illustration of the camera model. Ground plane
normal ®n can be transformed into image horizon line, pa-
rameterizing as roll θ and pitch ρ, where ρ = fpx · tanψ .

where M is the total number of pixels on the ground in N̂ (I ) and
nn is the final output of the ground plane normal computed from
the normal estimation stream.

4.4 Geometric Consistency
From the geometric perspective, depth and surface normal are
strongly correlated, which follows local linear orthogonality. For-
mally, for each pixel pi , such a correlation can be written as a
quadratic minimization for a set of linear equations:

E
(
D̂(pi ), N̂ (pi )

)
=

∑
pj ∈Ω(pi )




(Qi −Q j )T N̂ (pi )



2 (8)

where Ω(pi ) is the set of neighbors of pi , and Qi , Q j are 3D points
projected from 2D points pi , pj given their depth in D̂. In addition,
in this work, we assume that the ground is a single flat plane.
Therefore, Eq. 8 will lead to the same result for any pixel pj on
the ground. In other words, the equation holds even when the
neighborhood is the entire ground region, i.e. Ω(pi ) = M(I ). In this
way, N̂ (p) turns to nn . Also, nd represents the plane fitted over
all 3D points (Eq. 5). Therefore, minimizing Eq. 8 is equivalent to
minimize the difference between nd and nn .

4.5 Loss Functions
We now explain the loss functions of GroundNet. For pixel pi , we
denote the isolated depth map as D̂(pi ) and ground truth depth
for the ground region as Dдt (pi ) respectively. Similarly, we denote

the isolated surface normal map as N̂ (pi ) and ground truth sur-
face normal for the ground region as Nдt (pi ). Then, for the depth
estimation, the loss Ldepth is expressed as

Ldepth =
1
M

∑
pi ∈M (I )



D̂(pi ) − Dдt (pi )


2
2 (9)

whereM is the total number of pixels in isolated depth map. Simi-
larly, the surface normal estimation loss Lnormal is:

Lnormal =
1
M

∑
pi ∈M (I )



N̂ (pi ) − Nдt (pi )


2
2 (10)

In addition, instead of predicting the depth and surface normal
map independently, we enforce the geometric consistency between
them by adding a consistency loss Lcon on top of the ground plane
normals computed from depth and surface normal streams:

Lcon = arccos nd · nn
∥nd ∥ · ∥nn ∥

(11)

Then, the overall loss function for the GroundNet is the weighted
sum of all loss terms,

LGroundNet = Ldepth + Lnormal + ηLseд + λLcon (12)

where η and λ are hyper-parameters to controls the relative impor-
tance of the loss terms. For ground segmentation stream, we use
the common softmax cross-entropy loss as Lseд . Our GroundNet
can be trained in an end-to-end manner.

5 EXPERIMENTS
In this section, we evaluate the performance of ground plane esti-
mation network by conducting extensive evaluations (see Sec. 5.5
and 5.6) on two augmented public benchmark datasets, KITTI and
ApolloScape (see Sec. 5.1 and 5.2). A thorough derivation of our
evaluation metrics is provided in Sec. 5.3. Furthermore, we perform
an in-depth ablation study (see Sec. 5.7) to evaluate each component
of our method. Additional details about our network architecture
and training procedure are reported in Sec. 5.4.

5.1 Datasets
KITTI is a famous and popular outdoor autonomous driving dataset
[43], in which disparity depth and road semantic labels are provided
for a subset of the dataset. We adopt the split scheme proposed by
Eigen et al [12]. The ground truth of the ground plane normal is
calculated from the given extrinsic matrix.

ApolloScape is a big autonomous driving dataset for scene parsing
[20], instance segmentation and self localization. It contains a great
number of image frames with complete depth information and
scene labels. We use 40,963 images for training and 8330 images for
validation.

5.2 Data Augmentation
For both KITTI and ApolloScape, the cameras are fixed to the
car, which means the ground plane orientation does not change
significantly over time. As a result, the ground plane normals lack
variety in the dataset. Thus, we introduce random rolls and pitches
to the dataset by performing rotation and vertical translation to the
images, adding variety in training and evaluation process.
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Table 1: Ground plane normal evaluation results on KITTI and ApolloScape. (5°, 0.05) means the evaluation dataset is aug-
mented by random adding roll and pitch within 5 degree and 0.05 image units, respectively. LS stands for least square module,
and DSAC stands for differentiable RANSAC module. *: Note that the result of [10] is obtained from the original published
paper without any dataset augmentation, it only reports evaluation results on KITTI.

error / deg
KITTI ApolloScape

0°, 0 5°, 0.05 10°, 0.1 15°, 0.15 5°, 0.05 10°, 0.1 15°, 0.15
Marr SkipNet [3] - 4.95 7.23 8.89 5.16 7.33 8.10
GeoNet [35] - 2.98 4.45 6.57 2.83 4.37 5.72
HMM [10]∗ 4.10 - -

GroundNet (LS) 0.71 2.74 4.06 5.93 2.68 4.02 5.23
GroundNet (DSAC) 0.70 2.65 3.84 5.41 2.49 3.72 4.87

Figure 4: Qualitative results for the groundplanenormal estimation. Red: groundtruth. Blue: GroundNet. Yellow:Marr SkipNet.
We show that our proposed GroundNet consistently outperforms all other baselines.

Specifically, for roll, we randomly rotate the images around their
principal points within a certain limit. For pitch, we randomly
translate the images up or down within a certain limit. Afterward,
the images are cropped according to the principle point to get rid of
black margins. This method allows us to increase the plane normal
variety without introducing significant distortion or inaccuracy to
the datasets.

Moreover, we set three different rotation limits (5°, 10° and 15°)
in order to show the influence of this augmentation. Similarly, the
limit of vertical translation is set as 0.05, 0.1 and 0.15 image units.

Note that the training and testing data are both augmented.
Therefore, although the data is collected from a car, the testing data
will possess a wide variety of orientation, significantly increasing
the evaluation difficulty .

5.3 Evaluation Metrics
We compare our method with not only normal estimation methods,
but also horizon line estimation methods, because horizon estima-
tion models usually focus on outdoor scenarios. In this section, we
provide two evaluation metrics with these two kinds of methods.
Particularly, we give proof that under a certain assumption, the
ground plane normal is equivalent to the horizon line of an image.

Horizon Line Estimation. To compare with horizon line estima-
tion methods, we change our parameterization from normal vector

n = [nx ,ny ,nz ] into (θ , ρ) and report the error of these two param-
eters, as mention in Sec. 3.

As shown in Figure 3, the ground plane can either be represented
by its normal n or be represented by its roll θ and pitch ψ to the
horizontal plane, given the camera center and principle point (or
given the intrinsic matrix Kc ), we can transform our estimated
normal into horizon line without losing any information.

From Eq. 2 we know, a point in camera coordinate, Qi , is related
to a point in image coordinate Pi as follows:

Pi = [λui , λvi , λ]T = KcQi (13)

where Kc is the intrinsic matrix. Therefore, K−1
c Pi = Qi . Let P

and Q be the sets of points on the horizon line in camera and
image coordinate, respectively. Then, as the normal of a plane is
perpendicular to all in-plane vectors. we have n ⊥ Q , or QT n = 0.
Therefore, from equation 13:

PTK−T
c n = 0 (14)

Let K−T
c n = A = [a,b, c]T , the horizon line in image coordinate

can be represented as:

PTA = 0 (15)
ax + by + cz = 0 (16)

Let z = 1,a/c = ac ,b/c = bc , and assume that the positive x-
direction is to the right, the positive y-direction is down, principle
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Figure 5: Qualitative results for the horizon line estimation. Red: groundtruth. Green: GroundNet (DSAC). Cyan: Perceptual.
Yellow: DeepHorizon. Gray: Zhai et al. We show that our proposed GroundNet consistently outperforms all other baselines.

Table 2: Horizon line evaluation results on KITTI. (5°, 0.05)
means augmentation limits as mentioned in Table 1. The
unit for θ and ρ are degree and 10−2 image unit.

5°, 0.05 10°, 0.1 15°, 0.15
θ ρ θ ρ θ ρ

Zhai et al. [58] 3.36 3.9 4.37 4.9 5.99 6.2
DeepHorizon [53] 2.26 3.7 4.12 4.7 5.93 5.6
Perceptual [19] 1.98 3.0 2.94 3.6 4.66 4.5
GroundNet 1.94 2.6 2.65 3.1 4.17 3.8

point is (Wp ,Hp ). Then we can calculate the horizon line (θ , ρ)
parameters as:

θ = arctan−ac
bc

(17)

ρ = −
��acWp + bcHp + 1

��√
a2c + b

2
c

(18)

By these derivations, the horizon line can be derived from the
ground plane normal only when the intrinsic Kc is available. In
many use cases, such as autonomous cars or mobile robots, it is
reasonable to assume that one has access to the intrinsic matrix of
the camera. In both KITTI and ApolloScape datasets the camera
intrinsic matrices are provided. Therefore, the estimated ground
plane normal n = [nx ,ny ,nz ]T can be re-parameterized as (θ , ρ)
representing the horizon line in image coordinate.

Ground PlaneNormal Estimation. To compare with other meth-
ods for ground plane normal estimation, we evaluate the angular
error between the estimated ground plane normal nwith the ground
truth ground plane normal nдt in terms of degree, as used in [10].

5.4 Implementation Details
We implement GroundNet using the publicly available Tensorflow
framework. The front-end convolutional encoder of GroundNet

Table 3: Horizon line evaluation results on ApolloScape. (5°,
0.05) means augmentation limits as mentioned in Table 1.
The unit for θ and ρ are degree and 10−2 image unit.

5°, 0.05 10°, 0.1 15°, 0.15
θ ρ θ ρ θ ρ

Zhai et al. [58] 2.58 2.9 3.94 3.7 5.79 5.1
DeepHorizon [53] 1.98 3.2 3.42 3.3 4.43 3.9
Perceptual [19] 1.77 2.9 2.62 3.0 3.68 3.8
GroundNet 1.92 2.6 2.58 2.8 3.59 3.5

uses VGG-16 [40] as backbone, plus dilated convolution and global
pooling as stated in [35]. Using deep features from the front-end
encoder, we perform separate deconvolutional operations to gen-
erate three sets of task-specific feature maps. Then the separate
convolutional operations are performed to produce the prediction
maps. The resolution of three maps are made to be the same as input
data for the followed 2D to 3D geometric operation. The surface
normal map has 3 channels, including 3-direction information, and
the other two maps each has 1 channel.

We initialize the front-end encoder with network pre-trained on
ImageNet. Note that as the ground segmentation task is simple, for
now, we pre-train it with direct ground label supervision separately
and fix its weights afterward. The weight of consistency loss λ is
set to 0.05. Adam optimizer [22] is used to optimize the network
on both datasets, (β1, β2) is set to (0.9, 0.999). For KITTI, the initial
learning rate is set to 1e-4. For ApolloScape dataset, we initialize
with model pre-trained on KITTI and fine-tune with learning rate
set to 5e-5. We train GroundNet on one NVIDIA GTX1080Ti GPU,
occupying 4GB of memory with a batch size of 4. The running time
is 0.92s per image.

In practice, we set the valid depth threshold to 30m. This means
only pixels with estimated depth value under 30m are used to fit
the plane. This approximation prevents the far away pixels from
introducing noise and biases into the estimation.
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Table 4: Ablation results on KITTI and ApolloScape with dataset augmentation. We show the final joint training results and
the stand-alone surface normal and depth streams without geometry consistency loss. LS stands for least square module.

error / deg
KITTI ApolloScape

5°, 0.05 10°, 0.1 15°, 0.15 5°, 0.05 10°, 0.1 15°, 0.15
surface normal stream 6.73 7.99 9.35 5.78 7.47 8.24
depth stream (LS) 3.01 4.47 6.52 2.97 4.39 5.66
depth stream (DSAC) 2.92 4.29 6.41 2.74 4.25 5.38
joint learning (LS) 2.74 4.06 5.93 2.68 4.02 5.23
joint learning (DSAC) 2.65 3.84 5.41 2.49 3.72 4.87

5.5 Ground Plane Normal Evaluation
The quantitative and qualitative results for the ground plane nor-
mal estimation are shown in Table 1 and Figure 4. We compare
our methods with two state-of-the-art surface normal estimation
methods: Marr-SkipNet [3] and GeoNet [35]; and a direct ground
plane normal estimation method: HMM [10].

We re-train GeoNet andMarr SkipNet on KITTI and ApolloScape
with the same augmentation strategy. For GeoNet, {α , β ,γ , λ η} are
set to {0.95, 9, 0.05, 0.01, 0.5}, with initial learning rate set to 1e−4.
For Marr-SkipNet, we train the caffe model with initial learning rate
set to 5e−4. As these two methods provide dense surface normal
maps instead of ground plane normal vector, the final result is
calculated by taking the average normal value of all pixels on the
estimated ground region.

FromTable 1, it is clear that GroundNet significantly outperforms
all three competitors under four dataset augmentation strategies
(including no augmentation). HMM is a non-learning geometry
based method, which is tailored to predict ground plane normal;
while other two learning-based methods are designed to predict
pixel-wise surface normal map without geometry constraints. We
claim that GroundNet gets better results with the integration of
learning and geometry consistency.

5.6 Horizon Line Evaluation
Following the derivation in Sec. 5.3, we are able to convert our esti-
mated ground plane normal to the horizon line given the intrinsic
matrix. We thus compare our method with three state-of-the-art
horizon line estimation methods: Zhai et al. [58], DeepHorizon
[53] and Perceptual Method [19]. Since [19] does not has the open
source code, we implement a DenseNet based model according to
their paper.

Quantitative results on KITTI and ApolloScape are shown in
Table 2 and 3 respectively. We also plot the qualitative results in
Figure 5. We find that our proposed GroundNet outperforms other
methods on two datasets under all kinds of dataset augmentation.
While the previous methods is able to capture the horizon line based
on evident visual cues, GroundNet can get a robust estimation based
on depth estimation, surface normal estimation and their intrinsic
geometric relationship. Thus GroundNet gets better results when
roll and pitch of the ground are steep, or when irrelevant objects
(e.g., cars, trees) cover important visual cues like traffic paints and
pavements.

Interestingly, the performance of [19] is close or sometimes
slightly better than GroundNet when the dataset augmentation

is small (i.e., 5°, 0.05). However, when we increase the amplitude
of the augmentation, it is clear to see that the performance of the
GroundNet gets better. This shows that our proposed method is
more robust to the diversity of the rolls and pitches in the input
data. Also, we notice that the average performance of all methods
on ApolloScape dataset is better than that KITTI. This is because
the images from the ApolloScape dataset are collected on the main
road and thus contains more consistent scenarios than KITTI.

5.7 Ablation Study
In order to justify the effect of different model components, we con-
duct ablation experiments for GroundNet. The results are shown in
Table 4. We can see that the joint training model performs better
than stand-alone surface normal or depth stream. Note that the
results of surface normal and depth stream are not even comparable
to GeoNet, as shown in Table 4. This result shows the effectiveness
of our geometric consistency loss. At the same time, the differen-
tiable RANSACmodule tends to improve the results, compared with
the least square module. Thus, we prove that every component of
the model helps to get a better ground estimation, so the proposed
GroundNet is self-consistent.

6 CONCLUSION
In this paper, we propose GroundNet for ground plane normal esti-
mation from a single image. GroundNet leverages the advantages
of both geometry-based and learning-based methods. A geometric
consistency loss is applied to two ground plane normals computed
from the surface normal stream and depth stream so that Ground-
Net is able to predict the consistent depth and surface normal. We
tailored our model for outdoor scenarios by adding an assistive
ground segmentation stream to get rid of irrelevant regions con-
taining diverse objects and background. Experimental results on
KITTI and ApolloScape datasets show that the proposed method
out-performs previous state-of-the-art methods for both ground
plane normal estimation and horizon line estimation in outdoor
scenes.
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