
Minimum k-Connectivity Maintenance for Robust Multi-Robot Systems

Wenhao Luo and Katia Sycara

Abstract— In many multi-robot applications, it is critical to
maintain connectivity within the robotic team to allow for infor-
mation exchange and coordination. While most of the existing
works focus on connectivity control that ensures robotic team
remain connected as one component without faults, we consider
the problem of robust connectivity maintenance that seeks to
maintain k−connectivity, such that the multi-robot network
could stay connected with the removal of fewer than k robots.
In this paper, we propose provably minimum k−connectivity
maintenance algorithms for multi-robot systems. This ensures
the robustness of the multi-robot network connectivity at all
time and also in a flexible and optimal way to provide the
highest freedom for robots task-related controllers. Particularly,
we propose a k−Connected Minimum Constraints Subgraph (k-
CMCS) algorithm that activates the minimum k−connectivity
constraints to the original controllers, and then revise the origi-
nal controllers in a minimally invasive fashion. We demonstrate
the effectiveness of our approach via simulations of up to 40
robots in the presence of multiple behaviors.

I. INTRODUCTION

Multi-robot systems have been widely studied for extend-
ing its capability of doing complex tasks through cooperative
behaviors in a number of applications, such as search and res-
cue [1], cooperative sensor coverage [2], and environmental
exploration [3]. The ability of collaboration in multi-robot
systems often relies on the local information sharing and
interaction among networked robot members through con-
nected communication graph. As robots are often assumed
to interact in a proximity-limited manner due to limited
communication range [4]–[7], it is necessary to consider
connectivity maintenance that ensures robots stay connected
by constraining inter-robot distance while executing original
tasks. Moreover, it is critical to consider the robustness of the
multi-robot network as the expected number of robot failures
could grow along with the increasing number of robots.
Even for robotic swarm applications with consensus-based
controllers that are robust of loss of robots, e.g. flocking
[8], [9], maintaining certain level of connectivity could keep
robots from converging to incorrect consensus and help
improve the convergence of consensus-based controllers.

For many multi-robot applications with parallel tasks,
performing multiple and possibly conflicting task-prescribed
behaviors simultaneously could easily lead to communication
disconnection in robot teams. In such vulnerable scenario,
the multi-robot network is more sensitive to faulty situation
as well, where a single robot failure could disconnect the
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entire robotic group. Thus, it demands for fault-tolerant
connectivity maintenance to increase the robustness of multi-
robot systems. The mixing of parallel multi-robot behaviors
with mentioned robust connectivity constraints is particu-
larly challenging for existing work since (a) the additional
connectivity maintenance brings increased complexity for
global connectivity control algorithms [5], [10], [11] due to
the discontinuity from dynamic topology changes as pointed
out in [6], and (b) there are no theoretical guarantee on
the optimality of imposed connectivity constraints, e.g. [4],
[7], [12], [13] nor the perturbation to the original behavior-
prescribed controllers due to the constraints, e.g. [5], [14]–
[16]. Such issues could lead to overly conservative robots
motion and thus behavior failure, for example, dead locks
that might prevent the desired execution of behaviors, and
inefficiency incurred by the perturbation of connectivity on
control outputs between different behaviour groups. Hence,
it is desired to derive an approach to maintain minimum
satisfying connectivity so as to provide highest freedom for
robots’ original controllers while ensuring robustness of the
multi-robot network.

The objective of this paper is thus to develop provably
optimal algorithms for robust but flexible multi-robot con-
nectivity control, by proposing minimum k−connectivity
maintenance methods that achieve global redundant network
connectivity while enabling the robot team to perform vari-
ous behaviors at best. Note that we are not optimizing multi-
robot task allocation that determines how to assign different
behavior controllers to the robots. We assume the behavior
allocation has been done and each robot already knows
its real-time behavior-prescribed controller before revising
it to accommodate the connectivity and collision avoidance
constraints. To formulate the constrained multi-robot control
problem, we employ control barrier functions [12], [17] that
characterize and enforce safety and connectivity constraints
over multi-robot controllers in an optimal way. However, the
existing control barrier functions on connectivity requires
either predefined fixed connectivity topology [4] or enumer-
ating all possible combination of connectivity topology [12].
Such rigid constraints is not scalable nor feasible in robust
connectivity maintenance as number of robots and behaviors
increases. To that end, we propose to achieve provably
optimal robust connectivity maintenance by developing: 1)
a novel quantifiable relationship between original behavior-
prescribed controllers and the candidate connectivity con-
straints, 2) a novel k−Connected Minimum Constraints
Subgraph (k−CMCS) method to activate dynamic quantified
minimum connectivity constraints, which are least violated
by the original unrevised behavior-prescribed controllers, and



3) a unified optimization framework to revise the robots
controllers in presence of activated connectivity and collision
avoidance constraints that are minimally invasive to the
original behavior-prescribed controllers. This enables the
multi-robot systems to execute different behaviors simul-
taneously on a single connected robot team with required
robust connectivity. We will first give the formal definition
of the constrained k−connectivity maintenance problem, and
introduce our algorithm of constructing the k−Connected
Minimum Constraints Subgraph in an optimal fashion. Fur-
ther, we will present our results in evaluating metrics of our
k−CMCS methods as well as performance of up to 40 robots
in simulation.

Our paper presents the following contributions: (1) a gen-
eralized k−connectivity maintenance framework to enable
efficient execution of different behaviors at best within a
single robot team, while ensuring optimal global robust
connectivity and collision avoidance; (2) a novel k−CMCS
method with quantified relationship between behavior con-
trollers and k−connectivity constraints is proposed to ef-
ficiently invoke minimum k−connectivity constraints with
provably optimality guarantee, which could minimally revise
any behavior-prescribed controllers.

II. RELATED WORK

The general problem of connectivity maintenance has been
widely studied in the past decade due to its importance
in enabling local information sharing and collaboration for
multi-robot systems in performing complex tasks. Given an
initially connected multi-robot spatial communication graph,
the goal of continual connectivity control is to couple the
task-related controllers of robots with connectivity controller
such that the communication graph over time remains con-
nected. There have been two major classes of connectivity
control methods: 1) local methods that seeks to preserve
the initial connectivity graph topology over time [8], [18],
[19], and 2) global methods that aims to preserve the
global algebraic connectivity of the communication graph by
deriving controllers to keep the second smallest eigenvalue
of the graph Lapacian positive at all time [5], [6], [10],
[11], [14]. While the global connectivity control provide
better flexibility over local methods as it allows for changing
network topology, both of the methodologies demands for the
revision of original robot controllers more or less at all time,
even if the robots’ original behaviors won’t lead to network
disconnection. This could overly constrain robots’ motion
when extending to redundant k−connectivity maintenance.

To achieve more flexible connectivity control with multiple
behaviors, i.e. simultaneously exploring different regions,
recent work [15], [16], [20], [21] have explored the idea
of redeploying a certain number of robots to act as com-
munication relays, while aiming to allow the rest of the
robots to perform their original tasks. In particular, the
communication relays can be derived by following certain
structured behaviors such as lattice-based formations [20],
[21], or by separate optimization process that explicitly
assigns some of the robots as connectors [15], [16]. In order

to find a more flexible communication relay structure with
quantified pairwise connectivity, [22] proposed to employ
minimum spanning tree topology and uses pairwise distance
as heuristic to provide better freedom of robot motion, i.e.
robots closer to each other are less restrictive. However,
these heuristic methods have no theoretical guarantee that the
selected connectivity constraints are minimum to the original
task-related robot controllers.

The problem of k−connectivity control or k−redundancy
control has also been studied [23]–[26]. [25] introduced
distributed algorithms for detecting k−connectivity of multi-
robot graph. Work in [23] addressed the k−hop connectivity
control where the robots stay connected with its k−hop
neighbors at all time. In [24], [26] the robots are tasked
to reconfigure their positions for meeting certain redundant
connectivity constraints. These approaches often consider
the connectivity maintenance as a separate optimization
problem and hence has no optimal guarantee over the original
robot’s controllers. For less restrictive multi-robot control
with constraint satisfaction, control barrier functions have
been employed to encode a variety of inter-robot constraints
and the resulting constrained control outputs lead to forward
invariance of the satisfying set, i.e. robots remain collision
free and connected under predefined fixed communication
topology [4], [12], [13]. Although the resultant control out-
puts are optimized to stay as close to the original controllers
with constraints, the predefined fixed communication topol-
ogy has no guarantee regarding its optimality to the robot
behaviors. In our work, we are optimizing both the activated
k−connectivity constraints together with the controllers with
proven optimality guarantees, so that the control revision
with the invoked connectivity constraints is minimally inva-
sive to the original behavior-prescribed controllers, allowing
for flexible various mutli-robot behaviors at best.

III. PROBLEM FORMULATION

Consider a heterogeneous robotic team S consisting of n
mobile robots in a planar space, with the position and single
integrator dynamics of each robot i ∈ {1, . . . , n} denoted
by xi ∈ R2 and ẋi = ui ∈ R2 respectively. Each robot can
connect and communicate directly with other robots within
its spatial proximity. The communication graph of the robotic
team is defined as G = (V, E) where each node v ∈ V
represents a robot. If the spatial distance between robot vi ∈
V and robot vj ∈ V is less or equal to the communication
radius Rc (i.e. ‖xi − xj‖ ≤ Rc), then we assume the two
can communicate and edge (vi, vj) ∈ E is undirected (i.e.
(vi, vj) ∈ E ⇔ (vj , vi) ∈ E).

We assume the robotic team has been tasked with m
simultaneous behaviors, partitioning the set of robots into m
sub-groups. To simplify our discussion, we assume the sub-
group partitions and behavior controllers are given or already
derived from other multi-robot task allocation algorithms,
namely, each robot i has been assigned to a sub-group with
some behavior-prescribed controller ui = ûi. To ensure suc-
cessful multi-robot coordination and information exchange,
it is required that the communication/connectivity graph G is



connected. Moreover, in presence of possible robots failure,
the graph should be robust in that the removal of certain
number of robot nodes won’t disconnect the connectivity
graph for the remaining robot team, which leads to the
following definition of k-node connected graph [27].

Definition 1. (k-node connected graph) A connected graph
G = (V, E) is said to be k-node connected (or k-connected)
if it has more than k nodes and remains connected whenever
fewer than k nodes are removed.

Given a desired number of k due to robustness require-
ments on robots failure, we first assume the current multi-
robot graph G is already k−connected (for the rest of the
paper, k−connected refer to k−node connected). Then we
would like to enforce such constraint as robots execute their
behavior-prescribed controllers, so that the resulting time-
varying connectivity graph G is k−connected at all time.
In presence of the above connectivity constraints as well
as the physical constraints of the robots such as inter-robot
collision avoidance and velocity limits, each robot i may
have to modify their primary task-related controller ûi to
accommodate the constraints. To that end, the objective
is to 1) coordinately invoke active constraints to follow
(particularly the connectivity constraints imposed between
pair-wise robots), such that the modification to the primary
controller is minimum for the robotic team, and 2) compute
the modified controllers for robots task execution. In the re-
maining of this section, we will discuss the formulation of the
mentioned constraints in the form of Barrier Certificates on
the controllers and will present the formalized optimization
problem.

A. Safety and Connectivity Constraints using Barrier Cer-
tificates

During movements of multi-robot systems, the robots
should avoid collisions with each other to remain safe.
Consider the joint robot states x = {x1, . . . , xn} ∈ R2n and
define the minimum inter-robot safe distance as Rs, for any
pair-wise inter-robot collision avoidance constraint between
robots i and j. We have the following condition defining the
safe set of x.

hsi,j(x) = ‖xi − xj‖2 −R2
s , ∀i > j

Hsi,j = {x ∈ R2n : hsi,j(x) ≥ 0}
(1)

The set of Hs
i,j indicates the safety set from which robot

i and j will never collide. For the entire robotic team, the
safety set can be composed as follows.

Hs =
⋂

{vi,vj∈V:i>j}
Hsi,j (2)

[17] proposed the safety barrier certificates Bs(x) that map
the constrained safety set (2) of x to the admissible joint
control space u ∈ R2n. The result is summarized as follows.

Bs(x) = {u ∈ R2n : ḣsi,j(x) + γhsi,j(x) ≥ 0, ∀i > j} (3)

where γ is a user-defined parameter to confine the available
sets. It is proven in [17] that the forward invariance of
the safety set Hs is ensured as long as the joint control

input u stays in set Bs(x). In other words, the robots will
always stay safe if they are initially inter-robot collision free
and the control input lies in the set Bs(x). Note that at
any time point t with known current robot states x(t), the
constrained control space in (3) corresponds to a class of
linear constraints over pair-wise control inputs ui and uj for
∀i > j. Note that static obstacles may also be modelled in
the same manner if treated as robots with zero velocity.

Next, we consider the pair-wise connectivity constraints
among the robotic team. If the connectivity constraint is
enforced between pair-wise robots i and j to ensure inter-
robot distance not larger than communication range Rc, we
have the following condition.

hci,j(x) = R2
c − ‖xi − xj‖

2

Hci,j = {x ∈ R2n : hci,j(x) ≥ 0}
(4)

The set of Hc
i,j indicates the feasible set on x from which

robot i and j will never lose connectivity. Consider any
connectivity spanning subgraph Gc = (V, Ec) ⊂ G to
enforce, the corresponding constrained set can be composed
as follows.

Hc(Gc) =
⋂

{vi,vj∈V:(vi,vj)∈Ec}
Hci,j (5)

Similar to the safety barrier certificates in (3), the connectiv-
ity barrier certificates are defined as follows and indicate
another class of linear constraints over pair-wise control
inputs ui and uj for (vi, vj) ∈ Ec at any time point t.

Bc(x,Gc) = {u ∈ R2n : ḣci,j(x) + γhci,j(x) ≥ 0, ∀(vi, vj) ∈ Ec} (6)

B. Objective Function

Consider that a task-related primary behavior control input
ûi ∈ R2 has been computed for each robot i before
considering the mentioned constraints. The robotic team
needs to determine whether and how to best modify its
primary control input in a minimally invasive manner so
as to achieve task-related behaviors while ensuring safety
and k−connectivity. With the defined forms of constraints in
(3) and (6), we formally define the minimum k−connectivity
maintenance problem with given k at any time point t as
follows.

u∗ = arg min
Gc,u

n∑
i=1

‖ui − ûi‖2 (7)

s.t. Gc = (V, Ec) ⊆ G is k−connected (8)

u ∈ Bs(x)
⋂
Bc(x,Gc), ‖ui‖ ≤ αi,∀i = 1, . . . , n

(9)

The above Quadratic Programming (QP) optimization prob-
lem is to find the optimal active connectivity spanning
subgraph Gc ⊂ G from current connected multi-robot con-
nectivity graph G and the alternative control inputs u∗ ∈ R2n

bounded by maximum velocity αi for each robot, so that
k−connectivity, safety and velocity constraints described in
(8) and (9) are always guaranteed while ensuring minimally
invasive to the primary controller as shown in (7). Note that
as information regarding the primary task is not required



other than ûi, the objective of the original controller may
not be guaranteed in form of (7) especially when it conflicts
with connectivity or safety constraints, e.g. dispersing robots
to different goal locations where robots get disconnected due
to limited communication range. In this case, the objective
of (7) first ensures constraints are satisfied at all time and
then minimizes the deviation from original controller, e.g.
dispersing robots towards assigned goal locations as much
as possible while keeping them safe and k-connected.

Most of the works focus on the 1−connectivity mainte-
nance [5], [6], [8], [11], [12] and are intractable to apply to
k−connectivity due to lack of optimality from the invoked
connectivity constraints. In particular, many of them solve
the connectivity control problem with either predefined static
connectivity topology constraints or enumerate all composi-
tions of various connectivity topology. These approaches (a)
are not capable to deal with more constrained k−connectivity
problem, where the connectivity constraints need to be
generated in a minimally invasive fashion in favor of current
behaviors, (b) are not scalable to large numbers of robots, as
they need to enumerate all static connectivity constraints.

In this paper, we propose to decouple the k−connectivity
maintenance problem into two dependent sub-problems,
namely 1) select provable optimal k−connected subgraph
Gc = G∗k ⊆ G that invokes minimally invasive connectivity
constraints over multi-robot behaviors, and then 2) solve
the optimization problem (7) with the obtained optimal
k−connected graph G∗k . Such a solution is the first of its
kind in that it enables best flexibility of multi-robot behav-
iors with provably minimum k−connectivity constraints and
minimally invasive controller revision in a unified manner.

IV. MAINTAINING MINIMUM k−CONNECTIVITY

A. Min-Size k−Node Connected Spanning Subgraph
(k−NCSS)

First we consider the sub-problem of selecting optimal
k−connectivity spanning subgraph Gc∗ = G∗k(V, E∗k ) ⊆ G
in (7) that introduces minimum k−connectivity constraints.
Recall that each edge (vi, vj) ∈ Ec in a candidate graph Gc
enforces one pair-wise linear constraint over primary control
inputs ûi and ûj for robot i and j, as shown in (4). Then
the graph Gc whose edges define the minimum connectiv-
ity constraints must exist among the set of all minimum
k−connected spanning subgraphs from current connectivity
graph G. These minimum k−connected spanning subgraphs
cover all the vertices V with minimum number of k−node
connected edges.

Finding such a min-size k-Node Connected Spanning
Subgraph has been known as NP-hard for even k = 2
[28] and in graph theory there exists a heuristic algorith-
mic framework, k−Node Connected Spanning Subgraph
(k−NCSS) [28], [29] that finds the approximate min-size
k-connected subgraph with uniform edge cost. Briefly, given
an undirected connected graph G(V, E) and k, the min-size
k−connected spanning subgraph G∗k can be found by the
following summarized algorithm.

Algorithm 1 Minimum-size k−node connected spanning
subgraph (k−NCSS)
Input: G(V, E), k
Output: G∗k
1: find a min-size k − 1 edge cover M ← argmin{|M | :

degM (v) ≥ k − 1, ∀v ∈ V,M ⊆ E}
2: find an inclusionwise minimal edge set F ⊆ E \M such that

(V,M ∪ F ) is k−connected
3: return G∗k ← (V,M ∪ F )

With the Algorithm 1, we have the following Lemma re-
garding its known approximation of the derived k−connected
spanning subgraph G∗k .

Lemma 2. ([28], [29]) Let G(V, E) be a graph of node
connectivity ≥ k. Then the Algorithm 1 finds a k−node
connected spanning subgraph (V,M ∪ F ) such that |M ∪
F | ≤ (1 + 1

k )|Eopt|, where |Eopt| denotes the cardinality of
the optimal solution.

Hence Algorithm 1 provides a bounded solution to find
a k−NCSS G∗k ⊆ G with minimum number of edges that
can be used to define active pairwise connectivity constraints
for ensuring k−connectivity. However, it should be noted
that such solution seeks to find minimum number of edges
with uniform edge cost, while in many cases, there might be
multiple solutions given uniform edge cost, and connectivity
edges between robots should be weighted differently based
on their likelihood of being violated due to the task-related
controllers. In other words, we need a better heuristic to
search for the minimum k−connected spanning subgraph
with consideration of heterogeneous edge weights that can
reflect the minimum violations of the robots primary con-
trollers, especially when there exists multiple k−connected
subgraphs with the same number of edges. In the next
subsection, we will introduce a new heuristic for edge weight
assignment and propose a complete solution to find the
minimum k−connected spanning subgraph as to the robots
task-related controllers.

B. k−Connected Minimum Constraints Subgraph
(k−CMCS)

It is reasonable to assume that a smaller number of connec-
tivity edges to maintain will introduce less constraints over
the multi-robot systems. However, as mentioned when there
exist multiple k−NCSS with same number of edges, we need
to break ties so as to introduce the truly minimum constraints
over robots controllers. Recall that resultant connectivity
constraints due to enforced edges are in the form of (6)
over the robots’ controllers. Thus, to quantify the strength of
connectivity constraint by an edge (vi, vj) ∈ E , we introduce
the weight assignment defined as follows.

wi,j = ḣci,j(x, ûi, ûj) + γhci,j(x), ∀(vi, vj) ∈ E (10)

Compared to the connectivity constraint in (6), wi,j indicates
the violation of the pair-wise connectivity constraint between
the two robots, with the higher value of wi,j the less likely
the connectivity constraint being violated. To that end, the



present connectivity graph G can be converted to a weighted
connectivity graph Ĝ = (V, E ,W) with wi,j ∈ W . With
the new weight assignment in (10), we recall the heuristic
Algorithm 1 and in Line 1, redefine the min-size (k − 1)
edge cover M ′ by the following.

M ′ = arg min
M′⊆E

β · |M ′| − Σ(vi,vj)∈M′{wi,j} (11)

where β is a pre-defined parameter and we assume β >>
2·Σ∀wi,j∈W |wi,j |, so that the selected edge cover set M ′ has
minimum number of edges. With the new condition above
for finding (k − 1) edge cover set M ′, a new weighted
k−connected spanning subgraph can be derived as Ĝ∗k =
(V, E ′k,Wk) with E ′k = M ′ ∪ F ′ ⊆ E , which we formally
defined as k−Connected Minimum Constraints Subgraph
(k−CMCS). In particular, we have the following Theorem
on bounded cardinality of edge set E ′k of the k−CMCS Ĝ∗k .

Theorem 3. Given weighted undirected graph Ĝ =
(V, E ,W) of node connectivity ≥ k. Then the Algorithm
1 with redefined condition (11) finds the k−CMCS Ĝ∗k =
(V, E ′k,Wk) such that |E ′k| ≤ (1 + 1

k )|Eopt|, where Eopt de-
notes the cardinality of the optimal solution as in Lemma 2.

Proof: We first prove that the solution Ĝ∗k = (V,M ′ ∪
F ′) from modified Algorithm 1 with (11) and G∗k = (V,M ∪
F ) from original Algorithm 1 have the same number of
edges. By contradiction, we assume they have different
number of edges in M ′ and M , namely, the following two
conditions must be true at the same time.

β · |M ′| − Σ(vi,vj)∈M ′{wi,j} < β · |M | − Σ(vi,vj)∈M{wi,j}
|M ′| > |M |

(12)

Recall that β >> 2 ·Σ∀wi,j∈W |wi,j |, hence it is straightfor-
ward that the two equations contradicts to each other, proving
that |M ′| = |M |. Then since the Step 2 is the same in both
of the algorithms, we conclude that |E ′k| ≤ (1 + 1

k )|Eopt|.�
Besides Theorem 3, it is also straightforward from (11)

that the obtained k−CMCS has not only the minimum
number of edges, but also minimum cumulative weights.
The k−connectivity constraints invoked from Ĝ∗k are thus
minimally violated by the current behavior-prescribed robots
controllers, which implies the least restriction due to connec-
tivity requirements. Such Ĝ∗k therefore specifies the optimal
k−connectivity subgraph Gc∗ = Ĝ∗k ⊆ G to enforce for
the formal optimization problem in (8). Next, we propose a
k−Connected Minimum Constraints Subgraph (k−CMCS)
Algorithm in Algorithm 2 that is modified from Algorithm 1
with complete solution and modification due to (11). In the
rest of the paper, we use k−CMCS interchangeably to refer
to the graph or the algorithm.

Algorithm 2 takes as inputs the weighted present multi-
robot connectivity graph Ĝ by weight assignment (10) and
the value of k. From Line 1-3, the min-size (k−1) edge cover
M ′ in (11) is obtained by first solving for its complementary

Algorithm 2 k−Connected Minimum Constraints Subgraph
(k−CMCS)

Input: Ĝ = (V, E ,W), k
Output: Ĝ∗k

1: for all v ∈ V do b(v)← deg(v) + 1− k
2: Get b−matching edge set: M̄ ′ ← b−Suitor(Ĝ, b)
3: M ′ ← Ĝ \ M̄ ′, F ′ ← ∅, Gt ← Ĝ
4: for all e ∈ M̄ ′ do
5: G′t ← CreateDigraph(Gt, unit capacities)
6: #disjoint path ← max flow(G′t, esource, esink)
7: if #disjoint path> k then
8: Gt.remove(e)
9: else

10: F ′ ← F ′ ∪ e
11: return Ĝ∗k ← (V,M ′ ∪ F ′)

edge set M̄ ′ with the following condition.

M̄ ′ = arg max
M̄′⊆E

β · |M ′| − Σ(vi,vj)∈M′{wi,j}

s.t. degM̄′ (v) ≤ deg(v) + 1− k ∀v ∈ V
(13)

where deg(v) denotes the degree of node v. The above
problem is known as a weighted b−matching problem [28],
[29] and we implement a subroutine b−Suitor [30] to solve
it efficiently. When computing for the inclusionwise minimal
edge set F ′ in Line 4-10, we start with empty set F ′ and
initialize the current subgraph to be the present connectivity
graph Ĝ that is k−connected as assumed from the beginning.
Then each candidate edge e not in the k − 1 edge cover
set M ′ is checked by finding if there are at least (k + 1)
node disjoint paths in the current subgraph G. If yes, then
the current candidate edge e is not critical (see [28]) and
hence removed from current subgraph. Otherwise, the edge
is critical and shall be inserted into the set F ′ to consist of
final k−CMCS Ĝ∗k . This rely on the fact that for an optimal
k−connected spanning subgraph with least number of edges,
each edge is critical and there will be no more than k + 1
disjoint path between the two end nodes for the edge [28].
Here we present a solution to efficiently compute the number
of disjoint paths by max flow algorithms such as [31] over
the current subgraph Gt. The skeleton of Algorithm 2 for
finding the (k − 1) edge cover set M ′ and inclusionwise
minimal set F ′ follows the same heuristic as Algorithm 1
and Theorem 3 ensures the quality of our proposed method.

With the final k−CMCS Ĝ∗k obtained from our Algorithm
2 as the optimal k−connectivity subgraph Gc∗ = Ĝ∗k in (9),
we can specify the safety and connectivity barrier certificates
(3) and (6) to invoke linear constraints and efficiently solve
the original quadratic programming (QP) problem in (7) to
get optimal revised robot controllers satisfying safety and
k−connectivity constraints with minimum invasion to the
original controllers.

V. RESULTS

To evaluate our proposed k-CMCS method for robust con-
nectivity maintenance, we designed two sets of experiments



(a) Time Step = 1 (b) Time Step = 503 (k-CMCS) (c) Time Step = 1002 (k-CMCS, Converged)

(d) Time Step = 1002 (Fixed Initial Connectivity,
Converged) (e) Time Step = 1002 (k-NCSS, Converged) (f) Time Step = 1002 (Fixed Initial k-CMCS,

Converged)

Fig. 1: Simulation example of 40 robots tasked to three different places simultaneously with 2-connectivity maintenance (k = 2): red robots rendezvous to
red task 1 region, while green robots and magenta robots move to region of green task 2 and magenta task 3 and keep orbiting around the regions. Grey
dashed lines in (a),(b) denote current connectivity edges and red lines in (a)-(f) denote current active k-connectivity graph invoking pair-wise connectivity
constraints. Compared to inter-robot connectivity constraints from (d) initial connectivity graph, (e) minimum k-Node Connected Spanning Subgraph (k-
NCSS) [28], [29], and (f) fixed initial k-CMCS (only computes k-CMCS once), the converged result (c) of our proposed k-CMCS approach is able to
explicitly demonstrate the three behaviors under robust connectivity constraints due to invoked minimum connectivity constraints on the robots.

(a) Minimum inter-robot distance (b) Minimum Algebraic Connectivity
of Subgraph (c) Average control perturbation (d) Number of Edges in Graphs

Fig. 2: Performance comparison of simulation example in Figure 1 w.r.t. different metrics: (a) Minimum inter-robot distance (safety distance is 0.025m),
(b) Minimum subgraph algebraic connectivity evaluated by second smallest eigenvalue of laplacian matrix with k− 1 = 1 robot being taken out. Positive
meaning connectivity ensured. (c) Control perturbation computed by 1

n

∑n
i=1

∥∥u∗i − ûi∥∥2, (d) Number of edges in the corresponding graphs. Note our
k-CMCS approach activates less number of k-connectivity edges than k-NCSS [28], [29], and always stay within the ratio of 1 + 1

k
to the groud-truth

minimum k-connected subgraph (Benchmarked by brute-force algorithm that exhaustively checks combinations of all edges).

(a) 1-Connectivity with k-CMCS, Converged (b) 3-Connectivity with k-CMCS, Converged (c) Average Number of Edges (Log Scale)

Fig. 3: More results with our k-CMCS method. (a)-(b) are converged results with different k-connectivity requirements. Note when k = 1 in (a) the
k−CMCS degenerates to a minimum weighted spanning tree. (c) Results of number of edges in graphs with k = 1, 2, 3 and different number of robots.



in simulation. First, we have n = 40 robots already divided
into m = 3 subgroups simultaneously performing 3 behav-
iors such as rendezvous to goal and dynamic circle formation
behaviors. In particular, we denote the three assigned robot
subgroup sets as {m1} (rendezvous-to-goal task 1), {m2}
(circle formation task 2), and {m3} (circle formation task 3)
with m1,m2,m3 as the number of robot members in each
subgroup and m1 + m2 + m3 = n = 40. The behavior-
prescribed controllers for the three subgroups are as follows.

ûi =

−
Kp

|Ni|
∑
j∈Ni

(xi − xj)− (xi − x̄task1), ∀i ∈ {m1}
−Kp(xi − x̄i,task2(t)), ∀i ∈ {m2}
−Kp(xi − x̄i,task3(t)), ∀i ∈ {m3}

(14)

where

x̄i,task2(t) = x̄task2 +

[
Rf · cos ( 2π

m2
· im2 + ∆θ · t)

Rf · sin ( 2π
m2
· im2 + ∆θ · t)

]
,

∀i ∈ {m2}, and im2 = 1, . . . ,m2

x̄i,task3(t) = x̄task3 +

[
Rf · cos ( 2π

m3
· im3 + ∆θ · t)

Rf · sin ( 2π
m3
· im3 + ∆θ · t)

]
,

∀i ∈ {m3}, and im3 = 1, . . . ,m3

(15)

x̄task1, x̄task2, x̄task3 ∈ R2 are respectively the goal position
of the rendezvous-to-goal behavior task 1 and the two circle
formation centers of task 2 and task 3. Kp > 0 is the
control gain and Ni specifies neighbors of robot i within the
limited communication range Rs. Rf is the orbiting radius
of the dynamic circle formation for task 2 and task 3. ∆θ
specifies the angular increment used to define new target
location for each robot at each time step to perform the
orbiting circle formation. For the second sets of experiments,
we have various number of robots ranging from n = 10 to
n = 40 in the increments of 5 to perform the same set of
rendezvous and orbiting behaviors at the same time. With
the provided behavior-prescribed controllers, we apply the
minimally revised controllers from (7) with single-integrator
dynamics to the robots with unicycle dynamics in simulation
using kinematics mapping in [13].

The first set of experiments are performed on a team of
n = 40 mobile robots in presence of a static obstacle as
shown in Figure 1, under 2−connectivity requirement (k =
2). With the enforced 2−connectivity constraints (preserved
red edges), taking out no more than k − 1 = 1 robots
will not disconnect the rest multi-robot connectivity graph.
The robot team is divided into m = 3 subgroups with
different colors and tasked with 3 parallel behaviors. In the
figures, robots in red subgroup 1 execute biased rendezvous
behaviors towards the red task site 1, while robots in green
subgroup 2 and magenta subgroup 3 perform circle formation
behaviors around the green task site 3 and magenta task
site 4 respectively. Robots update their k-CMCS periodically
(every 50 time steps) to invoke the minimum k-connectivity
constraints as task progresses. As shown in Figure 1a-c, our
k-CMCS approach is able to generate minimum connectivity
graph (red edges) from the present connectivity graph (grey
edges) so that the invoked connectivity constraints are min-
imally invasive to the primary behavior controllers. Most of
the target behavior configurations have been accomplished

as shown in Figure 1c. Particularly, from the results in
Figure 1b-c, the communication relays connecting different
subgroups are implicitly formed to provide greater flexibility
for the rest of the robots while ensuring the k−connectivity
requirements, without the need of explicit robots roles assign-
ment as done in [15], [16]. This results from the fact that our
algorithm enforces provably minimum k−connectivity graph
that is least restrictive to the robots. As in the intermediate
stage captured in Figure 1b, although robots from different
subgroups get cluttered around the static obstacle, they are
able to generate minimum connectivity graph (red links)
from the dense local connectivity graph (grey) so that the
team can successfully “unfold” themselves and keep moving
with their designated behaviors.

In comparison, we present converged results of other
three methods shown in Figure 1d-f: which are i) always
preserving initial connected edges (grey edges in Figure 1a)
with converged result depicted in Figure 1d, ii) preserving
edges in present k-Node Connected Spanning Subgraph (k-
NCSS) [28], [29] that seeks to select minimum number of
edges without consideration of robot motions (result depicted
in Figure 1e), and iii) always preserving edges in initial k-
CMCS (red edges in Figure 1a) without updating (result
shown in Figure 1f). For results in Figure 1d and f, due to the
rigid invoked connectivity graph as the robots move, they can
hardly achieve circle formation and could fall into deadlock
before reaching the target regions. Without considering the
robots’ original controllers, k-NCSS method in Figure 1e
imposes overly constrained edges even if the number of
them are minimum. In contrast, our k-CMCS method selects
minimum number of edges and at the same time ensures
they are most in favor of the robots original controllers, thus
leading to more flexible motions.

Numerical results are also provided in Figure 2 showing
our method ensures safety and robust k−connectivity, while
having minimal control perturbation due to connectivity as
compared to other mentioned methods above. In particular,
for Figure 2b the minimum subgraph connectivity is obtained
by taking out different combinations of k−1 robots (1 in this
case) on the graphs used to invoke connectivity constraints
and output the minimum connectivity after robot removal. It
is noted that our k-CMCS is robust to (k−1) robots removal
and is least restrictive compared to other compared methods.
Moreover, Figure 2d shows that despite of increasing number
of existing edges on the original connectivity graph (orange),
the number of selected edges by our k-CMCS (solid red) is
much smaller and always within the theoretical bound on
the ratio of 1 + 1

k to the ground-truth (solid blue). Thanks
to the greater freedom of robots motions allowed from our
k-CMCS, the number of edges on the original connectivity
graph (solid orange) across time is also significantly re-
duced compared to the case with k-NCSS method, indicating
that the robots in this case separate more quickly to their
designated tasks. Lastly, we present the simulation results
with different number of robots and various k−connectivity
requirements in Figure 3. Note that when k = 1 the problem
reduced to minimum connectivity control and the obtained



k-CMCS graph in Figure 3a becomes the minimum spanning
tree of the original graph, which has the minimum number of
edges required for keeping the connectivity graph connected.
Figure 3c indicates that although the number of edges in
connectivity graph may grow exponentially as the number
of robots increases, the number of our obtained k-CMCS
edges will not grow that fast, making the resulting invoked
connectivity constraints more scalable.

VI. CONCLUSION

In this paper, we considered the problem of minimum
k−connectivity maintenance for flexible multi-robot behav-
iors. In particular, we proposed a k−Connected Minimum
Constraints Subgraph (k−CMCS) algorithm to compute
provably minimum k−connectivity constraints as to the
robots behavior-prescribed controllers. In this way, the robots
controllers will only be revised as necessary in a minimally
invasive manner with dynamic and possibly discontinuous
communication topology. This algorithm enables simultane-
ous behaviors at best while maintaining constraints due to
collision avoidance and required redundant connectivity that
is robust to robots failure. Experimental results validate our
method with large number of robots and comparison to other
methods, showing the significant improvement on robot team
performance on various tasks requiring different behaviors.

Future work includes extensions to fully decentralized k-
connectivity control. We will also implement the algorithms
on physical robotic platforms to investigate other probabilis-
tic uncertainties in real-world applications to further improve
the robustness of the multi-robot systems.
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