
Self-Supervised Learning on Mobile

Robots Using Acoustics, Vibration, and

Visual Models to Build Rich Semantic

Terrain Maps

Jacqueline Libby

CMU-RI-TR-19-82

December 16, 2019

The Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee:
Anthony Stentz (chair)

Martial Hebert
David Wettergreen

Larry H. Matthies, Jet Propulsion Laboratory

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Robotics.

Copyright c© 2019 Jacqueline Libby

Abstract

Humans and robots would benefit from having rich semantic maps of the
terrain in which they operate. Mobile robots equipped with sensors and per-
ception software could build such maps as they navigate through a new envi-
ronment. This information could then be used by humans or robots for better
localization and path planning, as well as a variety of other tasks. However,
it is hard to build good semantic maps without a great deal of human effort
and robot time. Others have addressed this problem, but they do not provide
a high level of semantic richness, and in some cases their approaches require
extensive human data labeling and robot driving time.

We use a combination of better sensors and features, both proprioceptive
and exteroceptive, and self-supervised learning to solve this problem. We en-
hance proprioception by exploring the use of new sensing modalities such as
sound and vibration, and in turn we increase the number and variety of terrain
types that can be estimated. We build a supervised proprioceptive multiclass
model that predicts seven terrain classes. The proprioceptive predictions are
then used as labels to train a self-supervised exteroceptive model from camera
data. This exteroceptive model can then estimate those same terrain types
more reliably in new environments. The exteroceptive semantic terrain predic-
tions are spatially registered into a larger map of the surrounding environment.
3d point clouds from rolling/tilting ladar are used to register the proprioceptive
and exteroceptive data, as well as to register the resulting exteroceptive predic-
tions into the larger map. Our claim is that self-supervised learning makes the
exteroception more reliable since it can be automatically retrained for new lo-
cations without human supervision. We conducted experiments to support this
claim by collecting data sets from different geographical environments and then
comparing classification accuracies. Our results show that our self-supervised
learning approach is able to outperform state of the art supervised visual learn-
ing techniques.

iv

Acknowledgments

For our past work on the Gator platform, I would like to thank Scott Perry
for help with field experiments and Don Salvadori for help with mechanical fab-
rication. For more recent work on the LAGR platform, I would like to thank
Herman Herman, Jeffrey McMahill, Vladimir Altman, and James Ketterer for
their development of the hardware and and interface control. I would like to
thank Dale Lord and Michael McGraw for their help with software develop-
ment. I would like to thank Oliver Kroemer for helping me to incorporate the
Variational Auto Encoder, and for the overall feedback he has given me in sup-
port of my research. Learning an unsupervised feature learning technique for
robotic perception is an invaluable tool to have in my tool belt.

I would like to thank all of my committee members for their knowledge and
insight in the field robotics and perception domains. Larry Matthies, my ex-
ternal committee member, has conducted extensive research in self-supervised
learning, using proprioception to teach exteroception. He develops ground-
breaking robots for NASA at the Jet Propulsion Laboratory, steering the course
of computer vision and mobile robotics research in space. His insights have al-
ways been very useful, and his critiques of my work have helped me to refine
and develop it along the way. Martial Hebert was my computer vision teacher
early on in my studies at Carnegie Mellon, and I learned a tremendous amount
in his class. His knowledge in computer vision has steered me along the right
course for adding vision into my own research. During my time at Carnegie
Mellon I have seen him advance to become the director of the Robotics Insti-
tute, and now to become the Dean of the School of Computer Science. But
to me, he has always just been this awesome computer vision researcher who
inspired me to delve into robotic perception techniques. David Wettergreen
has been an inspiration in the domains of robotic perception, field robotics,
and systems integration. He develops the next generation of space robots, and
travels to the far ends of the earth to test and deploy these systems. He has
given me extensive feedback to keep my research relevant, and I really value
the conversations that we have had. During my time here, I have watched him
advance to become the head of the PhD program. As the head of my program,
he has helped me stay on track, and I thank him greatly for his guidance and
direction.

In particular, I would like to thank my adviser, Tony Stentz, for continually
guiding me in the right direction, and for providing me with his extensive wis-
dom in the domains of field robotics, mobile robotics, and systems integration.
As former head of the National Robotics Engineering Center, he has always
had a tremendous wealth of knowledge for building real robotics systems that
actually work in harsh outdoor environments. Now at the Uber Advanced
Technologies Group, he is continuing to push the envelope for the development
of outdoor autonomous robotic vehicles in real-world applications. Tony has
been an inspiration for how to think clearly and critically about building com-

plex robotic systems in the most practical way possible. He has stuck with me
through the long haul, always with a positive attitude. He has taught me how
to approach my research with grace and poise.

This work was conducted in part through collaborative participation in
the Robotics Consortium sponsored by the U.S Army Research Laboratory
under the Collaborative Technology Alliance Program, Cooperative Agreement
W911NF-10-2-0016. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing the official
policies, either expressed or implied, of the U.S. Government.

vi

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Space . 2
1.3 Perception Techniques . 3

2 Prior Work 7
2.1 Learning with Proprioception on Mobile Robots 7
2.2 Self-Supervised Learning with Proprioception on Mobile Robots 9

2.2.1 A Direct Framework . 10
2.2.2 Two-step Frameworks . 12

2.3 Comparison of Approaches . 14
2.4 Thesis Problem . 19
2.5 Thesis Outline . 19

3 Experimental Setup 21
3.1 Gator Platform and Data Collection . 21
3.2 Proprioceptive Sensing Modalities . 25
3.3 LAGR Platform . 31
3.4 LAGR Data Collection . 35

4 Self-Supervised Framework 43
4.1 Data Registration . 44
4.2 Applying the General Framework To our System 51
4.3 Four Main Experiments . 55
4.4 Thesis Problem Revisited . 60

5 Proprioception Module 63
5.1 Acoustics and Vibration Literature . 63
5.2 Data Overview and Hand Labeling . 64
5.3 Feature Extraction . 66
5.4 Classification . 69
5.5 Gator Experiments and Results . 70
5.6 LAGR Experiments and Results . 75

5.6.1 Learned Sensor Selection . 75

vii

5.6.2 Test Results . 83

6 Exteroception Module 87
6.1 Unsupervised Feature Learning . 87
6.2 Classification . 90
6.3 Experiments and Results . 92

7 Final Experiments and Results 103
7.1 Proprioception . 103
7.2 Vision Floor . 105
7.3 Vision Ceiling . 107
7.4 Self-Supervision . 109
7.5 Analysis . 111

8 Conclusion 115
8.1 Contributions . 115
8.2 Future Work . 119

9 Appendix 125
9.1 Convolutional Variational Auto Encoder Images 125
9.2 Self-Supervision Images . 140

9.2.1 Pixim Images for Previous Locales (sea2-11, wood1-7, wood1-8, bush4-
1, tree2-1) . 140

9.2.2 Pixim Images for Current Locale (bramble1-1) 148
9.2.3 Vision Floor Benchmark Training Labels 152
9.2.4 Vision Floor Benchmark Test Predictions 160
9.2.5 Self-Supervision Training Labels (snowball) 164
9.2.6 Self-Supervision Test Predictions (snowball) 167
9.2.7 Self-Supervision Training Labels (vt500-bumper, adxl-axle-up) . . . 171
9.2.8 Self-Supervision Test Predictions (vt500-bumper, adxl-axle-up) . . . 174
9.2.9 Vision Ceiling Benchmark Training Labels 178
9.2.10 Vision Ceiling Benchmark Test Predictions 181

Bibliography 185

viii

List of Figures

1.1 Example of how a visual classifier can fail when detecting water 5

2.1 General framework for self-supervision, where the teacher’s measurements
are direct . 10

2.2 General two-step framework, where initial features are learned and then used
to train additional features . 12

2.3 Example of an extension to the general frameworks 14

3.1 The E-Gator platform . 22

3.2 Data collection environments for the water class 23

3.3 Example of a data collection for the hitting hard objects class 24

3.4 LAGR Platform . 32

3.5 Exteroceptive Sensors on LAGR Platform 33

3.6 Proprioceptive Sensors on LAGR Platform, High Level 33

3.7 Proprioceptive Sensors on LAGR Platform, Inside the Axle and Bumper
Suites . 34

3.8 Data Collection Procedure . 37

4.1 General two-step framework (repeated for convenience) 44

4.2 Coordinate Frame Block Diagram . 45

4.3 Robot at a Stopped Interval, Collecting Exteroceptive Data 46

4.4 Robot During a Moving Interval, Collecting Proprioceptive Data 46

4.5 Time Series Signal Representing an Instance of the Robot’s Interaction with
a Particular Terrain Class . 48

4.6 A Pair of Images from the Left and Right Pixim Cameras 49

4.7 A Pixim Pair from a Stopped Interval, with the 3-second Wobbler Point
Cloud Projected onto Them . 49

4.8 Rectangular Footprints Projected onto the Images, Showing the Robot’s Path 50

4.9 Wobbler points that are Inside the Robot’s Path 51

4.10 Wobbler points that are Outside the Robot’s Path 51

4.11 Relationship between Theoretical Diagram and Actual Data 52

4.12 Graphic for Inside the Robot’s Path . 54

4.13 Graphic for Outside the Robot’s Path . 54

4.14 Relationship between Theoretical Framework and Graphics Notation . . . 55

ix

5.1 Spectrograms for each class. The x axis is time. The labeled terrain inter-
action sequences for each class are concatenated together in succession over
time along the x axis. The colors show the percentage of spectral magnitude
at each frequency, with red being the highest and blue being the lowest. . . 68

5.2 Balanced accuracies from acoustics experiments for the different feature/classifier
combinations using just the front microphone 72

5.3 Balanced accuracies from acoustics experiments with different ways of com-
bining the microphone data . 73

6.1 Variational Auto Encoder From a High Level 88

6.2 Robot Viewing Scene from Stopped Intervals Along Path 90

6.3 Example of 10 Data Points for the Bramble Class 90

6.4 Exteroceptive Data Inside and Outside the Robot’s Path 93

6.5 Example Training and Validation Data from the tree2-1 locale, with the
(pavement, treeBig) Binary Classifier . 100

8.1 Our current two-step self-supervised framework 119

8.2 A hierarchical scheme to semantic labeling of terrain classes 119

8.3 An unsupervised variant to the two-step framework 121

9.1 100 Input Image Patches of the Grass Class 126

9.2 100 Decoded Outputs of the Grass Class, corresponding to inputs in figure 9.1127

9.3 100 Input Image Patches of the Grass-leaves Class 128

9.4 100 Decoded Outputs of the Grass-leaves Class, corresponding to inputs in
figure 9.3 . 129

9.5 100 Input Image Patches of the Pavement Class 130

9.6 100 Decoded Outputs of the Pavement Class, corresponding to inputs in
figure 9.5 . 131

9.7 100 Input Image Patches of the Soft Vegetation Class 132

9.8 100 Decoded Outputs of the Soft Vegetation Class, corresponding to inputs
in figure 9.7 . 133

9.9 100 Input Image Patches of the Bramble Class 134

9.10 100 Decoded Outputs of the Bramble Class, corresponding to inputs in
figure 9.9 . 135

9.11 100 Input Image Patches of the Bush Class 136

9.12 100 Decoded Outputs of the Bush Class, corresponding to inputs in figure 9.11137

9.13 100 Input Image Patches of the Tree Class 138

9.14 100 Decoded Outputs of the Tree Class, corresponding to inputs in figure 9.13139

9.15 Pixim Images for Previous Locales (sea2-11, wood1-7, wood1-8, bush4-1,
tree2-1), Image 1 . 140

9.16 Pixim Images for Previous Locales (sea2-11, wood1-7, wood1-8, bush4-1,
tree2-1), Continued, Images 2 - 3 . 141

9.17 Pixim Images for Previous Locales (sea2-11, wood1-7, wood1-8, bush4-1,
tree2-1), Continued, Images 4 - 5 . 142

x

9.18 Pixim Images for Previous Locales (sea2-11, wood1-7, wood1-8, bush4-1,
tree2-1), Continued, Images 6 - 7 . 143

9.19 Pixim Images for Previous Locales (sea2-11, wood1-7, wood1-8, bush4-1,
tree2-1), Continued, Images 8 - 9 . 144

9.20 Pixim Images for Previous Locales (sea2-11, wood1-7, wood1-8, bush4-1,
tree2-1), Continued, Images 10 - 11 . 145

9.21 Pixim Images for Previous Locales (sea2-11, wood1-7, wood1-8, bush4-1,
tree2-1), Continued, Images 12 - 13 . 146

9.22 Pixim Images for Previous Locales (sea2-11, wood1-7, wood1-8, bush4-1,
tree2-1), Continued, Images 14 - 15 . 147

9.23 Pixim Images for Current Locale (bramble1-1), Image 1 148
9.24 Pixim Images for Current Locale (bramble1-1), Continued, Images 2 - 3 . . 149
9.25 Pixim Images for Current Locale (bramble1-1), Continued, Images 4 - 5 . . 150
9.26 Vision Floor Benchmark Training Labels, Images 1 - 2 152
9.27 Vision Floor Benchmark Training Labels, Continued, Images 3 - 4 153
9.28 Vision Floor Benchmark Training Labels, Continued, Images 5 - 6 154
9.29 Vision Floor Benchmark Training Labels, Continued, Images 7 - 8 155
9.30 Vision Floor Benchmark Training Labels, Continued, Images 9 - 10 156
9.31 Vision Floor Benchmark Training Labels, Continued, Images 11 - 12 157
9.32 Vision Floor Benchmark Training Labels, Continued, Images 13 - 14 158
9.33 Vision Floor Benchmark Training Labels, Continued, Image 15 159
9.34 Vision Floor Benchmark Test Predictions, Images 1 - 2 160
9.35 Vision Floor Benchmark Test Predictions, Continued, Images 3 - 4 161
9.36 Vision Floor Benchmark Test Predictions, Continued, Image 5 162
9.37 Self-Supervision Training Labels (snowball), Images 1 - 2 164
9.38 Self-Supervision Training Labels (snowball), Continued, Images 3 - 4 . . . 165
9.39 Self-Supervision Training Labels (snowball), Continued, Image 5 166
9.40 Self-Supervision Test Predictions (snowball), Images 1 - 2 167
9.41 Self-Supervision Test Predictions (snowball), Continued, Images 3 - 4 . . . 168
9.42 Self-Supervision Test Predictions (snowball), Continued, Image 5 169
9.43 Self-Supervision Training Labels (vt500-bumper, adxl-axle-up), Images 1 - 2 171
9.44 Self-Supervision Training Labels (vt500-bumper, adxl-axle-up), Continued,

Images 3 - 4 . 172
9.45 Self-Supervision Training Labels (vt500-bumper, adxl-axle-up), Continued,

Image 5 . 173
9.46 Self-Supervision Test Predictions (vt500-bumper, adxl-axle-up), Images 1 - 2 174
9.47 Self-Supervision Test Predictions (vt500-bumper, adxl-axle-up), Continued,

Images 3 - 4 . 175
9.48 Self-Supervision Test Predictions (vt500-bumper, adxl-axle-up), Continued,

Image 5 . 176
9.49 Vision Ceiling Benchmark Training Labels, Images 1 - 2 178
9.50 Vision Ceiling Benchmark Training Labels, Continued, Images 3 - 4 179
9.51 Vision Ceiling Benchmark Training Labels, Continued, Image 5 180
9.52 Vision Ceiling Benchmark Test Predictions, Images 1 - 2 181

xi

9.53 Vision Ceiling Benchmark Test Predictions, Continued, Images 3 - 4 182
9.54 Vision Ceiling Benchmark Test Predictions, Continued, Image 5 183

xii

List of Tables

2.1 Comparison of properties estimated from supervised learning algorithms
that use proprioceptive sensors on mobile robots 9

2.2 Comparison of self-supervised learning implementations on mobile robots,
where the teacher was proprioceptive . 15

2.3 Comparison of proprioceptive learning approaches on mobile robots, and
how they address the three dimensions of the problem space 18

3.1 Number of Data Points for Each Class on Gator Platform 25

3.2 Comparison of proprioceptive measurements and semantic richness 26

3.3 Comparison of sensors used for measuring vibration 27

3.4 A list of the sound and vibration sensors that we used in our experiments. 30

3.5 Locales and Terrain Classes in Each Locale 38

3.6 Number of Data Points for Proprioceptive Data 40

3.7 Number of Data Points for Exteroceptive Data 41

4.1 Proprioception Overview . 56

4.2 Self-Supervision Overview . 57

4.3 Vision Floor Overview . 59

4.4 Vision Ceiling Overview . 60

5.1 Number of training and test data points used in Gator acoustics experiments 71

5.2 Normalized confusion matrix from the acoustics trial with the best average
accuracy . 73

5.3 Classification accuracies from experiments using both microphone and vi-
bration data . 75

5.4 List of 19 Proprioceptive Sensor Signals . 76

5.5 Training and Validation Locales for Proprioceptive Sensor Selection 78

5.6 Number of Training and Validation Data Points for Proprioceptive Sensor
Selection . 79

5.7 Confusion Matrix for Validation Data (locale veg2-1), Sensor = (snowball) 80

5.8 Evaluation Metrics for Validation Data (locale veg2-1), Sensor = (snowball) 81

5.9 Top 10 Sensor Combinations and Accuracies 82

5.10 Confusion Matrix for Validation Data (locale veg2-1), Sensor Combination
= (vt500-bumper, adxl-axle-up) . 83

xiii

5.11 Evaluation Metrics for Validation Data (locale veg2-1), Sensor Combination
= (vt500-bumper, adxl-axle-up) . 83

5.12 Training and Test Locales for Proprioception Final Results 84
5.13 Number of Training and Test Data Points for Proprioception Final Results 84
5.14 Confusion Matrix for Test Data (locale bramble1-1), Sensor Combination =

(vt500-bumper, adxl-axle-up) . 85
5.15 Confusion Matrix for Test Data (locale bramble1-1), Sensor = (snowball) . 85
5.16 Recall Comparison of Base Sensor (snowball) to Learned Sensor Combina-

tion (vt500-bumper, adxl-axle-up) . 86
5.17 Normalized Precision Comparison of Base Sensor (snowball) to Learned Sen-

sor Combination (vt500-bumper, adxl-axle-up) 86

6.1 Locales and Terrain Classes in Each Locale Used for VAE 89
6.2 Locales and Terrain Classes in Each Locale Used for Exteroceptive Feature

Comparison . 92
6.3 Number of Training and Validation Data Points for Exteroceptive Ceiling

Experiments . 93
6.4 List of Feature/Classifier Combinations on which We Run Experiments . . 95
6.5 Recall Comparison, Validation Data . 97
6.6 Precision Comparison, Validation Data . 98

7.1 Training and Test Locales . 103
7.2 Proprioception Overview . 104
7.3 Number of Training and Test Data Points for Proprioception Final Results 104
7.4 Confusion Matrix for Test Data (locale bramble1-1), Sensor Combination =

(vt500-bumper, adxl-axle-up) . 105
7.5 Vision Floor Overview . 106
7.6 Number of Training and Test Data Points for Vision Floor Final Results . 107
7.7 Vision Floor Benchmark Confusion Matrix for Test Data (locale bramble1-1) 107
7.8 Vision Ceiling Overview . 108
7.9 Number of Training and Test Data Points for Vision Ceiling Final Results 108
7.10 Vision Ceiling Benchmark Confusion Matrix for Test Data (locale bramble1-

1, outside robot’s path) . 109
7.11 Self-Supervision Overview . 110
7.12 Number of Training and Test Data Points for Self-Supervision Final Results 111
7.13 Self-Supervision Confusion Matrix for Test Data (locale bramble1-1, outside

robot’s path), using proprioception with (vt500-bumper, adxl-axle-up) sensors111
7.14 Recall Comparison . 112
7.15 Normalized Precision Comparison . 113
7.16 Normalized Precision Comparison Without Tree 114

xiv

Chapter 1

Introduction

1.1 Motivation

As robots become more sophisticated and capable of handling complex tasks, their per-
ception systems must become more advanced in order to more fully comprehend their
environment. One way to comprehend the environment is to label objects or regions with
semantic information. This information could then be spatially registered into a map,
enabling the robot to build a semantically rich model of the world around it. Individual
robots, teams of robots, and mixed teams of robots and people could benefit from hav-
ing a shared model of the world. This would allow them to work on tasks together and
communicate based on this shared understanding. Mobile robots must be able to navigate
complex, unknown environments. In off-road scenarios, a mobile robot must be able to
detect and avoid hazardous terrain. Its perception system must be accurate and robust to
failure. Mapped-out models of the environment could also be used in monitoring scenarios,
where the map is tracked over time and changes in the environment are recorded.

A detailed understanding of the environment allows a mobile robot to be more effective
in path planning, motion planning and control. Path planning requires a cost map so
that the robot can avoid high cost, or hazardous, situations. Perceiving the semantics
of a region could aid in determining a cost for that region. For example, a robot might
attribute a high cost to certain terrain types such as “water” or a “bush” or a “cliff” or a
“tree”. Understanding different ground types, such as “gravel”, “sand”, and “pavement”
could also help with building cost maps. For instance, the robot might want to avoid
sand because there is a higher chance of getting stuck. Even if the robot is not avoiding a
high cost region, it might want to choose a certain control mode for more efficient vehicle
mobility in that region, such as choosing the appropriate maximum speeds, turning angles,
and accelerations (Coyle and Collins, [11]). The same can be true for above-ground object
identification. For instance, the robot might decide that it can drive over certain types of
bushes, so categorizing the bush would allow for the use of a more sophisticated dynamics-
based motion planner (Bajracharya et al. [7]).

A richly detailed world map could be useful for robot navigation, just as it is for human
navigation. Google maps lets a human navigate a path to a new location. When a simple

1

map is insufficient, Google Street View allows one to match an image of the location with
what one sees. This takes advantage of the sophisticated semantic models that humans
use to recognize buildings, glass storefronts, park settings, etc. Using Google Street View
to match the semantic information in an image to a particular location is an example of
a human localizing himself or herself within a map using landmarks. This is similar to
the way a robot would use a landmark localization filter. The hardest part of such a filter
(often not even stated in the algorithm) is the data association step, which is the process
of distinguishing between different landmarks. The richer the models for the landmarks,
the easier it is to distinguish them from each other.

Many specific applications for mobile robots would benefit from rich semantic maps.
Exploration robots, such as the Mars Rovers, could use this information to automatically
understand what they are experiencing without having to ask a human teleoperator for
help. There can be very long delays with transmitting information back and forth from
Mars to Earth, so minimizing the amount of human labeling is very pertinent in this
situation. In search and rescue scenarios, a robot must be able to navigate an unknown
environment to carry supplies or to rescue a soldier from a burning building or an open
field. Detecting landmines is another example. Often the material within the buried
landmine will change the soil chemistry around it and affect the type of vegetation that
grows there. Learning what types of vegetation grow in these regions and learning to
detect these vegetation models are both active areas of research in this domain. Handling
disaster scenarios, such as the Fukushima nuclear meltdown or the Gulf of Mexico oil
spill, is another important application for mobile robotics (both on land and underwater).
These vehicles must be able to navigate and monitor these environments, which involves
understanding the semantic details of what is around them.

1.2 Problem Space

The question then becomes how to formulate a problem space that we can use to work
towards this overarching goal of a semantically richer world model. We assume that these
models are too complex for the most part to be derived analytically, so we turn to machine
learning as a solution for developing these models. We can break this challenge up into
three dimensions that we would like to optimize:

1. Increase the level of semantic richness these models can provide

2. Decrease the amount of human effort required to teach these models to robots

3. Decrease the amount of robot effort required to learn these models

The first dimension, how semantically rich these models can get, is a question of how
much the learning algorithms can estimate. We would like to increase the number and
variety of categories (or semantic labels) that can be distinguished.

The second dimension, how much human effort is required, is a measure of how much
training data must be labeled by humans in order for the models to be successfully learned.
As mentioned above, there can be variation within each terrain category, and sometimes
this variation can change from one location to another. So the question becomes how to

2

decrease the number of locations where data must be human-labeled in order for the models
to generalize to future locations. We want to achieve this while still working towards the
goal in the first dimension: increasing the semantic richness of the model.

The third dimension, how much robot effort is required, is a measure of how much work
the robot must perform in order to gather the data. This can be directly correlated with
how close the robot must come to the source of the data; namely, the environment around
it. The closer the robot must come to the source of the data, the more work it will take
to cover a given spatial region. However, this data will have higher spatial resolution and
more sensing modalities can be effective. An example of very low-effort data collection
would be satellite imagery, where any one image covers a vast amount of terrain. However,
each pixel of the image is at a very low spatial resolution. A ground vehicle driving through
that same terrain could collect data from a variety of sensors that work at close distances
(cameras, range sensors, radar, etc.). The vehicle would have to drive a longer path to
cover the same region as the satellite, but would attain much higher resolution data. A
ground vehicle could also interact with the terrain, either by driving over it, bumping into
it, or manipulating it with a robot arm. Interaction would allow for an entirely new set of
sensing modalities with new types of information, but would require even more work: the
robot would have to make physical contact with every patch of terrain for which it wants
to acquire data, and the interaction at each terrain patch would require more effort than
just visualizing that patch. The question becomes how to decrease the amount of work the
robot must perform, given the constraint of covering as large of a spatial region as possible.

1.3 Perception Techniques

This leads us into an exploration of different robotic perception techniques and what they
can afford us across the three dimensions of the problem space listed in section 1.2. Robotic
perception can be broken down into exteroception and proprioception. Exteroception is
the measurement of the environment external to the robot. Examples include appearance
features coming from camera imagery and geometry features coming from range data. Pro-
prioception is the measurement of the internal state of the robot. Examples of internal
properties that a mobile robot can sense include the angle of its steering wheel or how fast
its ground wheels are spinning. However, proprioceptive sensing can also be used to mea-
sure the external environment by interacting with the environment and then measuring the
effect that the interaction has internally on the robot. For instance, as a robot drives over
a surface (thereby interacting with that surface), vibration sensors can pick up signatures
of the ground type. Another example is if a robot attempts to drive into an object (thereby
interacting with that object), motion sensors can determine the compliance of that object;
in other words, whether the robot can drive over the object or not. For our goal of building
a semantically rich world model, we are primarily interested in understanding the external
environment; thus we can look at proprioceptive techniques used for interactions with the
environment as well as traditional exteroceptive techniques.

Exteroceptive features such as appearance and geometry are powerful tools for classify-
ing terrain in some region of space around a robot. Appearance features such as color and

3

texture can be obtained from camera imagery. Geometric features can be obtained from
range data coming from sensors such as stereo cameras or ladar. However, there can be
an extensive amount of variation within these visual features, which causes problems for
classification algorithms. Take the example of distinguishing between a rock and a bush.
This seems like it should be a relatively easy task for a visual classification algorithm, but
when presented with enough examples from different environments, the variation makes
the problem intractable. Color coming from camera imagery can fail because both rocks
and bushes can be many different colors. Sometimes rocks can be covered with moss, mak-
ing them appear green like a bush. When bushes lose their leaves, they can appear gray or
brown like a rock. Furthermore, outdoor lighting variations can make color very tricky to
use. Shape coming from range data can fail because rocks and bushes can both be many
different shapes and sizes. They can both be pointed or round, and large or small. So this
example demonstrates that both color (an appearance feature) and shape (a geometric
feature) can fail as features to learn a distinguishing model.

Another example of a terrain type with significant visual variation is water. Figure 1.1
shows a robotic vehicle in two test locations (used in our early work, see section 3.1).
On the left, the vehicle is driving through shallow murky water, and on the right, it is
driving over a gravel road. It is clear that geometry cannot be used to distinguish between
the two surfaces since they are both flat, but it seems like appearance features such as
color or texture could be used. However, the water is murky and therefore not much
different in color than the gravel road. Even if a slight difference in color between the
two surfaces can be discerned, this would not generalize well to new environments or new
lighting conditions in the same environment. Water can also be covered with vegetation,
similar to the moss-covered rock in the previous example, which again makes it hard for
color or texture features to be used. The water’s surface can also be calm or rough. The
roughness could come from wind ripples, waves, or if the water is part of a running stream.
Variations in the roughness can make it hard to use texture as a reliable feature. Rankin
et al. classified water by using reflection as an appearance feature [30]. This involved
identifying terrain patches in the surrounding region and then finding their reflections on
the water’s surface. Using reflection features requires a great deal of spatial integrity and
can fail if the surrounding terrain patches creating the reflection are located outside the
boundaries of the image, or if there are occlusions that are not accounted for. Furthermore,
the reflections can be lost or degraded from many of the environmental effects discussed
above, such as murkiness, vegetation coverage, or surface roughness.

Proprioception used for interaction with the environment can measure different types
of properties than what is provided by exteroception; hence it can be used to compensate
in areas where exteroception fails. As a robot drives over a surface, vibration features can
give information about the ground type. If a robot drives into an object, the ability of the
robot to compress that object gives information about the object’s compliance. These are
both examples where the robot is learning something about the material consistency of
the environment, separate from its geometry or appearance. Take the previous example of
distinguishing between a rock and a bush. Although the appearance and shape may vary,
the compliance property of these objects would remain mostly constant.

In the above examples, the exteroceptive features would vary, while the propriocep-

4

(a) Vehicle in murky water (b) Vehicle on gravel road

Figure 1.1: Example of how a visual classifier can fail when detecting water. (a) shows a
robotic vehicle in murky water. (b) shows the vehicle on a gravel road. These surfaces are
somewhat similar in appearance, and many factors could change their appearance to the
point where optical sensing would not be enough to distinguish between the two terrain
types.

tive features would remain consistent. The hypothesis then is that proprioceptive sensing
would allow a robot to more readily learn a general model for the world. Since the model
generalizes better to new environments, it would take less human effort to teach the model
to the robot. Perhaps the model could be hardwired in, or perhaps there is some learning
that is involved, but the human labels required for this learning only have to come from a
few environments, because these environments would generalize well to new ones.

Although proprioception can be more consistent than exteroception, interaction re-
quires more robot effort. The robot can only measure the terrain with which it interacts,
so it would have to drive over every patch of terrain that will be registered in its map.
Furthermore, the interaction itself takes more effort than just collecting visual data. Exte-
roceptive sensing can measure anything within view, registering information out into the
space around it up to the limit of the sensing resolution. So we can view proprioception
and exteroception as complementary. Note that the advantages and disadvantages of each
directly correspond to the second and third dimensions of the problem space as formulated
in section 1.2; namely, how much human effort and robot effort are needed. We summarize
these advantages and disandvantes with the following bullet points:

5

• Proprioceptive sensing

Advantage: features can describe properties of the world more consistently
across environments (lower human effort)

Disadvantage: it is harder to collect the data because the robot must interact
with the environment (higher robot effort)

• Exteroceptive sensing

Advantage: data collection is easier because features can be registered into the
surrounding space (lower robot effort)

Disadvantage: the features can have too much variation and therefore training
has to be repeated in new locations (higher human effort)

Self-supervised learning is one way to combine these sensing modalities, leveraging the
strengths of each. In supervised learning, the human tags the data with values for the
property to estimate. The teacher is the set of human labels and the student is the set of
features from the data. In self-supervised learning, one sensing modality acts as the teacher
while another sensing modality acts as the student. Predictions from the first modality
provide ground truth values. Features from the second modality use these values to learn
a model for making the same predictions.

There is a small body of research in self-supervised learning on mobile robots where
proprioception acts as the teacher and exteroception acts as the student. The propriocep-
tion is the teacher since its features are more consistent across environments (which means
lower human effort). It teaches the exteroception how to recognize the terrain, and this
can be done automatically for any new environment. For each new environment where
this automatic training happens, some minimal amount of proprioceptive data is acquired
through vehicle-terrain interaction. Then once the exteroception learns the model, it can
map its predictions spatially outward onto a larger amount of terrain (which means lower
robot effort).

By using proprioception as the teacher, the semantic richness of the world model is
limited to what the proprioception is capable of estimating (which is the first dimension of
the problem space). The question then becomes how many properties can be estimated by
proprioception; in other words, how far can the limits of proprioceptive sensing modalities
be pushed in order to maximize the richness of the world model?

In chapter 2 we examine prior work that has made strides in these domains. Using
proprioception on mobile robots as an interactive sensing modality to understand the
external environment is a relatively unexplored research direction, and section 2.1 discusses
work in this area. Furthermore, using interactive proprioception to teach exteroception on
mobile robots in a self-supervised learning scheme is also a relatively unexplored area,
and section 2.2 discusses research here. As we look at this prior work, we define some
frameworks for contextualizing them. We then use these frameworks to define our problem
more specifically in section 2.4, and discuss how our approach is unique from prior work.
Thus we transform the problem space presented in section 1.2 into a more well-defined
thesis problem. Once the thesis problem has been defined, we conclude the chapter with
an outline for the remainder of the document in section 2.5.

6

Chapter 2

Prior Work

2.1 Learning with Proprioception on Mobile Robots

This section surveys a small body of work on mobile robots where proprioceptive sens-
ing was used to learn about the environment through interaction. As we discuss in the
introduction, proprioceptive sensing is the ability for a robot to sense its internal state.
Although the surrounding environment is external to the robot, the robot can interact
with the environment and then proprioceptively sense its own internal response to that
environment. All of the following examples used supervised learning to train features from
proprioceptive sensors in order to estimate properties pertaining to the external environ-
ment.

Weiss et al. performed vibration-based classification to distinguish between seven
ground types: vinyl floor, asphalt, gravel, grass, paving, clay court, and no motion [37].
They extracted features from the z-value of an accelerometer that is part of an Attitude
Heading and Reference System (AHRS). The AHRS was strapped to a wheeled cart that
was manually pushed over different terrain types, with the intent to later collect these
signals from a mobile robot.

Coyle and Collins also performed vibration-based classification to distinguish between
seven ground types: beach sand, packed clay, regular grass, tall grass, loose gravel, packed
gravel, and asphalt [11]. They used the z-value, roll rate, pitch rate, and speed reported
by an Inertial Measurement Unit (IMU) on-board a mobile robot.

Ojeda et al. performed terrain classification for five ground types: gravel, grass, sand,
pavement, and dirt [25]. They experimented with a variety of different sensors, including
microphones, gyroscopes, accelerometers, encoders, motor current, voltage sensors, and
downward-facing ultrasonics and infrared. They used a separate classifier for each sensing
modality and analyzed which modalities worked best for specific terrains, but did not at-
tempt to combine the results. They found that gyroscopes worked best for gravel, pavement
and dirt; motor current worked best for sand; and microphones worked best for grass.

Stavens et al. used imitation learning to model a velocity controller for a high-speed, off-
road vehicle [34]. Shock measurements from an IMU as well as geometric terrain features
from ladar were used to model the roughness of the ground. A human drove through some

7

example terrains, and then imitation learning was used to understand the ways in which
the human accelerates on different ground types. Stanford’s 2005 DARPA grand challenge
platform used this algorithm for some of its speed control.

In our 2012 ICRA paper [22], we performed acoustics-based classification to distinguish
between five terrain types: grass, pavement, gravel, water and hard objects. We experi-
mented with various feature extraction techniques fed into a multiclass classifier built with
Support Vector Machines within a one-vs-one graph. To the best of the author’s knowl-
edge, we were the first ones to classify a variety of ground and above-ground types using
only sound.

Others extended our ICRA paper with acoustics-based terrain classification, but only
on ground terrain classes. Christie and Kottege built a multiclass classifier with seven
ground terrain classes: carpet, concrete, grass, mulch, gravel, tile and asphalt [10]. They
extracted features from a microphone signal and fed these into a multiclass SVM.

Zhao et al. built a multiclass classifier with six ground terrain classes: brick, asphalt,
grass, firm soil, gravel and soft soil [42]. They used four microphones and one vibration
sensor. They used feature selection techniques from Relief and mRMR algorithms, building
classifiers for each sensor signal separately. They then fused the predictions.

Yu and Lee used vibration data to predict one of five ground classes: cork, tile, corru-
gated cardboard, gravel and artificial turf [41]. They used a Bayesian random field to infer
the ground type, and then together with the robot path, they used a Conditional Random
Field to make predictions about the surrounding terrain.

Valada et al. built a multiclass classifier with nine ground terrain classes: asphalt,
mowed grass, thick grass, pavement, cobblestone, off-road ground (dirt), wood, linoleum
and carpet [35]. They fed the spectrogram images of microphone signals through Con-
volutional Neural Networks, comparing these results to approaches that extract features
from the time series signals.

Table 2.1 summarizes the implementations discussed above for supervised learning on
mobile robots that use proprioceptive sensing, excluding our work. Most of this body of
work focused on classifying the material properties of the ground, except for Stavens et
al. [34] who learned velocity control parameters. In all cases, the properties considered were
constrained to properties of the ground, as opposed to objects or obstacles above ground
such as rocks, trees, bushes, and man-made objects. Using proprioception to estimate the
material properties of above-ground terrain types is an unexplored research direction, and
we address this more definitively in section 2.3.

8

Authors Properties Estimated

Stavens et al. [34] Velocity control parameters
Ojeda et al. [25] Gravel, grass, sand, pavement, dirt
Weiss et al. [37] Vinyl floor, asphalt, gravel, grass, paving,

clay court, no motion
Coyle, Collins [11] Beach sand, packed clay, regular grass,

tall grass, loose gravel, packed gravel,
asphalt

Christie, Kottege [10] Carpet, concrete, grass, mulch, gravel,
tile, asphalt

Zhao et al. [42] Brick, asphalt, grass, firm soil, gravel, soft
soil

Yu, Lee [41] Cork, tile, corrugated cardboard, gravel,
artificial turf

Valada et al. [35] asphalt, mowed grass, thick grass,
pavement, cobblestone, off-road ground
(dirt), wood, linoleum, carpet

Table 2.1: Comparison of properties estimated from supervised learning algorithms that
use proprioceptive sensors on mobile robots

2.2 Self-Supervised Learning with Proprioception on

Mobile Robots

We focus here on a small body of work in self-supervised learning where the teacher uses
proprioception to estimate properties about the external environment through interaction
with that environment, and the student uses exteroception to learn a model for estimating
those same properties. In particular, the student is near-field exteroceptive sensing, which
involves looking at a small local region of space around the robot (usually on the scale of
about 10 to 20 meters). A complementary relationship exists between these two modalities,
as discussed previously, which corresponds to the second and third dimensions of the
problem space that we introduce in section 1.2. Proprioceptive sensing can only label
what it comes into contact with (high robot effort), but it can provide features that are
more consistent across different environments (low human effort). Near-field exteroceptive
sensing can label anything in a local map region (low robot effort), but these labels do not
generalize as well to new environments and are therefore less reliable (high human effort).

Localization and mapping within a relative local region is needed to spatially register
the proprioceptive and exteroceptive information. For instance, imagine that at time t1
the robot is located at position a, and at that instant sees some patch of terrain in front of
it, which is located at position b. Then the robot will move forward and attempt to drive
over b, interacting with that terrain patch at time t2. The robot now has exteroceptive
information about b from time t1, as well as proprioceptive information about b from time
t2. But in order to fuse this information, it needs to register both locations a and b within

9

a local map and then localize itself as it moves from a to b.

2.2.1 A Direct Framework

We have defined self-supervised learning as a situation where one sensing modality provides
labels and a second sensing modality learns a model from these labels. The question,
though, is how the the first sensing modality can provide the labels. This section discusses
the most straightforward scheme for answering this question, as well as examples of prior
work that used this scheme. In this framework, the first sensing modality has an analytical
model that turns its measurements into property values. This model is analytical because
it does not have to be learned from training data. It can be written as a function in
a program before any experimentation is conducted. The second sensing modality then
learns a model by using predictions from the first modality as training labels.

This framework is graphically depicted in Fig. 2.1. The block on the upper left is
the teacher, the block on the upper right is the student, and the block on the bottom
is the property being estimated. The solid arrow going from the teacher to the property
indicates that the teacher’s measurement can be turned into a property value directly,
without any learning. The dotted arrow coming out of the student indicates that the
student must learn a model in order to predict the property values, using training data
from the teacher’s labels. Proprioception and exteroception are written in green above
the teacher and student, respectively, to highlight that we are looking at this subset of
scenarios. The rest of this section discusses examples of prior work that fit into this
framework.

proprioception exteroception
direct

measurements features

property

self-supervised

Figure 2.1: General framework for self-supervision, where the teacher’s measurements can
directly be turned into property values

Stavens and Thrun estimated terrain roughness for an autonomous off-road vehicle [33].
(Note that this is separate from their work in supervised learning for a velocity controller
that we discuss in section 2.1.) The teacher (top left block) was a set of shock measurements
coming from an IMU on-board the vehicle. The shock measurements were turned into
ruggedness coefficients that characterized the property being estimated (bottom block),
which was the roughness of the ground. The student (top right block) was a set of features
coming from a 3d point cloud generated by ladar. A regression model was learned, where

10

the input was the set of ladar features, and the output was the roughness of the ground.
The final regression model was then thresholded at some empirical value to output a binary
label for the ground: rough or not rough.

Kim et al. estimated terrain traversability for a LAGR platform [19]. (The LAGR
platform was initially developed for the DARPA program Learning Applied to Ground
Robots. A modified version of it is the platform for our work in this thesis, as discussed
in chapter 3.3.) The property estimated was a binary label for whether the terrain was
traversable or not. The teacher was a direct label for this property, which was determined
by a combination of measurements from the IMU, the bumper, and the motor current. The
LAGR would attempt to drive over objects in the terrain, and the sensors would provide
information about whether or not the object in front of the robot had stopped the robot
from moving. The bumper could tell the LAGR if it hit something hard. The motor current
could tell it whether its wheels were spinning freely because the object was stopping it from
moving forward. The IMU could tell it whether its velocity was zero or not. The student
was a set of texture features from a stereo camera pair. A model was then learned that
turned the camera features into a traversability label. The data sets consisted mostly of
tall grass, logs and trees (tall grass being traversable, whereas logs and trees are not.) The
learned model allowed the robot to recognize the appearance of these objects as traversable
or not traversable. The underlying motivation is that exteroceptively perceiving the height
of an object is not enough to learn the model, since grass can be just as tall as a log, for
instance. Kim et al. called the property that they are estimating terrain traversability, but
we will more specifically refer to this as terrain compliance, since traversability covers a
wider set of circumstances. Here, they were looking specifically at determining that grass
is compliant, while logs and trees are not.

Another example of estimating terrain compliance as a binary value is given in Howard
et al. [17]. This work was again conducted on a LAGR platform. The interactive method
was similar: the LAGR saw an object in front of it and attempted to drive over it. The
teacher was a direct label coming from the bumper (which told the robot whether it had
hit an object that was traversable or not). The student features are more complex than in
the previous example because they use a variety of appearance features from the cameras
as well as range features from the stereo camera pair. The authors extend this work
in Bajracharya et al. [7], replacing the teacher with measurements from visual odometry
instead of bumpers. (Note that in both of these examples, this self-supervised step was
the first step in a multi-layered self-supervised framework which is not discussed here.)

Ott and Ramos [27] extend the work of Howard et al. The teacher was again a direct
label from the bumper to determine whether an object is traversable or not. The student
was appearance features from cameras. Their work is interesting because they perform
unsupervised clustering on the appearance data, and then label each cluster with the
proprioceptive traversability label.

Another example of estimating terrain compliance is given in Wellington and Stentz, but
this time the property was estimated as a continuous value instead of a binary value [38].
This was one of the first examples of self-supervised learning being demonstrated on a
mobile robot. The platform used was a robotic tractor with a very accurate 6 Degree Of
Freedom (6-DOF) pose estimate from a filter that used a sophisticated suite of sensors,

11

including GPS, gyroscopes, Doppler radar, encoders and stereo cameras. Their goal was to
estimate how compliant the vegetation was in front of the tractor. They estimated this by
seeing how the height of the rear wheels changed as the robot drove over the vegetation.
The teacher was the set of wheel height measurements coming from the pose data. The
student was a set of range features coming from ladar. A regression model was learned that
took as input the ladar features and the output was a height prediction. They could then
predict the terrain compliance of the surrounding area from the ladar data. This helped
them with other estimation, control and planning tasks on the system.

2.2.2 Two-step Frameworks

The previous section discussed a self-supervised framework where the teaching sensing
modality has an analytical model for turning its measurements into property predictions.
In this section, we discuss cases where the teaching modality does not have an analytical
model, and so it must first learn one before teaching the student how to learn a model. In
other words, the teacher must first be taught. This adds an additional preliminary step
to the process. The key idea is that it is easier for the teacher to learn a model than it
is for the student to learn a model. Figure 2.2 depicts a general framework where this
preliminary step is a supervised learning module.

proprioception exteroception
human

observations features_1

properties

predictions of
properties from

features_1

properties

features_2

step 1) supervised step 2) self-supervised

Figure 2.2: General two-step self-supervised framework. In the first step, supervised learn-
ing is used to train one set of features. In the second step, the model trained from the first
set is used to train a second set of features. This framework is useful when it is easier to
train the first set of features with human supervision than it would be to train the second
set.

This framework contains an initial supervised step (shown on the left) and a secondary
self-supervised step (shown on the right). In each step, solid black arrows denote teachers
and dotted black arrows denote students. In the first supervised step, a human provides
labels for training data that is used to build a model for the first sensing modality. In
the second self-supervised step, the model built for the first sensing modality provides
predictions on additional data, and this additional labeled data is used to train the second
sensing modality. The first step is easier than the second step because the first model

12

requires fewer labels. The human only has to provide labels for a small set of data; once
the teacher is trained, it can go on to teach the student on a larger set of data.

Proprioception and exteroception are written in green above the feature sets in figure 2.2
to signify that we are interested in a subset of this generalization. As we discuss in the
introduction, we are posing the hypothesis that proprioception can generalize better than
exteroception to new environments. So in this framework, proprioception can be trained
on human-labeled data from a small set of environments, and then exteroception can be
automatically trained by the proprioception on a larger set of environments.

Brooks and Iagnemma [8] provide an example that fits into this two-step framework in
figure 2.2. They implemented multiclass, self-supervised terrain classification for a plane-
tary exploration rover. The property learned was one of three ground types: sand, beach
grass, or rock. The proprioceptive features came from vibration measurements and the
exteroceptive features came from camera data. In the first step, a human provided labels
for one of the three ground types. These were used to allow the vibration features to build
a multiclass classification model that could distinguish between these three ground types.
In the second self-supervised step, the model built for the vibration features provided pre-
dictions on additional data, and this additional labeled data was used to train appearance
features from the camera.

As discussed above, the reason why the first step is easier than the second step is
because fewer labels are needed for the proprioceptive data than for the exteroceptive
data. Brooks and Iagnemma argued this point. They showed how variations in lighting
conditions caused the appearance of the ground type to change, whereas the vibration
signatures remained consistent. In table V of their publication [8], they showed that
predictions from the solely appearance-based models obtained much lower accuracies when
trained on data from environments where the illumination was slightly different.

Angelova et al. [4] presented an instance of self-supervised learning that is quite different
from the frameworks discussed so far. This framework is generalized in figure 2.3. In the
first step, appearance features from a camera were modeled with unsupervised clustering
into one of three ground types: soil, gravel and asphalt. These labels were then used in a
second self-supervised step. In this second step, a new property was learned: wheel slip.
In the second step, the teacher is a combination of two measurement types, proprioception
and exteroception. The exteroception is the set of ground type predictions coming from the
appearance features in the first step. The proprioception is a set of direct measurements of
wheel slip; the difference in commanded velocities measured by wheel encoders and actual
velocities measured by Visual Odometry (V0) gave a measure of pose discrepancy, which
could tell the robot how much the wheels were slipping. The student was a set of slope
estimates of the surrounding terrain, which is an exteroceptive modality separate from the
appearance. A regression model was learned which, given a certain ground type, would
turn the slope measurements into a wheel slip value.

Angelova’s framework in figure 2.3 is very different from the general two-step framework
in figure 2.2. One difference is that the first step is unsupervised, so it requires no human
labels. Another difference is that each of the two steps outputs a separate property set
(first ground type, then wheel slip); in the general two-step framework, the same set of
properties is estimated in both steps. In both frameworks, the labels from the first step

13

step 2) self-supervisedstep 1) unsupervised

appearance
features

pose
discrepancies

predictions of
ground type slope

wheel slip
(real-valued)

ground type
(soil, gravel, asphalt)

Figure 2.3: Example of an extension to the general frameworks, used in Angelova et al. [4]

are used as the teacher for the second step; but in Angelova’s framework, a set of direct
measurements acts as another teacher in the second step.

Another large difference between these two frameworks is that appearance acts as a
teacher in Angelova’s framework and as a student in Brooks and Iagnemma’s framework.
Angelova’s approach was much more confident than Brooks and Iagnemma’s approach
about the ability of the appearance model to generalize to new environments. They as-
sumed that appearance features can be learned in an unsupervised fashion, and further-
more, the implicit assumption with unsupervised learning is that they would automat-
ically generalize to new environments, since they did not need human labels at all. In
later work, [3], [5], the authors relax the constraint that the appearance features must be
learned in an unsupervised fashion. Instead of the two steps happening sequentially, they
allowed them to happen simultaneously within an Expectation Maximization algorithm.
In any event, the point of this work was not to characterize the variability of ground type
from one environment to another, but rather to use ground type as input for learning a
regression model that relates slip and slope. Nothing would prohibit this entire framework
from being contained within a larger framework that used proprioceptive features to make
the appearance models more robust to new environments.

More recent work extends the work from Brooks and Iagnemma, using again the frame-
work in figure 2.2, but still only looking at ground terrain classes. Otsu et al. [26] distin-
guish between three ground classes: bedrock, soil and sand. The teacher is from a vibration
signal and the student is from camera images. Hajjam and Rutherford [15] distinguish be-
tween five ground classes: grass, asphalt, dirt, woodchips and sidewalk. The teacher is a
vibration signal from and IMU and the student is from camera images coming from an
aerial vehicle.

2.3 Comparison of Approaches

Table 2.2 compares the self-supervised examples discussed in the previous section. The first
four are examples of the direct one-step framework in figure 2.1, discussed in section 2.2.1,
where the measurements from the teacher could directly be turned into values for the

14

property being estimated. The last two are the examples discussed in section 2.2.2, for
the two-step frameworks depicted in figures 2.2 and 2.3, where the measurements from
the teacher required some learning beforehand. The second column in the table makes
this distinction: whether the measurements from the teacher were direct or learned. The
double horizontal line after the first four rows highlights this distinction. Interestingly, this
double line also highlights a fundamental difference in the third column: the number and
types of properties that can be estimated by the learning model.

Authors Direct or learned model
for teacher

Properties estimated

Stavens, Thrun [33] Direct Terrain roughness
Kim et al. [19] Direct Terrain compliance
Howard et al. [17] Direct Terrain compliance
Ott, Ramos [27] Direct Terrain compliance
Wellington, Stentz [38] Direct Terrain compliance

Brooks, Iagnemma [8] Learned Sand, beach grass, rock
Otsu et al. [26] Learned Bedrock, soil, sand
Hajjam, Rutherford [15] Learned grass, asphalt, dirt,

woodchips, sidewalk
Angelova et al. [4] Learned, unsupervised Wheel slip

soil, gravel, asphalt

Table 2.2: Comparison of self-supervised learning implementations on mobile robots, where
the teacher was proprioceptive. The double horizontal line after the first four rows divides
the examples by whether the teacher had a direct analytical model or whether it first had
to learn a model before going on to train the student.

First lets consider the number of properties estimated. For the examples that use the
one-step framework (above the double line), the output was one quantity, such as terrain
compliance or roughness. The quantity was binary for some examples and continuous for
others, but only one quantity was being estimated. For the examples that use a two-step
framework (below the double line), the output was a multiclass semantic label. In these
cases, the semantic label distinguished between multiple ground types.

Now lets consider the type of properties estimated. For the first set of examples above
the double line, the output was describing the physics of the vehicle’s interaction with the
environment. For the second set of examples below the double line, the output was de-
scribing the material consistency of the environment, which is independent of the vehicle’s
interaction with it. Remember that in all of these cases, proprioception is being used to
understand the external environment by interacting with it. In the first set of examples,
the direct physics of this interaction is being described; in this case, the motion of the
vehicle. Terrain compliance is a measure of whether the robot is able to move through the
object or not. Terrain roughness is a measure of whether the vehicle’s suspension bumps
up and down as it drives over a certain ground type. These are both examples where ana-
lytical models (in this case equations of motion) can be used to turn the measurements into

15

property values. However, in the second set of examples, the authors measured material
properties of the environment, such as whether the ground consists of sand, grass, rock,
soil, gravel or asphalt. These properties are still being measured through interaction, but
they are not a direct effect of this interaction; they exist independently of the interaction,
but can still be measured through the interaction with learned models.

One can appreciate a trade-off between the two types of approaches. In the direct
one-step framework, no data is needed to come up with the teacher’s model, so a minimal
amount of human effort is required. However, the semantic richness of the properties esti-
mated is limited by what can be modeled analytically. In the learned two-step framework,
some data is needed, and sometimes this data needs human labels as well, so more human
effort is required. However the semantic richness of what can be estimated is greater.

We now compare all of the learning approaches discussed so far for terrain classification
on mobile robots where proprioception is used. We use this as a basis for moving forward
with the work addressed in this thesis. This includes a comparison of the supervised
approaches from section 2.1, and the self-supervised approaches from section 2.2. Table 2.3
gives this full comparison. Each row is a group of authors. Each column is one of the
problem dimensions that we define in section 1.2.

The first dimension is the semantic richness of the world model. This is a measure of
the number and types of properties that can be estimated. For the number of properties
estimated, the value is either “single” or “multiple” in the table, referring to whether only
one quantity can be estimated, or if a multiclass model can be built. For the types of
properties estimated, this can be either a direct measurement of the motion (in which
case we write “motion”) or it can be a measurement of the material properties of the
environment (in which case we write “material”). Another distinction we make about the
type of property is whether the terrains are limited to ground types or if the model can
handle above-ground types. (This is denoted as “ground” or “above-ground”.)

The second dimension is the amount of human effort required to build the model.
This can have the values of low, medium or high. “Low” human effort means that no
human labels are needed to transform the proprioceptive measurements into the properties
being estimated. This corresponds to the examples of the one-step framework, where the
measurements can automatically be turned into property values. “Medium” human effort
means that human labels are needed for a small set of locations, but the assumption is
that the learned model will be able to generalize well to new locations. This corresponds
to the general two-step framework in figure 2.2, used by Brooks and Iagnemma [8], Otsu
et al. [26], and Hajjam and Rutherford [15]. “High” human effort means that new data
would be needed for a large number of locations because the features do not generalize
well. Note that none of the examples listed have a value of high, because they were
all using proprioceptive data, which allows them to generalize well to new environments.
(Note that Angelova et al. [4] does not quite fit this assumption, but the details of this
unique instance were already discussed in section 2.2.2. Also, since Angelova et al. uses
unsupervised learning for the first step, empirical data is needed but the data does not
require human labels, so we denote the effort as low/medium.)

The third dimension is the amount of robot effort that is required. This directly cor-
responds to whether the example was part of a self-supervised scheme or not (whether

16

it came from section 2.1 or section 2.2). If it was solely a supervised scheme, then the
learning was only using proprioceptive data. If it was a self-supervised scheme, then the
proprioception was used to teach the exteroception. In the former case, since no exterocep-
tion is used, the robot must physically interact with every patch of terrain that it wants to
estimate. Therefore, the amount of robot effort required to map an entire region is “high.”
In the latter case, the proprioceptive estimates can be mapped onto a larger region by the
exteroceptive estimates, and so only some of the terrain needs to be traversed. Therefore,
the amount of robot effort is “medium.” Note that none of these examples have a value of
“low” because proprioception is always being used, and therefore some amount of terrain
needs to be traversed to collect the proprioceptive data.

The table shows that for the first dimension (semantic richness), only rows two through
four are estimating properties “above-ground.” These examples fall into the “single” and
“motion” categories because they are all examples from the one-step framework, where
motion measurements of the interaction are analytically being modeled as a single property
value. Rows six through ten fall into the “multiple” and “material” categories but are all
limited to properties of the “ground.” For instance, consider the example of distinguishing
between a rock and a bush that we discuss in the introduction. This is a classification of
the material property of an object above-ground. None of the examples listed in this table
attempt to estimate this type of property.

The last row of the table denotes how the work in this thesis extends the results from
prior work. The first column states that we increase the level of semantic richness provided
by the prior work by estimating multiple, above-ground, material properties of the terrain.
The second and third column state that we require medium amounts of both human and
robot effort, which means that we keep our effort levels comparable to prior approaches.
Section 2.4 describes the thesis problem explicitly.

17

Authors 1) Semantic
richness

2) Human effort 3) Robot effort

Stavens, Thrun [33] Single, motion,
ground

Low Medium

Kim et al. [19] Single, motion,
above-ground

Low Medium

Howard et al. [17] Single, motion,
above-ground

Low medium

Ott, Ramos [27] Single, motion,
above-ground

Low medium

Wellington,
Stentz [38]

Single, motion,
above-ground

Low medium

Stavens et al. [34] Single, motion,
ground

Medium High

Brooks,
Iagnemma [8]

Multiple, material,
ground

Medium Medium

Otsu et al. [26] Multiple, material,
ground

Medium Medium

Hajjam,
Rutherford [15]

Multiple, material,
ground

Medium Medium

Ojeda et al. [25] Multiple, material,
ground

Medium High

Weiss et al. [37] Multiple, material,
ground

Medium High

Coyle, Collins [11] Multiple, material,
ground

Medium High

Angelova et al. [4] Multiple, material,
ground

Low/medium Medium

Christie,
Kottege [10]

Multiple, material,
ground

Medium High

Zhao et al. [42] Multiple, material,
ground

Medium High

Yu, Lee [41] Multiple, material,
ground

Medium High

Valada et al. [35] Multiple, material,
ground

Medium High

Thesis Problem Multiple,
material, ground
and
above-ground

Medium Medium

Table 2.3: Comparison of proprioceptive learning approaches on mobile robots, and how
they address the three dimensions of the problem space

18

2.4 Thesis Problem

In the last row of table 2.3, we identified the problem that we address in this thesis. That
section directly revisited the three problem dimensions listed in section 1.2, and specifically
addressed how we extend prior work to address these dimensions. Below, we flesh out the
three problem dimensions again, and how we address them in this thesis.

1. We increase the semantic richness of our world model. Specifically, we estimate
material properties of the environment, both of the ground and above the ground.
The terrain classes we estimate include:

(a) Ground types: grass, grass and leaves, pavement

(b) Above-ground types: soft vegetation, bramble, bushes, trees

2. We decrease the level of human effort required. This is the number of human-labeled
data points needed for training the model. It is denoted as a medium amount in
table 2.3 because we recognize that we need some human-labeled data so that a more
complex model can be learned and in turn so that more types of properties can be
estimated. (Note that from the previous authors, the only ones that require a low
amount of human effort use analytical models, which puts a strong limitation on
what types of properties can be estimated.) Our goal is to decrease the number of
data collection locations that require human-labeled data. This is achieved by using a
proprioceptive model. Our hypothesis is that a proprioceptive model will generalize
to new locations better than an exteroceptive model. By using a proprioceptive
model, we can therefore decrease the number of locations for which human-labeled
training data is needed.

3. We decrease the level of robot effort required. This is the amount of terrain that
the robot must interact with in order to estimate properties about the surrounding
environment. It is denoted as medium in table 2.3, which means that the robot has
to interact with some of the terrain but not all of it. Our goal is to decrease the
fraction of terrain within each test location with which the robot must interact. This
is achieved through self-supervision. By using the proprioceptive model to train the
exteroceptive model at each new location, we leverage the ability of exteroception to
collect data without interacting with the terrain. In this way, we can bootstrap the
proprioceptive predictions onto a larger terrain map.

2.5 Thesis Outline

Now that we have defined the thesis problem in relation to prior work, we present an
outline for the rest of this document.

Chapter 3 describes our experimental setup. We describe the two robotic platforms
used: the Gator in our early work, and the retrofitted LAGR in our more recent work. We
describe the sensors used for the proprioceptive and exteroceptive suites. We then describe
the data collection procedures.

Chapter 4 describes how we implement the full self-supervised system. We describe

19

how we registered the proprioceptive and exteroceptive data. We introduce notation to
help us keep track of the different subsets of data that we used for the different components
of the system. We delineate the procedure for the four main experiments that we use in
order to test and evaluate the system. We conclude the chapter by revisiting the thesis
problem in section 4.4, describing how these experiments will provide evidence that we
have addressed the problem.

Chapter 5 examines the proprioception module. We start by surveying literature in
acoustics and vibration, which provides a basis for the proprioceptive feature extraction and
learning techniques that we use. We then describe the technical approach to these feature
extraction and learning techniques. We present supervised proprioceptive experiments on
our early Gator platform. We then extend this work to experiments on the LAGR platform,
with a more sophisticated proprioceptive sensor suite. Part of using this more extensive
suite involves a sensor selection process, which we describe.

Chapter 6 presents the exteroception module. We describe the technical approach to our
feature extraction and learning techniques. The feature extraction involves an unsupervised
feature learning step, and we benchmark this against more traditional features. We then
present experiments on the LAGR platform, showing results on supervised exteroception,
comparing the different techniques. This chapter lays a foundation for incorporating the
supervised exteroception into the self-supervised system.

Chapter 7 presents the experiments and results for the full self-supervised system. The
framework we present in chapter 4 delineates the four main experiments that will be run,
and this chapter runs these experiments and presents results. We conclude the chapter
in section 7.5 by discussing how the results provide evidence to the claims in our thesis
problem.

20

Chapter 3

Experimental Setup

In this chapter we discuss the robotic platforms used and the data that we collected on
these platforms. We discuss each vehicle we used, and what sensors we mounted on those
vehicles. This includes our early work on the Gator platform, as well as our more recent
work on the LAGR platform. We also discuss the data that we collected on each vehicle.
In chapters 5, 6 and 7, we use this data in various modules of the algorithm. For the LAGR
platform, we explain the data collection procedure in detail in section 3.4. This acts as a
precursor to introducing the full self-supervised system in chapter 4.

3.1 Gator Platform and Data Collection

We conducted our early work on the Gator platform, depicted in figure 3.1. This is a
robot built from a John Deere E-Gator vehicle. We collected data from microphones and
a vibration sensor mounted on the vehicle. We manually drove the vehicle through various
outdoor environments. Two Blue Snowball microphones recorded sound, one mounted
to the front grill and one on the back bed. We also mounted a webcam to the front
grill, which we used for hand-labeling assistance. We mounted a Measurement Specialties
IEPE accelerometer near one of the front wheel axles. It sensed vibrations between the
wheel and the ground and was specifically mounted close to the source of the interaction,
before the vehicle suspension. (See section 3.2 for more details on these sensors.) A
National Instruments data acquisition board performed the analog-to-digital conversion of
the IEPE device. A laptop running Windows interfaced with this board. Another laptop
running Ubuntu interfaced with the microphones as well as the main embedded computing
architecture on the robot.

We collected data for six outdoor terrain classes by having the vehicle interact with
each terrain. The classes fall into two main categories: benign and hazardous terrain in-
teractions. We have three classes for each category, as listed below:

21

Figure 3.1: The E-Gator experimental platform, highlighting the sensors and computing
infrastructure. Close-ups are shown of the two Snowball microphones, the IEPE vibration
sensor, and the webcam.

1. Benign terrain interactions:

(a) Driving over grass

(b) Driving over pavement

(c) Driving over gravel road

2. Hazardous terrain interactions:

(a) Splashing in water

(b) Hitting hard objects

(c) Wheels spinning freely when stuck in slippery terrain

For each class, we collected data from multiple locations. We chose locations with
differing characteristics so that there was variation within each class. This prevented our
classifiers from overfitting to specific data sets and proved the ability of these models to
generalize to new environments.

For the benign terrains, the sounds differed according to how the tires interacted with
the road surface. For the grass terrain, the locations varied from clean-cut lawns to un-
maintained, park-like settings. For the pavement terrain, the locations varied from new
asphalt parking lots to older concrete roads. For the gravel terrain, the locations varied
from dirt roads with a few slag pebbles to dense collections of crushed limestone.

For the splashing in water terrain, we drove into puddles and shallow streams to collect
the sound of splashing produced by the tires and undercarriage of the vehicle. We collected

22

data from three puddles formed from rain in ditches along dirt roads (figure 3.2(a)), where
the dirt roads had varying levels of mud and ditch depth. We also collected data from two
locations in a naturally running stream of water about one foot deep (figure 3.2(b)), where
each location had varying levels of terrain roughness and water flow.

(a) Puddle of water (b) Stream with running water

Figure 3.2: Examples of various environments used for the splashing in waterclass, speaking
to the ability of the classifiers we train to generalize across varying environments within
each class.

For the hitting hard objects terrain, we drove the side of the vehicle into large rocks and
other hard objects (figure 3.3). To prevent damage to the vehicle, we rigidly attached a
large steel sheet to the side of the vehicle, similar in thickness and material to the vehicle
frame. The collisions always happened against this steel sheet. We collected data from
six different objects, hitting each object multiple times from multiple angles. Our data set
contains 20 to 30 collisions with each object, consisting of banging and scraping sounds as
the vehicle hits the object and continues to try to drive past it. We used objects of various
shapes and sizes. One was a rectangular cement block, two were sandstone rocks, two were
rocks formed from a concrete gravel mix, and one was a rock formed from molten slag.

For the wheels spinning class, we collected data when the vehicle got stuck in slippery
terrain such as mud or snow, or from uneven terrain such as a ditch. These events consisted
of the tires spinning freely in place with no traction. This data was the result of our vehicle
actually getting stuck when trying to collect data for other classes. We captured this data
type in over ten different locations, with each location consisting of multiple traction loss
events. These locations included ditches in off-road meadows, ditches in a snow-covered
trail, uneven terrain in the stream mentioned above, and various ditches next to the rocks
mentioned above.

We positioned the back microphone near the mounted steel sheet so that we could
capture the sounds of the vehicle hitting hard objects on this sheet. We mounted the
other microphone and the vibration sensor near the front wheels, and all other vehicle-
terrain interactions happened in this region. Ideally, we would have had microphones and

23

Figure 3.3: Example of a rock used for the hitting hard objects class. Left : The vehicle
driving into a rock. The location of the collision is against the steel metal plate mounted
to the side of the vehicle, to protect the vehicle’s frame from damage. Right : A closeup of
the microphone mounted on the back of the vehicle near to the collision location.

vibration sensors all over the vehicle, but cost and experimental setup times were limiting
resources. For all of the trials, we maintained a roughly constant speed between 2 m/s and
3 m/s. Earlier experiments showed that speed can have a large effect on the sound of the
interaction, so we controlled this variable here.

To label the data, the starting and ending timestamps of each interaction event had
to be determined. For example, a particular sound file might contain two events: driving
through a puddle of water and driving along the road next to the puddle. Timestamps
must be determined in order to break such a sound file up into separate sequences for these
two events.

We developed interactive software to aid in labeling our data, which incorporates a
combination of webcam images, time series plots, and audio feedback. We mounted a
webcam on the vehicle near one of the microphones, providing a video stream of the
environments that the vehicle was encountering (refer to figure 3.3). Hand-labeling involved
listening to the sound files and using time series plots of this data to visually zoom in on
interesting sequences and graphically hand-select the starting and ending timestamps of
each event. Section 5.2 discusses the hand-labeling in more detail.

After labeling was complete, we had sequences of time series data where each sequence
represented an event of interacting with a specific class. We split these sequences up
into short time windows. Each window is then a data point which is subsequently used
for feature extraction and classification. Each window generates a terrain class prediction.
Chapter 5 discusses the pipeline for turning a data point window into a class prediction. We

24

empirically chose a window size of 200 ms, with 50% overlap between successive windows.
Refer to section 5.2 for choice of window size.

Table 3.1 shows the number of data points we collected with the Gator for each terrain
class. Note that there is much less data for the last two classes because these interactions
involved short events, whereas for the first four classes we had more continuous stretches
of terrain with which to interact.

Class Number of data points

grass 2737
pavement 3233
gravel 8333
water 5171
hard objects 268
losing traction 333

Table 3.1: Number of Data Points for Each Class on Gator Platform

3.2 Proprioceptive Sensing Modalities

Our work on the Gator platform provided evidence that proprioceptive sensing generally
and acoustics specifically could classify terrain with invariance. (This is discussed in sec-
tion 5.5.) This led us to further explore these sensing modalities. In transitioning from the
Gator to the LAGR platform, we greatly enhanced our proprioceptive sensing suite. This
section describes how we chose the sensors to make this enhancement. First, we analyze
the prior work examples already given and discuss how the sensing modalities used there
played a factor in the amount of semantic richness that could be estimated. Then, we look
at how we extended this work with similar sensing modalities that have fewer limitations.
The section ends with a discussion of the sound and vibration modalities we used.

Table 3.2 lists the same authors that we discuss in chapter 2, but compares the first
dimension of semantic richness to the proprioceptive sensing modalities used. The apparent
trend is that the measurements used to estimate direct motion properties were providing
low dimensional features, while the measurements used to estimate material properties
about the environment were providing high dimensional features. All of these sensing
modalities output some form of time series data. If a data point is considered to be a
small window of time, then the dimensionality of the data point is a measure of how much
information is contained within that window.

First lets consider the low-dimensional sensing modalities. Howard et al. [17] used
bumpers, and the measurements from the bumpers were binary values: whether the bumper
had hit something or not. This is a one-dimensional value with a discrete binary scale.
Kim et al.[19] used bumpers, IMU, and motor current. This approach used slightly more
data, but they purposely allowed this data to redundantly overlap, reducing it to the
same one-dimensional binary value: whether the robot had hit something or not. Stavens
and Thrun [33] used shock measurements provided by the signal from the z-axis of the
accelerometer in their IMU. After removing the gravity bias, they integrated the z-axis

25

Authors Semantic richness Measurements used

Stavens, Thrun [33] Single, motion, ground Shock
Kim et al. [19] Single, motion,

above-ground
Bumpers, IMU, motor
current

Howard et al. [17] Single, motion,
above-ground

Bumpers

Wellington, Stentz [38] Single, motion,
above-ground

Filtered pose

Stavens et al. [34] Single, motion, ground Shock
Brooks, Iagnemma [8] Multiple, material, ground Vibration
Ojeda et al. [25] Multiple, material, ground Vibration
Weiss et al. [37] Multiple, material, ground Vibration
Coyle, Collins [11] Multiple, material, ground Vibration
Angelova et al. [4] Multiple, material, ground Appearance, pose

discrepancies

Table 3.2: Comparison of the measurements used for the inputs and the semantic richness
that is output from proprioceptive learning approaches on mobile robots

amplitude for each short time window. This integral is a measure of the energy along the
z-axis, which is proportional to the bumpiness of the ground. This is a one-dimensional
real value: the amount of energy in the window. Wellington et al. [38] used a 6-DOF pose
estimate, so they had six dimensions to work with. They used a variety of sensors that
were fed into an Extended Kalman Filter (EKF) to output this estimate. In all of these
examples, the measurements of interest slowly varied over time. So for some small window
size, the data point can be thought to have a small number of values (either a single value
or six values in the case of the 6-DOF pose estimate).

Now lets consider the high dimensional measurements where mostly vibration data was
used. Vibration data can be obtained from the z-axis of an accelerometer, similar to the
shock measured in Stavens and Thrun [33], but the signal is processed differently. Instead
of integrating each small window to obtain a single energy value, the Discrete Fourier
Transform (DFT) of the window is taken to obtain an entire distribution of values. For a
0.25 second window sampled at 800 Hz, there would be 200 samples, and 100 bins, resulting
in a 100-dimensional vector.

Note that any time series signal can be sampled at any rate, depending on what type
of analog-to-digital (A/D) conversion the system is using. The higher the sampling rate,
the more frequency bins there are in the DFT distribution. But if the natural environment
being measured does not produce high frequencies, then using the higher frequency bins
is futile. An example of this might be a temperature measurement that slowly varies
over time. There are no high frequency components in this signal, so it is inherently low-
dimensional. In the 6-DOF pose estimate from Wellington and Stentz’s work, each of these
six dimensions is similar to temperature: it is an amplitude that varies slowly over time.
So there is no way to represent this data significantly in a high dimensional space.

26

Authors Vibration sensor

Brooks, Iagnemma [8] Contact microphone
Ojeda et al. [25] Accelerometers, gyroscopes from an IMU
Weiss et al. [37] Accelerometers from an AHRS
Coyle, Collins [11] Various measurements from an IMU

Table 3.3: Comparison of sensors used for measuring vibration

Exteroceptive measurements such as appearance from cameras are also capable of es-
timating complex properties, as is demonstrated in Angelova et al. [4]. In general, we will
use exteroceptive data as the student and not the teacher in a self-supervised framework,
but the student must still be able to estimate the same properties, just not as reliably.
So it is still important to discuss how exteroceptive sensing falls into this dimensionality
argument. Appearance data is also time series data because it is a sequence of images over
time. We can think of each pixel as having four amplitudes (red, green, blue and intensity)
that vary with time. Each of these amplitudes varies slowly over time, similar to temper-
ature, so each pixel is low-dimensional. However, features for image data are calculated
for some spatial window around each pixel. Each window has many pixels, so for each
moment (or small window) in time, we have many dimensions spatially. Range data from
stereo cameras or ladar is also high dimensional for similar reasons. Instead of pixels, we
now have 3d voxels, and for each voxel we have one dimension for range. Looking at cubic
windows around each voxel, we again have many dimensions spatially.

So far, we have noted the trend that measurements with many (non-redundant) dimen-
sions provide more information, which allows for more semantic properties to be estimated
given the appropriate model. All of the proprioceptive examples that used high dimen-
sional measurements are using vibration data. (The one exception is the exteroceptive
appearance data used in Angelova’s work.) One of our research goals was how to ex-
tend this prior work in vibration sensing with new sensing modalities. To answer this, we
look more specifically at the sensors used to collect these vibration measurements. This
sensor-to-measurement comparison is depicted in table 3.3.

With the exception of the contact microphone in Brooks and Iagnemma’s work [8],
the rest of the examples used measurements from an IMU or an AHRS, both of which
measure pose and velocity. These systems usually have low-pass filters on the analog
signal before the A/D conversion to remove high frequency components. (The cut-off
point is around 25 Hz for certain IMU’s.) When measuring pose or velocity, these high-
frequency components are considered to be unwanted noise. However, for the alternate
goal of measuring vibration, this higher bandwidth could be very useful, and so the low-
pass filters could be removing useful information. With that being said, even with a 25 Hz
cutoff point, a signal that is sampled at 50 Hz (Nyquist sampling rate) with a one second
window would still result in a 25-dimensional feature vector, which is still relatively high
compared to one-dimensional direct measurements.

These authors also could have been sampling the signal before the low-pass filters if
the IMU or AHRS system allowed for this level of interface control. The cut-off point

27

for meaningful information is then determined by the physics of the sensing element or
the vehicle-terrain interaction. The sensing element will have a natural limit to what
bandwidth of frequencies it can sense. For an accelerometer, this is usually related to the
resonance of the spring-mass system inside the device. Cheap accelerometers usually have
an upper limit of 500 to 1000 Hz. The accelerometers used within IMU’s tend to be of this
variety since they will be attached to a low-pass filter anyway.

Some accelerometers are tailored for measuring higher bandwidths (up to 10 kHz).
However, the relevant question is whether the natural physics of the vehicle-terrain inter-
action contains meaningful frequencies in this upper range, or if this range is just noise.
If most of the information is in the lower part of the spectrum, then the accelerometers
passed through low-pass filters inside of an IMU might be sufficient, and such a device can
serve the dual purpose of measuring pose and vibration signatures at the same time. How-
ever, if the higher bandwidths contain useful information, then low-pass filters should be
avoided, and the sensing element itself should perhaps be tailored to focus on these higher
bandwidths. We compared these different vibration modalities in our work. Specifically,
we compared:
• Accelerometers from within an IMU that potentially have low-pass filtering

• Accelerometers similar to those used within IMU’s but separated from this larger
system, which eliminates low-pass filtering

• Accelerometers that are tailored to pick up higher bandwidths (up to 10 kHz)

Sound is another proprioceptive sensing modality that we explored, overlapping in some
ways with our exploration into vibration sensing. As humans we have empirical proof that
the sounds we hear help us understand a better model of the world, so it makes sense
to explore this modality from a bioinspired perspective. For instance, the reader might
imagine stepping into a puddle of water. If he was not using his eyes to look down so that
he did not see the interaction, and he had waterproof boots on so that he did not feel
the interaction, then he would still be aware of the event because he would hear it, and
his brain would understand how to make sense of what he heard. So we know that our
brains are capable of learning models from the sounds we hear, which help us distinguish
between different interactions. This experiential evidence suggests that machines can also
learn models from sound signals. (This is similar to why computer vision has been such a
popular sensing modality for machine learning. Researchers had experiential evidence that
visible light detected by their eyes could be used to learn mental models, so they expected
that machines could learn these models as well.)

Sound and vibration are overlapping terms. Sound is really a specific type of vibration.
Vibration is a mechanical oscillation of pressure that can travel through a solid, liquid or
gas. Sound is more specifically vibration within the human hearing range (20 to 20,000 Hz).
The vibrations explored in prior work, as compared in table 3.3, are more specifically trav-
eling through a solid; in this case, the physical body of the robotic vehicle. Sound traveling
through air can be measured by using a microphone of some variety, whereas vibrations
traveling through solids can be measured by various sensors as outlined in table 3.3. Note
from this table that Brooks and Iagnemma [8] use a contact microphone, which measures

28

vibrations through solids, as opposed to air microphones used for measuring sound through
air.

It follows naturally to view sound measured through air as an extension to prior work
in vibration measured through solids. Furthermore, air microphones tend to have higher
frequency ranges than sensors that measure vibration through solids, since these waves
travel at higher frequencies through air than through various solid materials. This further
motivates the use of sound from the dimensionality argument made above.

Another motivation for measuring sound traveling through air (as opposed to solids) is
that we can more successfully measure the interaction of the vehicle with non-rigid bodies,
such as vegetation or water. When the vehicle interacts with these types of objects, the
objects will be compressed, making less of an impact on the vehicle. If there was a hard
impact, the energy from this impact would be partly transferred to the vehicle as vibrations
through the solid. But if the body is compressible, the vibrations from this compression
would be mostly transmitted to the surrounding air.

We summarize in the following list our motivations for experimenting with vibration
and sound sensors:

• Motivations for measuring vibration traveling through solids

Prior work has shown success in using vibration as a higher-dimensional, pro-
prioceptive measurement for estimating a larger variety of environmental prop-
erties.

The limitations on the frequency ranges of different vibration sensors suggest
that further experiments be conducted to determine which sensors yield the
most information.

• Motivations for measuring sound traveling through air

As humans, we have experiential evidence that terrain interactions can be dis-
tinguished from sound signals traveling through air.

It is a particular type of vibration, so in the spirit of exploring different vibration
sensors, sound should also be explored.

It exhibits higher frequency bandwidths than vibration through solids, so it
could potentially give us more information.

It has more potential to measure interaction with compressible objects, such as
water and vegetation.

Table 3.4 lists microphones and vibration sensors with which we have experimented.
The Blue Snowball is a relatively low-cost microphone that we also used in our early
Gator work. This is an omnidirectional condenser microphone designed for indoor studio
recordings. This means the sound quality is good, but its ability to withstand harsh
outdoor environments is not known. It comes prepackaged with an A/D conversion and a
USB output.

The Voice Technologies VT500Water is an omnidirectional electret condenser micro-
phone. It a miniature lavalier microphone designed for pinning onto a shirt collar during
broadcasting events. This model is waterproof and can be submerged completely without

29

Sensor Signal
Medium

Company Model Bandwidth
(Hz)

Price

Capacitor
condenser
microphone

Air Blue Micro-
phones

Snowball 10,000 $100

Electret
waterproof
microphone

Air Voice Tech-
nologies

VT500Water 20,000 $300

accelerometer
inside the
IMU

Solid Xsens Tech-
nologies
BV

MTi 100 $1500

Typical
cheap ac-
celerometer
found in
IMU’s

Solid Analog
Devices

ADXL 335 500 $30

High-end
piezoelectric
vibration
sensor

Solid Measurement
Specialties

7100A 10,000 $500

Guitar
pickup,
contact
microphone

Solid Signal Flex SF-20 10,000 $20

Table 3.4: A list of the sound and vibration sensors that we used in our experiments.

any damage. Since it is small and waterproof, it is ideal for mounting near the wheel axles
of a robotic vehicle, where it can fit into a small space while being exposed to many envi-
ronmental factors. The device has an analog XLR output. This is a professional balanced
audio output. We handled the A/D conversion and power supply with an XLR to USB
converter. The A/D device used was the Shure X2u.

The Xsens MTi is the IMU already mounted on our robotic platform, discussed in
section 3.3. It is a miniature, gyroenhanced Attitude and Heading Reference System
(AHRS). It provides 3D orientation, 3D rate of turn, 3D earth-magnetic field data, and 3D
calibrated acceleration. The 3D acceleration is the only signal we use, and we treated this
as three separate x,y, and z vibration signals. For the z signal, we shifted out the gravity
bias.

The Analog Devices ADXL 335 is a low-cost, low-power accelerometer. The ADXL line
contains examples of accelerometers that one might find within an IMU, and in general
they are ubiquitous in mobile robotics applications. As discussed above, we purposely
tested these accelerometers separately from IMU’s to avoid any low-pass filtering, and
then compared them to the ones contained within IMU’s. We used these sensors with a

30

prepackaged breakout board from Adafruit Industries for the necessary signal conditioning,
and then used a LabJack data acquisition board for the A/D conversion.

Measurement Specialties develops a line of accelerometers that are much more expen-
sive but provide a much higher bandwidth. The 7100A model that we used is an example
of an Integrated Electronics Piezoelectric (IEPE) accelerometer, which has prepackaged
signal conditioning to provide an amplified signal with less noise. This sensor is also com-
pletely sealed and waterproof. Because of the special conditioning, the only reliable way
to interface with it is to use an A/D board that is tailored to sound and vibration mea-
surements. We used a National Instruments 9234 data acquisition board for this purpose.
To interface with the drivers for this board, we used a Windows Virtual Machine running
on one of the vehicle’s embedded computers. The Linux drivers for this board were not
developed at the time of this experimental setup.

The Signal Flex SF-20 contact microphone is the same model used in Brooks and
Iagnemma’s work [8]. A contact microphone is also known as a guitar pickup, since it is
predominantly used for this purpose, suctioned onto the side of an acoustic guitar. Its
sensing element is a piezoelectric ceramic transducer. These are very cheap devices which
are not at all calibrated, but are interesting still because they pick up high bandwidths as
compared to vibration signals coming from accelerometers.

Time was spent characterizing each sensor to make sure that the capture levels and
voltage ranges were appropriate so that the signals did not clip. We mounted all of these
sound and vibration sensors on the LAGR platform, as discussed in the following section.

3.3 LAGR Platform

Figure 3.4 shows the experimental platform on which we conducted experiments. We built
this from the original Learning Applied to Ground Robotics (LAGR) platform, which was
used across multiple institutions in previous work. The module from the original platform
that was responsible for motion control, localization, and remote control interfacing has
been maintained. This module includes sensors such as the wheel encoders and the IMU,
as well as the computing infrastructure for the low-level vehicle control. The rest of the
computing infrastructure has been upgraded, and new sensors have been mounted and
time synchronized.

Figure 3.5 highlights the new exteroceptive sensors that have been mounted. This
includes a pair of high definition range (HDR) Pixim cameras and a Wobbler. The pair of
cameras are forward-facing, with one angled slightly to the left and one angled slightly to
the right, for a wider field of view. They are enclosed within a protective waterproof housing
unit. The Wobbler is a SICK LMS 151 unit contained within a mechanism that allows
for roll and pitch motion. Having two axes of motion renders a 3d point cloud with more
uniform density. The mechanism for controlling the roll-pitch motion is a unique device
developed by staff at the National Robotics Engineering Center (NREC). The cameras
were intrinsically calibrated, and the cameras and ladar were extrinsically calibrated to
each other, rendering colorized 3d point clouds. The calibration process involves moving a
checkerboard poster around the field of view of the cameras and the Wobbler, as the robot

31

Figure 3.4: LAGR Platform

is standing still.

Figures 3.6 and 3.7 depict the proprioceptive sensors discussed in section 3.2. Starting
with figure 3.6, the top left closeup is the Blue Snowball condenser air microphone. We
have this mounted high on the vehicle since it is large and not waterproof. This is the
same microphone we used in our early work on the Gator platform, discussed in section 3.1.
The middle left closeup is the IMU, which was part of the original LAGR platform. This
is located in the vehicle mast. We use the xyz acceleration signals coming from the IMU
as vibration signals. The bottom left closeup is the VT500Water Electret air microphone.
Since it is small, it can be tucked away in small places on the vehicle. Since it is waterproof,
it can be low on the vehicle, because we don’t have to worry about it getting splashed with
water or mud. The one shown in the red box is above the the bumper, and there is another
one near the vehicle’s axle.

The closeups on the top and bottom right of figure 3.6 show the suites of vibration

32

Figure 3.5: Exteroceptive Sensors on LAGR Platform

Figure 3.6: Proprioceptive Sensors on LAGR Platform, High Level

33

Figure 3.7: Proprioceptive Sensors on LAGR Platform, Inside the Axle and Bumper Suites

sensors mounted on the axle and the bumper of the vehicle, respectively. Note that on
the center figure of the vehicle itself, these axle and bumper suites are enclosed by metal
shields to protect them. In the closeups, we have removed the shields so that the sensors
inside can be seen. The axle will predominantly pick up wheel-terrain interactions, and
the bumper will predominantly pick up above-ground terrain interactions when the vehicle
drives into something. Figure 3.7 shows closeups of the senors in these suites. The top left
closeup is the Measurement Specialties Piezoelectric vibration sensor. This is a high-end
sensor that allows for conditioned signals up to 10kHz. It measures vibration along one
axis. It comes in 10g and 50g varieties. On the axle, we have each variety mounted in
the upward direction. On the bumper we have each variety mounted in the forward and
upward direction. They are mounted on triaxial mounting blocks that come as an accessory
to these sensors. So we have six of these sensors total:

34

• one 10g sensor on the axle in the upward axis

• one 50g sensor on the axle in the upward axis

• one 10g sensor on the bumper in the upward axis

• one 10g sensor on the bumper in the forward axis

• one 50g sensor on the bumper in the upward axis

• one 50g sensor on the bumper in the forward axis

Our rationale is that the upward direction will be sufficient for measuring vehicle inter-
actions with the ground. In these cases, the vehicle is mostly vibrating up and down from
the ground type. We are looking for these vibrations transmitted through the axle, as well
as possibly through the chassis of the vehicle to the bumper unit. The forward direction
becomes important when measuring vehicle interactions with above-ground terrain classes.
In these cases, as the vehicle drives forward, the bumper interacts in the forward direction
with these terrain classes.

The middle left closeup on figure 3.7 is the contact microphone. It is unclear whether
this low-end sensor type has an axial sensing direction, but we make the assumption that
the main axis is normal to its suction surface. We again mount it in the same scheme:
• one on the axle in the upward axis

• one on the bumper in the upward axis

• one on the bumper in the forward axis

The bottom left closeup on figure 3.7 is the Analog Devices accelerometer, usually found
inside IMU’s. This is a 3-axis accelerometer. We mount one on the axle and one on the
bumper. Each sensor gives three signals for the x,y, and z directions.

3.4 LAGR Data Collection

We collected data for many different terrain types, including:
• Ground terrain types

grass, grass and leaves, pavement

• Above-ground terrain types

soft vegetation, bramble, bushes, trees

We collected data at different locations within the Pennsylvania region that provide
the terrain types listed above. These locations included city and state parks; namely,
Schenley Park and Raccoon Creek State Park. These locations also included Carnegie
Mellon University robotic test facilities; namely the Gascola and Taylor sites.

Data Collection Procedure

We conducted each trial at a specific location, or what we call a locale. We define a locale as
a unique geographical location, covering some local region where the visual characteristics

35

of the environment remain similar. For instance, one locale might be the land surrounding
a specific parking lot at Raccoon Creek State Park. At each locale, we run at least one
data collection trial.

On the Gator we had a human driving the vehicle, but on the LAGR, the vehicle drove
autonomously. The LAGR is not a vehicle that can be mounted by a human. It must
be operated with a remote if human-controlled. This makes it harder to collect elegant
data using human control. Autonomous control is the end goal for a robot anyway, but
autonomous control also provides a number of benefits for the quality of the data. One
benefit is that a constant speed can be maintained, thereby controlling this variable when
considering the proprioceptive data. Another benefit is that we can stop and start the robot
at various measured waypoints, allowing us to collect static exteroceptive data at measured
distances. This allows us to more easily register the exteroceptive and proprioceptive data.
On the Gator we did not use exteroceptive data, so this was not a consideration. Another
benefit is that the robot can be steered in a controlled manner towards an area of inter-
est, without training a human to effectively use the remote control (which is surprisingly
difficult).

We still used the remote control to drive the robot around in manual mode when it was
not in autonomous mode. This allowed us to drive the robot on and off the truck that we
used to transport the robot to each locale. This also allowed us to drive the robot out of
hazardous situations when it got stuck. And this allowed us to drive the robot to specific
waypoints in the beginning of each trial.

For each trial, we had the robot drive in a straight line, stopping every 2 meters so
that the Wobbler can make a full revolution. In this way, we get a full 3d point cloud
without any motion blur. We chose a straight line as the robot’s path to avoid localization
errors. When the robot moves, it maintains a constant 0.5 m/s velocity, so that we can
control the effect that speed might have on the proprioceptive signals. The sound and
vibration signals are pertinent as the robot is moving, and the camera and Wobbler data
are pertinent when the robot stops.

For ground classes, the robot can just drive over the the terrain without interruption.
For above-ground classes, this is not the case. For hard above-ground classes, such as
trees and bushes, the robot will stop when it hits the terrain. For semi-hard above-ground
classes, such as bramble, the robot will drive through a little bit of the terrain, and then
get stuck as the bramble becomes denser. Soft vegetation is the only soft above-ground
class where the robot will continue to drive through the terrain for an extended period of
time. Since these above-ground classes usually bring the robot to a stop, we have much
less data for them than we do for ground classes.

At a specific locale, there is some subset of all of the terrain classes listed above. For
instance, a locale might have the classes: bramble, pavement, and grass-leaves. (Note:
by grass-leaves, we mean grass and leaves, or rather, dead leaves covering grass.) In this
example, there is one above-ground class: bramble, and two ground classes: pavement and
grass-leaves. We almost never had more than one above-ground class in a specific trial.
Since a trial involves the robot getting stuck in the above-ground class, we set up the
robot’s path so that this class comes at the end of the path. This way, we did not have
to write path-planning and control code that allowed the robot to distract itself from the

36

bramble. That would have been beyond the scope of this thesis. As mentioned above, the
robot’s path is a straight line segment. The bramble class is at the end of this line segment.

For each trial, we performed the same procedure to allow the robot to autonomously
interact with the terrain classes at the locale. We depict this procedure in figure 3.8. We
designed this procedure to be as simple as possible, allowing for a minimal amount of
autonomous software design, while still preserving the the benefits of autonomous data
collection. For a specific trial, we first remote control the vehicle to the boundary between
the one above-ground class and whatever ground class was next to it. We then turn on the
robot’s path planner to mark this waypoint. This is the robot’s final waypoint along the
path that it will take. With the robot still in manual mode, we then remote control the
vehicle to a spot 10-20 meters away from this final waypoint. This will be the beginning
of the robot’s straight line path to this final waypoint. The path planner then computes
a series of waypoints along this straight line segment, every 2 meters back from the final
waypoint. We then switch the robot into autonomous mode, and it proceeds to drive at a
constant velocity, stopping at each waypoint to collect a steady point cloud. After stopping
at the final waypoint (the boundary to the above-ground class), we then allow the robot
to drive for four meters into the above-ground class, but the robot usually comes to a stop
before reaching the end of the four meters.

Figure 3.8: Data Collection Procedure

There are several scenarios in which the robot would come to a stop when interacting
with the above-ground terrain class. For hard above-ground classes such as trees and
bushes, the robot will hit the object with its bumper, and the low-level controller will
command the robot to come to a stop by activating the breaks. For semi-hard above-
ground classes such as bramble, the robot’s bumper will not get hit right away, and the
robot will attempt to drive through for a few meters. The bramble will eventually become
thicker, which sometimes leads the bumper to be hit, in turn activating the breaks. In other
scenarios, the thicker bramble will entangle the body of the robot without the bumper being
hit. This will result in the robot continuing to attempt to drive forward without success.
This might result in wheel-spinning, but this rarely happens since the robot is commanded
at a low speed, and the power of the vehicle is limited. If we had more wheel-spinning
data, we might have included this as a class in our classifier.

When the bumpers get activated and the breaks are turned on, the robot automatically

37

returns to manual mode. When the robot gets stuck without the bumper being hit, we
manually switch the robot into manual mode. We then manually drive the robot back out
of the above-ground class and prepare it for the next trial.

Lets say again that the three classes that show up at the locale are bramble, grass-
leaves and pavement. The robot would interact with the bramble class at the end of the
line segment, as the robot drives into the bramble and eventually gets stuck. Along the line
segment leading up to the bramble, the robot would interact with the two ground classes,
grass-leaves and pavement.

In the beginning of a trial, right after the robot is switched into autonomous mode,
before it starts moving along its straight line path, we manually bang on the robot with a
rubber mallet near both its bumper and axle proprioceptive sensing suites. This allowed
us to manually time synchronize the data in post-processing. This was necessary since
each analog-to-digital (A/D) data acquisition board has its own internal clock, and then
in turn each embedded computer to which the A/D boards are connected have their own
clocks. Some of the embedded computers communicate with time-synchronizing software,
but we did not implement this for the Windows Virtual Machine running the National
Instruments boards. Even if we had implemented this, the different A/D boards have their
own clocks.

Hand Labeling and Data Point Numbers

Hand-labeling the data involved labeling the proprioceptive data and exteroceptive data
separately. The proprioceptive human labels on the training data are used for training
the proprioceptive model in the first step of the two-step framework (refer to figure 2.2).
Then on the test data, these labels are used for evaluating classifier performance. The
exteroceptive human labels are not used for any training in the two-step framework. They
are used only on the test data for evaluating performance of the second step in the two-
step framework. They are however used for training in other benchmark comparisons,
discussed in chapter 4. Chapter 4 describes with much greater care how these labels are
used. Table 3.5 lists the locales for which we have labeled data, and which classes occur
in each of those locales.

Locale Classes in that locale

sea2-11 grass, vegSoft
wood1-7 bramble, grass
wood1-8 bramble, grass
bush4-1 bush, grass
tree2-1 treeBig, grass-leaves, pavement
veg2-1 bramble, grass
bramble1-1 bramble, pavement, grass-leaves

Table 3.5: Locales and Terrain Classes in Each Locale

The proprioceptive data is time-series data from the sound and vibration sensors. Since
these signals are all synchronized, we only have to label one signal. Our approach for

38

labeling this data is similar to how we labeled the data on the Gator platform. Just as we
used the webcam on the Gator as a sanity check to guide us in the labeling, now we use
the image stream from the Pixim cameras. We use interactive software that we developed
to go back and forth between time series plots, the audio playback of the signals, and
the camera image streams. For above-ground classes, the time-series plots are particularly
helpful because there is a large increase in the signal energy, evident in the plots. This
is especially true for the more sensitive sensors, as well as the sensors mounted to the
bumper. Our software allows us to alternate between the time series plots of all of the
time-series signals, which at this point have all been synchronized in post-processing from
the rubber mallet bangs. So depending on what class we are trying to label, we might
choose to examine one particular signal or another. For the ground classes, labeling was
much easier, as these events covered very large spans of time. The robot stops every two
meters at a waypoint. In between the waypoints, while the robot is moving, we collect the
vehicle-terrain interactions. We call this a moving interval. We only use the part of the
moving interval during which the robot has achieved a constant velocity of 0.5 m/s. Since
velocity is an output we get from the LAGR’s low-level control, we can automatically
find the start and end times of these intervals. So labeling this data only involves the
human labeling the entire moving interval as a specific terrain. In this way, one can see
our approach for the first step of the two-step framework as semi-supervised instead of
supervised. We are still, however, doing fully supervised labeling for the above-ground
terrain classes. We simply ignore moving intervals that are on the boundary between two
ground classes. We could always come back to this data later, but we have plenty of ground
data, so it wasn’t necessary to label every last window for training. Note that when the
proprioception is making predictions for teaching the exteroception, this boundary data is
still used. Section 5.2 discusses hand-labeling of the proprioceptive data in more detail.

After we completed the labeling, we had sequences of time series data where each
sequence represented an event of interacting with a specific class. As we did on the Gator,
we split these sequences up into 200ms short time windows, with 50% overlap between
successive windows. (Chapter 5 discusses the pipeline for turning a data point window
into a class prediction.) Table 3.6 gives a list of how many human-labeled data points
(short time windows) we have for each terrain class in each locale.

39

Locale Class No. data pts

sea2-11
grass 296
vegSoft 132

wood1-7
bramble 29
grass 175

wood1-8
bramble 65
grass 198

bush4-1
grass 148
bush 11

tree2-1
grass-leaves 102
pavement 24
treeBig 2

veg2-1
grass 127
bramble 42

bramble1-1
bramble 41
grass-leaves 49
pavement 25

Table 3.6: Number of Data Points for Proprioceptive Data

The exteroceptive data is the image stream coming from the two Pixim cameras, along
with the point cloud coming from the Wobbler. At each waypoint, the robot stops for three
seconds to allow the Wobbler to make a full revolution. We call this a stopped interval. We
only use the exteroceptive data from the stopped intervals. Although there is a continuous
stream of images collected during the trial, we only use one image pair from each stopped
interval. By image pair, we are referring to the images from the left and right cameras. And
we are only using the subset of Wobbler points within these stopped intervals. Considering
the start and end timestamps of a stopped interval, we calculate the midpoint timestamp,
and then consider the pair of Pixim images closest to this midpoint. We then consider
a three second window centered at this midpoint, and take the subset of Wobbler points
within that window. So considering again figure 3.8, for each waypoint along the path, we
use one pair of images, and the associated three second point cloud around those images.
For the subset of Pixim images that we are considering, we then hand-label the terrain
classes in the images. We use the Gimp image editor, and we paint polygonal regions
for each terrain. We use a unique color for each terrain class that can be identified by
our software for processing. The associated Wobbler point cloud for that image pair is

40

projected onto the image plane. So then there are a subset of pixels within the image pair
onto which Wobbler points are projected. For each of the pixels in this subset, we consider
a locale image patch centered around the pixel. These are the exteroceptive data points
that we consider for self-supervised learning. These image patches take on the human label
of the center pixel, as well as the 3d (x,y,z) location of the Wobbler point associated with
that center pixel. These (x,y,z) locations allow these data points to be registered within a
larger world map. This larger map allows for registration with the proprioceptive data, as
well as other future mapping applications. Chapter 4 discusses data registration in more
detail. Chapter 6 discusses the pipeline for turning an image patch data point into a class
prediction. For now, we just list the number of human-labeled data points we have for the
exteroceptive data in table 3.7.

Locale Class No. data pts

sea2-11
grass 21405
vegSoft 15300

wood1-7
bramble 9032
grass 19750

wood1-8
bramble 12888
grass 19113

bush4-1
grass 21102
bush 13106

tree2-1
grass-leaves 20625
pavement 20890
treeBig 2481

veg2-1
grass 20537
bramble 9735

bramble1-1
bramble 4541
grass-leaves 20940
pavement 12744
treeBig 690

Table 3.7: Number of Data Points for Exteroceptive Data

41

42

Chapter 4

Self-Supervised Framework

In this chapter, we discuss the framework for how we use proprioception to train mod-
els for exteroception in self-supervised schemes. We consider the frameworks presented
in figures 2.1 and 2.2 to be the two most general frameworks for self-supervised learning.
From this generalization, we look at the specific cases where proprioception is the teacher
and exteroception is the student. The proprioception is interacting with the terrain to
estimate properties about the external environment. These estimates are then used to
train the exteroception on that same environment. In the first framework (figure 2.1),
the proprioception can directly provide estimates. The advantage with this framework is
that no human estimates are needed for the property values. The disadvantage is that
the properties that can be estimated are constrained to direct first principles pertaining to
the sensed interaction. In the second framework (figure 2.2), there is an initial supervised
preprocessing step where the proprioception is trained on a model, and then in the second
main self-supervised step, the predictions from this model are used to train the exterocep-
tion. We call this initial supervised step a preprocessing step because the assumption is
that only a small amount of human-labeled data needs to be used to train this model. As
discussed earlier, our hypothesis is that proprioceptive features vary less from one location
to another, compared with exteroceptive features, so their models can be trained on a
small number of locations and still generalize well.

Our work builds off the second framework in figure 2.2, so that there are fewer limi-
tations on the properties estimated. We show this same diagram below in figure 4.1 for
convenience. In this framework, proprioceptive features come from acoustics and vibra-
tion data, as discussed in chapter 5. Exteroceptive features come from camera imagery,
as discussed in chapter 6. Ladar range data is used to register the proprioceptive and
exteroceptive data. The properties boxes in figure 4.1 include a set of semantic categories
that describe the terrain. These include:
• Ground terrain types

grass, grass and leaves, pavement

• Above-ground terrain types

soft vegetation, bramble, bushes, trees

To distinguish between these multiple categories, we implement multiclass classifica-

43

proprioception exteroception
human

observations features_1

properties

predictions of
properties from

features_1

properties

features_2

step 1) supervised step 2) self-supervised

Figure 4.1: General two-step framework. In the first step, supervised learning is used to
train one set of features. In the second step, the model trained from the first set is used to
train a second set of features. (This is a repeat of figure 2.2, placed here for convenience.)

tion. A supervised multiclass classification algorithm is used for each of the two steps in
figure 4.1. Note that even though the second step is self-supervised, we still use a super-
vised algorithm. These algorithms expect training data labeled by a teacher but it does
not matter whether this teacher is human. Separate models are trained for each of the
two steps in the framework. Chapters 5 and 6 discuss the supervised models for the pro-
prioception and exteroception modules, respectively. This chapter is concerned with the
technicalities of combining these models into a full self-supervised scheme. We introduced
the data collection on the LAGR platform in section 3.4. We show in this chapter how
this data is processed to implement the self-supervised framework within our system. Sec-
tion 4.1 explains the registration of the proprioceptive and exteroceptive data. Then, once
the data has been collected and registered, we explain in section 4.2 how we implement our
self-supervised framework. We then present the main experiments that we run on our data
in section 4.3. In section 4.4, we conclude the chapter by revisiting the thesis problem, and
show how the main experiments will be used to prove our hypotheses.

4.1 Data Registration

In this section we discuss how we spatially register the proprioceptive and exteroceptive
data. Figure 4.2 depicts the coordinate frames in block diagram form which are used for
data registration. We will refer to these in turn as we describe the registration.

When the robot is turned on at a new locale, it is at the origin of its local coordinate
frame. A static local coordinate frame is defined in this way for each new locale. The robot
continuously outputs global pose estimates from its GPS. The one global pose estimate at
the local origin timestamp is all we need to transform any data in the local map into the
world frame, using a homogeneous transformation matrix. For the rest of this discussion,
we just consider the local frame.

In addition to global pose estimates, the robot also continuously outputs 3d local pose
estimates (x, y, z, roll, pitch, yaw). These estimates are produced by the low level control

44

Figure 4.2: Coordinate Frame Block Diagram. All of the coordinate frames that must be
considered when for data registration.

from the original LAGR system, generated from its Extended Kalman Filter (EKF). We
tested the accuracy of this filter. When running on flat surfaces indoors or on level flat
outdoor terrain, this filter works very well, with under 2% of drift error over considerable
distances. But in most of the outdoor off-road environments where our experiments are
conducted, this filter fails significantly. Furthermore, there is very little documentation
on how this pose is generated, making it hard to reverse engineer. Instead, we generated
our own 2d point and shoot estimate (x, y, yaw). The heading from the gyroscope and
the distance from the wheel encoders are used to generate this estimate. We make a 2d
planar assumption for any locale in which we operate. This still works if we are on the
side of a hill, as long as the stretch of the hill we are running on is planar. (Such hill sides
are very common in our data collection sites.) Because we are only conducting our trials
over 10-20 meter long paths, this local assumption is manageable, without having to worry
about terrain undulations. Point and shoot (dead reckoning) estimates are notorious for
building up significant drift from heading errors, but since our data is collected along a
straight line path for short distances, we do not have to worry about this. We also avoid
most wheel slip since our robot drives at low speeds.

The origin of the vehicle frame is at the center of its front wheel axle, projected onto
the ground. The 2d vehicle pose estimate (x, y, yaw) is the pose of the vehicle frame’s
origin with respect to the local frame. The local frame and the vehicle frame are both
in North-East-Down (NED) coordinates. The forward (north) axis is the x-axis. The
sideways (east) axis is the y-axis. The downwards axis is the z-axis. The x − y plane is
the floor of the local map. The vehicle frame origin is always along this floor. The terrain
being classified can come up off the floor, and the point cloud from the Wobbler gives the
x−y−z point cloud of this terrain. The 2d (x, y, yaw) pose of the robot at any point along
its path, along with zero values for (z, roll, pitch), are used to transform data between the
vehicle frame and the local frame through a homogeneous transformation matrix.

As discussed in section 3.4, the data collection trials involve driving the LAGR in a
straight line, stopping every 2 meters so that the Wobbler can make a full revolution.
Figure 3.8 in that section depicts this procedure. Each waypoint along the path denotes a
stopped interval, where the robot collects exteroceptive data. Each segment between two
waypoints denotes a moving interval, where the robot collects proprioceptive data of either
a ground terrain interaction or above-ground terrain interaction.

45

In figure 4.3 we depict one of these stopped intervals. In figure 4.4 we depict one of
these moving intervals. The moving interval considered is always at a later time than the
stopped interval, so that it is in front of the robot when the robot is at the stopped interval.
The forward x-axis is the straight line being shown in figures 4.3 and 4.4.

Figure 4.3: Robot at Some Stopped Interval, Collecting Exteroceptive Data. Stopped
at pose a, the robot collects exteroceptive data over the time interval [t1Start , t1Fin]. It
collects this data for the spatial interval [bstart, bfin] in front of it.

Figure 4.4: Robot During a Moving Interval, Collecting Proprioceptive Data. As the
robot moves over the spatial interval [bstart, bfin], during the time interval [t2 start , t2 fin],
it collects proprioceptive data.

First lets consider figure 4.3. During the stopped time interval [t1 start , t1 fin], the

46

robot is at pose a in the local frame. From this pose, it sees all of the terrain in front of
it. This time interval [t1Start , t1Fin] is greater than or equal to three seconds, allowing the
Wobbler to make a full revolution, thereby collecting a point cloud without any motion
blur. The origin of the Wobbler frame is between its roll and tilt motor axes. The SICK
LMS 151 gives a planar fan of time-of-flight readings using its laser and internal mirrors,
giving range readings at every 0.5 degrees, over a 270 degree field of view, centered around
the forward axis. These polar range and angle coordinates can be converted to Cartesian
x-y coordinates within the scan plane of the SICK, and then together with the roll and tilt
angles of the Wobbler’s motor, and the distance from the SICK scan plane to the Wobbler
origin, these values can be turned into x-y-z points in the Wobbler frame. The pose of the
Wobbler frame with respect to the vehicle frame is fixed, and the associated homogeneous
transformation matrix can be used to transform the x − y − z point cloud data from the
Wobbler frame to the vehicle frame. And then this data can in turn be transformed to the
local frame. (Refer to figure 4.2 to keep track of coordinate frames.) Moving forward with
this discussion, we consider the point cloud in the local frame.

In figure 4.4, we consider the time interval [t2 start , t2 fin], where the robot is moving
forward along the x-axis from [bstart, bfin]. Poses bstart and bfin are again in the local frame,
and they denote the start and end of the particular terrain of interest.

Of course the terrain of interest is not just a line segment from bstart to bfin. It is an
entire volume. We can consider a rectangle along the x−y floor of the local map over which
the vehicle interacts. The length of the rectangle is from bstart to bfin, and the width of the
rectangle is the width of the robot between its left and right front wheels. The width is
along the y-axis, which in figures 4.3 and 4.4 would be coming in and out of the page. The
x-axis is through the center of the length of the rectangle. We then consider a rectangular
prism extruded infinitely upwards from this rectangular region along the ground plane.
Considering the point cloud from [t1Start , t1Fin], which has been transformed to the local
frame, we can look at the subset of points that fall within this rectangular extrusion. We
now have a concept of the volume of terrain with which the robot is interacting.

The proprioceptive data makes it easy to label this terrain. We show a proprioceptive
signal in blue beneath this terrain interaction in figure 4.4. By providing human labels in
the time domain for the start and finish of the vehicle-terrain interaction, namely [t2 start

, t2 fin], we then have a terrain label for the line segment from bstart to bfin, since our pose
estimates have associated timestamps. And then in turn we have a terrain label for the
volume of terrain described above. Note that the human only has to mark two points along
one dimension, the time axis, to label this terrain. Without the help of proprioception and
this data registration process, the human would have to label an entire area or volume
in the 3d world or the image plane. Also note that we considered here the above-ground
terrain interaction sequence. The ground terrain that comes before it along the robot’s
path can also be conceptualized in a similar manner.

In figure 4.5 we show the same proprioceptive time series sequence that we showed in
figure 4.4, this time split up into short time windows. These short time windows are the
proprioceptive data points. If we have human labels for the start and finish of the entire
sequence, as we do for our training data, then the short time windows take on the label of
the sequence. If we are considering test data, then each window will have a predicted label,

47

and there will be no overarching label for the entire sequence. So instead of considering
the volume of terrain over the entire sequence from [t2 start , t2 fin], we consider separate
volumes of terrain for each short time window.

Figure 4.5: Time Series Signal Representing an Instance of the Robot’s Interaction with a
Particular Terrain Class. This is analogous to the signal shown in figure 4.4, representing
a sequence from [t2 start , t2 fin], where the vehicle interacts with a specific terrain class.
The sequence is split up into consecutive overlapping short time windows, which are then
proprioceptive data points.

The process for computing the terrain volume is the same. Instead of the start and
finish timestamps being for the entire sequence, they are for the start and finish of a short
time window. These correspond to start and finish poses along the forward x-axis. Again
using the width of the robot’s front wheel axle, we compute a rectangle along the x − y
floor of the local frame. We refer to this short time window rectangle as a robot footprint.
We then again extrude a vertical prism upwards, and consider the subset of points from the
Wobbler point cloud in the local frame that fall within this prism. This subset of points
takes on the terrain label of that short time window. The label might be from a human,
or it might be from the proprioceptive model prediction.

Referring again to figure 4.3, with the robot at stopped interval a, we can consider the
3 second point cloud at that interval, along with any pair of images from the left and right
cameras. An example image pair from a stopped interval is shown in figure 4.6. The two
cameras together cover about a 72 degree field of view in front of the robot, with each
camera covering about half the field of view to either side of the forward axis. The two
cameras are slightly cross-eyed. So the left camera image is on the right of this diagram,
and the right camera image is on the left. We show a little bit of black negative space
between the two images here just to keep the images separate, but there is no gap in the
field of view of the robot. There are a few pixel columns of overlap in the middle that show
the same terrain in both images.

48

Figure 4.6: A Pair of Images from the Left and Right Pixim Cameras. Note that the
black column down the middle just separates the images for clarity. There is no gap in the
forward field of view. There is a slight overlap in the field of view.

We have considered so far the Wobbler point cloud transformed from the Wobbler frame
to the vehicle frame to the local frame, in order to associate it with a short time window
rectangular prism. Referring to the coordinate frame block diagram in figure 4.2, this is
taking the point cloud data from the Wobbler frame and moving it to the left along the
pipeline over the local frame. We now consider moving the point cloud data to the right,
from the Wobbler frame to the camera frame to the image plane. The pose of the camera
origin with respect to the Wobbler origin is fixed, and a homogeneous coordinate transform
is used go from one frame to the other. Then from the 3d camera frame, we go to the 2d
image plane of each camera using their associated intrinsic camera matrices. All of these
transform matrices were computed during the camera-Wobbler calibration process. The
Wobbler points are hence projected onto the image plane of each camera. Remember that
the image pair in figure 4.6 was from the stopped interval a in figure 4.3. The three second
Wobbler point cloud from that same stopped interval is shown in figure 4.7, projected onto
each image in that same image pair. Each red point is a projected Wobbler point.

Figure 4.7: A Pixim Pair from a Stopped Interval, with the 3-second Wobbler Point Cloud
Projected onto Them. An exteroceptive data point is then a local image patch centered
around each projected Wobbler point.

49

Similar to how the Wobbler points are projected onto the image plane, we also consider
the robot footprints projected onto the image plane. Each robot footprint is a rectangle on
the x− y floor of the local frame, with z = 0. Each corner of the rectangle is then an (x, y,
z) point in the local frame, and is propagated all the way through the pipeline of figure 4.2
to the image plane. Looking back at figure 4.3, we consider the entire path in front of
the robot, from pose a to pose bfin. This encompasses both the ground and above-ground
terrain. In the time domain, this is the interval from t1 fin to t2 fin. We can split this entire
interval up into short time windows, and in turn consider them as rectangular footprints
along the local frame floor. (The only footprints that will have a non-zero area are the
ones where the robot is moving.) These footprints are then projected onto the image plane
of each camera in figure 4.8. Note that for data registration purposes, the footprints are
just used in the original local frame. But for conceptual purposes, we project them here
onto the image plane. The union of these rectangles show the robot’s path in the image
plane.

Figure 4.8: Rectangular Footprints Projected onto the Images, Showing the Robot’s Path

Now we can consider the subset of Wobbler points that fall inside the robot’s path.
Remember that for each rectangular footprint, we extrude a vertical prism upwards and
consider the subset of Wobbler points that fall within that prism. So each footprint has
a point cloud subset associated with it. Figure 4.9 shows the union of the point cloud
subsets for each of the rectangles in figure 4.8 . In other words, this is the set of points
that are inside the robot’s path, projected onto the image plane. Each subset of points
takes on the terrain label of its associated footprint. Remember that exteroceptive data
points are local image patches centered around each projected Wobbler point. Each local
image patch then has a label coming from its Wobbler point, which in turn got its label
from its associated footprint. When the footprint labels are coming from the proprioceptive
predictions, we then have self-supervised labels for our exteroceptive data. The red points
in this figure (the points inside the robot’s path) therefor represent the training data for
the exteroceptive module of our self-supervised framework. Referring back to figure 4.1,
this is training data for the second step.

50

Figure 4.9: Wobbler points that are Inside the Robot’s Path. These are the subset of
Wobbler points from figure 4.7 that fall within the rectangular footprints of the robot’s
path shown in figure 4.8.

Referring back to figure 4.7, which is the full set of points from the point cloud at that
stopped interval, we consider the points inside the robot’s path as a subset of this full set.
We then take the set complement to get the points outside the robot’s path. These points
are depicted in figure 4.10. These points are not associated with robot footprints, so they
do not have proprioceptive labels. However, they cover a wider region of the map. They
are everything the robot sees within the locale that it has not interacted with. This is the
test data for the second step in figure 4.1. Or rather, the test data is the set of local image
patches surrounding each of the red points.

Figure 4.10: Wobbler points that are Outside the Robot’s Path. These are the subset of
Wobbler points from figure 4.7 that do not fall within the rectangular footprints of the
robot’s path shown in figure 4.8.

4.2 Applying the General Framework To our System

Figure 4.11 shows again the points inside the robot’s path on the top left and the points
outside the robot’s path on the top right. This is the training data and the test data for

51

the self-supervised step, respectively. On the bottom is a diagram that conceptualizes this
setup within the overall theme of the thesis. The perspective in this diagram is from a
bird’s eye view. The page is the x− y ground plane of the local map, and the z-axis is into
the page.

Figure 4.11: Relationship between Theoretical Diagram and Actual Data. Top Left : Actual
exteroceptive data inside the robot’s path. Top Right : Actual exteroceptive data outside
the robot’s path. Bottom: Theoretical Diagram for the robot collecting proprioceptive
data, exteroceptive data inside the robot’s path, and exteroceptive data outside the robot’s
path.

The left side of the diagram on the bottom of figure 4.11 is similar to figures 4.3 and
4.4. The robot on the far left is the robot at the stopped interval at pose a in figure 4.3.
In this example, the terrain being considered are rocks. The left red cone is like the cone
in figure 4.3, showing what the robot sees from this pose. The robot figure in the middle
that is hitting the rock is the robot later in time, analogous to figure 4.4. The crash icon
between the robot and the rock is what the robot feels, and this is the proprioceptive time
series data.

The rock inside the left red cone in the diagram on the bottom of figure 4.11 represents
the exteroceptive data for which the robot will subsequently have proprioceptive labels.
This is data that the robot both sees and feels. It is the data inside the robot’s path, as
shown by the red Wobbler points on the top left pair of images in figure 4.11. This can
then be self-supervised training data.

The multiple rocks in the red cone on the right of the diagram on the bottom of
figure 4.11 represent the exteroceptive data outside the robot’s path. This is analogous to
the red Wobbler points on the top right pair of images in figure 4.11. This data covers a

52

larger region of the map, and the exteroceptive model can give better predictions for this
terrain once it has been trained on the data inside the robot’s path.

So in summary, the robot feels or interacts with a small subset of terrain within the
locale (left image pair and left cone in figure 4.11). This data is used for training the
self-supervised model. And then the robot can make predictions on a larger set of terrain
within the locale using its newly trained exteroceptive model (right image pair and right
cone in figure 4.11).

Note that in figure 4.11 we are depicting the training set and test set as one pair of
images, but in reality there are many pairs of images for a particular locale. From each
waypoint along the robot’s path in figure 3.8, we are at a stopped interval, where an image
pair and an associated point cloud on that image pair can be acquired. Each of those
image pairs are split up into data inside the robot’s path (training data) and data outside
the robot’s path (test data). So if we have 10 waypoints for a particular path at a locale,
then we will have 10 image pairs, and 10 sets of data inside and outside the robot’s path.
We take the union of the sets inside the robot’s path for our training data, and the union
of the sets outside the robot’s path for our test data.

Note that this rock example is a hard above-ground impact instead of a soft one, so the
robot stops when it makes impact. So instead of bstart and bfin like we had in figure 4.4,
we just have b in figure 4.11. Or rather bstart = bfin, because the robot is not moving.
The impact with the rock would happen over a very short period of time. We might have
just one short time window that spans the impact in the proprioceptive time series data.
When this window is converted to a rectangular footprint on the x − y floor of the local
map, the rectangle would have no area because bstart = bfin. In turn, the rectangular prism
extruded upwards would have no volume, and so the points from the point cloud that hit
the surface of the rock would not fall into this prism.

To handle this case, we extend the length of such footprints by 0.3 meters. If the robot
hits a hard above-ground terrain type, it will predict from its proprioceptive model that
this has happened, and then the rectangle associated with this data point window will be
extended in length by 0.3 meters along the forward axis of the vehicle. This allows the hard
obstacle to be encompassed by the extended rectangle. The robot will never actually drive
through the hard obstacle, so its actual footprint will never overlap with it. The obstacle
will always be in front of the robot, not underneath it. By extending the rectangle of the
footprint in this way, we allow the data to still be associated correctly.

Now we introduce some graphical notation, so that we can refer easily to what we just
described. The graphic on the right in figure 4.12 will be used to denote data inside the
robot’s path. The graphic on the right in figure 4.13 will be used to denote data outside the
robot’s path. For either graphic, the encompassing rectangular box denotes a set of locales,
with each locale containing a set of image pairs from each waypoint. The red region in
figure 4.12 is the set of data inside the robot’s path for that set of locales. The red region
in figure 4.13 is the set of data outside the robot’s path for that set of locales. We will also
use the inside the robot’s path graphic for discussing the purely proprioceptive data, even
though technically this graphic is representing the image plane. So, in other words, if we
are considering the proprioceptive signals from a set of locales, we will use the graphic in
figure 4.12. For proprioceptive data, the data is always inside the robot’s path, because

53

the robot must interact with the terrain in order to acquire data.

Figure 4.12: Inside the Robot’s Path. Left : Wobbler points inside the robot’s path, pro-
jected onto the image plane. Right : Corresponding short-hand graphic to denote inside
the robot’s path.

Figure 4.13: Outside the Robot’s Path. Left : Wobbler points outside the robot’s path,
projected onto the image plane. Right : Corresponding short-hand graphic to denote outside
the robot’s path.

In figure 4.14 we relate this graphics notation to our general framework. We always use
blue to denote training data and orange to denote test data. For the blue training data,
when human labels are used, we mark this with a blue human icon. When proprioceptively-
predicted labels are used, we mark this with a blue microphone icon. On the left, we have
the supervised proprioceptive learning step. Here we use data from previous locales for
training, and data from the current locale for testing. Note that the training and test data
here are purely in the proprioceptive time domain. The data is always inside the robot’s
path, because the robot must interact with the terrain in order to acquire proprioceptive
data. On the right, we have the self-supervised step. Both the training and test data are at
the current locale. The training data is inside the robot’s path and test data is outside the
robot’s path. The labels from the training data come from the proprioceptive predictions
in the previous step, as shown with the black arrow.

54

Figure 4.14: Relationship between Theoretical Framework and Graphics Notation. Top:
Self-Supervised Framework, as presented in figure 4.1. Bottom: Graphics notation to
demonstrate how this framework is implemented in our system.

4.3 Four Main Experiments

In tables 4.1 and 4.2 we encapsulate the two steps of this self-supervised framework. This
is a summary of everything discussed so far. Moving forward, this lays the groundwork for
the experiments and results discussed in chapter 7.

Table 4.1 is the first step of the two-step self-supervised framework (the left-hand side
of figure 4.14). The data stream is time series signals coming from the microphones and
vibration sensors. The stream is split up into short time window data points. The training
data is human labeled. The start and finish of each terrain interaction signal is marked, and
that sequence is given a semantic terrain class, one of {A,B,C,D}. In reality, it is given
one of seven class labels but we just use {A,B,C,D} for generality. The training data
comprises one or more locales. Enough locales are used to cover the entire set of classes.
(Each locale will have some subset of the classes.) The set of locales used is referred to as
the set of previous locales. The multiclass model is then trained in a supervised fashion.

55

The test data then comes from a different locale, and we refer to this as the current locale.
There can be more than one current locale, but each one is considered separately. At each
current locale, the second self-supervised step is trained and tested. Human labels of the
proprioceptive data at the current locale are acquired, but these labels are only used for
evaluating the accuracy of the proprioceptive model. They are not used for training the
exteroceptive data.

• data source: time series signals from microphones
and vibration sensors

• data point format: consecutive overlapping short
time windows from the time series signals

• multiclass model: classes {A,B,C,D} (in reality,
7 classes)

• training data

labels for training: human (marked sequences
in time series signal)

location: previous locale(s), inside path

• test data

labels for evaluation: human (marked se-
quences in time series signal)

location: current locale, inside path

Table 4.1: Proprioception Overview

Table 4.2 is the second step of the two-step self-supervised framework (the right-hand
side of figure 4.14). The data source is now the stream of camera images coming from the
left-right pair of cameras. One image pair is extracted from each waypoint where the robot
stops to collect a Wobbler point cloud. The subset of pixels onto which Wobbler points
are projected is then used. The data points are then local image patches centered around
each projected Wobbler point. The training data is the subset of these projected Wobbler
points that fall inside the robot’s path. The labels for the training data come from the
proprioceptive model’s predictions. Each proprioceptive data point (short time window)
has a prediction, which gets mapped into the local frame as a rectangular footprint. Each
Wobbler point that lies above a footprint gets tagged with the predicted label for that
footprint. Then when the Wobbler points are mapped into the image plane, their associated
labels come along with them, and so each local image patch inside the robot’s path has
a label. The current locale will only have a subset of the classes in the multiclass model.
We denote this as the subset {A,B,C} out of the full set {A,B,C,D}. This subset of
classes is determined by the proprioceptively predicted labels inside of the robot’s path.
The proprioception could have false positives, leading to an erroneously larger subset, or
it could have false negatives, leading to an erroneously smaller subset. These errors will be

56

propagated through the exteroceptive model. Even if the proprioception is perfect, there
could be some classes that exist outside of the robot’s path that do not exist inside of the
robot’s path, and these errors will also be propagated through the exteroceptive model.
The test data is the subset of projected Wobbler points that fall outside the robot’s path,
and then in turn the local image patches centered around these projected points. These
data points do not have proprioceptively-predicted labels. Human labels for the test data
are acquired by painting in Gimp directly on the image plane. The human labels are only
used for evaluating the accuracy of the exteroceptive model.

• data source: camera images

• data point format: local image patches centered
around each pixel

the subset of pixels used are those onto which
Wobbler points are projected

• multiclass model: set of classes from propriocep-
tive predictions at current locale: {A,B,C}

• training data

labels for training: proprioceptive predictions
mapped onto Wobbler points and then onto
image patches

location: current locale, inside path

• test data

labels for evaluation: human (painted onto
pixels in image)

location: current locale, outside path

Table 4.2: Self-Supervision Overview

Tables 4.1 and 4.2 together comprise the fully self-supervised framework. Each table
separately has test data that is compared to human ground truth labels, and then confusion
matrices and corresponding evaluation metrics are produced. (Refer to chapter 7 for these
results.) The test data in table 4.1 is the training data in table 4.2, but is also evaluated
separately. We can refer to each of these tables as a type of experiment for which evaluation
metrics are produced.

In addition to these two types of experiments, we have two more types of experiments
that we run as benchmarks, presented in tables 4.3 and 4.4. These benchmarks are used
for relatively evaluating the accuracy of the self-supervised model. Specifically, they are
evaluating the accuracy of the exteroceptive test predictions in the second step of the
two-step framework, since this is the final output of the algorithm.

Table 4.3 is a floor benchmark. This is a traditional supervised vision scenario. In

57

this scenario, no proprioceptive data is used. This is how an exteroceptive visual classifier
would perform without the aid of proprioceptive self-supervision. The data source is the
set of camera images from the stopped waypoints. The data points are the local image
patches centered around each projected Wobbler point. Note that the Wobbler points are
not being used here for registration of the proprioceptive and exteroceptive data. They are
still used to project the predictions onto the world map, and they are also used to threshold
the data to under a certain range, discussed in chapter 6. The training data comes from
the set of previous locales. This is the same set of locales we use in the proprioceptive
experiment in table 4.1. It is a set of locales that covers the full set of terrain classes in
the model. The test data is the current locale. The training data (in blue) and the test
data (in orange) cover the entire map in each locale, not specific to inside or outside of the
robot’s path. There is no concept of the robot’s path in these scenarios, because the robot
is not interacting with the terrain to collect proprioceptive data. We still, however, use the
robot’s path to collect image pairs from the stopped waypoints. These stopped waypoints
are arbitrary here because they are not being used for registration of the proprioceptive
and exteroceptive data. They are just being used so that our benchmark is consistent
with the self-supervised experiment in table 4.2, and so that we have data from multiple
vantage points. Having data from multiple vantage points allows the vision floor to produce
better accuracy, thereby putting a harder constraint on the relative accuracy of our self-
supervised algorithm. The training data is human-labeled (denoted with the blue human
icon), because this is a purely supervised scenario. The test data is human-labeled only to
provide ground truth for evaluating the accuracy of the classifier. The human labels for
both the training and test data are painted onto the image plane with Gimp.

58

• data source: camera images

• data point format: local image patches centered
around each pixel

the subset of pixels used are those onto which
Wobbler points are projected

• multiclass model: classes {A,B,C,D} (in reality,
7 classes)

• training data

labels for training: human (painted onto pix-
els in image)

location: previous locales, whole image

• test data

labels for evaluation: human (painted onto
pixels in image)

location: current locale, whole image

Table 4.3: Vision Floor Overview

Table 4.4 is a ceiling benchmark. The second step of the two-step self-supervised frame-
work in figure 4.11 is what is presented in table 4.2. Now we replace the proprioceptively-
predicted training labels with human labels, thereby cutting out the first step in the two-
step framework. Similar to the floor experiment in table 4.3, this is a fully supervised
vision scenario. But here, we train and test in the same locale. The training data is the
data inside the robot’s path. The test is data is the data outside the robot’s path. The
purpose of this ceiling benchmark is to evaluate how well the exteroceptive classifier in
the second step of the two-step self-supervised framework could do if the proprioceptive
predictions were perfect. The performance of the ceiling will still be limited by the strength
of the visual model, which is discussed in chapter 6. The performance is also limited by
the ability of the training data inside the robot’s path to represent the terrain classes.
Note that the multiclass model is trained on the subset of classes at this locale, classes
{A,B,C}. This is the set of ground truth classes inside of the robot’s path. If there are
classes {D} outside the robot’s path that do not show up inside the robot’s path, then this
error will be propagated through, even in this ceiling benchmark scenario. The labels for
the training data are human labeled. We have human labels from the Gimp painting that
can be used, but we also have human labels as timestamps from the time series data. We
use the time domain human labels in this step to label the training data. So the human
label for each short time window is used, and then the same data registration process is
used to associate each image patch data point with a label from a short time window.
Besides being a ceiling benchmark, this experiment helped us to develop and debug the
data registration process by controlling for the proprioception variable.

59

• data source: camera images

• data point format: local image patches centered
around each pixel

the subset of pixels used are those onto which
Wobbler points are projected

• multiclass model: set of classes that actually show
up in current locale: {A,B,C}

• training data

labels for training: human (painted onto pix-
els in image)

location: current locale, inside path

• test data

labels for evaluation: human (painted onto
pixels in image)

location: current locale, outside path

Table 4.4: Vision Ceiling Overview

4.4 Thesis Problem Revisited

Now that we have introduced the main experiments in section 4.3, we can revisit the
thesis problem statement from section 2.4, and discuss in more detail how we address the
problem.

To increase the semantic richness of our world model, we will increase the number of
terrain classes in our multiclass model. This will be achieved by using the best methods we
can for our proprioceptive and exteroceptive modules, so that the two modules together can
produce the best terrain predictions for the self-supervised framework. The proprioceptive
module is discussed in chapter 5, and the exteroceptive module is discussed in chapter 6.

To decrease the human effort required, we will train a supervised proprioceptive model
on a subset of locales. Our hypothesis is that a proprioceptive model will generalize to
new locations better than an exteroceptive model. We will prove this by showing that
supervised proprioception (table 4.1) out-performs supervised exteroception (table 4.3)
when making terrain class predictions at a locale on which the classifiers have not been
trained. We demonstrate this with our results in chapter 7. However, the proprioception
can only make predictions on the subset of the locale with which it has interacted. The
robot effort is still high with just this step.

To decrease the robot effort required, we will use self-supervision to decrease the amount
of terrain interaction that is needed at each new locale. By using the proprioceptive model
to train the exteroceptive model at each new locale, we leverage the ability of exteroception

60

to collect data on a larger part of the terrain map. We will prove that our algorithm is
benefiting the robotic system by showing that self-supervision (table 4.2) out-performs
supervised exteroception (table 4.3) when making terrain class predictions at a locale
on which the classifiers have not been trained. We demonstrate this with our results in
chapter 7. Furthermore, the self-supervision can make terrain predictions on the full set
of data points at that locale, which allows the robot effort to be decreased for a given map
size.

61

62

Chapter 5

Proprioception Module

In this chapter we present the proprioception module of the self-supervised framework. This
is the first step of the two-step framework presented in chapter 4, figure 4.11. This module
is supervised learning on the proprioceptive data for a multiclass model that produces one
of seven terrain class predictions. After the model is trained on a set of locales, it predicts
terrain types on a new locale (which we call the current locale in figure 4.11). This current
locale will then be used for the self-supervised step, and the proprioceptive predictions will
be used as self-supervised labels for the exteroceptive data. This chapter is focused on how
these proprioceptive predictions are made.

In section 5.1, we review literature on how proprioception has been used in similar
applications, which will motivate our feature extraction methods. In sections 5.2, 5.3 and
5.4, we go through the pipeline of turning data points into class predictions. This involves
turning the signal into data points, extracting feature vectors from those data points, and
then feeding those feature vectors into a classifier. In section 5.5, we present our early
experiments and results on the Gator platform, using these techniques.

In section 5.6.1, we build off this work for the augmented proprioceptive sensor suite on
the LAGR platform. We introduced this sensor suite in section 3.2. Now we describe the
experiments performed on these sensors, and in particular, how we automated the sensor
selection process. In section 5.6.2 we present our final results on the LAGR platform.
These results are the predictions that will be used as training labels for the second step of
the self-supervised framework.

5.1 Acoustics and Vibration Literature

Acoustics and vibration used for listening to the interaction of one object with another has
primarily been explored in controlled laboratory environments where single impacts are
recorded. Wu and Siegel placed microphones and accelerometers in the heads of hammers,
which they tapped against sheet-like materials to determine their integrity [40]. Durst and
Krotkov measured the sound of striking objects with canes and extracted spectral peaks as
features to determine material type [12]. In later work, Krotkov et al. [21] and Amsellem
and Soldea [2] performed similar experiments which also took the shape of the object into

63

account and then determined material type based on spectral energy decay. This worked
well for those applications in which the signal source was a single clean impact of a cane
striking against a resonant object in a laboratory setting with no background noise. In
our scenarios, we sometimes have multiple impacts in succession (such as the side of the
vehicle scraping against a rock), impacts with non-rigid bodies (such as splashing into water
or compressing vegetation), or continuous interactions (such as the wheels of the vehicle
rolling over ground). In these cases, spectral peaks cannot always be found. Furthermore,
the vehicle drives past these interactions as it is creating them, so the microphones do not
stay in range of the interactions long enough to listen to their decay.

Much of acoustic classification research has focused on characterizing time-varying
structure, such as motor oscillations in an engine or recognizing words in speech. Wellman
et al. classified engine sounds by looking for harmonics in motor oscillations. This in-
volves having a periodic sound source, which will manifest patterns over time [39]. Hidden
Markov Models (HMMs) and Markov Random Fields (MRFs) have been used to learn
the correlation of speech over time [24], [31]. As mentioned previously, Krotkov et al. [21]
and Amsellem and Soldea [2] extracted features from the spectral energy decay, where an
evolution over time was one of the key factors. In our work we explicitly choose not to
model time varying elements. There will definitely be dynamic changes in our data that
could form word-like structures, such as the start, middle and end of scraping against a
rock, but this would be learning the shape of a particular rock. As discussed earlier, we
are explicitly trying not to use features such as shape, so that our classifiers can generalize
to new environments. This also helps to simplify our models which is important since we
will have a very limited number of data points.

Our work is most similar to applications where: 1) the signal is not constrained to a
single impact, and 2) the signal is treated as a stationary process. This is demonstrated by
Hoiem and Sukthankar [16] and Giannakopoulos et al. [14], where they looked at sounds
from movies, such as dog barks, car horns, and violent content. Another example is
from Martinson and Schultz, where a robot classified voice signatures to help identify
people [23]. This is also similar to the vibration-based analysis presented in Brooks and
Iagnemma [8], as discussed previously. In these cases, features were extracted by looking
at short windows in time and treating each window as independent from other windows in
the same sequence. For each window, temporal and spectral characteristics are considered.
We take a similar approach in our work. This approach is discussed in the next two
subsections. Subsection 5.2 discusses the process of turning signals into hand-labeled data
points (short windows). Subsection 5.3 discusses the process of turning the data points
into features.

5.2 Data Overview and Hand Labeling

In this section we discuss how the proprioceptive signal streams are turned into data
points and how they are hand-labeled. The proprioceptive data is time-series data from
the sound and vibration sensors. Providing human labels for the data means that we label
the beginning and end of a terrain interaction sequence. By terrain interaction sequence,

64

we mean the occurrence of interacting with a particular terrain class. For example, a
particular data collection trial might involve driving over grass, then driving over pavement,
then driving over grass again, and then driving through a pile of bramble. So we have four
sequences: a sequence of grass, then a sequence of pavement, then a second sequence of
grass, and then a sequence of bramble. The trial will have a time series signal file for each
proprioceptive sensor. Each signal file will have these four sequences contained within
it, and we label the beginning and ending timestamps of each sequence. On the Gator,
there is just one microphone and one vibration sensor. On the LAGR, there are many
proprioceptive sensors. On the LAGR, these sensors have all been time-synchronized, so
hand-labeling the timestamps in one signal file can automatically be used for any of the
files. This allows hand-labeling to be much simpler, since we only have to do the labeling
for one file. Furthermore, this allows us to swap back and forth between different sensor
files, depending on what type of terrain we are trying to label. For instance, ground terrain
types are more easily picked up from the sensors on the axle. Above-ground terrain types
are more easily picked up from the sensors on the bumper.

We developed interactive software to aid in labeling our data, which incorporates a
combination of camera images, time series plots, and audio feedback. This software allows
us to swap out different proprioceptive sensor signal files, and then look at the time series
plot for that file. We can then zoom in on an interesting area, such as a particular sequence
or the boundary between one sequence and another. We might also listen to an audio
playback of the signal, whether it is audio or vibration signal file, and then listen to only
a zoomed-in portion of that file. The software then allows us to graphically click on the
time series plots to mark the beginning and ending timestamps of each terrain interaction
sequence. This software also allows us to refer to the image stream associated with a
particular sequence. It is not always straightforward for a human listener to distinguish
these events from just the sound information, so we used the camera images as a sanity
check, or second reference point, to make sure we were listening to the correct part of the
trial. On the Gator, the image stream was from a webcam. On the LAGR, the image
stream was from the left and right Pixim cameras, which are subsequently used for the
exteroceptive module of the self-supervised framework. The fact that our algorithms are
successful only using proprioceptive data, while the human in this labeling process needs
vision as well, speaks to the inherent power of proprioception as a computational tool.

For the ground classes, labeling was much easier, as these events covered very large
spans of time. If the boundaries of the event are not labeled perfectly, it does not affect
the majority of the data. One sequence might have a very long duration, and so many data
points can subsequently have human labels by just marking the beginning and end of one
sequence. For above-ground classes, we consider much smaller patches of terrain. This is
also the case for ground classes such as puddles of water. The boundaries of these events
are often the majority of the data, so the labeling of the boundaries must be handled with
greater care. We must also label more of these sequences to acquire a significant amount of
data. On the LAGR, we took the additional step of only looking at the subset of the signal
file where the robot was moving at a maximum constant velocity of 0.5 m/s. Extracting
this subset is an automated process, using the velocity output from the vehicle’s low-level
control. The automated path behavior of the robot (i.e. stopping and starting at each

65

waypoint as discussed in section 3.4), along with the automated process of extracting out
the maximum velocity sections of the signal, made labeling the ground data even easier.
If a moving interval between two waypoints just covered a particular terrain, then we
could automatically tag that interval with its terrain label, and the beginning and ending
timestamps would be acquired automatically by using the velocity information. (This
tagging would be done using information from the camera streams.) In these cases, we
would only need to mark the beginning and ending timestamps within moving intervals
that contain boundaries between one terrain type and another. We ignore these boundary
moving intervals, since we have so much ground data anyway. We then only had to worry
about marking the beginning and ending timestamps for above-ground terrain.

After we completed the labeling, we had sequences of time series data where each
sequence represented an event of interacting with a specific class. We split these sequences
up into short time windows. Each window is then a data point which is used for feature
extraction and classification. We empirically chose a window size of 200 ms, with 50%
overlap between successive windows. We found that 200 ms was the shortest window we
could use that still gave decent results. If the window is too short, then the small dynamic
elements in the data will generate too much variability from one window to the next.
As discussed in section 5.1, we are purposely not characterizing these dynamic elements.
Another problem is that the shorter the window, the less frequency resolution that can
be captured when transforming the window into the frequency domain. On the other
hand, shorter windows allow detection to happen more quickly, which is important for the
eventual goal of online algorithms for autonomous robots. Furthermore, shorter windows
also allow more resolution when looking at the boundary between on class and another. As
mentioned above, for above-ground classes and certain ground classes that happen over a
short period of time, the boundaries are almost all of the data; hence data point resolution
near the boundary is extremely important.

5.3 Feature Extraction

In this section, we discuss how proprioceptive data points (short time windows) are trans-
formed into feature vectors. We thoroughly experimented with a wide array of feature
extraction techniques. These techniques came from prior work in acoustics and vibration,
which we discuss in section 5.1. A few features are extracted from the time domain and
the majority from the frequency domain. To obtain the frequency domain, we first smooth
each time domain frame with a Hamming window, and then we apply a Fast Fourier Trans-
form (FFT). We retain the spectral amplitude coefficients for further analysis, ignoring the
phase. We normalize the signal first in the time domain and then in the frequency do-
main. In the time domain, we normalize the amplitude of the signal to range between
[-1,1], and then in the frequency domain we normalize the spectral distribution to sum to
1. Normalization makes our algorithms blind to volume, which prevents the classifiers from
overfitting to factors such as the capture level of the microphone, the specific microphone
being used, the distance from the microphone to the sound source, and certain variations
across events from the same class.

66

We extract three features from the time domain. The first is the zero crossing rate
(ZCR), which is the number of times per second that the signal crosses the zero axis. The
second is the short time energy (STE), which is the sum of the squares of the amplitudes.
The third is the energy entropy, which is a measure of the abrupt changes in energy
present in the signal. To calculate the entropy, the frame is subdivided into k subframes,
with k = 10, chosen experimentally. The energy of each subframe is calculated as the short
time energy (described above), and then normalized by the energy of the whole frame. The
entropy is then calculated by E = −

∑K−1
i=0 σ2 · log2(σ

2) where σ is the normalized energy
of a subframe.

We extract many features from the frequency domain. The most direct is treating
each amplitude coefficient in the raw spectrum as a dimension in a feature vector. In
converting our proprioceptive sensor signals from analog to digital, we worked with a
variety of sampling rates, ranging between 12.5 kHz and 51.2 kHz, depending on the
sensor and data acquisition board being used. Lets consider a typical microphone that
has a sampling rate of 44.1 kHz (CD quality). For this sampling rate, using the entire
spectrum is computationally overwhelming, so we considered how we might use the parts
of the spectrum that contain the most information. Figure 5.1 shows spectrograms for
terrain classes used in early Gator experiments. This data is from the front snowball
microphone. The x axis is time. The labeled terrain interaction sequences for each class
are concatenated together in succession over time along the x axis. The colors show the
percentage of spectral magnitude at each frequency, with red being the highest and blue
being the lowest. One can see from this figure that the majority of the spectral power is
in the lowest end of the spectrum. This lead us to experiment with only using the lower
part of the spectrum, varying the truncation point. Using a truncation point of 0.4 kHz
allowed us to work with a manageable 200-d feature vector. (0.4 kHz is 400 Hz. The
Nyquist frequency is then 200 Hz, leading to 200 spectral amplitude coefficients in our
feature vector.) The rationale for truncating to the lower end of the spectrum comes from
the fact that the signal-to-noise ratio (SNR) is lower in regions of the spectrum where
there is less power. However, these low SNR regions could contain some information, and
this information might be very pertinent to distinguishing between different classes, so
we do not necessarily want to ignore these regions altogether. If the information about
the terrain is inherently contained in these high-frequency bands, then even if the SNR
ratio is low, we still want to consider that data. Binning the spectrum along the spectral
amplitude coefficients allows the entire spectrum to be captured while still reducing the
dimensionality. This is discussed in Hoiem and Sukthankar [16] and Peeters [28]. We
experiment with bins that are spread log-uniformly along the frequency scale, which focuses
on the lower frequencies. This technique allows us to reduce the feature dimensionality
and focus on the lower frequency bands with high SNR, while not altogether ignoring the
higher frequency bands with low SNR.

We also look at parametric techniques for characterizing the frequency distribution. We
compute the moments of the distribution: the centroid, standard deviation, skewness, and
kurtosis. (See Wellman et. al. [39] for equations.) We also compute the spectral rolloff,
which is the frequency value under which a certain percentage of the total power lies. We
use a value of 80%, determined empirically. We also compute the spectral flux, which

67

Figure 5.1: Spectrograms for each class. The x axis is time. The labeled terrain interaction
sequences for each class are concatenated together in succession over time along the x axis.
The colors show the percentage of spectral magnitude at each frequency, with red being
the highest and blue being the lowest.

measures the rate of energy change. The flux is computed by taking the difference between
the coefficients of consecutive frames and then summing and squaring the differences.

The various scalar quantities presented above are combined into feature vectors. Gi-
annakopoulos et. al. [14] looked at six of these scalars in particular: ZCR, STE, energy
entropy, spectral centroid, spectral rolloff, and spectral flux. In following these methods,
we combine these scalar values into a 6D feature vector. Wellman et. al. [39] looks specif-
ically at the distribution moments of the spectrum, and in following these methods, we
create a 4D feature vector consisting of the spectral centroid, standard deviation, skewness
and kurtosis.

To summarize, we take each 200 ms frame as a data point, and process it in different
ways to form various feature vectors. We delineate these vectors in the following list, which
are each used in separate trials as inputs into our classification algorithms.

• Raw spectral coefficients, truncated at 0.4kHz

• Bins of spectral coefficients, with logarithmic binning.

• 6D vector of temporal and spectral characteristics, derived from Giannakopoulos et.
al. [14], which we will refer to as the “gianna” features.

• 4D vector of spectral moments (“shape” features).

68

• 9D vector which combines the 6D and 4D vectors above. We call this the “gianna and
shape” vector. (Note that this is not 10D because one of the dimensions is present
in both original vectors.)

5.4 Classification

For classification, we use Support Vector Machines that are implemented in the SVM-Light
library (Joachims [18]). Since this is a new form of mobile robot proprioception, we do not
have previous datasets to work from. The datasets we collected are small in comparison
to the online data banks from which many machine learning applications benefit. SVMs
are a good choice for handling small datasets because they are less prone to overfitting
than other methods. SVMs also have a sparse solution, allowing for predictions to be very
fast once the classifier is trained. This is important for online applications such as mobile
robotics. (See Burges [9] for more discussion on these motivations.)

We experiment with both linear and radial basis function (RBF) kernels. RBF kernels
sometimes perform better than linear kernels because they can handle non-linear separa-
tions, and they sometimes perform better than polynomial kernels because they have fewer
parameters to tune and less numerical instability. Linear kernels, however, are sometimes
better for high dimensional feature spaces.

We build a multiclass classifier with the standard one-vs-one approach: we train binary
SVMs between each pair of classes, and then each binary classifier is a node in a Decision
Directed Acyclic Graph (DDAG), as described in Platt et. al. [29]. A nice analogy for the
DDAG graph is the following: imagine you have a game with multiple players. In each
round of the game, two of the players compete. (This competition between two players
represents a binary node.) Whichever player loses the round gets kicked out of the game.
The winner then competes against another player, and the process repeats until there is
only one player left in the game.

The best way to use SVMs for multiclass classification is an open question. We choose
the one-vs-one approach (as opposed to using a single multiclass SVM) so that we can de-
compose the problem into a series of simpler binary problems. It is also faster in training
time than a single multiclass SVM, which allows us to experiment with many different hy-
perparameters and feature combinations. One-vs-rest is another decomposition technique,
but this approach involves another layer of parameter fitting to resolve the differing scales
between binary nodes. With that being said, decomposition methods such as one-vs-one
and one-vs-rest are both popular techniques, and standard SVM libraries such as LIBSVM
and Weka use these techniques respectively for their multiclass implementations.

When training each binary one-vs-one node, we experiment with linear and RBF ker-
nels, as mentioned above. For these kernels, the hyperparameters must be tuned. The
linear kernel has one hyperparameter: slack. The RBF kernel has this slack parameter,
as well as an additional sigma parameter for its Gaussian. The linear SVM is a linear hy-
perplane that separates two classes in a dataset. The support vectors are the data points
that determine this hyperplane. They are the points closest to the hyperplane, and the
SVM’s optimization process tries to maximize the distance from these points. The slack

69

parameter defines how many data points can fall on the wrong side of the hyperplane. This
helps in avoiding overfitting. It is a trade-off: the more slack there is, the less overfitting
there will be, but the more error there will be in data points that fall very close to the
hyperplane. With the RBF kernel, the hyperplane is no longer linear, or flat. Imagining a
2d feature space, one might think of the RBF hyperplane as interconnecting ellipses that
surround clusters of data. The sigma parameter is like the sigma value in a 2d elliptical
Gaussian around each data cluster. Again, there is trade-off: the larger the sigma value,
the larger the ellipses will be, and the fewer clusters there will be to represent the data.
This will lead to less overfitting, but more errors in the data points that fall close to the
boundaries.

In order to tune the hyperparameters, we perform an automated cross-validation pro-
cess. For one choice of hyperparmeters, a binary node can be trained. For each binary node,
we loop through different combinations of hyperparameter values. (For a linear SVM, this
is just a choice of slack value. For an RBF SVM, this is a combination of a slack value and
a sigma value.) For each combination, we train an SVM, and compute the cross-validation
accuracy on that model. (Our metric for accuracy here is the average recall rate of the two
classes in the binary node.) The combination with the highest accuracy is then used for
our final model.

As a benchmark comparison, we also use k-nearest neighbor (k-NN) with inverse dis-
tance weighting. We use an l2 distance metric. We use k = 10, which was determined
empirically. This means that for each binary decision in the DDAG tree, we replace the
learned SVM classifier with a k-NN classifier.

5.5 Gator Experiments and Results

This section presents early experiments and results conducted on the Gator platform. We
first present our results using just acoustic data, as published in our ICRA paper [22].
We explain in detail how we conducted these trials. We then present further results using
acoustics and vibration data, which extends the techniques used in the acoustics trials.

Table 3.1 from section 3.1 showed the number of data points for each terrain class.
Here in table 5.1, we break these up into training and test sets. Since we had multiple
locations for each class, we never had the same location in both the training and test sets
for any given class. Our results therefore prove the ability of our models to generalize to
new locations. Note that there was much less data for the last two classes because these
interactions involved short events, whereas for the first four classes we had more continuous
stretches of terrain with which to interact. To preserve symmetry, we trained on the same
number of data points for each class. Since 89 was the minimum number of training points,
we randomly chose 89 points from the larger data sets to use for the training. We did not
limit the number of data points in the test data.

We used learned models on separate trials for different feature and classifier combi-
nations. We experimented with the five feature sets as listed in bullet points at the end
of section 5.3 and three classifier variants: SVM with an RBF kernel, SVM with a linear
kernel, and k-NN. For each combination, we trained the binary classifiers separately, where

70

Class Training Test

Grass 1364 1373
Pavement 1856 1377
Gravel 3986 4347
Water 1787 3384
Hard objects 203 65
Wheels spinning 89 244

Table 5.1: Number of training and test data points used in Gator acoustics experiments

each binary classifier is a node in the one-v-one graph. (For the k-NN classifier, there was
no training involved since we chose k empirically.)

For each binary node, we performed the following steps. First, we zero mean shifted
and whitened the training data. These transformations were stored as part of the model
for that node and then used as well on the test data. We then used leave-one-out cross
validation on the training data to tune the SVM parameters.

Once we completed the training on the binary nodes, we fed the test data into the one-
v-one graph, and we determined accuracies by comparing the true labels to the predictions
that are output from the graph. Figure 5.2 shows accuracies for each of the feature/classifier
combinations. The data points here are just coming from the front microphone. Full results
would show a 6x6 confusion matrix for each trial. For compactness, we condensed each
confusion matrix into one number, the balanced accuracy, which is the mean of the diagonals
in the matrix, or rather, the mean true positive rate for each class.

Note that for a binary classifier, 50% accuracy would signify no information. Across six
classes, this number would be 17%. The lower the performance of a trial, the more that trial
was overfitting to the training data. The worst results were given by the raw FFT feature
vector. Since this vector has the highest dimension, it makes sense that it would overfit.
The log bins vector overfitted with the SVM RBF kernel but then performed very well
with the SVM linear kernel. This is plausible considering this vector still has a relatively
high dimension; since the SVM RBF kernel adds another parameter to the classifier, this
increases the chances of overfitting. The lower dimensional feature sets performed well
across both SVM variants.

The two trials that performed the best are the gianna and shape feature set with an RBF
kernel and the log bins feature set with a linear kernel. We used these two combinations
to run further trials. In these new trials, we experimented with how to combine the data
from both microphones. The easiest method is to always use the back microphone for the
hitting hard objects class and use the front microphone for all other classes. This means
that for both the training and test sets, we explicitly select which microphone to use. This
is what we did for the results presented above in figure 5.2. One could argue that this
is giving the test data too much information, so we also ran trials where we used both
microphones for all classes. This means that for each short time window in our data set,
we really have two short time windows, one from each microphone. Figure 5.3 shows our
experiments for different ways of combining these two data points. The left-most group,

71

Figure 5.2: Bar chart of balanced accuracies from acoustics experiments for the different
feature and classifier combinations using just the front microphone. Each main group along
the x-axis is a classifier choice. Within each group, the legend specifies the various feature
sets used. The dimension of each feature choice is given in parentheses.

choosing mic, is the original method of choosing which microphone to use for which class,
and so these two bars are the same as in figure 5.2. The next three groups are different
ways of blindly taking data from both microphones. Doubling data means that the windows
from each microphone were treated as separate data points. Doubling dimension means
that the feature vectors from each microphone were concatenated together. Averaging
means that each dimension of the two feature vectors were averaged. Again, each bar is
the balanced accuracy for a particular trial. The averaging method performed the best.
Doubling dimension also performed very well for the gianna and shape vector, but the log
bins vector suffered. Since the log bins vector already has a very high dimension, it makes
sense that doubling the dimension would cause problems. Treating the microphones as
separate data points (doubling data) did not perform very well because the data coming
from each microphone is inherently different. The distance from a particular sound source
should not in itself have much of an effect since we normalize the volume, but the ratio of
source sound to background sound would be quite different for the two microphones.

We take the best result from above that uses both microphones (averaging with gianna
and shape), and we further improve the results by applying a mode filter to smooth out
noise. Each short time window exists within a time sequence, and we slide a larger window
across each sequence that is five times the size of each short time window data point. We
tally the votes for each data point’s prediction in this larger window, and use this vote to
relabel the data point in the center of the window. Note that even though we are using

72

Figure 5.3: Bar chart of the balanced accuracies from acoustics experiments for different
ways of combining data from the two microphones. The two feature vectors used are
depicted in orange and red. Each main group along the x-axis specifies a different way of
combining the data.

the time dimension to help with noise smoothing, we are still ignoring this dimension in
the training process so that the time-varying structure is not modeled. This smoothing
step increases the balanced accuracy from 78% to 92%. We show the normalized confusion
matrix for this best result after smoothing in table 5.2 below. The class that performs the
worst is the pavement class, with a true positive rate of 70%. This class exhibits the most
confusion with the other benign road classes, the grass and the gravel.

Actual Label
Grass Pavement Gravel Water Hard obstacle Wheels spinning

P
re

d
ic

te
d

Grass 98 9 1 1 0 0
Pavement 0 70 1 0 0 0

Gravel 1 19 97 2 2 1
Water 0 1 0 96 0 2

Hard obstacle 0 0 0 1 98 5
Wheels spinning 1 1 1 0 0 92

Table 5.2: Normalized confusion matrix from the acoustics trial with the best average
accuracy of 92%

We then incorporated vibration data into our experiments. These trials improved
classification accuracies, suggesting that the vibration data complements the acoustic data.

73

Since the vibration sensor is on the front wheel axle, we discarded the hitting hard objects
class, since this interaction was happening near the rear of the vehicle. In turn, we only
used data from the front microphone. We also discarded the wheels spinning class because
we did not have enough vibration data for these events. The training and test data sets for
these trials were slightly different, simply because we mounted the vibration sensor later,
so some of our previous acoustic data collections could not be used. Unfortunately, this
leaves us with no above ground classes for these experiments, but we did still have the
water class, which is not addressed by prior work in vibration classification. Even though
we had no above-ground classes, these experiments are still useful in showing that at least
for ground classes, vibration data can improve the accuracies over using just acoustic data
alone.

For these trials, we used 200 ms windows for both the acoustic and vibration data.
We turned each window separately into a gianna and shape vector. We experiment with
using these vectors separately, as well as concatenating them into one longer vector. By
concatenation, we mean doubling the dimension, as shown as a technique in figure 5.3.
We could have also tried averaging with the log bins feature vector, but figure 5.3 showed
that the accuracy is comparable between these two methods, so we went with the lower-
dimensional choice. (Doubling the dimension on the 9-d gianna and shape vector is still a
lower dimension that the 65-d log bins feature vector.) The vectors are fed into an SVM
multiclass classifier with an RBF kernel. Again, the multiclass classifier is built from binary
SVM nodes with a DDAG graph. We used separate data locations for training and testing.

Table 5.3 shows the results for these trials. Each row is a separate experiment, for
a particular choice of sensors. The numbers in each cell are the true positive rates for
each class. (Each row is the main diagonal of the confusion matrix for that experiment.)
The first row just uses features from the microphone, the second row just uses features
from the vibration sensor, and the third row combines both features by concatenating
the feature vectors from each of the sensors. For every terrain class type, the results are
improved by combining the sensors, as can be seen by the higher accuracies in the third
row. In comparing the first two rows, we can see that the microphone always outperforms
the vibration sensor. However, even though the vibration sensor does not perform well
on its own, the combination of the two sensors still outperforms the microphone. This
demonstrates that the vibration sensor is providing inherently different information than
the microphone, so the combination of the two sensors provides more information than
either one alone. We did not apply a final mode filter to these results, although this final
step would improve the accuracies for any of the three rows. The goal here was to look
at the unsmoothed predictions and analyze if the vibration data could complement the
acoustic data.

In the next section we describe our work on the LAGR platform, but before moving
on, we mention briefly here our work on a robotic manipulator. We implemented our
supervised proprioception on this platform in order to test our approach for generality. In
Bagnell et al. [6], we used a microphone mounted on the DARPA Autonomous Robotic
Manipulation platform to classify the speed of a drill. A robotic arm autonomously picked
up and turned on a drill, and our acoustics classifier determined if the robot was successful
at turning on the drill to a full speed. Our classifier was able to distinguish between three

74

Classes
Grass Pavement Gravel Water

S
en

so
rs Microphone 91 64 94 86

Vibration 76 60 58 66
Combined 93 73 96 91

Table 5.3: Classification accuracies for different terrain types, using microphone and vi-
bration signals. The first two rows show accuracies when using these sensors separately.
The last row shows improved results when combining the features from both sensors.

different speeds (low, medium, and high) with 100 percent accuracy in both recall and
precision. We again used the gianna and shape feature vector with binary SVM’s in a one-
vs-one graph. The accuracy was particularly high because the data in an indoor robotic
manipulation lab setting is very clean compared to the data we work with in our outdoor
off-road mobile robotics settings.

5.6 LAGR Experiments and Results

On the LAGR platform, we ran similar experiments to those that we did on the Gator
platform, and then we extended upon these experiments with a learned sensor selection
technique. This learned sensor selection allows us to take advantage of the augmented
proprioception sensor suite that we have on the LAGR platform. In section 5.6.1, we
describe the learned sensor selection process. In section 5.6.2, we present our final test
results for the proprioceptive model. This final model will be used as the proprioception
module in the first step of the two-step self-supervised framework.

5.6.1 Learned Sensor Selection

On the LAGR platform, we have many more proprioceptive sensors than we did on the
Gator platform. We introduced these sensors in chapter 3. Table 3.4 listed the six main
types of sound and vibration sensors used, and figures 3.6 and 3.7 showed these different
sensors mounted at various locations on the vehicle. Even though there are only six types
of sensors, some of them come in different sensitivities, and some varieties are mounted at
multiple locations on the vehicle. Also, some of the sensors have multiple signal outputs
for different axes.

For ground terrain classes, we are most interested in looking at the vertical axis (the
vehicle frame’s z-axis). Our reasoning here is that the material of the ground will impact
the wheels in mostly a normal direction to the surface of the wheel with the ground. This
will then propagate through the axle of the vehicle, where it is measured by the axle
sensors. It could also propagate through the chassis of the vehicle, and so we measure this
with the bumper sensors as well. For above-ground terrain classes, we are most interested
in looking at the along-track axis on the bumper (the vehicle frame’s x-axis). When the
bumper drives into an above-ground terrain type, it will be mostly impacted along the

75

along-track axis. Sometimes we include all three x-, y- and z- axes, but often we leave
some of them out to avoid unnecessary analog to digital processing. Taking into account
the different varieties of sensors, the different placements on the vehicle, and the different
axis outputs, we have a total of 19 sensor signals, listed below in table 5.4.

Sensor Signal

snowball
imu-xAccel
imu-yAccel
imu-zAccel
vt500-axle
adxl-axle-forward
adxl-axle-up
contact-axle-up
iepe10g-axle-up
iepe50g-axle-up
vt500-bumper
adxl-bumper-forward
adxl-bumper-up
contact-bumper-forward
contact-bumper-up
iepe10g-bumper-forward
iepe10g-bumper-up
iepe50g-bumper-forward
iepe50g-bumper-up

Table 5.4: List of 19 Proprioceptive Sensor Signals

We describe here what we mean by each signal name listed in table 5.4. The first
entry is the snowball sensor. There is only one of these sensors mounted centrally on
the vehicle. Since it is an omnidirectional air microphone, we do not consider different
axes for it. The fifth and eleventh entries are vt500-axle and vt5000-bumper. The first
part of the name, vt500, denotes the type of sensor. This is the Voice Technologies 500
electret waterproof microphone. Since it is an electret air microphone, we again do not
have axes to consider. We have two of these sensors mounted: one on the axle and one
on the bumper. The second part of the name, axle or bumper, denotes which of the
two mounted sensors we are considering. The second, third and fourth entries are imu-
xAccel, imu-yAccel and imu-zAccel. These are for the accelerometer inside the IMU. Since
it is a 3-axis accelerometer, it has three separate signals to consider for the x-, y-, and
z- axes. The first part of the name, imu, denotes the output is coming from the imu.
The second part of the name, xAccel or yAccel or zAccel, denotes which acceleration axis
is being considered. Even though we are mostly concerned with the y- and z- axes, we
include all three since we automatically get them from the low level computer’s output.
The sixth, seventh, twelfth and thirteenth entries are adxl-axle-forward, adxl-axle-up, adxl-

76

bumper-forward and adxl-bumper-up. These are for the adxl, which is short for the Analog
Devices 335 accelerometer. This is the accelerometer ubiquitous in most IMU’s, and we
measure it here outside of the IMU so that it is unfiltered, and mounted closer to the
terrain-interaction points of contact on the vehicle (the bumper and axle). Again, the
accelerometer has x-, y-, and z- axes. We consider two out of the three axes: the along-
track axis and and vertical axis. We have two of these sensors mounted: one on the axle
and one on the bumper. The first part of the name, adxl, denotes the type of sensor.
The second part of the name, axle or bumper, denotes which of the two mounted sensors
we are considering. The third part of the name, forward or up, denotes which axis on a
particular sensor we are considering. (Forward is along-track and up is vertical.) We are
more concerned with the along-track axis on the bumper and vertical axis on the axle,
but we include both axes at both locations, since we have them available. We could have
included all three axes at both locations, but there were not enough inputs on the Labjack
data acquisition board that we were using for these sensors. The eighth, fourteenth and
fifteenth entries are contact-axle-up, contact-bumper-forward and contact-bumper-up. The
first part of the name, contact, denotes the type of sensor. This is the contact microphone,
which is classically used as a guitar pickup, suctioned onto the body of a guitar. Each
contact microphone has one output. There is no formal axis for such a microphone, but
we treat the axis as normal to the surface it is suctioned to. We have one of these sensors
mounted on the axle, suctioned to a part of the axle that is parallel to the ground plane, so
that it is normal to the vertical axis. (This is the contact-axle-up.) We have two mounted to
the bumper. One is suctioned to the inside surface of the bumper such that its normal axis
is along the vertical axis, and one is suctioned to another inside surface of the bumper such
that its normal axis is along the along-track axis. (These are the contact-bumper-up and
contact-bumper-forward, respectively.) The ninth, tenth, sixteenth, seventeenth, eighteenth
and nineteenth entries are the iepe10g-axle-up, iepe50g-axle-up, iepe10g-bumper-forward,
iepe10g-bumper-up, iepe50g-bumper-forward and iepe50g-bumper-up. The first part of the
name, iepe10g or iepe50g, denotes the type of sensor and the sensitivity. These are the
Integrated Electronics Piezo-Electric (IEPE) Measurement Specialties vibration sensors,
in the 10g and 50g sensitivities, respectively. The second part of the name, axle or bumper,
denotes where each sensor is mounted. The third part of the name, forward or up, denotes
which axis is being measured. These are single axis sensors, and again we mount them to
surfaces such that we are measuring the axis normal to that surface.

One the Gator, we had three sensor signals: one front air microphone, one back air
microphone, and one single-axis vibration sensor. Section 5.5 explored different ways that
we manually combined the data from these signals. We found that concatenating gianna
and shape feature vectors from two sensor signals was the best method. Now we have
19 sensor signals with different potential benefits (sensing element, sensitivity, bandwidth,
vehicle location, axis measurement). We could look at

(
19
k

)
different combinations of these

signals, with 1 <= k <= 19. Using the 9-d gianna and shape vector, when we concatenate
features together, the vector dimension will increase to 9∗k. In order to limit the dimension
to something reasonable, we limit 1 <= k <= 2. For k = 1, we are considering each signal
alone. For k = 2, we are looking at each combination of two sensor signals.

(
19
1

)
+
(
19
2

)
= 190

combinations. For each of these combinations, we also look at both 0.2 second and 0.4

77

second short time windows, so now we have 380 different data sources. This is too much
for us to consider manually as we did in the Gator experiments. So now we automate
this process by looping each combination through our classifier, and then choosing the
combination with the best accuracy. In this way, we are learning the sensor selection.

Table 5.5 presents the locales that we use for our training and validation data sets. By
validation data set, we mean the test data set for this learned sensor selection process.
We do not call it test data in order to distinguish it from the test data that we use in
our final results for the full self-supervised framework. This validation data is being used
to learn (or train) the choice of sensors. If we were to use the final test data for this
step, then we would be using our test data for tuning our model, which could result in
overfitting to our test data. We are training a seven-class multiclass model. The semantic
terrain classes in this model are: grass, grass-leaves, pavement, vegSoft, bramble, bush,
and treeBig. (vegSoft is an abbreviation for soft vegetation, and treeBig is an abbreviation
for a tree with a large trunk that doesn’t have any compliance.) Each locale only has some
subset of the seven classes. The training set must encompass enough locales to span the
seven terrain classes. We always train and validate on different locales. The validation set
only has two out of the seven classes, bramble and grass. Ideally we would have enough
locales in our validation set to span all seven classes, but this was not possible with the
limit on the amount of data that we had time to label. Nevertheless, we can evaluate
accuracies for these two classes. Note that these classes are still being predicted from the
full seven-class classifier. Table 3.6 from section 3.4 presented the number of proprioceptive
human-labeled data points for each class in each locale. Working from tables 3.6 and 5.5,
we present in table 5.6 the number of training and validation data points we have for each
class. Note that the term NA is used to denote classes for which we have no data points
in our validation set.

Locale Classes in that locale

training sea2-11 grass, vegSoft
wood1-7 bramble, grass
bush4-1 bush, grass
tree2-1 treeBig, grass-leaves, pavement

validation veg2-1 bramble, grass

Table 5.5: Training and Validation Locales for Proprioceptive Sensor Selection on LAGR
platform

In table 5.6, the first three rows present our ground terrain classes: grass, grass-leaves
and pavement. The next four rows present our above-ground terrain classes: vegSoft,
bramble, bush and treeBig. They are listed in descending order of compliance. This is
also correlated to the descending order in the number of data points. Soft vegetation is
a completely compliant terrain type, and the robot can drive through it for as long as it
wants. Bramble is somewhat compliant. The robot can drive through sparse bramble, and
will eventually get stuck as the bramble becomes denser. Bushes are not so compliant. The
robot will be stopped by the bush, but the bush will comply a little, allowing the robot

78

Class Training Validation

grass 619 127
grass-leaves 102 NA
pavement 24 NA
vegSoft 132 NA
bramble 94 42
bush 11 NA
treeBig 2 NA

Table 5.6: Number of Training and Validation Data Points for Proprioceptive Sensor Se-
lection

to move a few inches into it. During these few inches, some time will transpire, creating
a time sequence that can be split up into eleven 200ms short time window data points.
Note that there is only one locale, bush4-1, where bush data is collected. Therefore we
only have one interaction sequence that we are working with. Trees are not compliant at
all. The robot will hit the tree and immediately come to a stop. This will look like a short
spike in the time series data. There is only one locale, tree2-1, where tree data is collected.
Therefore we only have one of these short impacts. Each short time window is longer than
the impact itself. We have two data points instead of one because the short time windows
overlap by 50%.

We presented the number of data points for our early Gator experiments in section 5.5,
table 5.1. Even for our hard objects terrain class, we had 203 training data points and
65 test data points. This is because we had a human driving the vehicle for these data
sets, so the human driver would bump into the hard objects over and over again. Now
on the LAGR, the data collection is automated. This is partly because remote-controlling
the LAGR is not easy, but also because we wanted automated control in order to more
easily register the proprioceptive and exteroceptive data. The paths we took were slow
and precise, partly due to the limitations in our localization estimates. We discussed these
considerations in sections 3.4 and 4.1. As a result, we have much fewer impacts with non-
compliant terrain. This is also partly due to constraints on the amount of time we have
had to hand-label data.

Because we have so few data points for our non-compliant above-ground terrain types,
we choose the data for our training set a little differently than before. For the Gator
experiments, 89 was the minimum number of training points for any class. So we used
89 points from each class. Now on the LAGR, our minimum number of training points is
2. This is an unacceptably low number to use for training. So instead, we limit by the
smallest ground class. In this case, this would be 24 data points, limited by the pavement
class. (Refer to table 5.6.) For the classes that have greater than 24 data points, we
randomly choose 24 out of the larger set. For the classes that have less than 24 data
points, we repeat the data points to create 24 data points. In repeating the data points,
one method is to add a little noise to the data to make them slightly different, but we
did not find that this improved our results. Having repeated data points is accepted by
the SVM-light software, and the classifier performs well. One theory for why this works is

79

because the feature representation of these non-compliant classes is far enough away from
the other data points in the feature space such that data repetition does not break the
algorithm. When we repeat data points for ground classes, the classifier performs poorly.
For instance, if we were to use the maximum number of data points, 619, from the grass
class, as the number of data points per class, and then repeat data points for every other
class, the classifier performs poorly.

Now that we have presented the number of data points for these experiments, we
describe the sensor selection process. Our loop has 380 iterations (as described above in
this section for sensor combinations and window size choices). Each iteration defines the
data points being fed into the model. The data points are consecutive overlapping short
time windows from the time series proprioceptive signals. These data points are turned
into gianna and shape feature vectors. These are 9-d vectors for the

(
19
1

)
iterations, and

18-d vectors for the
(
19
2

)
iterations. The vectors are fed into a multiclass classifier. As

before, the multiclass classifier is built from binary SVM nodes with a one-vs-one Decision
Directed Acyclic Graph (DDAG). (Refer to section 5.4.) A Radial Basis Function (RBF)
kernel is used, since our Gator experiments showed that RBF kernels outperform linear
kernels for low-dimensional feature vectors. The training data is zero-mean shifted and
whitened before the SVM is trained. These transformations are stored as part of the
model for that node, and then used as well on the test data. And again as before, the
sigma and slack hyperparameters for the RBF SVM binary nodes are automatically tuned
through an iterative cross-validation process. (Again refer to section 5.4.) In this inner
cross-validation loop, we hold out half of the training data for each iteration, and test on
the other half.

Once the seven-class multiclass model has been trained on our training data, we gen-
erate a confusion matrix for our validation data. Table 5.7 shows the confusion matrix for
one of the 380 iterations. This iteration is a

(
19
1

)
iteration for the snowball sensor, with a

0.2sec window. The columns in the confusion matrix are the ground truth human labels.
The rows are the classifier predictions. Only the grass and bramble classes exist in the
validation data, so these are the only non-zero columns in the confusion matrix. Note that
we are not smoothing the predictions with a mode filter (as described in section 5.5). We
will do this smoothing at the very end of the proprioception module in our self-supervised
framework.

Actual Label
grass grass-leaves pavement vegSoft bramble bush treeBig

P
re

d
ic

te
d

grass 46 0 0 0 0 0 0
grass-leaves 16 0 0 0 0 0 0

pavement 25 0 0 0 0 0 0
vegSoft 29 0 0 0 15 0 0

bramble 10 0 0 0 24 0 0
bush 0 0 0 0 3 0 0

treeBig 1 0 0 0 0 0 0

Table 5.7: Confusion Matrix for Validation Data (locale veg2-1), Sensor = (snowball)

80

For the two non-zero classes, grass and bramble, we then compute evaluation metrics
from the confusion matrix. The metrics we use are the recall and normalized precision.
Recall is computed by dividing the main diagonal element by the sum of its column. Preci-
sion is computed by dividing the main diagonal element by the sum of its row. Normalized
precision is a variant of precision that normalizes out the number of data points per class.
First, the matrix is normalized by dividing each element by the sum of its column. From
this normalized matrix, the precision is computed as before. Depending on the applica-
tion, precision or normalized precision may be the appropriate choice. For instance, if the
application relies on getting the most accuracy per volume of terrain, independent of the
class, then precision would be more appropriate. In our application, the classes with fewer
data points are often more important to classify because they are hazardous terrain. So
we highlight them by this normalization process. Separate from whether they are haz-
ardous or not, we do not want the limitations of our data collection procedure to affect
the classification results. Table 5.8 presents the recall and normalized precision metrics
for the confusion matrix in table 5.7. Note that for a binary classifier, 50% recall signifies
no information. Across seven classes, this drops to 14.3%. So a 36% recall rate on grass,
although not high, is still significant.

Class Recall Normalized Precision

grass 0.36 1.00
bramble 0.57 0.88

Table 5.8: Evaluation Metrics for Validation Data (locale veg2-1), Sensor = (snowball).
Generated from confusion matrix 5.7.

The next step is to condense the metrics in table 5.8 down to one metric, which we call
the min of min. We take the minimum recall of each class (in this case 0.36). And we take
the minimum normalized precision for each class (in this case 0.88). And then we take the
minimum of those two minimums (in this case 0.36). We repeat this process for all 380
iterations.

In summary, for each of the 380 sensor/data combinations, we:

1. train on training data (7 classes, SVM RBF binary nodes with whitening and hyper-
parameter tuning, combined with a 1v1 DDAG)

2. test on validation data

3. generate confusion matrix for validation data

4. turn confusion matrix into recall and normalized precision metrics

5. turn these metrics into one min of min metric

Table 5.9 shows the 10 out of the 380 iterations with the highest min of min values.
The eleventh row is for the snowball sensor, described in the example above. The snowball
sensor acts as a benchmark, since we used this in our early Gator work as well. Each
of the top 10 rows is one of the 380 iterations. The first column shows the

(
19
1

)
or
(
19
2

)
sensor combination used for that iteration. (Refer to table 5.4 for the 19 sensor signals
we are choosing from.) The second column denotes whether that iteration used a short

81

time window of 0.2 sec or 0.4 sec. The last column shows the min of min value. These are
presented in descending order. The 0.36 value for the snowball sensor in the eleventh row
is what we discussed above for computing the min of min from table 5.8.

Sensor Signal Window length Min of min

vt500-bumper, adxl-axle-up 0.20 0.88
vt500-axle, vt500-bumper 0.20 0.81
vt500-bumper, iepe10g-axle-up 0.20 0.80
vt500-bumper 0.40 0.79
vt500-bumper, imu-yAccel 0.20 0.73
contact-bumper-forward 0.40 0.69
contact-bumper-forward 0.20 0.66
adxl-axle-up, contact-bumper-forward 0.20 0.60
imu-yAccel, iepe10g-bumper-forward 0.20 0.60
vt500-bumper, imu-xAccel 0.20 0.58

snowball 0.20 0.36

Table 5.9: Top 10 Sensor Combinations and Accuracies. The eleventh row is for the
snowball base sensor. “Min of min” stands for: minimum of [minimum recall across all
classes, minimum normalized precision across all classes]. The value of the snowball sensor
can be seen in table 5.8 as the minimum of all elements in the table. Similarly, the value
of the optimal combination (vt500-bumper, adxl-axle-up) can be seen in table 5.11.

The rationale for using this min of min metric is that we want our classifier to be strong
in both recall and normalized precision. By looking at the min of min instead of the mean
of mean, we are trying to minimize the variance across classes.

The top choice (the top row of the table) is for the (vt500-bumper, adxl-axle-up) com-
bination, with an 0.2 sec window. This is the vt500 waterproof air microphone mounted
near the front bumper, along with the z-acceleration signal coming from the analog device
unit mounted on the axle. This is the proprioceptive data that we will use moving forward
for our full self-supervised framework. It makes intuitive sense that the combination would
include an air microphone and a vibration sensor. It also makes intuitive sense that the
combination would include one sensor from the bumper and once sensor from the axle
along the vertical axis. It is interesting and useful to know that the expensive high-end
IEPE sensors do not provide a benefit over the cheap ubiquitous ADXL accelerometers.
However, this might be because the ADXL accelerometers were more sensitive. They were
specified as having a dynamic range of +-3g, whereas even the more sensitive of the two
IEPE varieties was still a high value of 10g. A future design iteration might involve looking
for higher-end vibration sensors with a more sensitive range.

Tables 5.7 and 5.8 presented the confusion matrix and associated metrics for the bench-
mark snowball sensor. These are the numbers used for computing the 0.36 value in table 5.9.
Tables 5.10 and 5.11 present the corresponding confusion matrix and metrics for the opti-
mal (vt500-bumper, adxl-axle-up) combination. These are the numbers used for computing
the 0.88 value in table 5.9. This is included here as a reference, in case the reader is inter-

82

ested in comparing the confusion between classes for the optimal sensor combination. In
comparing the confusion matrix for the benchmark to the confusion matrix for the optimal
combination, we can see a few trends. For instance, in the optimal combination, the bram-
ble data is predicted at a much higher recall rate. In the benchmark, the bramble is often
misclassified as vegSoft. It intuitively makes sense that the snowball air microphone would
have trouble distinguishing these two above-ground terrain classes, whereas the vibration
sensor from the optimal combination would be able to distinguish between the drastic dif-
ferences in terrain compliance. The grass class also has a much higher recall rate for the
optimal combination. In the benchmark, the grass is often misclassified as a number of
the other classes. In the optimal combination, this happens much less often, resulting in a
much higher recall rate. However, the grass is still misclassified as bramble at around the
same rate, which explains why the normalized precision for bramble only improves by 4%.

Actual Label
grass grass-leaves pavement vegSoft bramble bush treeBig

P
re

d
ic

te
d

grass 112 0 0 0 0 0 0
grass-leaves 1 0 0 0 0 0 0

pavement 1 0 0 0 0 0 0
vegSoft 2 0 0 0 2 0 0

bramble 11 0 0 0 40 0 0
bush 0 0 0 0 0 0 0

treeBig 0 0 0 0 0 0 0

Table 5.10: Confusion Matrix for Validation Data (locale veg2-1), Sensor Combination =
(vt500-bumper, adxl-axle-up)

Class Recall Normalized Precision

grass 0.88 1.00
bramble 0.95 0.92

Table 5.11: Evaluation Metrics for Validation Data (locale veg2-1), Sensor Combination =
(vt500-bumper, adxl-axle-up). Generated from confusion matrix 5.10.

5.6.2 Test Results

In section 5.6.1, we learned a multiclass model with the optimal sensor combination: (vt500-
bumper, adxl-axle-up). We learned this by training on a set of locales that spanned the
seven classes, and then validating on locale veg2-1. Using the same trained model, we now
test on locale bramble1-1.

Table 5.12 shows the training and test locales used. This is similar to table 5.5, except
the last row is the test locale instead of the validation locale. Table 3.6 from section 3.4
presented the number of proprioceptive human-labeled data points for each class in each
locale. Working from tables 3.6 and 5.12, we present in table 5.13 the number of training

83

and test data points we have for each class. The column for the training data point numbers
are the same as in table 5.6. The column for the test data point numbers are different,
because they are for data in locale bramble1-1 instead of locale veg2-1.

Locale Classes in that locale

training sea2-11 grass, vegSoft
wood1-7 bramble, grass
bush4-1 bush, grass
tree2-1 treeBig, grass-leaves, pavement

test bramble1-1 bramble, pavement, grass-leaves

Table 5.12: Training and Test Locales for Proprioception Final Results

Class Training Test

grass 619 NA
grass-leaves 102 49
pavement 24 25
vegSoft 132 NA
bramble 94 41
bush 11 NA
treeBig 2 NA

Table 5.13: Number of Training and Test Data Points for Proprioception Final Results

Locale bramble1-1 is the locale used for our final self-supervised results. In the self-
supervised framework, this is the current locale, as presented in sections 4.2 and 4.3. This
is the locale for which we will have proprioceptive predictions inside the robot’s path.
These predictions will be used as labels for training the exteroceptive data.

Section 5.6.1 discussed how the model is trained, which we summarize here. We train
a seven class multiclass classifier. The classes are: grass, grass-leaves, pavement, vegSoft,
bramble, bush and treeBig. We train this model using the training data as presented above.
We limit the number of data points by the smallest ground class, and for smaller classes, we
repeat data points. The data points are short time windows of 0.2 second length, with 50%
overlap between windows. For each short time window, we really have two data points,
one from the vt500-bumper sensor and one from the adxl-axle-up sensor. We extract 9-d
gianna and shape feature vectors from each window, and then concatenate them into an
18-d feature vector. These feature vectors are then fed into our model. The multiclass
model is build off a one-vs-one DDAG, with an SVM for each binary node. Each binary
node compares two out of the seven classes. Each binary node is an SVM with an RBF
kernel, whose sigma and slack hyperparameters are automatically tuned through iterative
cross-validation on each hyperparameter choice.

Once the model is trained, we make predictions on the test data. After predictions
are made for each short time window, we smooth the predictions with a mode filter, as

84

described in section 5.5. We slide a larger window over the sequence of short time windows
that is five times the size. We tally the votes for each data point's prediction in this larger
window, and use this vote to relabel the data point in the center of the window.

Using these smoothed predictions on the test data from locale bramble1-1, we generate
a confusion matrix, presented in table 5.14. The columns are the ground truth human
labels for each class. The rows are the class predictions. Note that the three classes that
exist in the test data are bramble, pavement and grass-leaves. These are the only classes
with non-zero columns in the matrix. Also note that even though only these three classes
show up at the test locale, the model is trained on all seven classes, and predictions can
be made for any of these seven classes. For comparison, we also show the confusion matrix
using the benchmark snowball sensor in table 5.15.

Actual Label
grass grass-leaves pavement vegSoft bramble bush treeBig

P
re

d
ic

te
d

grass 0 0 0 0 0 0 0
grass-leaves 0 35 0 0 0 0 0

pavement 0 0 18 0 0 0 0
vegSoft 0 0 0 0 0 0 0

bramble 0 14 7 0 41 0 0
bush 0 0 0 0 0 0 0

treeBig 0 0 0 0 0 0 0

Table 5.14: Confusion Matrix for Test Data (locale bramble1-1), Sensor Combination =
(vt500-bumper, adxl-axle-up)

Actual Label
grass grass-leaves pavement vegSoft bramble bush treeBig

P
re

d
ic

te
d

grass 0 14 0 0 0 0 0
grass-leaves 0 35 8 0 0 0 0

pavement 0 0 13 0 0 0 0
vegSoft 0 0 0 0 0 0 0

bramble 0 0 4 0 41 0 0
bush 0 0 0 0 0 0 0

treeBig 0 0 0 0 0 0 0

Table 5.15: Confusion Matrix for Test Data (locale bramble1-1), Sensor = (snowball)

Using these two confusion matrices, we compute metrics to compare them. Table 5.16
shows the recall metrics. The first column denotes which class we are looking at. The sec-
ond column are the recall rates for the benchmark snowball data points. The third column
are the recall rates for the optimal (vt500-bumper, adxl-axle-up) data points. Each row is
one of the three classes that shows up in the test data. The last row is the average recall
across all classes for that sensor combination. Similarly, table 5.17 shows the normalized
precision metrics for each data choice and test class, and then averaged across the classes.

85

Class Recall Recall
(snowball) (vt500-bumper, adxl-axle-up)

grass-leaves 0.71 0.71
pavement 0.52 0.72
bramble 1.00 1.00

average 0.74 0.81

Table 5.16: Recall Comparison of Base Sensor (snowball) to Learned Sensor Combina-
tion (vt500-bumper, adxl-axle-up). Using Test Data (locale bramble1-1). Generated from
confusion matrices 5.14 and 5.15.

Class Normalized Precision Normalized Precision
(snowball) (vt500-bumper, adxl-axle-up)

grass-leaves 0.69 1.00
pavement 1.00 1.00
bramble 0.86 0.64

average 0.85 0.88

Table 5.17: Normalized Precision Comparison of Base Sensor (snowball) to Learned Sensor
Combination (vt500-bumper, adxl-axle-up). Using Test Data (locale bramble1-1). Gener-
ated from confusion matrices 5.14 and 5.15.

We get a 7% improvement on recall, and a 3% improvement on normalized precision.
The recall improves for each class separately. The normalized precision goes down for the
bramble class. Looking back at the confusion matrices, this is happening mostly because
the grass-leaves class is being falsely predicted as bramble for the optimal (vt500-bumper,
adxl-axle-up) data choice. For the benchmark snowball data choice, the grass-leaves class
gets falsely predicted as grass. Since grass is not one of the actual classes that show up in
this locale, we cannot compute a precision or normalized precision value for it. This is one
of the limitations of using precision or normalized precision as a metric for test data where
not all of the classes are represented. As a result, the normalized precision for benchmark
sensor is higher than it should be, relatively speaking with respect to the values for the
optimal sensor combination. In turn, the 3% improvement in normalized precision is lower
than it should be.

Nevertheless, we do get some improvement in both the recall and normalized precision
metrics when transitioning from the benchmark sensor to the optimal sensor combination.
This demonstrates that our learned sensor selection is able to generalize across locales. (We
learned the sensor selection using the validation locale veg2-1, and we tested the sensor
selection on the test locale, bramble1-1.) Moving forward in our self-supervised work, we
will use this optimal sensor combination.

86

Chapter 6

Exteroception Module

In this chapter we present the exteroception module of the self-supervised framework. This
is used for the second step of the two-step framework presented in chapter 4, figure 4.11.
In that second step, predictions from the first step (the proprioception module) are used
as training labels. In this chapter, we replace these proprioceptive predictions with human
labels so that we can evaluate the performance of the exteroception without errors from
the proprioception propagating through.

In section 6.1, we describe our implementation of an unsupervised feature learning
technique using a Variational Auto Encoder (VAE) to learn the feature space. This is the
feature vector we use on our exteroceptive data. Section 6.2 then describes the process of
feeding these feature vectors into a multiclass model for training. In section 6.3 we present
validation experiments and results that compare different feature and classifier parameter
choices. This includes comparing the VAE feature vectors with other benchmark feature
vectors. This also includes comparing the SVM kernel choice, the image patch size, and
color versus grayscale image patches. Once the best feature choices and parameters have
been chosen from this validation process, we present our test results for the exteroception
along with the self-supervised results in chapter 7. These are presented as the vision floor
and the vision ceiling benchmarks, to be compared against the self-supervision.

6.1 Unsupervised Feature Learning

For our exteroceptive feature extraction, we learn our feature vectors instead of surveying
various feature extraction techniques as we did for the proprioception. Recent deep learning
methods allow us to do this with the Variational Auto Encoder (VAE) [20], [32]. This is
considered a state-of-the art method for computer vision applications in deep learning
[36]. The VAE is an unsupervised feature learning technique which optimizes the full
representation of the data in the feature space. We use the implementation from the
Tensor Flow library that came out of the Google Brain project [1].

Figure 6.1 depicts a VAE from a high level. It consists of two sequential convolutional
neural networks. The first in the sequence is an inference network, which takes image
patches as input data points, and outputs them into a latent feature space. The second

87

network is the generative network, which takes these latent feature vectors as input, and
then for each data point, it outputs a reconstructed version of the original image patch.
The closer the reconstruction, the better the model is working. A loss function is used
in the learning process to compare each input image patch to its corresponding output.
The lower the loss, the closer the reconstruction. If the intermediate latent variables are
able to encode the information from the original image, then a generative network can be
learned that reconstructs the images with high quality. A set of unlabeled data points is
fed into the VAE, and during each iteration of the optimization process, the loss function
is computed between the input and output images. The training is finished once this loss
has been minimized.

Figure 6.1: Variational Auto Encoder From a High Level. Taken from
http://kvfrans.com/variational-autoencoders-explained/

After the VAE has been trained, we can then use the intermediate latent vectors as
our feature vectors. Considering the pipeline in figure 6.1, it is just the left part of the
pipeline that will be used after training is complete. The left image patch of the cat is one
input data point, and the middle green rectangle is a feature vector for that data point.
By passing each input image patch through the trained encoder network (the left pink
square), we generate a feature vector for that image patch.

This unsupervised step is just for learning the feature space. Once the feature space
has been learned, the feature vectors are used in a supervised model within our overall
framework. The feature vectors will be tagged with self-supervised labels from the propri-
oceptive predictions, and these are fed into a supervised multiclass classification algorithm,
as discussed next in section 6.2.

The unsupervised data that we used for training our VAE came from the locales listed
in table 6.1. This data included terrain from all seven classes in the multiclass model
that we use for our self-supervised results: grass, grass-leaves, pavement, soft vegetation,
bramble, bushes and trees. However, the VAE is unsupervised, so it is unaware of these
class labels.

88

Locale Classes in that locale

sea2-11 grass, vegSoft
wood1-7 bramble, grass
wood1-8 bramble, grass
bush4-1 bush, grass
tree2-1 treeBig, grass-leaves, pavement
veg2-1 bramble, grass

Table 6.1: Locales and Terrain Classes in Each Locale Used for VAE

The data came from Pixim images at various stopped intervals along the robot’s path.
Figure 6.2 depicts the robot at the start of a trial. (This is the same as figure 3.8 presented
earlier.) The robot makes a straight path as it drives over ground terrain, and then it drives
into above-ground at the end of the path. Along the path, it stops at various waypoints, as
shown in the diagram. The Pixim images used are from these stopped waypoints. Although
we have data from both the left and right cameras, we experimented only with images from
the left camera, without loss of generality. So, for instance, at a particular locale, we might
consider 5 waypoints. The waypoints might be 8m, 6m, 4m, 2m and 0m away from the
above-ground terrain. At each waypoint, we use one Pixim image from the left camera.
Refer to appendix section 9.2.1 to see images from the left camera at various waypoints in
each locale. (Note that the cameras are slightly cross-eyed, so the left camera is pointed
slightly to the right. Hence, the above-ground terrain at the center of the robot’s field of
view is on the left side of the image.) So we have a total of 5 images from each locale. We
are considering 6 locales, as listed in table 6.1, so then we have 30 images in our dataset.
Each data point is a local image patch centered around each pixel. We consider any pixel
in an image as the center of a data point. Each image has a resolution of 487 by 720 pixels.
So there are 487 ∗ 720 = 350640 pixels, or data points, in an image. Across 30 images,
this is 350640 ∗ 30 = 10519200 data points. This is around 10.5 million data points. To
conserve computational time, we randomly sample 60,000 data points out of these 10.5
million to use as training data for the VAE.

We set the dimension of the latent feature vector to 50. The higher the dimension,
the more room there is for the vector to encode the data space. But then the higher the
dimension of our feature vectors for the next step of our algorithm. We set the number
of epochs of the learner to 100. This means the algorithm with perform 100 optimization
steps to try to minimize the loss function. The TensorFlow tutorial application that builds
a VAE uses the MNIST data set, with grayscale binarized image patches of numbers 0
through 9. We modify the code to allow for 3-channel RGB non-binarized image patches
to be the data input. The inference network has two convolutional layers. The first layer
has an output of 32 filters and the second layer an output of 64 filters. Each convolutional
layer runs a convolution kernel window over the input. We experiment with different patch
sizes for our input data patches, and different kernel sizes. For a 28 x 28 patch size, we
use a 3 x 3 kernel. For a 54 x 54 patch size, we use a 6 x 6 kernel. The generative network
mirrors the two convolutional layers with two corresponding deconvolutional layers.

89

Figure 6.2: Robot Viewing Scene from Stopped Intervals Along Path

One of the benefits of a VAE is that the user can look at the reconstructed images and
get a qualitative sense of how well the model has been trained. If the reconstructed image
patches retain the distinguishing qualities of their corresponding input image patches, then
the VAE is working properly. Figure 6.3 shows an example of 10 data points for the bramble
class. The top row are the input image patches. The bottom row are the decoded output
image patches. Each output patch is directly below its corresponding input. Refer to
appendix section 9.1 to see 100 data point examples for each of the seven terrain classes,
and their corresponding decoded outputs. Both in this figure and in the appendix, we used
a 28 x 28 patch size with a 3x3 kernel. Note that we are using the terrain class label to
qualitatively group the data points here for our qualitative evaluation. These labels are
not used in the training of the VAE.

(a)

(b)

Figure 6.3: Example of 10 Data Points for the Bramble Class. Top: input images to the
VAE. Bottom: Corresponding decoded outputs of the VAE. Each output patch is directly
below its corresponding input image patch.

6.2 Classification

Our multiclass classifier is similar to what we use for our proprioception module. The
multiclass framework uses a standard one-vs-one approach: we train binary Support Vector
Machines (SVM’s) between each pair of classes, and then each binary classifier is a node

90

in a Decision Directed Acyclic Graph (DDAG), as described in Platt et. al. [29]. Each
binary node is an SVM, implemented in the SVM-Light library (Joachims [18]). The
data points are local image patches, centered around a particular pixel. The center pixels
used are the subset of pixels from the images to which Wobbler points are mapped. The
input feature vectors to the SVM are the latent feature vectors from the Variational Auto
Encoder (VAE), described in section 6.1. We also experiment with Gabor ([13]) and RGB
feature vectors as benchmarks to the VAE. These different benchmark feature choices are
discussed inline with our experiments in section 6.3.

The multiclass classifier works on some subset of the seven terrain classes: grass, grass-
leaves, pavement, soft vegetation, bramble, bushes and trees. There are three experiments
where we run the exteroception module: the second step of the self-supervision, the bench-
mark vision floor, and the benchmark vision ceiling. These are presented in section 4.3,
in tables 4.2, 4.3 and 4.4, respectively. For the floor experiments, the class set is all seven
classes. For the ceiling experiments, the class set is the subset of classes that occur inside
the robot’s path at the current locale. For the second step of self-supervision, the class set
is the subset of classes that is predicted by the proprioception to occur inside the robot’s
path at the current locale. Whatever subset of classes is used, the multiclass classifier is
still built with the DDAG one-vs-one graph.

For each binary node, we zero-mean shift and whiten the data before passing it into the
model to be trained. These transformations are stored as part of the model for that node,
and then used as well on the test data. For each binary node, we experiment with both
linear and radial basis function (RBF) kernels. RBF kernels sometimes perform better
than linear kernels because they can handle non-linear separations. Linear kernels however
are sometimes better for high dimensional feature spaces. The hyperparameters for the
kernels must be tuned. This includes the slack hyperparameter for both kernels and the
sigma hyperparameter for the RBF kernel. Descriptions of what these hyperparameters
mean are discussed in section 5.4. As we do with the proprioception module, we tune the
hyperparameters through an automated cross-validation process. For each binary node,
we loop through different combinations of hyperparameter values. For each combination,
we train an SVM on half of the training data, and then compute recall rates for the other
half of the data. We then average the recall rate of the two classes in that binary node.
The combination of hyperparameters with the highest accuracy is then used for our final
model.

Deep learning is considered state of the art for machine learning applications in com-
puter vision. Our learning process is really a combination of the VAE, which is a deep
learning technique, followed by the DDAG SVM described here. So one can think of the
DDAG SVM as a final layer to the convolutional neural network in the VAE. An alterna-
tive approach would be to use a supervised Convolutional Neural Network (CNN). Most
supervised deep learning methods benefit from large data sets. We are working with small
datasets which we collect and hand-label ourselves. Our exteroceptive data sets are larger
than our proprioceptive data sets, but they are still small in relation to common machine
learning data sets. SVM’s are a good choice for handling small datasets because they are
less prone to overfitting than other methods. By using an unsupervised feature learning
approach with the VAE, we are able to leverage the advantages of deep learning without

91

the constraints of a minimal amount of hand labels. We then top it off with a supervised
SVM layer.

6.3 Experiments and Results

In this section, we run experiments on different feature vectors and classifiers for the
exteroception module. These are supervised experiments, using human labels for training.
Human labels are also used for evaluating the performance of the predictions. We use data
from the locales listed in table 6.2. This is a subset of the locales used as training data in
our final experiments in chapter 7. This data is split up into training and validation data
for these experiments.

Locale Classes in that locale

sea2-11 grass, vegSoft
wood1-7 bramble, grass
tree2-1 treeBig, vegDry, grass-leaves, pavement

Table 6.2: Locales and Terrain Classes in Each Locale Used for Exteroceptive Feature
Comparison

For each of these locales, we look at various stopped intervals that the robot makes
along its path. At each stopped interval, the Wobbler makes a full 3-second revolution,
collecting a full point cloud from that vantage point. We consider the subset of Wobbler
points that fall within a range of [0.8m, 50.0m]. 50.0m is the maximum range limit of
the Sick LMS 151 laser specifications. The minimum range is 0.5m, but we found through
experiments that 0.8m is a safer minimum range to use, in order to avoid faulty data.
This subset is then projected onto the camera image plane. The pixels onto which they
are projected are the center of each data point. The data points are local image patches
centered around these pixels.

We train on human-labeled image patches inside the robot’s path, and validate on image
patches outside the robot’s path, using human labels on the validation data to evaluate the
performance of the predictions. Figure 6.4 shows the projected Wobbler points inside and
outside of the robot’s path. This is at some stopped interval along the path, looking at
the left and right pair of camera images from that stopped interval, and the corresponding
point cloud from that same stopped interval projected onto the image plane. The points
inside the robot’s path on the left are the center pixels of the training data, and the points
outside the robot’s path on the right are the center pixels of the validation data. Section 4.1
describes the process of determining the subset inside the path and the subset outside the
path. This involves using the robot’s pose estimates to create rectangular footprint prisms.
These are used in the self-supervised framework for registering the proprioceptive data,
but here we ignore the proprioceptive data. We simply use the rectangular footprints with
human labels to create the subsets for our training and test data (inside and outside the
robot’s path).

92

Figure 6.4: Exteroceptive Data Inside and Outside the Robot’s Path. Left : Inside the
robot’s path. Right : Outside the robot’s path. Each data point is a local image patch
centered around a pixel. The center pixels are shown as red dots. They are the pixels to
which Wobbler points are mapped.

Table 6.3 lists the number of training and validation data points for each terrain class
at each locale. Remember that for each locale, we have multiple stopped intervals that
the robot makes along its path (refer to figure 6.2). The image pair above in figure 6.4
shows one such stopped interval. The full set of training and validation data for that locale
comes from the images at all of the stopped intervals, inside and outside the robot’s path,
respectively. Note that we only use images from the left camera in our experiments.

Locale Class Training/Inside Path Validation/Outside Path

sea2-11
grass 6052 15353
vegSoft 4623 10677

wood1-7
grass 4579 15171
bramble 958 8074

tree2-1
grass-leaves 4900 15725
pavement 5079 15811
treeBig 1450 1031

Table 6.3: Number of Training and Validation Data Points for Exteroceptive Ceiling Ex-
periments

We ran experiments with different feature and classifier combinations. For each exper-
iment, we looked at one locale, and chose two of the classes from that locale to create a
binary classifier. So if a locale had more than two classes, then we ran separate experiments
for each of the pairs of classes. For each experiment, we looked at one type of feature vector
with one type of classifier.

These experiments are similar to the vision ceiling experiments outlined in table 4.4.
The only difference is that instead of training a multiclass classifier for the classes in that
locale, we consider each pair of classes. This is analogous to separately examining the
binary nodes from the multiclass one-vs-one Decision Directed Acyclic Graph (DDAG).
We can think of this, in a sense, as a ceiling of the ceiling, because the one-vs-one scheme
will only decrease the performance of the recalls and precisions for each class. Our goal here

93

is to raise the ceiling as much as possible, by validating the performance of different feature
and classifier combinations, and choosing the best combination. We discuss these feature
and classifier combinations below. The actual ceiling experiments used for benchmarking
our final self-supervised results are presented in chapter 7.

Note that the data we use here to evaluate the classifier predictions is referred to as
validation data rather than test data. We reserve the term test data for predictions in
our final results. The data used here is to validate different feature and classifier choices,
so this is a tuning stage of our overall model. We select feature and classifier parameters
here, similarly to how we used validation data to learn, or select, sensor combinations for
our proprioception module in section 5.6.1. The validation data used here is from different
locales than the test data that we use in our final results.

For the classifiers, we experiment with Support Vector Machines (SVM’s) with linear
kernels and Radial Basis Function (RBF) kernels. For each trained model, we use the
same number of data points from both classes. We use the number of data points from the
smaller of the two classes, and then for the larger class, we randomly sample from the set
of points to get this smaller subset. As described earlier, the features passed in for training
are zero-mean shifted and whitened, and these parameters are stored as part of the model,
so that the validation data can be transformed in the same fashion. Also as described
earlier, we tune the sigma and slack hyperparameters with an automated cross-validation
process.

For feature vectors, we experimented with the features extracted from the Variational
Auto Encoder (VAE) as well as Gabor ([13]) and RGB features. Both the Gabor and RGB
features are used as benchmark comparisons to the state of the art VAE approach. We
chose to experiment with Gabor features because they are a traditional feature choice used
for texture discrimination. By RGB feature, we simply mean the average of each R, G, and
B channel across the image patch. We chose to experiment with RGB features because they
are the simplest, lowest-dimensional color information that we can acquire. Gabor features
are traditionally grayscale, but they can be created in color as well. We experimented with
both. We also experimented with concatenating a grayscale Gabor feature vector together
with an RGB vector.

For the VAE features, we experimented with 28x28 patch sizes, as well as 54x54 patch
sizes. The 28x28 patch size is what is used in the tensor flow tutorial example, so we
started with this. We then experimented with a 54x54 patch size to see if a larger patch
would give us more information. The 28x28 patches have 3x3 convolution kernel windows.
The 54x54 patches have 6x6 convolution kernel windows. We experiment with both color
and grayscale versions of the VAE.

The VAE vector is 50-d. The Gabor vector is 144-d. This is dependent on the various
kernels and rotations that are used for creating it. The RGB vector is 3-d (one for each R,
G, B channel). When we concatenate a Gabor and RGB vector, it is then 147-d.

The full list of feature/classifier combinations is given in table 6.4, along with the
explanations for how we are abbreviating their names.

94

Feature/Classifier Description of Abbreviation

VAE 28 Color RBF convolutional variational auto encoder feature vec-
tor, 28 x 28 image patch, in color, support vector
machine with a radial basis function kernel

VAE 28 Color Linear convolutional variational auto encoder feature vec-
tor, 28 x 28 image patch, in color, support vector
machine with a linear kernel

VAE 54 Color RBF convolutional variational auto encoder feature vec-
tor, 54 x 54 image patch, in color, support vector
machine with a radial basis function kernel

VAE 54 Color Linear convolutional variational auto encoder feature vec-
tor, 54 x 54 image patch, in color, support vector
machine with a linear kernel

VAE 28 Grayscale RBF convolutional variational auto encoder feature vec-
tor, 28 x 28 image patch, in grayscale, support
vector machine with a radial basis function kernel

VAE 28 Grayscale Linear convolutional variational auto encoder feature vec-
tor, 28 x 28 image patch, in grayscale, support
vector machine with a linear kernel

Gabor 28 Grayscale RBF Gabor feature vector, 28 x 28 image patch, in
grayscale, support vector machine with a radial
basis function kernel

Gabor 28 Grayscale Linear Gabor feature vector, 28 x 28 image patch, in
grayscale, support vector machine with a linear
kernel

Gabor 28 Grayscale +
RGB 28 RBF

Gabor feature vector in grayscale, concatenated
with an RGB vector, 28 x 28 image patch, sup-
port vector machine with a radial basis function
kernel

Gabor 28 Grayscale +
RGB 28 Linear

Gabor feature vector in grayscale, concatenated
with an RGB vector, 28 x 28 image patch, sup-
port vector machine with a linear kernel

Gabor 28 Color RBF Gabor feature vector, in color, 28 x 28 image patch,
support vector machine with a radial basis func-
tion kernel

Gabor 28 Color Linear Gabor feature vector, in color, 28 x 28 image patch,
support vector machine with a linear kernel

RGB 28 RBF RGB vector, 28 x 28 image patch, support vector
machine with a radial basis function kernel

RGB 28 Linear RGB vector, 28 x 28 image patch, support vector
machine with a linear kernel

Table 6.4: List of Feature/Classifier Combinations on which We Run Experiments

95

For each trial, we train on the data inside the robot’s path and validate on the data
outside the robot’s path. Human labels are used on the validation data to evaluate perfor-
mance. A 2x2 confusion matrix will result from the binary classifier validation predictions
for each trial. We compute recall and precision metrics for each class. The recall values
are presented in table 6.5, and the precision values are presented in table 6.6. The class
names are abbreviated, so that each table can fit on one page. bram stands for bramble,
pave stands for pavement, and gr-le stands for grass-leaves. Each pair of rows in the table
denotes an experiment at that locale. The left-most column is the locale we’re looking at,
and the next column are the classes in that locale. So for example, the first two rows are a
binary classifier at locale wood1-7, for classes grass and bramble. The first row shows the
recall (or precision) values for grass. The second row shows the recall (or precision) values
for bramble. Starting from the third column, each column represents an experiment for
a particular feature/classifier combination. The abbreviations for the column names were
presented above in table 6.4. The number in each cell is the recall (or precision) value for
a particular class, at a particular locale, for a particular feature and classifier combination.
The bottom row is the average of that column. This is the average across all locales and
classes for a particular feature/classifier combination. The order of the feature columns is
pretty much in descending order of this average value, for both recall and precision. We
can see that the color VAE performs better than the grayscale VAE, or any of the Gabor
choices. The VAE 28 Color RBF is what we’ll use moving forward for our self-supervised
scheme. The VAE 28 Color performs the same whether we use the RBF or linear kernels,
but we choose the RBF kernel so that we have the flexibility to make nonlinear cuts with
our SVM hyperplane. This could potentially help with unforeseen nonlinearities in the test
data.

96

T
ri
al

C
la
ss

V
A
E
28

C
ol
or

R
B
F

V
A
E
28

C
ol
or

L
in
ea
r

V
A
E
54

C
ol
or

R
B
F

V
A
E
54

C
ol
or

L
in
ea
r

V
A
E
28

G
ra
y
sc
al
e
R
B
F

V
A
E
28

G
ra
y
sc
al
e
L
in
ea
r

G
ab

or
28

G
ra
y
sc
al
e
R
B
F

G
ab

or
28

G
ra
y
sc
al
e
L
in
ea
r

G
ab

or
28

G
ra
y
sc
al
e
+

R
G
B

28
R
B
F

G
ab

or
28

G
ra
y
sc
al
e
+

R
G
B

28
L
in
ea
r

G
ab

or
28

C
ol
or

R
B
F

G
ab

or
28

C
ol
or

L
in
ea
r

R
G
B

28
R
B
F

R
G
B

28
L
in
ea
r

wood1-7 grass 0.83 0.89 0.93 0.95 0.81 0.83 0.36 0.75 0.45 0.85 0.78 0.75 0.88 0.90
bram 0.79 0.74 0.72 0.72 0.67 0.67 0.87 0.58 0.93 0.73 0.56 0.70 0.52 0.81

tree2-1 pave 0.98 0.97 0.95 0.75 0.97 0.96 0.64 0.69 0.65 0.68 0.74 0.69 0.39 0.65
gr-le 0.92 0.88 0.91 0.88 0.89 0.80 0.96 0.42 0.98 0.75 0.97 0.77 0.90 0.88

tree2-1 pave 0.96 0.96 0.93 0.97 0.96 0.96 0.73 0.95 0.76 0.97 0.80 0.97 0.96 0.96
treeBig 1.00 1.00 1.00 1.00 1.00 0.98 0.99 0.93 1.00 0.99 0.98 0.90 0.73 0.99

tree2-1 vegDry 0.88 0.90 0.98 0.99 0.88 0.89 0.88 0.80 0.97 0.98 0.96 0.95 0.99 0.99
treeBig 0.95 0.97 0.39 0.62 0.91 0.94 0.84 0.91 0.72 0.75 0.77 0.44 0.41 0.72

sea2-11 grass 0.86 0.87 0.83 0.73 0.55 0.30 0.81 0.42 0.81 0.70 0.47 0.69 0.64 0.72
vegSoft 0.72 0.78 0.81 0.63 0.49 0.54 0.17 0.54 0.19 0.62 0.90 0.61 0.77 0.63

tree2-1 vegDry 0.86 0.85 0.92 0.90 0.83 0.62 0.92 0.38 0.95 0.82 0.93 0.87 0.91 0.91
pave 0.96 0.92 0.99 0.90 0.95 0.96 0.69 0.73 0.72 0.76 0.77 0.74 0.52 0.75

tree2-1 gr-le 0.97 0.97 0.98 1.00 0.95 0.94 0.90 0.84 0.99 0.98 0.98 0.93 0.99 0.99
treeBig 0.95 0.97 0.58 0.85 0.88 0.93 0.79 0.90 0.73 0.84 0.79 0.61 0.24 0.85

average 0.90 0.90 0.85 0.85 0.84 0.81 0.75 0.70 0.77 0.82 0.81 0.76 0.70 0.84

Table 6.5: Recall Comparison, Validation Data. Naming convention of column headers:
feature, patch size, color vs grayscale, Support Vector Machine kernel. For example, VAE
28 Color RBF = Variational Auto Encoder, 28 x 28 patch size, in color, Radial Basis
Function kernel

97

T
ri
al

C
la
ss

V
A
E
28

C
ol
or

R
B
F

V
A
E
28

C
ol
or

L
in
ea
r

V
A
E
54

C
ol
or

R
B
F

V
A
E
54

C
ol
or

L
in
ea
r

V
A
E
28

G
ra
y
sc
al
e
R
B
F

V
A
E
28

G
ra
y
sc
al
e
L
in
ea
r

G
ab

or
28

G
ra
y
sc
al
e
R
B
F

G
ab

or
28

G
ra
y
sc
al
e
L
in
ea
r

G
ab

or
28

G
ra
y
sc
al
e
+

R
G
B

28
R
B
F

G
ab

or
28

G
ra
y
sc
al
e
+

R
G
B

28
L
in
ea
r

G
ab

or
28

C
ol
or

R
B
F

G
ab

or
28

C
ol
or

L
in
ea
r

R
G
B

28
R
B
F

R
G
B

28
L
in
ea
r

wood1-7 grass 0.88 0.87 0.86 0.86 0.82 0.82 0.84 0.77 0.92 0.85 0.77 0.82 0.77 0.90
bram 0.71 0.79 0.84 0.88 0.65 0.67 0.42 0.55 0.47 0.72 0.58 0.60 0.70 0.82

tree2-1 pave 0.92 0.89 0.92 0.87 0.90 0.83 0.94 0.54 0.97 0.73 0.97 0.75 0.80 0.85
gr-le 0.98 0.97 0.94 0.78 0.96 0.95 0.73 0.57 0.74 0.70 0.79 0.71 0.59 0.72

tree2-1 pave 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.98 1.00
treeBig 0.63 0.62 0.48 0.68 0.62 0.64 0.20 0.54 0.21 0.67 0.24 0.66 0.55 0.61

tree2-1 vegDry 0.99 0.99 0.92 0.95 0.99 0.99 0.98 0.99 0.96 0.97 0.97 0.92 0.92 0.96
treeBig 0.53 0.57 0.73 0.94 0.52 0.54 0.49 0.39 0.78 0.83 0.73 0.53 0.83 0.89

sea2-11 grass 0.82 0.85 0.86 0.74 0.61 0.49 0.58 0.57 0.59 0.73 0.87 0.71 0.80 0.74
vegSoft 0.79 0.80 0.77 0.61 0.43 0.35 0.37 0.39 0.41 0.59 0.54 0.57 0.60 0.61

tree2-1 vegDry 0.92 0.84 0.98 0.81 0.89 0.88 0.59 0.40 0.62 0.62 0.65 0.61 0.47 0.63
pave 0.94 0.93 0.96 0.95 0.92 0.84 0.95 0.71 0.97 0.90 0.96 0.92 0.93 0.95

tree2-1 gr-le 1.00 1.00 0.97 0.99 0.99 1.00 0.99 0.99 0.98 0.99 0.99 0.97 0.95 0.99
treeBig 0.66 0.69 0.60 0.96 0.52 0.52 0.35 0.27 0.81 0.79 0.72 0.37 0.71 0.80

average 0.84 0.84 0.85 0.86 0.77 0.75 0.67 0.62 0.74 0.79 0.77 0.73 0.76 0.82

Table 6.6: Precision Comparison, Validation Data. Naming convention of column headers:
feature, patch size, color vs grayscale, Support Vector Machine kernel. For example, VAE
28 Color RBF = Variational Auto Encoder, 28 x 28 patch size, in color, Radial Basis
Function kernel

Figure 6.5 shows examples of classifier predictions mapped onto the camera images.
This is for a trial at locale tree2-1, running a binary classifier on the pavement and tree
classes. The accuracies for this trial are given in rows five and six of tables 6.5 and 6.6.
The first row of images shows some training data. The left image is pavement data. The
right image is tree data. These are colored to show the human labels on the training data.
These are Wobbler points inside the robot’s path. These are images from the left camera,
which is pointed slightly to the right. So the robot’s path, which is in the center of the
robot’s field of view, shows up along the left side of the images. The second row shows
the predictions on some validation data from the Gabor 28 Color RBF feature/classifier
combination. The left and right images are the same images as shown in the row above
them for the training data, but now we are looking at the points outside the robot’s path.
The colors show the class predictions. The third row shows the predictions on the same
validation data, but now with the VAE 28 Color RBF combination. Remember that there

98

are multiple images used for training and testing, one image from each stopped interval
waypoint along the robot’s path. Only two images are shown here. The left column shows
a stopped interval that is 2 meters away from the center tree inside of the robot’s path.
This is towards the end of the robot’s path, when it’s close to hitting the tree. This image
is used for labeling and evaluating tree data. The right column shows a stopped interval
that is 12 meters away from the center tree. This is further back in time, towards the
beginning of the path. This image is used for labeling and evaluating pavement data, since
there is a patch of pavement terrain in front of it that it will subsequently drive over.

99

(a) pavement training data (b) treeBig training data

(c) pavement predictions, Gabor 28 Color RBF
(red = true positives, green = false negatives)

(d) treeBig predictions, Gabor 28 Color RBF
(cyan = true positives, magenta = false negatives)

(e) pavement predictions, VAE 28 Color RBF
(red = true positives, magenta = false negatives)

(f) treeBig predictions, VAE 28 Color RBF
(cyan = true positives, no false negatives)

Figure 6.5: Example Training and Validation Data from the tree2-1 locale, with the (pave-
ment, treeBig) Binary Classifier. Top row shows training data. Second row shows predic-
tions using Gabor features. Third row shows predictions using VAE features. Both the
second and third rows extract features from 28 x 28 RGB image patches. Both feature
types are fed into an SVM with an RBF kernel.

100

We can observe that the Gabor 28 Color RBF combination in the second row performs
poorly, while the VAE 28 Color RBF combination in the third row performs well. One
can see from the images on the left that there is hay scattered across the pavement. We
treat this as a visual variation in the pavement. In other words, we want the ground to
still be classified as pavement even if it is covered with hay. In the top left image, we are
showing that we pass in training data points for bare pavement as well as pavement that
has hay on top of it. All of this is being labeled in the training step as pavement. So once
the classifier is trained, then both types of data points in the validation set (data points for
bare pavement as well as data points with pavement covered by hay) should be predicted
as pavement. In the second row, on the left image, there are a lot of green false negatives,
and these false negatives correspond to the patches of pavement that are covered by hay.
This shows that the classifier is not able to handle both pavement variations. Since the
SVM has an RBF kernel, it should be able to handle nonlinearity in the feature space, so
most likely the problem is in the feature space itself. The top left image shows that there
is more training data for the bare pavement than there is for the pavement covered by hay.
So this discrepancy in the data sampling of these different terrain classifications, together
with the limitations in the feature vector’s ability to represent these variations, is too much
for the classifier to handle. On the other hand, the VAE features in the third row do an
excellent job at handling this variation. The only false negatives on the left bottom image
are towards the very edge of the right side of the image (shown in magenta). These errors
are most likely due to boundary issues, or perhaps camera blur towards the outer edges
of the field of view. These types of errors could be eliminated by restricting the subset
of Wobbler points considered to be within a slightly narrower field of view. These images
present a nice example of how the VAE features are able to handle variations within the
terrain of a particular class. As mentioned above, this is the feature/classifier combination
that we use for our self-supervised test experiments in the next chapter. These are the
VAE feature vectors, with a 28 x 28 patch size, in color, with an RBF kernel on the binary
SVM nodes.

101

102

Chapter 7

Final Experiments and Results

We introduced the four main experiments that we would run in section 4.3. These included
experiments for: the proprioception, the self-supervision, the vision floor and the vision
ceiling. Here we present the results from running these experiments. We summarized the
setup for each of the four experiments in tables 4.1, 4.2, 4.3, and 4.4. We repeat these
tables inline here as we present the results of each experiment.

Table 7.1 lists the locales and the classes within each locale that are used for these four
experiments. Each locale has a subset of the seven classes. The set of previous locales
spans all seven classes. The current locale, bramble1-1, is where the self-supervision is
tested. The breakdown for what data is used for training and testing is delineated below
for each experiment. Note that the terrain class treeBig is listed in parentheses for the
current locale. This is because it only shows up in the data outside the robot’s path.

Locale Classes in that locale

previous locales sea2-11 grass, vegSoft
wood1-7 bramble, grass
bush4-1 bush, grass
tree2-1 treeBig, grass-leaves, pavement

current locale bramble1-1 bramble, pavement, grass-leaves, (treeBig)

Table 7.1: Training and Test Locales. Refer to appendix images 9.15, 9.16, 9.17, 9.18, 9.19,
9.20, 9.21, 9.22, 9.23, 9.24, 9.25 for visual data.

7.1 Proprioception

The results for the proprioceptive experiment are presented in section 5.6.2, with respect
to evaluating the performance of the optimal learned sensor combination. We summarize
these results here, with respect to the other three main experiments. Table 7.2 summarizes
the setup for this experiment. (This is repeated from table 4.1.) The training data comes
from the set of previous locales in table 7.1. The test data comes from the current locale,
bramble1-1. The test predictions from the proprioception module at the current locale are
then used to perform self-supervision at the current locale. We train a multiclass model

103

with 7 terrain classes: 3 ground classes and 4 above-ground classes. These include grass,
grass-leaves, pavement, soft vegetation, bramble, bushes, and trees. We test on the classes
that show up in the current locale, inside the robot’s path: grass-leaves, pavement and
bramble.

• data source: time series signals from microphones
and vibration sensors

• data point format: consecutive overlapping short
time windows from the time series signals

• multiclass model: classes A, B, C, D (in reality, 7
classes)

• training data

labels for training: human (marked sequences
in time series signal)

location: previous locale(s), inside path

• test data

labels for evaluation: human (marked se-
quences in time series signal)

location: current locale, inside path

Table 7.2: Proprioception Overview

The number of training and test data points is given in table 7.3. (This is repeated
from table 5.13.) The labels come from human-labeled time sequences in the proprioceptive
signals. We limit the training data set for each class to the number of data points in the
smallest ground class. We repeat data points for smaller classes. Refer to sections 5.2, 5.3
and 5.4 for a discussion of the pipeline of turning proprioceptive signals into data points,
then into feature vectors, and then training them with a multiclass classifier.

Class Training Test

grass 619 NA
grass-leaves 102 49
pavement 24 25
vegSoft 132 NA
bramble 94 41
bush 11 NA
treeBig 2 NA

Table 7.3: Number of Training and Test Data Points for Proprioception Final Results

Table 7.4 is the confusion matrix for the test predictions of the proprioception. (This
is repeated from table 5.14.) This is for the optimal combination of proprioceptive sensor

104

signals from the set of 19 signals, (vt500-bumper, adxl-axle-up). This is a combination of
an electret air microphone mounted a little above the bumper, and the z-axis acceleration
coming from a cheap but sensitive accelerometer mounted near the wheel axle. Refer to
section 5.6.1 for a discussion of how we chose this optimal combination. The columns in
the matrix are for the ground truth human labels for the test data points. The rows are
for the predicted labels. There are only a subset of terrain classes that show up at the
current locale: grass-leaves, pavement, and bramble. The other classes that do not show
up have columns of zero’s in the matrix.

Actual Label
grass grass-leaves pavement vegSoft bramble bush treeBig

P
re

d
ic

te
d

grass 0 0 0 0 0 0 0
grass-leaves 0 35 0 0 0 0 0

pavement 0 0 18 0 0 0 0
vegSoft 0 0 0 0 0 0 0

bramble 0 14 7 0 41 0 0
bush 0 0 0 0 0 0 0

treeBig 0 0 0 0 0 0 0

Table 7.4: Confusion Matrix for Test Data (locale bramble1-1), Sensor Combination =
(vt500-bumper, adxl-axle-up)

7.2 Vision Floor

Table 7.5 summarizes the setup for this experiment. (This is repeated from table 4.3.) We
train on the set of previous locales (given in table 7.1), and then test on the current locale,
bramble1-1. We train a multiclass model with the same 7 terrain classes that we used for
the proprioception: grass, grass-leaves, pavement, soft vegetation, bramble, bushes, and
trees. We test on the subset of classes at the current locale, bramble1-1 : grass-leaves,
pavement, bramble and treeBig.

105

• data source: camera images

• data point format: local image patches centered
around each pixel

the subset of pixels used are those onto which
Wobbler points are projected

• multiclass model: classes A, B, C, D (in reality, 7
classes)

• training data

labels for training: human (painted onto pix-
els in image)

location: previous locales, whole image

• test data

labels for evaluation: human (painted onto
pixels in image)

location: current locale, whole image

Table 7.5: Vision Floor Overview

Table 7.6 lists the number of training and test data points for this experiment. The
number of training data points is the union of data points for each class from the set of
previous locales. For the test locale, there is only a subset of classes that show up, so NA
is listed as the number of data points for the other classes. We limit the training data
set for each class to the number of data points in the smallest class, whether ground or
above-ground. We do not have to raise the threshold to the number of data points in
the smallest ground class as we did for the proprioception experiments. The number of
data points in the above-ground classes are now much larger than for the proprioception
experiments because we are working with Wobbler points and pixels instead of short time
windows. There are many Wobbler points that fall within the rectangular prism of a short
time window. Refer to section 6.1 for a description of turning the exteroceptive data points
into feature vectors, and then to section 6.2 for a description of training the feature vectors
with a multiclass classifier.

106

Class Training Test
Previous Locales Current Locale, bramble1-1

grass 62257 NA
grass-leaves 20625 21602
pavement 20890 14591
vegSoft 15300 NA
bramble 9032 4056
bush 13106 NA
treeBig 2481 690

Table 7.6: Number of Training and Test Data Points for Vision Floor Final Results

Table 7.7 presents the confusion matrix for the test predictions. These are predictions
on the data points from the current locale, bramble1-1. The columns are ground-truth
human labels on the test data, coming from the Gimp-painted labels. The rows are the
predictions. The classes that show up at locale bramble1-1 have non-zero columns in the
confusion matrix.

Actual Label
grass grass-leaves pavement vegSoft bramble bush treeBig

P
re

d
ic

te
d

grass 0 1010 17 0 1 0 0
grass-leaves 0 11806 1427 0 382 0 76

pavement 0 17 11072 0 497 0 0
vegSoft 0 185 0 0 0 0 0

bramble 0 1304 1775 0 1445 0 28
bush 0 7204 0 0 1 0 4

treeBig 0 76 300 0 1730 0 582

Table 7.7: Vision Floor Benchmark Confusion Matrix for Test Data (locale bramble1-1).
Refer to appendix 9.15, 9.16, 9.17, 9.18, 9.19, 9.20, 9.21, 9.22 for training images, and
then images 9.26, 9.27, 9.28, 9.29, 9.30, 9.31, 9.32, 9.33 for the human labels on that data.
Refer to appendix 9.23, 9.24, 9.25 for test images, and then images 9.34, 9.35, 9.36 for test
predictions on that data.

7.3 Vision Ceiling

Table 7.8 summarizes the setup for this experiment. (This is repeated from table 4.4.)
We train on the subset of classes that show up inside the robot’s path at the current
locale: grass-leaves, pavement, and bramble. We test on the subset of classes that show
up outside the robot’s path at the current locale: grass-leaves, pavement, bramble, and
treeBig. Note that because there is no training data for treeBig, it will never get predicted.
This will result in misclassifications for this class. This is an error due to limitations in
our experiments, and we discuss this in more detail in section 7.5.

107

• data source: camera images

• data point format: local image patches centered
around each pixel

the subset of pixels used are those onto which
Wobbler points are projected

• multiclass model: set of classes that actually show
up in current locale: A, B, C

• training data

labels for training: human (painted onto pix-
els in image)

location: current locale, inside path

• test data

labels for evaluation: human (painted onto
pixels in image)

location: current locale, outside path

Table 7.8: Vision Ceiling Overview

Table 7.9 lists the number of training and test data points for this experiment. The
number of training data points is the number of Wobbler points that fall inside the robot’s
path. These are the data points that are contained within the the rectangular prisms of
the robot’s footprints, and their class labels are determined by the labels of the footprints.
Refer to section 4.1 for a discussion on registering exteroceptive data points to robot
footprints. Note that we are using the human labels on the footprints, since this is the
ceiling experiment. The number of test data points is the number of Wobbler points outside
the robot’s path. These are labeled from the human Gimp labels. Note that there are zero
training data points for the treeBig class, because it does not exist inside the robot’s path.
When training, we limit the data points by the smallest class in the training set, whether
ground or above-ground. Refer to section 6.1 for a description of turning the exteroceptive
data points into feature vectors, and then to section 6.2 for a description of training the
feature vectors with a multiclass classifier.

Class Training Test
Current Locale, bramble1-1 Current Locale, bramble1-1
Inside Robot’s Path Outside Robot’s Path

grass-leaves 4612 16328
pavement 2315 10429
bramble 1140 3401
treeBig 0 690

Table 7.9: Number of Training and Test Data Points for Vision Ceiling Final Results

108

Table 7.10 shows the confusion matrix for the test predictions. These are predictions on
the data points outside the robot’s path from the current locale, bramble1-1. The columns
are ground-truth human labels on the test data coming from the Gimp-painted labels.
The rows are the predictions. The four classes that show up in the test data have non-zero
columns. The three classes that show up in the training data have non-zero rows.

Actual Label
grass grass-leaves pavement vegSoft bramble bush treeBig

P
re

d
ic

te
d

grass 0 0 0 0 0 0 0
grass-leaves 0 14451 135 0 74 0 70

pavement 0 573 9973 0 438 0 0
vegSoft 0 0 0 0 0 0 0

bramble 0 1304 321 0 2889 0 620
bush 0 0 0 0 0 0 0

treeBig 0 0 0 0 0 0 0

Table 7.10: Vision Ceiling Benchmark Confusion Matrix for Test Data (locale bramble1-1,
outside robot’s path). Refer to appendix 9.23, 9.24, 9.25 for bare images. Refer to appendix
images 9.49, 9.50, 9.51 for human labels inside the robot’s path. Refer to appendix images
9.52, 9.53, 9.54 for visual test predictions outside the robot’s path.

7.4 Self-Supervision

Table 7.11 summarizes the setup for this experiment. (This is repeated from table 4.2.)
We train on the subset of classes that are predicted by the proprioception to show up
inside the robot’s path at the current locale: grass-leaves, pavement, and bramble. We
test on the subset of classes that show up outside the robot’s path at the current locale:
grass-leaves, pavement, bramble, and treeBig.

109

• data source: camera images

• data point format: local image patches centered
around each pixel

the subset of pixels used are those onto which
Wobbler points are projected

• multiclass model: set of classes from propriocep-
tive predictions at current locale: A, B, C

• training data

labels for training: proprioceptive predictions
mapped onto Wobbler points and then onto
image patches

location: current locale, inside path

• test data

labels for evaluation: human (painted onto
pixels in image)

location: current locale, outside path

Table 7.11: Self-Supervision Overview

Table 7.12 lists the number of training and test data points for this experiment. The
number of training data points is the number of Wobbler points that fall inside the robot’s
path. These are the data points that are contained within the the rectangular prisms
of the robot’s footprints, and their class labels are determined by the labels of the foot-
prints. Refer to section 4.1 for a discussion on registering exteroceptive data points to
robot footprints. Note that we are using the proprioceptively-predicted labels on the foot-
prints. These predictions are coming from the output of the proprioception experiment in
section 7.1. These predictions are smoothed with a mode filter before being used in this
step. This helps with smoothing out noise and improves the accuracy of these predictions.
(We discuss this in section 5.5.) The number of test data points is the number of Wobbler
points outside of the robot’s path. These are labeled from the human Gimp labels. When
training, we limit the data points by the smallest class, whether ground or above-ground.
Refer to section 6.1 for a description of turning the exteroceptive data points into feature
vectors, and then to section 6.2 for a description of training the feature vectors with a
multiclass classifier.

110

Class Training Test
Current Locale, bramble1-1 Current Locale, bramble1-1
Inside Robot’s Path Outside Robot’s Path
Proprioceptively-Predicted Labels Human Labels

grass-leaves 2461 16328
pavement 1636 10429
bramble 1339 3401
treeBig 0 690

Table 7.12: Number of Training and Test Data Points for Self-Supervision Final Results

Table 7.12 shows the confusion matrix for the test predictions. These are predictions on
the data points outside the robot’s path from the current locale, bramble1-1. The columns
are ground-truth human labels on the test data coming from the Gimp-painted labels.
The rows are the predictions. The four classes that show up in the test data have non-zero
columns. The three classes that show up in the training data have non-zero rows.

Actual Label
grass grass-leaves pavement vegSoft bramble bush treeBig

P
re

d
ic

te
d

grass 0 0 0 0 0 0 0
grass-leaves 0 13178 154 0 102 0 94

pavement 0 230 9992 0 709 0 0
vegSoft 0 0 0 0 0 0 0

bramble 0 2920 283 0 2590 0 596
bush 0 0 0 0 0 0 0

treeBig 0 0 0 0 0 0 0

Table 7.13: Self-Supervision Confusion Matrix for Test Data (locale bramble1-1, outside
robot’s path), using proprioception with (vt500-bumper, adxl-axle-up) sensors. Refer to
appendix 9.23, 9.24, 9.25 for bare images. Refer to appendix images 9.43, 9.44, 9.45 for
proprioceptively predicted labels inside the robot’s path. Refer to appendix images 9.46,
9.47, 9.48 for visual test predictions outside the robot’s path.

7.5 Analysis

Table 7.14 lists the recall rates for the four main experiments. The left column lists the three
out of the seven terrain classes that show up inside the robot’s path at the current locale,
bramble1-1. The next four columns are the recall values for each for the four experiments.
The bottom row shows the average recall across all classes for each experiment. These
recall rates can be extracted from the confusion matrices in tables 5.14, 7.7, 7.13 and 7.10
for each of the four experiments.

111

Class Proprio Vision floor Self-sup Vision ceiling

grass-leaves 0.71 0.55 0.81 0.89
pavement 0.72 0.76 0.96 0.96
bramble 1.00 0.36 0.76 0.85

average 0.81 0.56 0.84 0.90

Table 7.14: Recall Comparison. Each column is generated from confusion matrices 5.14,
7.7,7.13, 7.10, respectively.

Section 2.4 introduced the three dimensions of the thesis problem. Section 4.4 laid out
how we will prove that we addressed each dimension. To decrease human effort, we said
we would show that supervised proprioception outperforms supervised exteroception when
training on one set of locales and testing on another. The hypothesis is that exteroception
is not consistent across locales, but proprioception is. We prove this here by comparing
the proprioception column and the vision floor column. We can see that the average of the
proprioception is better than the average of the vision floor. However, the proprioception
column is only showing accuracies for the test predictions on data inside the robot’s path,
whereas the vision floor column is showing accuracies for test predictions on a larger set
of data outside the robot’s path. This brings us to the next dimension of decreasing robot
effort.

To decrease robot effort, we said that we would leverage the consistency of the pro-
prioception into the exteroceptive field of view, making accurate predictions on the larger
exteroceptive set of data. We said we would show that self-supervision outperforms super-
vised exteroception when training on one set of locales and testing on another. We prove
this here by comparing the self-supervision column and the vision floor column. We can
see that the average of the self-supervision is better than the average of the vision floor.
This is testing on the larger data set outside the robot’s path.

Furthermore, we can compare the vision ceiling column to the self-supervision column.
The average of the vision ceiling is better than the average of the self-supervision. Here
we have replaced the proprioceptively-predicted labels on the training data with human
labels. This is the best we can expect the model to do given:

1. the ability of the training data to represent all classes

2. the ability of the feature space to separate the classes

3. the ability of the classifier to recognize the separations in the feature space

The vision ceiling allows the performance of the self-supervision to be relatively evaluated
against this upper benchmark. We can see that the self-supervision performance is quite
close to the ceiling.

Table 7.15 lists the normalized precision values for the same four main experiments.
The meanings of each row and column are analogous to the recall rates in table 7.14.
Again, the values can be extracted from the confusion matrices in tables 5.14, 7.7, 7.13
and 7.10 for each of the four experiments. The average in the proprioception column is
better than the average of the vision floor column. So this speaks again to proving the
hypothesis that proprioception is more consistent than exteroception across locales. This

112

is tackling the second dimension of the thesis problem, human effort.

Class Proprio Vision floor Self-sup Vision ceiling

grass-leaves 1.00 0.64 0.82 0.87
pavement 1.00 0.86 0.81 0.85
bramble 0.64 0.62 0.42 0.46

average 0.88 0.71 0.68 0.73

Table 7.15: Normalized Precision Comparison. Each column is generated from confusion
matrices 5.14, 7.7, 7.13, 7.10, respectively.

We do not see improvement, however, when comparing the self-supervision column and
the vision floor column of the normalized precisions in table 7.15. This is directly related
to the fact that the tree terrain class does not show up inside the robot’s path, thereby
limiting the self-supervision classifier’s ability to correctly predict the tree labels in the
test data. Looking at the self-supervision confusion matrix in 7.13, we can see that the
data points in the tree column are mostly confused as bramble. They have no way of being
correctly predicted as treeBig. This, in turn, decreases the normalized precision for the
bramble class, which we can see here as the value 0.42 in table 7.15. This brings down
the average quite a bit. The vision floor has tree data in its training set from the previous
locales, so it does not suffer from this problem. Note that the recall for the self-supervision
is not affected by the tree data, because the recall rates are calculated separately for each
column.

The normalized precision for the vision ceiling also performs poorly for the same reasons
as the self-supervision. Looking at the vision ceiling confusion matrix in 7.10, we can see
again that the data points in the tree column are mostly confused as bramble. So this again
decreases the normalized precision for the bramble class to a value of 0.46 in table 7.15.
This again brings down the average quite a bit. Above, we listed three constraints on the
ceiling performance. In this case, it is the first constraint that is limiting the ceiling: the
ability of the training data to represent all classes.

Table 7.16 lists the normalized precision values, but now ignoring the tree column in
the confusion matrices for the self-supervision and vision ceiling. (The proprioception and
vision floor columns are repeated from the previous table.) The self-supervision and vision
ceiling columns are being generated from the same two confusion matrices, 7.13 and 7.10,
respectively. But now the treeBig column is being ignored. When ignoring the tree data,
we can see the same trend as we did in the recall table: the self-supervision is outperforming
the vision floor. The vision ceiling, in turn, is higher than the self-supervision. The self-
supervision once again is quite close to the vision ceiling. We consider the lack of tree data
in the training set to be an edge case. It is a limitation directly related to our experimental
setup. We discuss in the future work section (8.2) how active learning might be used to
make sure that all terrain classes at the current locale are sampled in the training data.

113

Class Proprio Vision floor Self-sup Vision ceiling

grass-leaves 1.00 0.64 0.95 0.96
pavement 1.00 0.86 0.81 0.85
bramble 0.64 0.62 0.79 0.88

average 0.88 0.71 0.85 0.90

Table 7.16: Normalized Precision Comparison Without Tree. Each column is generated
from confusion matrices 5.14, 7.7, 7.13, 7.10, respectively. The last two columns for self-
supervision and vision ceiling ignore the tree data in the confusion matrix, since there is
no training data for the tree class.

We examine normalized precision rather than precision because it normalizes out the
effect that the number of data points for each class has on the precision values. There is
less tree data because it is an above-ground class. If we were to look at the precision values
instead of the normalized precision values, the problems that the tree data causes would
not be as evident. Often, the hazardous classes, which are the most precious to predict,
have the least number of data points, and we don’t want these results to get drowned
out by the ground terrain. This, in general, is a reason why we might choose to look at
normalized precision instead of precision. But in analyzing the tree edge case here, we are
showing another reason why it is a good idea to look at normalized precision: so that we
can see trends in edge cases such as these.

114

Chapter 8

Conclusion

In summary, we have proven the ability of our algorithm to address both the human effort
and the robot effort dimensions of the thesis problem. We have shown this for both the
recall and normalized precision without the tree edge case. We have demonstrated that
proprioception is more invariant than exteroception. Therefore, proprioception can be
used to improve exteroception from locale to locale, while still preserving the ability of the
exteroception to classify at a range without having to interact with that terrain directly.

8.1 Contributions

We are the first to build a rich semantic classifier that includes multiple ground
and above ground terrain classes, using only medium levels of human and robot
effort.

In table 2.3, we summarized how prior work has addressed the three dimensions of our the-
sis problem. These three dimensions are: semantic richness of the terrain classification,
human effort, and robot effort. The table ended by showing how we would extend the prior
work, which we succeeded in doing. To deliver on the first dimension, increasing the seman-
tic richness of the classifier, we built a seven-class multiclass classifier that included both
ground and above-ground terrain types. The ground types included grass, grass-leaves and
pavement. The above-ground types included soft vegetation, bushes, bramble, and trees.
To deliver on the second dimension, decreasing robot effort, we built a supervised proprio-
ceptive multiclass classifier that can generalize well between different environments. This
allowed the robot to train on a small subset of locales, and then test on new locales with
high accuracy. To deliver on the third dimension, decreasing human effort, we implemented
a self-supervised system using proprioception to teach exteroception. The proprioception
allows for better model generalization across locales. The exteroception, when retrained
by the proprioception at each new locale, can transmit that better model generalization
into its larger field of view. The retrained exteroception can then make better predictions,
which can be registered onto a larger map of the terrain. We tested these assumptions
against clear benchmarks, with data collection on a fully integrated robotic vehicle.

115

We implemented a two-step framework using proprioception to teach extero-
ception, and we are the first to show the benefit of this two-step framework for
rich, semantic terrain classification.

Traditional self-supervision uses a direct framework, where one sensing modality provides
direct labels to the second sensing modality. Our scheme uses a two-step framework, where
there is an auxiliary preprocessing step, or first step, that uses supervised learning to teach
the first sensing modality on a subset of data. We are using proprioception as the first
sensing modality and exteroception as the second sensing modality. This two-step frame-
work using proprioception to teach exteroception has been explored to some extent by
other researchers, but it is not common, and we implemented the richest semantic mul-
ticlass terrain classifier with this approach. Previous work has only built ground terrain
classifiers, and we extended this work to multiple ground and above-ground terrain classes.

In our ICRA paper [22], we were the first to use sound for mobile robot terrain
classification, with the ability to classify a semantically rich set of classes.

At the time of writing our ICRA paper, Ojeda et al. [25] were the only other ones to use
sound at all for mobile robot terrain classification, and they only looked at ground terrain
types. They were successful mostly with the grass terrain type using the sound modality.
We built a multiclass classifier using only sound that could distinguish between multi-
ple ground classes and one above-ground class. (Others built off our work in supervised
acoustics-based terrain classification, but sticking to ground classes [10], [42], [41], [35]).
We explored various feature extraction techniques coming out of acoustics literature, and
we demonstrated that both our gianna and shape and log bins feature vectors worked well.
We demonstrated how these feature vectors could be successfully trained in a multiclass
classifier, and we showed that binary SVM nodes within a one-vs-one multiclass scheme
provided good results. We also showed in Bagnell et al. [6] that these techniques eas-
ily generalize to interactive sensing for robotic manipulator applications. In general, we
have tested these techniques in very challenging outdoor environments with messy data,
and so these techniques are positioned to perform very well in cleaner indoor environments.

We are the first to use air microphones as part of the proprioception teacher.

We are the first (and only) ones to use air microphones as a sensing modality in the pro-
prioceptive teaching suite within a self-supervision framework for mobile robot terrain
classification. Other researchers have used vibration, and we extended this work by using
just air microphones, as well as a combination of vibration and air microphones.

We determined the best pair of sound and vibration sensors for measuring
ground and above-ground interaction.

We extended our early acoustics work by exploring the use of different sound and vibration
sensors, both alone and in combination with each other. We explored 19 different sound
and vibrations signals, coming from condenser air microphones, electret air microphones,
contact microphones, accelerometers, and piezoelectric vibration sensors. We explored
the placement of these sensors on the axle of the vehicle for measuring ground terrain
interactions and sensors within the vehicle’s bumper for measuring above-ground terrain

116

interactions. We learned a combination of these sensors through an automated validation
process. We determined that a combination of an air microphone near the bumper and a
z-axis acceleration signal near the axle was the best combination. We demonstrated that
the feature extraction and classification methods that we explored in our early work with
sound could extend well to different sound sensors, as well as to the sensors in the vibra-
tion modality. We also demonstrated that these feature extraction and learning techniques
could extend to a combination of the signals, by concatenating the features together. And
we also demonstrated that these techniques could extend across robotic platforms from the
Gator platform to the LAGR platform.

Our exteroceptive classification provides evidence that the Variational Auto
Encoder (VAE) is a powerful tool for mobile robot visual terrain classification.

We implemented a Variational Auto Encoder (VAE) in order to learn the feature space
from unsupervised camera data. This is leveraging a state of the art deep learning tech-
nique in computer vision. We showed this could work for the Pixim HDR cameras on our
platform, which is a common camera used on field robotic vehicles. We showed that the
VAE feature choice worked much better than Gabor features, a traditional choice used
for texture classification. We showed this working on data that consisted of local image
patches associated with points from a point cloud of (x,y,z) locations in a map of the sur-
rounding terrain. Sometimes VAEs are used within an image segmentation scheme, and
we show here a working implementation of using them on just local image patches. Using
them on just local image patches allows them to be tagged to specific 3d points in the
terrain map, thereby allowing them to be used within mapping applications. Separate
from whether or not the end application is mapping, such mapping is necessary for the
registration within our self-supervised framework. The association of local image patches
with 3d points is what allowed the exteroceptive training data to be labeled from the
proprioceptive domain. We demonstrated the use of VAE feature vectors as input to a
supervised multiclass classifier built from SVM’s within a one-vs-one multiclass scheme.
This is using an unsupervised deep learning neural network along with a final supervised
SVM layer. This in itself is an interesting implementation, and it is a good example of
leveraging the strength of unsupervised deep learning for computer vision along with the
ability of SVM’s to perform well on small labeled datasets.

We created self-supervision architecture that will allow the research community
to understand these concepts, communicate about them, and build off them in
the future.

Because the two-step self-supervised framework that we used is not common, it has not
been fleshed out on a conceptual level that concretely, which can lead to a great deal of con-
fusion when discussing this research. We concretely described both the direct and two-step
frameworks with diagrams in section 2.2. We then described how we apply the two-step
framework to our mobile robotics system in section 4.2 with diagrams to explain how the
two step framework relates to the data registration necessary for such an implementation.
Finally, we used these diagrams to define our four main experiments in section 4.3, which
allowed our results to be compared to floor and ceiling benchmarks in a clear fashion.

117

We feel that these conceptual diagrams are in themselves a contribution to the research
community for understanding and communicating about these concepts.

We developed a process for projecting time-series labels into the exteroceptive
field of view.

The process of projecting human time-series labels into the exteroceptive field of view is
in itself a technical contribution that could aid researchers in labeling exteroceptive data,
even if just working on supervised classification problems. In section 4.1, we described
the process of labeling sequences in the time series data, turning short time windows into
rectangular footprints, tagging the 3d point clouds with labels from those footprints, and
then projecting these labels onto the image plane. For a particular data trial, the robot
makes a path through the locale. Only a few start and end timestamps need to be tagged
in order to provide time-series labels. For instance, if there are three terrain-interaction
events, then the human labeler need only mark six points in a time-series signal (the be-
ginning and end of each event.) This information can then be used to project labels onto
the point cloud stream, and in turn the camera stream, for that entire trial. For a human
to label all of that point cloud data or all of those images would be very labor intensive. So
even if the application is for a supervised exteroceptive classifier, having the proprioceptive
signals from the robot-terrain interaction just as a human hand-labeling tool allows for ex-
teroceptive data to be labeled much more easily. The process we have described for this
data registration is in itself a contribution for easing the process of human-labeling. Semi-
supervised methods for integrating human labels with proprioceptive predictions could be
further explored, and we discuss this in the future work section (8.2).

We collected a dataset with many sensing modalities across diverse terrain for
use by other researchers. We also developed a robotic platform for future data
collection.

We generated a very unique dataset which could be used in the future by the robotics,
machine learning, and computer vision communities. This data includes 19 sound and
vibration signals, image streams from HDR color cameras, 3d point clouds with near-
uniform density, and other proprioceptive signals coming from the low-level controller.
All of this data has the information to be time synchronized and spatially registered in
post-processing. We collected the data over a variety of locations in outdoor off-road envi-
ronments, including Schenley Park, Raccoon Creek State Park, and the Gascola and Taylor
CMU test sites. The data collection trials contain many robot-terrain interaction events
with both ground and above-ground terrain classes. The trials also contain camera and
3d point clouds from multiple distances away from target terrain classes, with the robot
stopping every two meters to collect 3d point clouds with no motion blur. We retrofitted
the LAGR platform with all of the sensors discussed above. We put a great deal of systems
work into this platform, and it is still available for future robotic use.

118

8.2 Future Work

We feel that the highest impact opportunity for extending off our work would be to incor-
porate our self-supervised framework into a hierarchical scheme. Figure 8.1 shows again
the two-step framework that we implemented. In this framework, the classification is set
up as a large multiclass problem, where a single multiclass classifier (one for each of the
two steps in the framework) is responsible for estimating all of the semantic classes.

proprioception exteroception
human

observations features_1

properties

predictions of
properties from

features_1

properties

features_2

step 1) supervised step 2) self-supervised

Figure 8.1: Our current two-step self-supervised framework

Instead of considering all of the semantic classes as part of a flat set, a taxonomy
of terrain categories could be considered, where subsets of terrain classes are grouped
together. These hierarchical groupings would allow the classification task to be broken up
into stages, where each stage is only responsible for a smaller set of classes. Figure 8.2
shows an example of how a large set of terrain classes might be organized into such a
hierarchy.

all terrain

ground above ground

obstaclenot obstaclesmooth ground rough ground

Sand
grass
smooth pavement
dirt
clay

gravel
rough pavement
pebbles
cobblestone

tall grass
piles of leaves
small bushes
light bramble

thick bushes
dense bramble
rocks
trees

Figure 8.2: A hierarchical scheme to semantic labeling of terrain classes

119

Each upper split of this tree is a binary classification problem, and then the leaf nodes
are separate multiclass classification problems. In this example, the binary classification
problems above the leaves can be modeled directly without human labels. For the first
level of the tree, ground versus above ground, a model could be built from height values
provided by the 3d point clouds coming from range data. A plane could be fit to the
ground. Along the normal to that plane, a threshold could be chosen that corresponds to a
significant height above the ground plane. For distinguishing obstacle versus not obstacle
on the second level of the tree, a model could be built from bumper hits, telling the robot
whether it has hit something that is traversable or not. This could also be determined
with velocity information instead of bumpers: if the velocity of the robot is zero, then
the robot has hit an obstacle. Note that this is a measure of the terrain compliance,
similar to the direct properties being learned in prior work as listed in table 2.2. For
distinguishing smooth ground versus rough ground, one could use a measure of terrain
roughness, also a direct property from table 2.2. Similar to these authors, one could
use a one-dimensional measure of the energy in each short window (integral of the z-axis
amplitude of an accelerometer) and pick a reasonable threshold to split the ground types
into rough and not rough categories.

Once these direct measurements have been used to reach the leaf nodes of the tree,
the two-step framework could be used for each leaf. The reader might visualize the en-
tire framework in figure 8.1 shrunken down and stuffed into each leaf node. The direct
measurements (height, velocity, bumpers hits, energy of z-acceleration) would be used to
separate the data points into subsets (leaf nodes) and then each subset of the data would
be handled by the two-step framework. Note that the human labels needed for the first
step of the framework would not have to be repeated; they would simply be labels for each
of the data points as they were before, and then a subset of the data points would be fed
into each leaf. Each model would only be responsible for a subset of the classes, allowing
them to be easier multiclass problems.

Our current two-step implementation uses learned property predictions from sound
and vibration features. These learned predictions would still be used in each leaf node
as part of this hierarchical framework. But now the initial hierarchical step of breaking
the entire set of data points into subsets would be handled by direct predictions coming
from a different suite of proprioceptive sensors (bumpers, pose, energy of z-acceleration)
as well as some straightforward exteroceptive data (height). This staged approach is our
attempt to combine both direct and learned proprioceptive predictions. One can think of
this combination as incorporating both the direct self-supervised framework from figure 2.1
and the two-step framework that we implemented (figure 8.1).

One problem that could arise is an overlap of terrain classes into multiple groups. For
instance, pavement could be rough or smooth, depending on how recently the ground
has been paved. Hence, in figure 8.2, we split pavement up into two separate semantic
classes, smooth pavement and rough pavement. Research into what choices to make in the
taxonomy process for semantic categorization is another area of future work. This falls
into the realm of cognitive science and how semantic taxonomies should be organized.

In our current two-step framework, we have a suite of teacher measurements from
proprioceptive data and student measurements from exteroceptive data. Now with the

120

hierarchical framework, the direct measurements at the upper levels of the tree are being
added to the suite of teacher measurements. Note that height is coming from range data,
which is exteroceptive. This starts to break down the assumption that proprioception is
always the teacher. This leads to an exploration on how parts of the exteroception might
be incorporated into the suite of teacher measurements. Using height from range data is
just one example. Other exteroceptive measurements might also be used as part of the
teacher suite. Our general assumption is that exteroceptive labels will not be robust to
new environments, and therefore should not be used as the teacher. But perhaps some of
the exteroceptive data is robust enough to be used on its own or in combination with the
proprioceptive data. Experiments could be conducted to test this hypothesis.

Another variant on our current two-step framework in figure 8.1 could be to make
the first step unsupervised instead of supervised. This is depicted in figure 8.3. The
second self-supervised step would be the same as before. In the first step, there would
be no human labels, and the proprioceptive features would be turned into property labels
through unsupervised learning. There would still be a trivial human-labeling step to tag
each cluster with a terrain class. This entire framework could again be visualized as
shrunken down and stuffed into the leaf nodes of the hierarchical tree from figure 8.2.
Using the tree to split the large multiclass problem into smaller multiclass problems would
allow the unsupervised clustering to have more of a chance at success.

step 2) self-supervisedstep 1) unsupervised

features_1 predictions of
properties features_2

propertiesproperties

proprioception exteroception

Figure 8.3: A variant to the two-step framework in figure 8.1. Here, the first step is
unsupervised instead of supervised. There would still be a trivial step of tagging each
unsupervised cluster with a human label.

Instead of a fully unsupervised first step, we might also experiment with semi-supervised
techniques. For example, at each locale, we have a subset of the terrain classes. The data
from this locale could be fed into an unsupervised clustering algorithm to separate the
classes, and then have a human trivially tag each cluster with a label. Note that this is
different than the fully unsupervised approach we introduced above because the human is
tagging clusters for each new locale that is used for training the proprioception. Lower-
dimensional features might be sufficient for distinguishing between the smaller set of classes
at a particular locale, and the clustering algorithm might have a better chance of succeeding
with these lower dimensional features. This clustering would be an alternative to the fully

121

supervised process of hand-labeling the starting and ending timestamps for each interaction
event. This would be especially useful for above-ground terrain classes, where labeling the
start and end of each interaction event has to be done more often and with more resolution.
The semi-supervised data from each locale could then be combined with data from other
locales into a full training dataset. This whole process would replace the first step from
the two-step framework (figure 8.1). The semi-supervised scheme we are describing can be
summarized as follows:

1. Each signal file would be treated as a separate classification problem on the subset
of classes at that locale, which would be solved with unsupervised clustering on
low-dimensional proprioceptive features.

2. The clusters would then be tagged with human labels.

3. The labeled data points from each file would be combined into a larger set with
labeled data points from other files.

4. A supervised model would be learned from this training data, using higher-dimensional
proprioceptive features.

5. The predictions from this model would then be used as the teacher in the second
step of the two step framework to train the exteroceptive features.

In our current exteroception module, we use a VAE to learn the feature space for our
exteroceptive features in an unsupervised fashion. Similarly, we might use a VAE on our
proprioceptive signals to learn a feature space. The work we have done in extracting robust
proprioceptive features would act as a nice benchmark for seeing if we get improvement
with the VAE. This could also be useful in learning lower-dimensional features for semi-
supervised labeling within each locale, as discussed above. In this case, we might retrain
a VAE at each new locale in an unsupervised fashion.

In section 7.5 we discussed the fact that the tree class was not showing up in our
data inside the robot’s path at the current test locale. However, the tree data did show up
outside the robot’s path. This is because there were trees at the locale, but the robot never
interacted with any of them. So when the proprioception was retraining the exteroception
at this locale, it did not have tree as a class in its model. This was a limitation in the
experimental setup of our data collection trials. However, this could also be an issue in
a fully autonomous system where there is no human supervisor telling the robot what
terrain to sample. In these cases, active learning approaches might be useful, where the
robot makes decisions about what terrain it wants to sample, and then plans a path through
the terrain accordingly. Unsupervised clustering on the exteroceptive data could be used
to split the data up into groups, and without worrying about the terrain label for each
group, the robot might try to sample some subset of each cluster. (Ott and Ramos [27]
separated visual data into unsupervised clusters, tagging each cluster with a label from the
bumper information about whether it was an obstacle or not.)

We learned the VAE features in an unsupervised fashion, but this is a separate step
from the unsupervised clustering being discussed here. The image patch data points would
be transformed into a feature space, perhaps through a VAE implementation. No matter
what feature extraction technique is used, this unsupervised clustering step would happen

122

on the data once it is in the feature space. It might be beneficial to use a lower-dimensional
feature vector for this clustering step, since we are clustering on the subset of the data at
this locale. This is similar to what we discussed above for clustering the proprioceptive
features in a lower-dimensional space for semi-supervised labeling. Furthermore, the VAE
features could be relearned at each new locale, perhaps in a lower dimension, and then
these relearned features could be fed into the clustering algorithm.

An area of robotics research that we are particularly passionate about is systems in-
tegration; namely, the aggregation of different sub-systems into a coordinated whole that
is greater than the sum of its parts. In this thesis, we have brought together the sub-
systems of proprioception and exteroception into a more advanced robotics perception
system. By using self-supervision, we have implemented a sensor fusion system that lever-
ages the advantages of each sensing modality. We have worked with both hardware and
software to build a fully integrated robotic perception system. In doing so, we were able to
make advances in interactive perception, going beyond the majority of robotic perception
systems, which are passive in nature. We hope that these contributions can help future
roboticists carve out systems integration research problems with confidence, allowing for
sub-components that can elegantly interact with each other, and allowing for robots that
can elegantly interact with the world.

123

124

Chapter 9

Appendix

9.1 Convolutional Variational Auto Encoder Images

125

Figure 9.1: 100 Input Image Patches of the Grass Class

126

Figure 9.2: 100 Decoded Outputs of the Grass Class, corresponding to inputs in figure 9.1

127

Figure 9.3: 100 Input Image Patches of the Grass-leaves Class

128

Figure 9.4: 100 Decoded Outputs of the Grass-leaves Class, corresponding to inputs in
figure 9.3

129

Figure 9.5: 100 Input Image Patches of the Pavement Class

130

Figure 9.6: 100 Decoded Outputs of the Pavement Class, corresponding to inputs in fig-
ure 9.5

131

Figure 9.7: 100 Input Image Patches of the Soft Vegetation Class

132

Figure 9.8: 100 Decoded Outputs of the Soft Vegetation Class, corresponding to inputs in
figure 9.7

133

Figure 9.9: 100 Input Image Patches of the Bramble Class

134

Figure 9.10: 100 Decoded Outputs of the Bramble Class, corresponding to inputs in fig-
ure 9.9

135

Figure 9.11: 100 Input Image Patches of the Bush Class

136

Figure 9.12: 100 Decoded Outputs of the Bush Class, corresponding to inputs in figure 9.11

137

Figure 9.13: 100 Input Image Patches of the Tree Class

138

Figure 9.14: 100 Decoded Outputs of the Tree Class, corresponding to inputs in figure 9.13

139

9.2 Self-Supervision Images

9.2.1 Pixim Images for Previous Locales (sea2-11, wood1-7, wood1-
8, bush4-1, tree2-1)

(a)

Figure 9.15: Pixim Images for Previous Locales (sea2-11, wood1-7, wood1-8, bush4-1,
tree2-1), Image 1. This set of previous locales is used for training the vision floor bench-
mark. Refer to images 9.26, 9.27, 9.28, 9.29, 9.30, 9.31, 9.32, 9.33 for human labels on this
data.

140

(a)

(b)

Figure 9.16: Pixim Images for Previous Locales (sea2-11, wood1-7, wood1-8, bush4-1,
tree2-1), Continued, Images 2 - 3

141

(a)

(b)

Figure 9.17: Pixim Images for Previous Locales (sea2-11, wood1-7, wood1-8, bush4-1,
tree2-1), Continued, Images 4 - 5

142

(a)

(b)

Figure 9.18: Pixim Images for Previous Locales (sea2-11, wood1-7, wood1-8, bush4-1,
tree2-1), Continued, Images 6 - 7

143

(a)

(b)

Figure 9.19: Pixim Images for Previous Locales (sea2-11, wood1-7, wood1-8, bush4-1,
tree2-1), Continued, Images 8 - 9

144

(a)

(b)

Figure 9.20: Pixim Images for Previous Locales (sea2-11, wood1-7, wood1-8, bush4-1,
tree2-1), Continued, Images 10 - 11

145

(a)

(b)

Figure 9.21: Pixim Images for Previous Locales (sea2-11, wood1-7, wood1-8, bush4-1,
tree2-1), Continued, Images 12 - 13

146

(a)

(b)

Figure 9.22: Pixim Images for Previous Locales (sea2-11, wood1-7, wood1-8, bush4-1,
tree2-1), Continued, Images 14 - 15

147

9.2.2 Pixim Images for Current Locale (bramble1-1)

(a)

Figure 9.23: Pixim Images for Current Locale (bramble1-1), Image 1. The current locale is
used for testing the vision floor benchmark (refer to images 9.34, 9.35, 9.36 for predictions).
This locale is also used for training the self-supervision inside the robot’s path and testing
the self-supervision outside the robot’s path. Refer to images 9.37, 9.38, 9.39 for training
labels given by the snowball proprioceptive predictions, and then subsequent visual test
predictions in 9.40, 9.41, 9.42. Refer to images 9.43, 9.44, 9.45 for training labels given by
the (vt500-bumper, adxl-axle-up) proprioceptive predictions, and then subsequent visual
test predictions in 9.46, 9.47, 9.48. This locale is also used for training the vision ceil-
ing benchmark inside the robot’s path and testing the vision ceiling benchmark outside
the robot’s path. Refer to images 9.49, 9.50, 9.51 for human training labels, and then
subsequent visual test predictions in 9.52, 9.53, 9.54.

148

(a)

(b)

Figure 9.24: Pixim Images for Current Locale (bramble1-1), Continued, Images 2 - 3

149

(a)

(b)

Figure 9.25: Pixim Images for Current Locale (bramble1-1), Continued, Images 4 - 5

150

151

9.2.3 Vision Floor Benchmark Training Labels

(a)

(b)

Figure 9.26: Vision Floor Benchmark Training Labels, Images 1 - 2. Colored points show
human labels for supervised training data (locales sea2-11, wood1-7, wood1-8, bush4-1,
tree2-1). Refer to 9.15, 9.16, 9.17, 9.18, 9.19, 9.20, 9.21, 9.22 for bare images.

152

(a)

(b)

Figure 9.27: Vision Floor Benchmark Training Labels, Continued, Images 3 - 4

153

(a)

(b)

Figure 9.28: Vision Floor Benchmark Training Labels, Continued, Images 5 - 6

154

(a)

(b)

Figure 9.29: Vision Floor Benchmark Training Labels, Continued, Images 7 - 8

155

(a)

(b)

Figure 9.30: Vision Floor Benchmark Training Labels, Continued, Images 9 - 10

156

(a)

(b)

Figure 9.31: Vision Floor Benchmark Training Labels, Continued, Images 11 - 12

157

(a)

(b)

Figure 9.32: Vision Floor Benchmark Training Labels, Continued, Images 13 - 14

158

(a)

Figure 9.33: Vision Floor Benchmark Training Labels, Continued, Image 15

159

9.2.4 Vision Floor Benchmark Test Predictions

(a)

(b)

Figure 9.34: Vision Floor Benchmark Test Predictions, Images 1 - 2. Colored points show
visual predictions from supervised classifier on test data (locale bramble1-1). Refer to 9.23,
9.24, 9.25 for corresponding bare test images. The model is trained on the previous set of
locales. Refer to 9.15, 9.16, 9.17, 9.18, 9.19, 9.20, 9.21, 9.22 for training images. Refer to
images 9.26, 9.27, 9.28, 9.29, 9.30, 9.31, 9.32, 9.33 for training labels.

160

(a)

(b)

Figure 9.35: Vision Floor Benchmark Test Predictions, Continued, Images 3 - 4

161

(a)

Figure 9.36: Vision Floor Benchmark Test Predictions, Continued, Image 5

162

163

9.2.5 Self-Supervision Training Labels (snowball)

(a)

(b)

Figure 9.37: Self-Supervision Training Labels (snowball), Images 1 - 2. Colored points
show proprioceptively predicted labels for self-supervised training data (locale bramble1-1,
inside the robot’s path). The proprioceptive teacher uses signals from the base snowball
sensor. Refer to 9.23, 9.24, 9.25 for bare images. Refer to images 9.40, 9.41, 9.42 for
subsequent visual predictions on test data.

164

(a)

(b)

Figure 9.38: Self-Supervision Training Labels (snowball), Continued, Images 3 - 4

165

(a)

Figure 9.39: Self-Supervision Training Labels (snowball), Continued, Image 5

166

9.2.6 Self-Supervision Test Predictions (snowball)

(a)

(b)

Figure 9.40: Self-Supervision Test Predictions (snowball), Images 1 - 2. Colored points
show visual predictions from self-supervised classifier on test data (locale bramble1-1, out-
side the robot’s path). The model is trained on data from same locale, inside the robot’s
path. The proprioceptive teacher uses signals from the base snowball sensor. Refer to 9.23,
9.24, 9.25 for bare images. Refer to images 9.37, 9.38, 9.39 for self-supervised training la-
bels.

167

(a)

(b)

Figure 9.41: Self-Supervision Test Predictions (snowball), Continued, Images 3 - 4

168

(a)

Figure 9.42: Self-Supervision Test Predictions (snowball), Continued, Image 5

169

170

9.2.7 Self-Supervision Training Labels (vt500-bumper, adxl-axle-
up)

(a)

(b)

Figure 9.43: Self-Supervision Training Labels (vt500-bumper, adxl-axle-up), Images 1 -
2. Colored points show proprioceptively predicted labels for self-supervised training data
(locale bramble1-1, inside the robot’s path). The proprioceptive teacher uses signals from
optimal sensor combination (vt500-bumper, adxl-axle-up). Refer to 9.23, 9.24, 9.25 for
bare images. Refer to images 9.46, 9.47, 9.48 for subsequent predictions on test data.

171

(a)

(b)

Figure 9.44: Self-Supervision Training Labels (vt500-bumper, adxl-axle-up), Continued,
Images 3 - 4

172

(a)

Figure 9.45: Self-Supervision Training Labels (vt500-bumper, adxl-axle-up), Continued,
Image 5

173

9.2.8 Self-Supervision Test Predictions (vt500-bumper, adxl-axle-
up)

(a)

(b)

Figure 9.46: Self-Supervision Test Predictions (vt500-bumper, adxl-axle-up), Images 1
- 2. Colored points show visual predictions from self-supervised classifier on test data
(locale bramble1-1, outside the robot’s path). The model is trained on data from same
locale, inside the robot’s path. The proprioceptive teacher uses signals from the optimal
sensor combination (vt500-bumper, adxl-axle-up). Refer to images 9.23, 9.24, 9.25 for bare
images. Refer to 9.43, 9.44, 9.45 for self-supervised training labels.

174

(a)

(b)

Figure 9.47: Self-Supervision Test Predictions (vt500-bumper, adxl-axle-up), Continued,
Images 3 - 4

175

(a)

Figure 9.48: Self-Supervision Test Predictions (vt500-bumper, adxl-axle-up), Continued,
Image 5

176

177

9.2.9 Vision Ceiling Benchmark Training Labels

(a)

(b)

Figure 9.49: Vision Ceiling Benchmark Training Labels, Images 1 - 2. Colored points show
human labels for supervised training data (locale bramble1-1, inside the robot’s path).
Refer to 9.23, 9.24, 9.25 for bare images. Refer to images 9.52, 9.53, 9.54 for subsequent
predictions on test data.

178

(a)

(b)

Figure 9.50: Vision Ceiling Benchmark Training Labels, Continued, Images 3 - 4

179

(a)

Figure 9.51: Vision Ceiling Benchmark Training Labels, Continued, Image 5

180

9.2.10 Vision Ceiling Benchmark Test Predictions

(a)

(b)

Figure 9.52: Vision Ceiling Benchmark Test Predictions, Images 1 - 2. Colored points
show visual predictions from supervised classifier on test data (locale bramble1-1, outside
the robot’s path). The model is trained on data from same locale, inside the robot’s path.
Refer to 9.23, 9.24, 9.25 for bare images. Refer to images 9.49, 9.50, 9.51 for training labels.

181

(a)

(b)

Figure 9.53: Vision Ceiling Benchmark Test Predictions, Continued, Images 3 - 4

182

(a)

Figure 9.54: Vision Ceiling Benchmark Test Predictions, Continued, Image 5

183

184

Bibliography

[1] Tensor Flow Libray, Convolutional Variational Auto Encoder. https://www.

tensorflow.org/tutorials/generative/cvae. Accessed: 2019-12-02. 6.1

[2] Aliza Amsellem and Octavian Soldea. Function-Based Classification from 3D Data
and Audio. In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2006. 5.1

[3] Anelia Angelova, Larry Matthies, Daniel Helmick, and Pietro Perona. Learning slip
behavior using automatic mechanical supervision. In IEEE International Conference
on Robotics and Automation (ICRA), 2007. 2.2.2

[4] Anelia Angelova, Larry Matthies, Daniel Helmick, and Pietro Perona. Learning and
Prediction of Slip from Visual Information. Journal of Field Robotics (JFR), 24(3):
205–231, 2007. 2.2.2, 2.3, 2.2, 2.3, 2.3, 3.2

[5] Anelia Angelova, Larry Matthies, Daniel Helmick, and Pietro Perona. Dimensional-
ity Reduction Using Automatic Supervision for Vision-Based Terrain Learning. In
Robotics: Science and Systems (RSS), 2007. 2.2.2

[6] J. Andrew Bagnell, Felipe Cavalcanti, Lei Cui, Thomas Galluzzo, Martial Hebert,
Moslem Kazemi, Matthew Klingensmith, Jacqueline Libby, Tian Yu Liu, Nancy Pol-
lard, Mihail Pivtoraiko, Jean-Sebastien Valois, and Ranqi Zhu. An Integrated System
for Autonomous Robotics Manipulation. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2012. 5.5, 8.1

[7] Max Bajracharya, Andrew Howard, Larry Matthies, Benyang Tang, and Michael Tur-
mon. Autonomous Off-Road Navigation with End-to-End Learning for the LAGR
Program. Journal of Field Robotics (JFR), 26(1):3–25, 2009. 1.1, 2.2.1

[8] Christopher A. Brooks and Karl Iagnemma. Self-Supervised Terrain Classification
for Planetary Surface Exploration Rovers. Journal of Field Robotics (JFR), 29(3):
445–468, 2012. 2.2.2, 2.2, 2.3, 2.3, 3.2, 3.3, 3.2, 3.2, 5.1

[9] Christopher J. C. Burges. A Tutorial on Support Vector Machines for Pattern Recog-
nition. Data Mining and Knowledge Discovery, 2(2):121–167, 1998. 5.4

[10] Joshua Christie and Navinda Kottege. Acoustics based Terrain Classification for
Legged Robots. In IEEE International Conference on Robotics and Automation
(ICRA), 2016. 2.1, 2.1, 2.3, 8.1

[11] Eric J. Coyle and Emmanuel G. Collins. A Comparison of Classifier Performance for

185

https://www.tensorflow.org/tutorials/generative/cvae
https://www.tensorflow.org/tutorials/generative/cvae

Vibration-based Terrain Classification. In 26th Army Science Conference, 2008. 1.1,
2.1, 2.1, 2.3, 3.2, 3.3

[12] Robert S. Durst and Eric P. Krotkov. Object Classification from Analysis of Impact
Acoustics. In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 1995. 5.1

[13] I. Fogel and D. Sagi. Gabor Filters as Texture Discriminator. Biological Cybernetics,
61(2):103–113, 1989. 6.2, 6.3

[14] Theodoros Giannakopoulos, Kosmopoulos Dimitrios, Aristidou Andreas, and
Theodoridis Sergios. Violence Content Classification Using Audio Features. In Hel-
lenic Artificial Intelligence Conference, 2006. 5.1, 5.3

[15] Ashkan Hajjam. A near-to-far learning framework for terrain characterization using
an aerial / ground-vehicle team. Master’s thesis, Mechatronics Systems Engineering,
University of Denver, Denver, CO, January 2016. 2.2.2, 2.2, 2.3, 2.3

[16] Derek Hoiem and Rahul Sukthankar. SOLAR: Sound Object Localization and Re-
trieval in Complex Audio Environments. In IEEE International Conference on Acous-
tics, Speech, and Signal Processing (ICASSP), 2005. 5.1, 5.3

[17] Andrew Howard, Michael Turmon, Larry Matthies, Benyang Tang, and Eric Mjolsness.
Towards Learned Traversability for Robot Navigation: From Underfoot to the Far
Field. Journal of Field Robotics (JFR), 23(11-12):1005–1017, 2006. 2.2.1, 2.2, 2.3, 3.2

[18] Thorsten Joachims. Making Large-Scale SVM Learning Practical. In B. Schölkopf,
C. Burges, and A. Smola, editors, Advances in Kernel Methods - Support Vector Learn-
ing. MIT Press, 1999. 5.4, 6.2

[19] Dongshin Kim, Jie Sun, Sang Min Oh, James M. Rehg, and Aaron F. Bobick.
Traversability Classification using Unsupervised On-line Visual Learning for Outdoor
Robot Navigation. In IEEE International Conference on Robotics and Automation
(ICRA), 2006. 2.2.1, 2.2, 2.3, 3.2

[20] Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. In Interna-
tional Conference on Learning Representations (ICLR), 2014. 6.1

[21] Eric Krotkov, Roberta Klatzky, and Nina Zumel. Robotic Perception of Material: Ex-
periments with Shape-Invariant Acoustic Measures of Material Type. In International
Symposium on Experimental Robotics (ISER), 1996. 5.1

[22] Jacqueline Libby and Anthony J. Stentz. Using Sound to Classify Vehicle-Terrain
Interactions in Outdoor Environments. In IEEE International Conference on Robotics
and Automation (ICRA), 2012. 2.1, 5.5, 8.1

[23] Eric Martinson and Alan Schultz. Auditory Evidence Grids. In IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), 2006. 5.1

[24] Ara V. Nefian, Luhong Liang, Xiaobo Pi, Liu Xiaoxiang, Crusoe Mao, and Kevin Mur-
phy. A Coupled HMM for Audio-Visual Speech Recognition. In IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2002. 5.1

[25] Lauro Ojeda, Johann Borenstein, Gary Witus, and Robert Karlsen. Terrain Charac-

186

terization and Classification with a Mobile Robot. Journal of Field Robotics (JFR),
23(2):103–122, 2006. 2.1, 2.1, 2.3, 3.2, 3.3, 8.1

[26] Kyohei Otsu, Masahiro Ono, Thomas J. Fuchs, Ian Baldwin, and Takashi Kubota. Au-
tonomous Terrain Classification With Co- and Self-Training Approach. IEEE Robotics
and Automation Letters, (RA-L), 1(2):814–819, 2016. 2.2.2, 2.2, 2.3, 2.3

[27] Lionel Ott and Fabio Ramos. Unsupervised Incremental Learning for Long-Term
Autonomy. In IEEE International Conference on Robotics and Automation (ICRA),
2012. 2.2.1, 2.2, 2.3, 8.2

[28] Geoffroy Peeters. A Large Set of Audio Features for Sound Description (Similarity
and Classification) in the CUIDADO Project, 2004. 5.3

[29] John C Platt, Nello Cristianini, and John Shawe-taylor. Large Margin DAGs for Mul-
ticlass Classification. In Advances in Neural Information Processing Systems (NIPS),
2000. 5.4, 6.2

[30] Arturo L Rankin, Tonislav Ivanov, and Shane Brennan. Methods for Evaluating the
Performance of Unmanned Ground Vehicle Water Detection. International Journal
of Intelligent Control and Systems (IJICS), 16(2):40–51, 2011. 1.3

[31] Manuel Reyes-Gomez, Nebojsa Jojic, and Daniel P. W. Ellis. Deformable Spectro-
grams. In AI and Statistics, 2005. 5.1

[32] Danilo J. Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic Backpropagation
and Approximate Inference in Deep Generative Models. In International Conference
on Machine Learning (ICML), 2014. 6.1

[33] David Stavens and Sebastian Thrun. A Self-Supervised Terrain Roughness Estimator
for Off-Road Autonomous Driving. In Annual Conference on Uncertainty in Artificial
Intelligence (UAI), 2006. 2.2.1, 2.2, 2.3, 3.2

[34] David Stavens, Gabriel Hoffmann, and Sebastian Thrun. Online Speed Adaptation
using Supervised Learning for High-Speed, Off-Road Autonomous Driving. In Inter-
national Joint Conference on Artifical intelligence (IJCAI), 2007. 2.1, 2.1, 2.3, 3.2

[35] Abhinav Valada, Luciano Spinello, and Wolfram Burgard. Deep Feature Learning for
Acoustics-Based Terrain Classification, volume 3. Springer International Publishing,
2018. 2.1, 2.1, 2.3, 8.1

[36] Jacob Walker, Carl Doersch, Abhinav Gupta, and Martial Hebert. An Uncertain
Future: Forecasting from Static Images Using Variational Autoencoders. In European
Conference on Computer Vision (ECCV), 2016. 6.1

[37] Christian Weiss, Holger Frohlich, and Andreas Zell. Vibration-based Terrain Classi-
fication Using Support Vector Machines. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2006. 2.1, 2.1, 2.3, 3.2, 3.3

[38] Carl Wellington and Anthony Stentz. Learning Predictions of the Load-Bearing Sur-
face for Autonomous Rough-Terrain Navigation in Vegetation. In International Con-
ference on Field and Service Robotics (FSR), 2003. 2.2.1, 2.2, 2.3, 3.2

[39] Mark C Wellman, Nassy Srour, and David B Hillis. Feature Extraction and Fusion of

187

Acoustic and Seismic Sensors for Target Identification. In SPIE Peace and Wartime
Applications and Technical Issues for Unattended Ground Sensors, 1997. 5.1, 5.3

[40] Huadong Wu and Mel Siegel. Correlation of Accelerometer and Microphone Data in
the Coin Tap Test. IEEE Transactions on Instrumentation and Measurement, 49(3):
493–497, 2000. 5.1

[41] H. W. Yu and B. H. Lee. A Bayesian Approach to Terrain Map Inference based on
Vibration Features. In IEEE International Conference on Multisensor Fusion and
Integration for Intelligent Systems (MFI), 2017. 2.1, 2.1, 2.3, 8.1

[42] Kai Zhao, Mingming Dong, and Liang Gu. A New Terrain Classification Framework
Using Proprioceptive Sensors for Mobile Robots. Mathematical Problems in Engineer-
ing, 2017(3938502):1–15, 2017. 2.1, 2.1, 2.3, 8.1

188

	1 Introduction
	1.1 Motivation
	1.2 Problem Space
	1.3 Perception Techniques

	2 Prior Work
	2.1 Learning with Proprioception on Mobile Robots
	2.2 Self-Supervised Learning with Proprioception on Mobile Robots
	2.2.1 A Direct Framework
	2.2.2 Two-step Frameworks

	2.3 Comparison of Approaches
	2.4 Thesis Problem
	2.5 Thesis Outline

	3 Experimental Setup
	3.1 Gator Platform and Data Collection
	3.2 Proprioceptive Sensing Modalities
	3.3 LAGR Platform
	3.4 LAGR Data Collection

	4 Self-Supervised Framework
	4.1 Data Registration
	4.2 Applying the General Framework To our System
	4.3 Four Main Experiments
	4.4 Thesis Problem Revisited

	5 Proprioception Module
	5.1 Acoustics and Vibration Literature
	5.2 Data Overview and Hand Labeling
	5.3 Feature Extraction
	5.4 Classification
	5.5 Gator Experiments and Results
	5.6 LAGR Experiments and Results
	5.6.1 Learned Sensor Selection
	5.6.2 Test Results

	6 Exteroception Module
	6.1 Unsupervised Feature Learning
	6.2 Classification
	6.3 Experiments and Results

	7 Final Experiments and Results
	7.1 Proprioception
	7.2 Vision Floor
	7.3 Vision Ceiling
	7.4 Self-Supervision
	7.5 Analysis

	8 Conclusion
	8.1 Contributions
	8.2 Future Work

	9 Appendix
	9.1 Convolutional Variational Auto Encoder Images
	9.2 Self-Supervision Images
	9.2.1 Pixim Images for Previous Locales (sea2-11, wood1-7, wood1-8, bush4-1, tree2-1)
	9.2.2 Pixim Images for Current Locale (bramble1-1)
	9.2.3 Vision Floor Benchmark Training Labels
	9.2.4 Vision Floor Benchmark Test Predictions
	9.2.5 Self-Supervision Training Labels (snowball)
	9.2.6 Self-Supervision Test Predictions (snowball)
	9.2.7 Self-Supervision Training Labels (vt500-bumper, adxl-axle-up)
	9.2.8 Self-Supervision Test Predictions (vt500-bumper, adxl-axle-up)
	9.2.9 Vision Ceiling Benchmark Training Labels
	9.2.10 Vision Ceiling Benchmark Test Predictions

	Bibliography

