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Abstract

Collision avoidance for multi-robot systems is a difficult challenge under uncer-
tainty, non-determinism and lack of complete information. This paper aims to
propose a collision avoidance framework that accounts for both measurement un-
certainty and bounded motion uncertainty. In particular, we propose Probabilistic
Safety Barrier Certificates (PrSBC) using Control Barrier Functions to define the
space of possible control actions that are probabilistically safe. The framework
entails minimally modifying an existing unconstrained controller to determine
a safe controller via a quadratic program constrained to the chance-constrained
safety set. The key advantage of the approach is that no assumptions about the
form of uncertainty are required other than finite support, also enabling worst-case
guarantees. We demonstrate effectiveness of the approach through experiments on
realistic simulation environment.

1 Introduction

Safe control and planning is one of the most important task that needs to be addressed in the realm of
multi-robot systems. For example, consider the problem of building an airborne collision avoidance
system (ACAS) for autonomous aerial robots that would scale up as the autonomous aerial traffic
increases. Such a system needs to be robust to various real-world factors that include uncertainty,
non-determinism and approximations made in the formulation of the system.

In many scenarios, uncertainty in the system arises from various estimation or prediction procedures
in real-world that rely on sensory information being collected in real-time. For example, information
from sensors such as radars, LIDARS, cameras might be used to detect other robots and obstacles
in the vicinity. Similarly, sensors such as an on-board GPS, Inertial Measurement Unit (IMU) etc.
could be used to estimate the robots state with respect to the environment. Such estimations naturally
introduce uncertainty that needs to be factored into the safety considerations.

Non-determinism often arises from our in-ability to model various exogenous variables that are part
of our operating environment. For example, it is fairly difficult to model phenomena such as wind
gusts and effects of turbulence near complex topologies that an aerial robot might need to fly. Ability
to pro-actively deal with such surprises is a fundamental requirement in guaranteeing safety.

Another important consideration is robustness against approximations that might have been made in
the problem formulation. For instance, any equation characterizing the dynamics of the system is an
approximation. Similarly, our implementation on a digital device introduces discretization, both in
the mathematical entities being computed as well as for time. Thus, our safety fabric needs to be able
to factor deviations from such modeling assumptions.
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While many prior approaches have attempted to address these different aspects of the problem, a
complete solution addressing all the above aspects has been elusive. Many methods that attempt
to address the measurement uncertainty often make restrictive assumptions, such as Gaussianity
[1, 2, 3, 4, 5] and/or simple dynamics model of the robots [1, 3, 4, 6]. Approaches that consider
bounded localization or control disturbance using conservative bounding volumes [7, 8, 9, 10]
often overestimate the probability of collisions. Also popular among methods that do distributed
collision avoidance is the simplistic assumption of constant velocity [2]. These could impose overly
conservative restrictions on the robot motion and hence may prevent robots from achieving their
primary tasks. On the other hand, consider that model-free approaches such as reinforcement learning
that have gained significant success in many challenging domains [11, 12, 13, 14], it is desired to have
an online collision avoidance module that can be coupled with any existing planner or controller, e.g.
RL agent, to preserve original robot behaviors towards the primary task while ensuring guaranteed
safety under uncertainties.

This paper proposes a novel framework that provides collision-free guarantees for crowded multi-
robot team operating in a realistic environment. Akin to real-world we consider scenarios with both
the measurement uncertainty as well as incomplete information about the dynamics. At the heart of
the method is the idea of probabilistic safety barrier certificates (PrSBC) that minimally modifies
the existing controllers in real-time to formally satisfy collision-avoidance chance-constraints. Our
work is most closely related to the work on safety barrier certificates [15] using permissive control
barrier functions (CBF) [16, 17]. While the prior work focused on deterministic settings, our goal
here is to provide a safety envelope around an existing controller that accounts for uncertainties and
non-determinism.

There are several advantages of the proposed framework. First, in contrast of other probabilistic
collision avoidance approaches that directly constrain the inter-robot distance [3, 2, 6], the proposed
method produces a more permissive set for the controllers with a tighter bound. Second, the framework
naturally inherits the forward invariance from CBF, e.g. robots staying in the collision-free set at all
time, and thus enabling us to prove guarantees throughout the continuous time scale. Finally, it is
natural to apply the framework for both centralized and decentralized settings.

The key underlying assumption in our framework is that the uncertainties arising due to sensor
measurements, incomplete dynamics and other exogenous variables have finite support. This is a
reasonable assumption for many of the multi-robot scenarios. For example, we can safely assume
that true positions of robots, or the amount of wind gusts etc. are bounded within certain sensor
specifications or physical parameters respectively. Similarly, sophisticated dynamic models can
also be simplified as a single integrator dynamics with bounded, uniformly distributed noise [18].
We use the task similar to airborne collision avoidance system for aerial robots as a motivating
application. Our experiments explore the proposed computation framework in both centralized and
decentralized settings, which can handle both the uncertainties as well as environmental disturbances
while continuously guaranteeing safety. In summary, the core contributions of this paper are as
follows: (a) A novel collision avoidance framework with Probabilistic Safety Barrier Certificates
(PrSBC) ensuring provable forward invariance under uncertainties with bounded support. (b) Formal
proof of existence of PrSBC in a closed form. (c) Experimental results on the task similar to
airborne collision avoidance for aerial robots that demonstrate efficiency, scalability and distributed
computation.

2 Problem Statement

2.1 Robot and obstacle model

Consider a team of N robots moving in a shared workspace. Each robot i ∈ I = {1, . . . , N} is
centered at the position xi ∈ Xi ⊂ Rd and enclosed with a uniform safety radius Ri ∈ R. The
stochastic control affine dynamics ẋi ∈ Rd and the noisy observation x̂i ∈ Rd of each robot i at each
time-point are described as follows

ẋi = fi(xi,ui) + wi, wi ∼ U(−∆wi,∆wi)

x̂i = xi + vi, vi ∼ U(−∆vi,∆vi)
(1)

where ui ∈ Ui denotes the control input. wi,vi ∈ Rd are the process noise and the measurement
noise respectively and considered as continuous independent random variables with finite support.
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A uniform distribution is a natural choice for these noise processes, however, most of our analysis
does not require the exact form except that the support is finite. In order to account for any motion
uncertainty and possible non-linearity of the dynamic model, similar to [18] we assume the robot
dynamics model fi : Xi × Ui → Rd is uniformly continuous, bounded, and Lipschitz continuous
for any control input ui ∈ Ui ⊂ Rd. Thus, we can rewrite the robot dynamics to be ẋi = ui + wi,
where wi accounts for both the disturbance and model non-linearity. In this paper, we assume that
wi,vi only have a finite support. This finite support can vary at each time-point and come from a
state estimator and other physical parameters of the system.

Obstacle Model: Similar to the robots, other static or moving obstacles k ∈ O = {1, . . . ,K} are also
modeled as a rigid sphere located at xk ∈ Rd with the safety radius Rk ∈ R. Again, the measurement
via sensor is modeled as x̂k = xk + vk ∈ Rd with bounded noise vk ∼ U(−∆vk,∆vk). We
assume the obstacle’ velocity can also be detected as ûk within a bounded noise as ẋk = ûk + wk ∈
Rd, wk ∼ U(−∆wk,∆wk). The finite supports of vk,wk are assumed to be known by the robots.
Extension to complex shapes is straightforward using a point cloud model.

2.2 Safety sets

Denote the joint robot states as x = {x1, . . . ,xN} ∈ X ⊂ Rd×N and the joint obstacle states
as xo = {x1, . . . ,xK} ∈ Xo ∈ Rd×K . For any pair-wise inter-robot or robot-obstacle collision
avoidance between robots i, j ∈ I and obstacles k ∈ O, the following condition define the safety of
x.

hsi,j(x) = ‖xi − xj‖2 − (Ri +Rj)
2, ∀i > j, hsi,k(x,xo) = ‖xi − xk‖2 − (Ri +Rk)2, ∀i, k (2)

Hsi,j = {x ∈ Rd×N : hsi,j(x) ≥ 0} ∀i > j, Hsi,k = {x ∈ Rd×N : hsi,k(x,xo) ≥ 0}, ∀i, k (3)

The condition of ∀i > j ensures each pairwise collision will be considered only once for the robot
team. The sets ofHsi,j andHsi,k indicate the safety set from which robots i and j, robot i and obstacle
k will never collide. For the entire robotic team, the safety set can be composed as follows:

Hs =
⋂
i,j∈I
i>j

Hsi,j
⋂
i∈I
k∈O

Hsi,k (4)

2.3 Chance-constrained collision avoidance for safety

As the robots only have access to the noisy measurements on the states of the robots and obstacles,
the positions of the robots and obstacles are modeled as random variables with a finite support. The
collision avoidance constraints can then be considered in a chance-constrained setting for each robot
i. Formally, given the minimum admissible probability of safety σ, σo ∈ [0, 1] predefined by the user
we require that:

Pr(xi ∈ Hsi,j) ≥ σ, ∀i > j, Pr(xi ∈ Hsi,k) ≥ σo, ∀i, k (5)

Note that when σ, σo are set to 1, the conditions naturally lead to the worst-case collision avoidance
with enlarged bounded volume as discussed in section 4. Such worst-case guarantees can lead to a
conservative behavior, thus often there are advantages in maintaining a probabilistic safety.

2.4 ACAS Problem Formulation

Assume that each robot has a task-related controller u∗i ∈ Rd. We consider the chance-constrained
collision avoidance as an one-step optimization problem that minimally modifies u∗i for each robot i,
while satisfying the desired probabilistic safety in (5). Formally we propose the ACAS framework
that solves the following Quadratic Program (QP) under the safety constraints:

min
u∈Rd×N

N∑
i=1

‖ui − u∗i ‖
2 (6)

s.t. Pr(xi ∈ Hsi,j) ≥ σ, ∀i > j (7)
Pr(xi ∈ Hsi,k) ≥ σo, ∀i, k (8)
‖ui‖ ≤ αi, ∀i, j ∈ {1, . . . , N}, k ∈ {1, . . . ,K} (9)
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where u ∈ U ⊂ Rd×N is the space of joint control inputs for all the robots with bounded magnitude
(αi,∀i) Next, we first describe Safety Barrier Certificates (SBC). Section 4 then presents our method
of Probabilistic Safety Barrier Certificates (PrSBC) that utilizes control barrier functions [17] to
remap the probabilistic safety set constraints (5) from the state space X ⊂ Rd×N to the control space
U ⊂ Rd×N .

3 Background: Safety Barrier Certificates

Recent advances in permissive control barrier functions [15, 16, 17, 19] enable mechanisms that
guarantee forward invariance of desired safety sets for robots, e.g. robots staying collision-free at
all times by constraining the controllers. Here we first describe the formulation of the deterministic
safety constraints utilizing the safety barrier certificates [15]. Without loss of generality, we can
represent the desired safety setHs in (4) by the function hs(x) from (2) as:

Hs = {x ∈ Rd×N | hs(x) ≥ 0} (10)

First, we summarize the conditions on controllers u ∈ U based on Zeroing Control Barrier Functions
(ZCBF) [16] and the Safety Barrier Certificates (SBC) [15] to guarantee forward invariance of safety.
Formally, a safety condition as forward-invariant if x(t = 0) ∈ Hs implies x(t) ∈ Hs for all t > 0.
Readers are referred to [16, 15] for details.
Lemma 1. Given the control affine dynamical system in equ, (1) without uncertainties, i.e. wi =
0,∀i ∈ I and the set Hs defined by equ. (10) for the continuously differentiable function hs :
Rd×N → R. The function hs is a ZCBF and the admissible control space S(x) can be defined as

S(x) = {u ∈ U | ḣs(x) + κ(hs(x)) ≥ 0}, x ∈ X , (11)

then any Lipschitz continuous controller u ∈ S(x) for the system (1) renders the set Hs forward
invariant, i.e. robots stay collision-free at all time.

We consider the extended class-K function as κ(hs(x)) = γhs(x), which has been previously proved
to preserve the forward invariance of setHs [15] with γ >> 0. Thus the admissible control space
induces the following pairwise constraints over the controllers, referred as Safety Barrier Certificates
(SBC):.

Bs(x) = {u ∈ Rd×N : ḣsi,j(x) + γhsi,j(x) ≥ 0, ∀i > j}

Bo(x,xo) = {u ∈ Rd×N : ḣsi,k(x,xo) + γhsi,k(x,xo) ≥ 0, ∀i, k}
(12)

Here Bs(x),Bo(x,xo) define the SBC for the inter-robot and robot-obstacle collision avoidance
respectively. Hence, the robots will always stay safe, i.e. satisfying (2) at all time if they are initially
collision free and the joint control input lies in the set Bs(x)∩Bo(x,xo). One of the useful properties
of the constrained control space in (12) is that they induce linear constraints over both the pair-wise
control inputs ui and uj (inter-robot) or control input ui (robot-obstacle).

4 Probabilistic Safety Barrier Certificates for ACAS

4.1 Probabilistic Safety Barrier Certificates

Lets consider the stochastic settings, where the states and/or the dynamics of each robot i ∈ I in (1)
are latent random variables with a finite support. For example, they can be uniformly distributed
around the given measurement x̂i and the control input ui respectively as xi ∼ U(x̂i−∆vi, x̂i+∆vi)
and ẋi ∼ U(ui −∆wi,ui + ∆wi). We assume initially the robots are collision-free, i.e. E.q. (2)
holds true for pairwise random variables xi,xj at t = 0.

We seek a probabilistic version of Lemma 1 that implies the SBC in (12) as a sufficient condition for
the forward invariance ofHs in (10). Since Lemma 1 is a sufficiency condition, it is straightforward
to show that Pr(ui ∈ Bsi,j(x)) ≤ Pr(xi ∈ Hsi,j) and Pr(ui ∈ Boi,k(x,xo)) ≤ Pr(xi ∈ Hsi,k). Conse-
quently, we can derive the following probabilistic collision free sufficiency conditions corresponding
to equ. (5):

Pr(ui ∈ Bsi,j(x)) ≥ σ =⇒ Pr(xi ∈ Hsi,j) ≥ σ, ∀i > j

Pr(ui ∈ Boi,k(x)) ≥ σ =⇒ Pr(xi ∈ Hsi,k) ≥ σo, ∀i, k
(13)
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Intuitively, these conditions allow us to translate the probabilistic safety constraints from the state-
space directly to the the controls, thereby enabling consideration of safety when reasoning about the
next control action. Note that the above condition is over the joint control space of multiple robots,
hence far less restrictive than other methods that only constrain ego robots motion.

Given these reformulated collision-free chance constraints over controllers, we now formally define
the Probabilistic Safety Barrier Certificates (PrSBC):

Definition 2. Probabilistic Safety Barrier Certificates (PrSBC): Given a confidence level σ ∈ [0, 1],
PrSBC determines the admissible control space Sσu guaranteeing the chance-constrained safety
condition in equ. (5) and are defined as the intersection of n different half-spaces where n is the total
number of pairwise deterministic inter-robot constraints.

Sσu = {u ∈ Rd×N | Aiju ≤ bij , ∀i > j, A ∈ Rn×(d×N)} (14)

4.2 Theoretical Analysis of PrSBC

Next, we provide theoretical analysis that discusses existence of PrSBC, justifies representation of
PrSBC as intersection of half-spaces and show how they can be computed and enable us to compute
probabilistic safe controllers.

Theorem 3. Existence of PrSBC: Assuming all pairwise robots are initially collision-free, i.e. equ.
(2) holds true, the PrSBC defined in equ. (14) is guaranteed to exist for any given confidence level
σ ∈ [0, 1].

Proof. See appendix in Section 7.

Computation of PrSBC: Next we describe how to efficiently compute the PrSBC. Given any
confidence level σ ∈ [0, 1], the chance constraint (26) can be transformed into a deterministic linear
constraint over pairwise controllers ui,uj in the form of (14). While it is computationally intractable
to get a closed form solution from (26), we obtain an approximate solution by considering the
condition on each individual dimension ∆xli,j ∈ {∆x1

i,j , . . . ,∆xdi,j} ∈ Rd of ∆xi,j . Formally, the
sufficient condition for (26) becomes:

∃l, Pr
(
− (∆xli,j)

2 − 2∆xli,j(u
l
i − ulj)/γ ≤ −R2

ij +Bij
)
≥ σ (15)

where ∆xli,j ∼ T li,j(∆x̂li,j − (∆vli + ∆vlj),∆x̂li,j + (∆vli + ∆vlj)). To simplify the discussion,
we assume σ > 0.5 and denote el,1i,j = Φ−1(σ) and el,2i,j = Φ−1(1 − σ) with Φ−1(·) as the inverse
cumulative distribution function (CDF) of the random variable ∆xli,j . Assuming a uniform distri-
bution on random variables with the finite support leads to a trapezoid distribution T li,j . We have
σ > 0.5 =⇒ el,1i,j > el,2i,j . Thus we can re-write the chance constraint from (15) to the following
deterministic constraint.

∃l = 1, . . . , d : −2eli,j(u
l
i − ulj)/γ ≤ (eli,j)

2 −R2
ij +Blij (16)

where

eli,j =


el,2i,j , el,2i,j > 0

el,1i,j , el,1i,j < 0

0, el,2i,j ≤ 0 and el,1i,j ≥ 0

(17)

Note that eli,j = 0 implies the two robots i and j overlap along the lth dimension, e.g. two drones
flying to the same 2D locations but with different altitudes. As it is assumed any pairwise robots
are initially collision free and from the forward invariance property discussed above, eli,j = 0 only
happens along at most d− 1 dimensions. To that end, we can formally construct the PrSBC in (14)
with the following linear deterministic constraints in closed form.

Sσu = {u ∈ Rd×N | − 2ei,j(ui − uj)/γ ≤ ‖ei,j‖2 −R2
ij +Bij , ∀i > j} (18)

where ei,j = [e1i,j , . . . , e
d
i,j ]

T ∈ Rd as defined in (17). This invokes a set of pairwise linear constraints
over the robot controllers such that the inter-robot probabilistic collision avoidance in (5) holds true
at all time.
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(a) Time Step = 234
(PrSBC)

(b) Time Step = 675
(PrSBC)

(c) Time Step = 2037
(PrSBC)

(d) Minimum true inter-
robot distance

(e) Time Step = 234
(SBC)

(f) Time Step = 669
(SBC)

(g) Time Step = 2015
(SBC)

(h) Minimum inter-robot
probabilistic safety

Figure 1: Simulation example of 6 robots swapping positions while maintain the collision-free confidence level
σ = 0.9. At each time step, each labeled robot is covered with a red bounded error box implying the bounded
real-time measurement uncertainty. The dashed black circle on each robot represents the real-time measurement
of the robot and solid circle with the robot color as the ground-truth robot position surrounded by the safety
radius. Labels in red are the final goal positions for the robots. Robot trajectories are covered by points in the
same color from all past noisy measurements. (a)-(c) and (e)-(g) are results from our proposed PrSBC and SBC
[15] respectively, with numerical results shown in (d)-(h).

Remark 1. For ∆xi,j with other forms of distribution than uniform but with finite support for the
noise models, the only change is the computation of inverse CDF to specify different el,1i,j , e

l,2
i,j and the

rest of the derivations of PrSBC still holds and ensure chance-constrained safety.

PrSBC for Robot-Obstacle Collision Avoidance: Consider the dynamic obstacle model described
in Section. 2.1 and PrSBC for pairwise robots in (18), the PrSBC for robot-obstacle collision
avoidance with a given confidence level σo ∈ [0, 1] can be defined as follows.

Sσou = {u ∈ RdN | − 2e′i,kui/γ ≤ −2e′i,kûk/γ + ||e′i,k||2 −R2
ik +Bik, ∀i, k} (19)

where the intermediate variables of e′i,k, Bik are computed the same way as for inter-robot case.
However, here the obstacles are assumed to be non-cooperative with constant velocity ûk with
bounded random noise. Hence each obstacle introduces one linear constraint over each robot’s
controller as in (19).
Remark 2. PrSBC in (18) can be considered as a generalized SBC when the dynamics model in (1)
is deterministic and without any uncertainty. In this case we have ei,j = xi − xj and Bij = 0 in
(18), which is the same constraints as SBC in (12).
Remark 3. (Worst-case Collision Avoidance) When confidence level is σ = 1, the PrSBC in (18)
leads to the worst-case driven collision avoidance with ei,j specified by the relative distance between
robots fully expanded with the bounded finite support of ∆xi,j .

4.3 Optimization-based ACAS Controllers with Probabilistic Safety

The constrained control space specified by PrSBC in (18) and (19) ensures the forward invariance of
probabilistic safety in (13). Hence, we can reformulate the original QP problem in (6) with the PrSBC
constraints. The probabilistic safety ACAS controller can thus obtained by minimally modifying the
original controller u∗ that the system wished to execute. Formally, we can write this as:

u = arg min
u∈Rd×N

N∑
i=1

‖ui − u∗i ‖
2 (20)

s.t. u ∈ Sσu
⋂
Sσou , ‖ui‖ ≤ αi, ∀i = 1, . . . , N (21)
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(a) Time Step = 169 (b) Final Configurations (c) Minimum true inter-
distance

(d) Minimum probabilis-
tic safety

Figure 2: Decentralized PrSBC with 7 robots. Robots 6 and 7 marked in black serve as passive moving obstacles
without active interaction to other robots.

As mentioned the PrSBC constraints (21) invoke a set of linear constraints over robot controllers and
hence the probabilistic safety controller (20) can be solved efficiently in real-time with guaranteed
specified probability of safety.

4.4 Decentralized ACAS Controller

While the controller in (20) is in a centralized setting, we can also derive a decentralized version
of the PrSBC and the ACAS controllers. The mechanism is similar to Wang et al. [15] which was
originally applied to deterministic SBC.

Consider the PrSBC in equ. (18) and denote bij = ‖ei,j‖2 −R2
ij +Bij . We can then separate the

linear pairwise PrSBC constraint between robot i and j in the following:

−2ei,j
γ

ui ≤
pij

(pij + pji)
· bij ,

2ei,j
γ

uj ≤
pji

(pij + pji)
· bij . (22)

Here pij , pji represents the responsibility that each of the two robot takes regarding satisfying this
pairwise probabilistic safety constraint. The knowledge of pij , pji can be either predefined and
assumed known by all robots, in which case each robot does not need to communicate and simply
avoid collision in a reciprocal manner, or can be communicated locally between pairwise robots in
a more cooperative manner. Note that equ. (22) is a sufficient condition of equ. (18) and hence
still guarantees the required probabilistic safety. With such decentralized constraints, we have the
decentralized ACAS controller for each robot i as follows.

ui = arg min
ui∈Rd

‖ui − u∗i ‖
2 (23)

s.t. ui ∈ Sσui

⋂
Sσoui

, ‖ui‖ ≤ αi (24)

with Sσui
= {ui ∈ Rd| − 2ei,j

γ ui ≤ pij
(pij+pji)

· bij} and Sσo
ui

= {ui ∈ Rd| − 2e′i,kui/γ ≤
−2e′i,kûk/γ + ||e′i,k||2 −R2

ik +Bik,∀k ∈ K}.

5 Experimental Evaluation and Results

Simulation Example: Fig. 1 demonstrates the first set of simulations performed on a team of N = 6
mobile robots constrained by the unicycle dynamics using our PrSBC from (20) and the comparing
deterministic SBC from [15], with both in centralized setting. All of the robots employ the gradient
based controller u∗i = −Kp(xi − xi,goal) to swap their positions with the robot on the opposite
side, e.g. robot 1 with 2, 3 with 4, and 5 with 6 shown in Fig. 1a. Locations indexed in red are
the goal positions for the corresponding robots. The robot safety radius is set to be Ri = 0.2m and
has bounded uniformly distributed localization error denoted by the red error box accounting for
the safety radius. At each time step, each robot only has access to the noisy measurement marked
by dashed black circle covering each robot. Maximum velocity limit is 0.1m/sec for the robots and
robots motion is disturbed by randomly generated bounded noise with magnitude up to 0.07m/sec.
The inter-robot collision-free confidence level σ set to be 0.9.

1Video URL: https://cmu.box.com/s/z22p28eq51fv4lflp0jsj6sceouqt901
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(a) Minimum true inter-
robot distance

(b) Minimum probabilistic
safety

Figure 3: Quantitative results summary of PrSBC from
50 random trials.

(a) Formation control in
AirSim

(b) Minimum true inter-
distance (safe: ≥ 1.0m)

Figure 4: AirSim [20] experiment snapshot with 11
drones.

As the SBC [15] is designed for a deterministic system, here it takes the noisy measurement of the
robots directly as the robot states to compose the SBC for collision avoidance controller. We observe
from Fig. 1f that collisions occur (robot 1 and 5) due to uncertainty in measured robot states as well
as the motion disturbances. While with our PrSBC-based ACAS controller in (20), robots safely
navigate through the work space (Fig. 1d) (but not too conservatively as it still allows interaction
between bounding error box shown in Fig. 1b for probabilistic safety). In particular, results in Fig. 1h
indicates our PrSBC method successfully ensures the satisfying probabilistic safety (σ = 0.9). This
is computed by the minimum ratio between non-overlapping area and the whole area within each
robot’s bounding error box shown in red.

Scenario with Dynamic Obstacles: To account for dynamic obstacles, we add robot 7 to the
previous scenario and make robot 6 and 7 serve as the non-cooperating passive moving obstacles.
Fig. 2 highlights our observations from this experiment. We assume robots can identify them as
obstacles instead of cooperating robots. With the same set-up except for the two obstacles, we
demonstrate the performance of our controller based on decentralized PrSBC in (23) and set the
inter-robot, robot-obstacle collision-free confidence σ = σo = 0.8 to encourage more flexible motion.
In the decentralized settings, robots are set to assume equal responsibility in collision avoidance, i.e.
pij = pji = 0.5 in (22) for each robot, and thus no communication is needed between robots. Results
in Fig. 2c and 2d indicate the inter-robots and robot-obstacle are collision free and with a satisfying
probabilistic safety close to σ = 0.8 (thus not overly conservative). From Fig. 2b it is noted that
robot 5 with light blue trajectory took a large detour before reaching the goal position. This is caused
by the non-cooperating obstacle robot 6 and 7 in the way, where the PrSBC for obstacles (19) forces
the robot 5 to obey the more restrictive constraints to adapt to the momentum in order to guarantee
the satisfying probabilistic collision avoidance performance.

Quantitative Results: We performed 50 random trials with different number of robots under a
required confidence σ = 0.9 to validate the effectiveness of our decentralized PrSBC-based ACAS
controller in presence of random measurement and motion noise. Fig. 3 shows that the robots are
always safe and satisfy the probabilistic safety guarantee using PrSBC.

Experiment Results: Finally, we also carried out experiments in AirSim [20], a near-realistic
simulation environment for drones. In particular, we couple our PrSBC-based ACAS controller to
the drone controller and perform a complex formation control with 11 drones under probabilistic
safety guarantee. During the task, no collisions are observed as shown in Fig. 4. Readers are
encouraged to look to details of the experiments in the Video attachment: https://cmu.box.
com/s/z22p28eq51fv4lflp0jsj6sceouqt901 .

6 Conclusions and Future Work

We presented a ACAS framework to address collision avoidance for a system of multiple robots
in real-world settings. We address the complexities that arise due to uncertainty in perception and
incompleteness in modeling the underlying dynamics of the system. The key idea is to induce
probabilistic constraints via safety barriers, which are then used to minimally modify an existing
controller via a constrained quadratic program. We formally define Probabilisitc Safety Barrier
Certificates, that guarantee forward-invariance in time continuously and also can be decomposed so
as to enable de-centralized computation of the safe ACAS controllers. Future work entails extensions
to model-free controllers trained via Reinforcement Learning and implementation to solve Airborne
Collision Avoidance System for manned and unmanned aircraft in real-world.
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7 Appendix: Proof of Theorem 3. Existence of PrSBC

Here we prove the existence of PrSBC (Theorem. 3).

Proof. We start by proving the existence of PrSBC between each pairwise robots i and j. Denote
∆x̂i,j = x̂i− x̂j and ∆wi,j = wi−wj ∼ Qi,j(−(∆wi+∆wj), (∆wi+∆wj)) from (1), we have
∆xi,j = xi − xj ∼ Ti,j(∆x̂i,j − (∆vi + ∆vj),∆x̂i,j + (∆vi + ∆vj)). As the random variables
wi,wj ,xi,xj are all independent with finite support, the distributions Ti,j and Qi,j of ∆xi,j and
∆wi,j also have a finite-support.

Given a confidence level σ for Pr(ui ∈ Bsi,j(x)) in (13), substituting Rij = Ri + Rj , ∆xi,j ∈ Rd

and ∆wi,j ∈ Rd enables us to write the safety condition as:

Pr(ui ∈ Bsi,j(x)) ≥ σ :

=⇒ Pr
(
−∆xTi,j∆xi,j − 2∆xTi,j(ui − uj)/γ ≤ −R2

ij + 2∆wT
i,j∆xi,j/γ

)
≥ σ

(25)

Lets define Bij = −2/γ ·max ‖∆wi,j‖ ‖∆xi,j‖. Its easy to see that Bij ≤ 2∆wT
i,j∆xi,j/γ due to

the finite support of ∆wi,j ,∆xi,j . Thus, we can further reduce equ. (25) using the fact that γ >> 0.

=⇒ Pr
(
−∆xTi,j∆xi,j − 2∆xTi,j(ui − uj)/γ ≤ −R2

ij +Bij

)
≥ σ (26)

For clarity lets focus on the 2D case (d = 2) when ∆xi,j = [∆xxi,j ,∆xyi,j ]
T ∈ R2 and ui =

[uxi ,u
y
i ]T ∈ R2. Also lets denote Ωi,j = supp(Ti,j) ⊂ R2 as the 2D bounded support of the

distribution Ti,j where ∆xi,j has positive probability. Now consider the following projected 2D
space:

Ωu
i,j = {(∆xxi,j ,∆xyi,j) ∈ R2|(∆xxi,j + cxij)

2 + (∆xyi,j + cyij)
2 ≥ rij} (27)

where cxij = (uxi − uxj )/γ, cyij = (uyi − uyj )/γ, rij = R2
ij − Bij + (cxij)

2 + (cyij)
2. It is easy to

show that the condition in (26) is equivalent to:

Pr
(
∆xi,j ∈ Ωi,j ∩ Ωu

i,j

)
≥ σ (28)

To prove the guaranteed existence of PrSBC, we need to show there always exists a solution of
pairwise ui − uj such that (28) holds for any given σ ∈ [0, 1]. Recall ∀u ∈ U ,

ΩUi,j =
⋃
u∈U

Ωu
i,j = {(∆xxi,j ,∆xyi,j) ∈ R2|(∆xxi,j)

2 + (∆xyi,j)
2 ≥ R2

ij −Bij} (29)

As all pairwise robots are assumed to be initially collision-free with the probabilistic forward
invariance as defined in (13), and −Bij ' 0, we have the probability of bounded 2D support
Pr(Ωi,j ⊂ ΩUi,j) ≥ σ for any given σ. Hence the solution corresponding to a particular pair of ui,uj
always exist for equ. (28) to be true under a given σ ∈ [0, 1]. It is straightforward to extend to
all pairwise inter-robot collision avoidance constraints under higher dimensional space. This thus
concludes the proof.
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