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Abstract— LIDAR and RGB cameras are commonly used
sensors in autonomous vehicles. However, both of them have
limitations: LIDAR provides accurate depth but is sparse
in vertical and horizontal resolution; RGB images provide
dense texture but lack depth information. In this paper, we
fuse LIDAR and RGB images by a deep neural network,
which completes a denser pixel-wise depth map. The proposed
architecture reconstructs the pixel-wise depth map, taking
advantage of both the dense color features and sparse 3D spatial
features. We applied the early fusion technique and fine-tuned
the ResNet model as the encoder. The designed Residual Up-
Projection block recovers the spatial resolution of the feature
map and captures context within the depth map. We introduced
a depth feature tensor which propagates context information
from encoder blocks to decoder blocks. Our proposed method
is evaluated on the large-scale indoor NYUdepthV2 and KITTI
odometry datasets which outperforms the state-of-the-art single
RGB image and depth fusion method. The proposed method
is also evaluated on a reduced-resolution KITTI dataset which
synthesizes the planar LIDAR and RGB image fusion.

I. INTRODUCTION

To provide an autonomous vehicle with a sufficient level of
autonomy and safety, the perception system needs a robust
object detection unit. Unlike object detection in computer
vision, simply providing a bounding box in the 2D image
plane or 3D real world coordinates is not enough for au-
tonomous driving. Additional information including heading
angle of the vehicle, 3D location and distance of the obstacle,
as well as rough shape are all important for the decision-
making and trajectory planning of an autonomous vehicle.
Different sensors have different capabilities and properties.
Cameras provide dense texture and semantic information
about the scene, but have difficulty directly measuring shape
and location of a detected object. LIDAR provides accurate
distance measurement of the object using time of flight
(TOF). In order to estimate the coarse shape and location
of the object, the LIDAR point cloud should be segmented.
However, precise point cloud segmentation is difficult due
to the sparsity in horizontal and vertical resolution of the
scanning points. The RADAR provides object-level speed
and location relative to the ego-vehicle via range and range-
rate, but does not give accurate shape of the objects.

The point cloud of a LIDAR scan is usually sparse even
for high-definition LIDAR, especially for faraway objects,
compared to the density of an RGB image. Object detection
and segmentation merely using low-cost planar LIDAR is
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Fig. 1: We fuse the planar LIDAR and RGB camera at an
early stage which takes the RGB image and sparse depth map
as input. Skip connections and a decoder network improve
dense depth prediction.

even more difficult. As a result, how to fuse dense RGB
semantic information with sparse depth information from
sparse LIDAR measurements to achieve a better perception
capability is an important topic for both academia and indus-
try [1]. The main contributions of this paper are: 1) We apply
the early-fusion technique and fine-tune the famous ResNet-
50 model as the feature encoder. 2) A Residual Up-Projection
block (RUB) is designed to recover the spatial resolution of
the depth map. 3) Context information is propagated from
encoder blocks to RUB by skip connections.

The proposed method is shown in Figure 1. This paper
is organized as follows: Section II briefly reviews the prior
work in depth sensing, using various types of sensors. Sec-
tion III-A introduces the proposed Residual Up-Projection
block. Sections III-C and III-D detail the proposed network
architecture and Berhu Loss function. The experimental setup
and dataset are respectively explained in Sections III-E.
Finally, Sections IV-B and V discuss the experimental results
of our method and give conclusions.

II. RELATED WORK

Depth sensing is one of the difficult regression problems
in robotics perception and autonomous driving. This problem
can be quite different depending on the type of sensors
mounted on the robot. It includes depth completion from
sparse LIDAR scanning points and RGB-D image, and
prediction from a single RGB image [1].

Depth Prediction: Depth prediction from a single RGB



image is a challenging task, as an RGB image has limited
depth information. However, the problem is not unsolvable,
considering the heuristic in human vision: nearby objects
look bigger, distant objects smaller, and object texture is
also helpful. Some early solutions modeled the relationship
between visual cues by a Markov Random Field (MRF), as-
sociating depth with superpixels [2], [3]. To further improve
the performance of pixel-based MRF, [4] combined semantic
labels to inform depth prediction. However, this family of
algorithms uses predefined models and hand-crafted features,
which is difficult to apply to the variety of on-road scenes
in autonomous driving. Various deep learning techniques
have also been applied to this problem. In [5], a multi-
scale network is proposed to estimate depth in indoor scenes.
Taking advantage of high-quality features extracted from
ResNet, [6] predicts the depth map of the scene. However,
these methods lose details of the scene through convolution
and pooling, which leads to a severe decrease in depth map
resolution. To solve this problem, [7] concatenates a multi-
scale feature learner and ordinal regression optimizer with a
feature encoder and scene understanding module to preserve
the quality of the high-resolution depth map. In this paper, we
concatenate an Up-Projection block chain with the encoder,
which achieves a high-resolution depth map.

Depth Completion: The depth completion problem can
be broken into two categories: depth inpainting and dense
completion. Distance, transparency and bright surfaces are
the most common failure cases for commodity-grade RGB-D
cameras. As a result, large missing areas and holes within the
depth channel need to be filled. To fill holes within a Kinect
depth map, [8], [9] propose algorithms that take spatial
and temporal information from neighbor pixels. However,
these methods only consider the local depth instead of local
geometry. To address this limitation, [10] provides a local
tangent plane estimation algorithm that enhances the depth
image. In [11], the deep network predicts surface normal and
occlusion boundaries from RGB images and solves a linear
optimization problem taking depth information as regular-
ization. Recently, a Generative Adversarial Network (GAN)
has been applied to depth completion as well [12]. Even
though the RGB-D image contains more depth information,
it is difficult for the depth camera to sense large-scale on-
road scenarios, as it can only capture the depth of objects
within a few meters. As a result, a RGB-D camera with the
state-of-the-art depth inpainting algorithm is not a solution
to depth estimation for autonomous driving.

In the dense completion problem, a low-quality depth
map is completed or super-resolved into a pixel-wise depth
map. In [13], a novel data term formulation is applied to
the MRF, which qualitatively and quantitatively improves
the high-resolution depth maps. The relationship between
image segmentation boundaries and depth boundaries is fully
used in [14] to predict depth from aggressively sub-sampled
images and videos. To recover the dense depth information
from a cropped depth map, [15] proposed a Sparsity Invariant
Convolution network which is invariant to sparsity level.
However, a binary observation mask which served as prior

knowledge needs to be passed to the sparse convolution layer.
The perception system of autonomous vehicles usually

contains multiple types of sensors. Sensor fusion provides
a robust object detection and scene understanding result. In
[1], a self-supervised training framework has been applied
to RGB images and sparse depth images to generate a dense
point cloud. However, the performance of this method highly
relies on sequential information of the RGB image and
accurate pose translation of the ego-vehicle. Fusing LIDAR
with RGB camera through CNN, [16] accomplished depth
completion or semantic segmentation with or even without
a dense RGB image. This method can deal with potential
sensor failure in real autonomous driving cases. As a result,
the fusion of multiple sensors can improve the robustness of
the perception system.

In this work, we propose an early fusion technique which
outperforms single image-based methods as the sparse 3D
spatial information from LIDAR enhanced the texture in-
formation. No further prior information is needed, such as
binary masks in [15]. In addition, the Residual Up-Projection
blocks and proposed skip connections reconstruct a more
detailed depth map, compared to previous methods.

III. METHODOLOGY

A. Residual Up-Projection Block

For the sake of clarity, we introduce the Residual Up-
Projection blocks in the decoder network. The most common
Up-Pooling layer increases the spatial resolution by consider-
ing the features from nearby patches. Bilinear interpolation
or a nearest neighbor interpolation mechanism can be ap-
plied, which is widely used in fully convolutional neural net-
works for the semantic segmentation task [17]. However, this
Up-Sampling layer is not sufficient for depth completion, as
it does not consider the geometry and semantic information.
As a result, it increases the prediction error on boundaries of
objects. The de-convolution layer defined in [18] up-samples
the feature map by Up-Pooling kernels which recover details
in the image. Our Residual Up-Projection block (RUB)
further optimizes the up-sampling process by introducing a
residual into the block [19]. The detailed structure of the
RUB is shown in Fig. 3. The 5∗5 convolution layers recover
the local details of the feature map. The projection shortcut
helps the training step by escaping the 3∗3 convolution layer.

B. Skip connections

Compared with the traditional network architecture pro-
posed in [20], three skip connections are added to pass
feature tensors from encoding residual blocks to decoding
blocks. By concatenating feature tensors from the encoding
blocks and previous decoding blocks, the RUB receives a
larger number of feature channels. This can improve the
depth prediction, as more context information is propagated
to higher-resolution layers. In most deep networks, it is diffi-
cult to recover detailed textures and context information. The
skip connections also forward missing detailed features such
as object boundaries to higher-resolution decoding blocks,



Fig. 2: The architecture of the proposed network is shown above. The encoder network takes a pretrained Resnet model with
RGB image and sparse depth map as input. The decoder network concatenates four Residual Up-Projection blocks (RUB).
Three skip connections pass the feature map from the residual encoding block to the RUB.

Fig. 3: The proposed Residual Up-Projection block.

which mirror the input. The proposed skip connections are
shown as the red arrows in Fig. 2.

C. Network Architecture

In total, there are 4 channels in the input layer of the
network after early data fusion, shown as the input in Fig.
2. Instead of predicting the pixel-wise depth from a single
RGB image, the sparse 3D features from LIDAR provide a
heuristic for depth regression. In reverse, the texture features
from the RGB image encode the semantic information, which
completes the sparse LIDAR point cloud. In all, the network
learns the local geometry of each pixel considering the prior
from the RGB image and LIDAR scanning points. Unlike
the RGB image, the LIDAR projection image does not have
obvious texture, and it is difficult to find patterns in the
projected image. As a result, we cannot easily find the
associations between LIDAR point clusters in the projected
image and features in the RGB image. This problem can
be solved by using the proposed early fusion network. We
applied Resnet as the encoding network, which means feature
tensors are propagated through successive residual blocks.
We chained four RUB with skip connections as the decoder
to achieve a high-resolution dense depth map.

D. Berhu Loss Function

The most common and popular choice of loss function for
regression problems is mean squared error (MSE). However,

MSE is not adequate for the depth completion task, as it tends
to penalize more heavily for larger errors. It learns to smooth
and blur edges on object boundaries, which is even worse
in outdoor scenarios in autonomous driving cases [1]. To
avoid these problems, we applied the Berhu loss as the loss
function for training. The Berhu Loss is defined as follows:

B(e) =

{
|e|, if |e| ≤ c
e2+c2

2c , otherwise
(1)

The term c is a batch-dependent parameter, which con-
siders the maximum absolute error over all the pixels in
the predicted depth map. In this paper, we take c as 20%
of the maximum absolute error in a batch. If the element-
wise absolute value of the prediction error is smaller than c,
Berhu loss behaves as a mean absolute error. Otherwise, it
acts approximately as mean square error.

E. Network Training and data Augmentation

We take the Resnet pretrained on the ImageNet dataset
as the encoder and fine-tune the Residual blocks with the
RGB-D input introduced above. Due to the limitation of our
computation resources, we use a smaller batch size of 16 and
train the network for 20 epochs. We choose to use the SGD
optimizer with a decreasing learning rate, starting from 0.01.
We conducted an online data augmentation process, which
randomly transforms the original images.

IV. EXPERIMENTAL RESULTS

In this section, we detail our experimental setup and ex-
plain the training techniques of the proposed depth comple-
tion architecture. To verify the performance of the proposed
network, we compare our model with previous depth comple-
tion methods through quantitative results on the NYUDepth
V2 dataset and KITTI odometry dataset. To evaluate the
performance of the proposed network on planar LIDAR



TABLE I: Performance comparison of proposed network with previous single RGB-based and fusion methods on
NYUdepthV2 dataset

Input #Depth Sample Methods RMSE (m) REL δ1 (%) δ2 (%) δ3 (%)

RGB 0 Eigen et al.[21] 0.641 0.158 76.9 95.0 98.8
0 Laina et al.[22] 0.573 0.127 81.1 95.3 98.8

RGB+D 225 Liao et al.[20] 0.442 0.104 87.8 96.4 98.9
200 Ma et al.[23] 0.230 0.044 97.1 99.4 99.8
200 Proposed 0.203 0.040 97.6 99.5 99.9

and camera fusion, we also test our method on a reduced-
resolution KITTI dataset.

A. Experimental Setup and Evaluation Metric

NYUDepthV2 is one of the largest RGB and depth
datasets for indoor scene understanding [25]. In total, the
training and testing scenes contain 47584 and 654 images,
respectively. In order to compare the proposed method with
previous algorithms fairly, we down-sampled the original
image to half-resolution and center-cropped the image to
320∗256 pixels. In the training process, a sparse input depth
map is sampled randomly from the ground truth depth image.
Instead of using a fixed sparse depth input for every training
sample, we randomly generate sparse depth in each training
epoch. This can augment the training data and achieve a more
robust network. We not only evaluated the proposed network
on an indoor depth dataset, we also tested the performance
on the on-road autonomous driving KITTI odometry dataset.
We picked 46416 data samples with ground truth for our
proposed model training, and 3200 images for evaluation.
The depth map is constructed by projecting the LIDAR
point cloud onto the image plane. Unlike the NYUDepthV2
dataset, in which all image pixels have a depth value, only
some of the image pixels contain depth values. As a result,
we cropped the bottom part of the image with a size of
928∗256, where projected LIDAR points exist.

To compare the proposed network with state-of-the-art
methods, we use the following evaluation metrics provided
by the benchmark dataset. We compare the root mean square
error (RMSE), which directly measures the average error
over all pixels. To get rid of the scaling problem we also
compare the Mean Absolution Relative Error (REL). In order
to count the percentage of pixels within a certain threshold,
we also consider the δ j metric.

B. Results and Discussion on Benchmark Dataset

In order to compare the proposed method with state-
of-the-art depth completion and depth prediction methods
on the NYUDepthV2 dataset and KITTI odometry dataset,
we take the reported accuracy of previous methods from
their original papers. In comparing with the method which
takes a single RGB image, fusing sparse depth information
significantly improves the overall prediction accuracy. In
method [20], the architecture simply uses a chain of de-
convolution layers to recover the high-resolution depth map.
Our method improves the depth prediction by chaining up
four RUBs, which captures more detailed textures in the

depth map. By applying our proposed architecture with skip
connections, we achieve a better performance compared with
the state-of-the-art method [23] by 11.3% on the NYUDepth
V2 dataset. For the KITTI odometry dataset, we achieve a
40.4% improvement compared with the state-of-the-art single
RGB image-based network and a 13% in REL with the state-
of-the-art single RGB image and LIDAR fusion method.
Detailed comparison is shown in Table I and Table II

C. Test on Reduced Resolution KITTI Odometry Dataset

In the KITTI odometry dataset, a high-definite Velodyne
HDL-64E is mounted on top of the testing vehicle. It is a a 64
channel and 360◦ FOV LIDAR sensor with adjustable data
update rate. This powerful Velodyne sensor has a horizontal
angular resolution of around 0.09◦ and 26.8◦ of vertical
FOV with approximate 0.4◦ angular resolution. However, the
planar LIDAR sensors are installed at the bumper height of
the vehicles, different from the Velodyne LIDAR mounted
on top of the vehicle [26]. In order to reduce the resolution
of the dense point cloud of KITTI odometry data, we select
a band of LIDAR points from the dense point cloud. In this
way, the reduced-resolution Velodyne data have similar point
cloud features to the planar LIDAR.

In order to test the performance of the proposed architec-
ture we apply different input to the network. As shown in
Table III, the early fusion architecture performs better than
using a single RGB image and single planar LIDAR depth
map as input, which improves the RMSE respectively by
around 30% and 10%. As a result, the early fusion technique
achieves better pixel-wise depth prediction, as the LIDAR
provides depth guides and the RGB images provide semantic
information.

We also conducted a statistical study on the RMSE of
proposed method on different types of input. In general, the
mean and standard deviation of the depth prediction RMSE
increase monotonically with the ground truth depth. Based on
our analysis, the reason can be summarized as follows. First
of all, we have fewer LIDAR points in the faraway regions,
compared with nearby regions. Secondly, the textures and
features of RGB images at far distances, especially at the
vanishing points which are usually tiny and the depth value
of these pixels varies sharply. As shown in Fig. 4a and Fig.
4b, the LIDAR and camera fusion technique has better mean
RMSE, compared with taking single RGB as input. We have
a mean RMSE error less than 5 meters when the depth
ground truth is within 40 meters. In comparing with single
LIDAR input, we achieve a slightly better mean and STD



TABLE II: Performance comparison of proposed network with previous single RGB-based and fusion methods on KITTI
dataset

Input #LIDAR sample Methods RMSE (m) REL δ1 (%) δ2 (%) δ3 (%)

RGB 0 Mancini et al.[24] 7.51 - 31.8 61.7 81.3
0 Eigen et al.[21] 6.16 0.190 69.2 89.9 96.7

RGB+D 200 Liao et al.[20] 4.50 0.113 87.4 96.0 98.4
200 Ma et al. [23] 3.85 0.083 91.9 97.0 98.9
200 Proposed 3.67 0.072 92.3 97.3 98.9
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(a) Mean of the RMSE with different types of inputs.
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(b) Standard Deviation of the RMSE with different types of inputs.

Fig. 4: Performance comparison of the proposed method with different types of inputs. We analyze the mean and standard
deviation of the RMSE at different ground truth depths.

TABLE III: Performance comparison of proposed network
on reduced-resolution KITTI odometry dataset with different
types of inputs

Input RMSE (m) REL δ1 (%) δ2 (%) δ3 (%)

RGB 5.92 0.193 67.3 91.6 97.6
Depth 4.61 0.095 88.8 95.5 98.2

RGB+D 4.16 0.092 89.4 96.3 98.6

using LIDAR and camera fusion. Even though it seems that
we do not achieve a significant improvement from above
figures, it is resulted in the sparsity of ground truth depth
map. Actually, the improvement of proposed fusion method
is shown in the qualitative results discussed below.

To visually compare the predicted depth map of the
proposed method with different types of input, we provide
some qualitative result on various road scenes in Fig. 5. Our
network generates a more detailed depth map with LIDAR
and RGB image fusion, especially for scene 1 shown in Fig.
5a. Comparing with only RGB image and planar LIDAR,
the fusion result generates more detailed features on the
vehicle boundaries with a clear depth trend. In Fig. 5c, we
can notice a more detailed contour of the parking vehicles
on the right side of the road, compared to blurred boundaries
taking single RGB image or planar LIDAR as input. Even
though in Fig. 4a and Fig. 4b the LIDAR-only method has
similar mean and STD of RMSE, the visualization result
of the LIDAR-only method has a ‘stripe-like’ feature in its

predicted depth maps. This phenomenon is caused by the
features of the projected LIDAR depth image where LIDAR
points are arranged as lines or arcs in the image plane. With
the texture information of RGB image, the fusion method
generates a more smooth depth map and more reasonable
depth textures of the scenes.

V. CONCLUSION

In this paper, we propose a deep fusion architecture which
fuses LIDAR with RGB images to complete the depth map
of the surrounding environment. A Residual Up-Projection
block is applied to recover the dense depth map. Skip
connections pass the feature map from encoder blocks to
decoder blocks, which helps the decoder network capture
more context information from feature tensors. Our method
outperforms conventional methods on the NYUDepthV2
dataset and KITTI odometry dataset. We also applied the
proposed method to the reduced-resolution KITTI odometry
dataset to estimate the pixel-wise depth map. Further work
will test the proposed method on real planar LIDAR and
dense point cloud datasets.
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