
Interactive Trajectory Prediction for Autonomous Driving via
Recurrent Meta Program Induction Network

Chiyu Dong1, Yilun Chen2 and John M. Dolan2

Abstract— Interactive driving is challenging but essential for
autonomous cars in dense traffic or urban areas. A proper
interaction requires understanding and prediction of future
trajectories of all neighboring vehicles around a target vehicle.
Current solutions typically assume a certain distribution or
stochastic process to approximate human-driven cars’ behav-
iors. To relax this assumption, a Meta Induction Network
(IN) framework is developed. The original Conditional Neural
Process (CNP) on which this is based does not consider the
sequence of the conditions, due to the permutation invariance
requirements for stochastic processes. However, the sequential
information is important for the driving behavior estimation.
Therefore, in the proposed method, a recurrent neural cell
replaces the original demonstration sub-net. The behavior
estimation is conditioned on the historical observations for all
related cars, including the target car and its surrounding cars.
The method is applied to predict the lane change trajectory
of a target car in dense traffic areas. The proposed method
achieves better results than previous methods and can use a
smaller dataset, putting fewer demands on autonomous driving
data collection.

I. INTRODUCTION

As autonomous driving techniques advance, they face
more complex scenarios than highway car following (i.e.,
Adaptive Cruise Control or ACC) and lane keeping. These
simple scenarios only require the sensing of a single target
vehicle’s dynamic or static environment, where there is
less ambiguity and fewer intention estimates are needed.
However, in more complex interactive scenarios, such as
lane change and ramp merging, the autonomous car needs
to generate a path according to the interactions among other
cars. In addition to robust perception and control, these sce-
narios require the autonomous car to interact appropriately
with neighboring vehicles. In order to react properly, it is
important to correctly understand human drivers’ behaviors
or intentions and then make a prediction of the human-driven
cars’ trajectory. For example, in a lane-change scenario, as
Fig. 1 depicts, where the lane-changing trajectory of the
target vehicle (Veh-s) highly depends on the surrounding
vehicles’ behaviors and recent movements. Therefore, in
order to accurately predict the lane-change trajectory of
one target vehicle, all surrounding trajectories and their
interactions should be taken into account. Once knowing
other vehicles’ intentions and future trajectories’ estimation,

1Chiyu Dong is with Department of Electrical and Computer En-
gineering, Carnegie Mellon University, Pittsburgh, PA 15213 USA.
chiyud@andrew.cmu.edu

2Yilun Chen and John M. Dolan is with the The Robotics Insti-
tute, Carnegie Mellon University, Pittsburgh, PA 15213 USA. yilunc1,
jdolan@andrew.cmu.edu

Fig. 1: A left lane change scenario. Veh-s is the target car whose
future trajectory is the goal of the estimation (shown as the red dash
line). At most five surrounding cars can be handle simultaneously
in lane change scenarios.

current trajectory planners can generate proper reactions and
paths to cooperative with surrounding cars. In Fig.1, Veh-s
is the target vehicle whose future trajectory is desired. Even
if its lane-change intention can be indicated by turn sig-
nals, knowing this information is inadequate for autonomous
driving cars to cooperate and perform socially. One should
estimate when and how the target car (Veh-s) will make the
lane change, and then plan a proper trajectory to react. If
there is a predictive engine which gives surrounding vehicles’
future movement (the red dashed lines), trajectory planners of
the autonomous driving car can generate the corresponding
path to perform safely with the target vehicle (veh-s) and
also all surrounding vehicles.

The difficulties of the trajectory estimation are: 1) model-
ing the mutual interactions among surrounding cars; 2) pre-
dicting the continuous trajectories based on the interactions.
3) There are no enough data in complex driving scenarios
and interactions for traditional deep learning learning meth-
ods. Our previous method [1] considers the interaction of
surrounding vehicles as a non-parametric regression and just
outputs discrete lane-changing start/end points. Then, it is
extended to the prediction of continuous trajectories [2]. The
analysis of the interaction and the future movement is based
on a short period of observations of all surrounding cars’
movements. Thought these approaches consider the interac-
tion and historical trajectories, it cannot handle massive data
and efficiently take the full advantage of the data set.

In this paper, an induction neural network framework
is proposed to tackle all of these three difficulties, i.e.,
making trajectory estimation based on surrounding vehicles’
interactions by using small dataset. As the result, it can make
accurate trajectory estimation of a target vehicle, in both
longitudinal and lateral direction.

II. RELATED WORK

In the last decade, researchers have proposed numerous
interactive intention or trajectory estimation algorithms for

autonomous driving. Those algorithms can be categorized
into three major categories of methods to address the social
cooperation problem among cars:

A Rule/Control-based methods, represented by earlier
slot-based lane-change decision making. In addition,
control-based algorithms are also considered.

B Optimization-based approaches, which optimize spe-
cific cost functions to guarantee proper behaviors.

C Probabilistic and Learning approaches, most of which
use the Markov Decision Process (MDP) and its exten-
sions. Learning approaches mainly uses kernel methods
or deep neural networks.

A. Rule-based methods

The rule-based methods are the most understandable and
straightforward approaches. They have been applied on test
vehicles since the 2007 DARPA Urban Challenge. For
example, a slot-based approach was implemented for the
CMU Boss vehicle merge behavior planner [3] . In the
planner, kinematic information is used to check merge-in
feasibility of each slot. Then the target slot is selected
from the set of feasible slots according to the context of
the maneuver, and predictions of others. The slot-based
approach is straightforward to implement and robust in
obvious or simple scenarios. However, the lack of prior
knowledge of surrounding vehicles’ intentions makes it hard
to estimate or predict their movements and corresponding
behaviors. Naranjo et al. [4] use fuzzy logic to make lane-
change decisions. The method is also straightforward and
simple to implement. However, it also does not consider
prior knowledge, reaction of other cars, or prediction. Lu
and Hedrick [5] formulated the cooperative behavior as a
platoon control problem. But the algorithm still requires a
“coordination layer” to select a pair of main-road cars to
interact.

B. Optimization-based methods

Liu et al. [6] and Nilsson et al. [7] applied Model
Predictive Control(MPC) to solve the cooperative planning
problem. In order to improve computational efficiency, the
MPC is converted to a convex optimization over its manifold.
The method is theoretically sound for performing coopera-
tive trajectory planning for robots. However, it still needs
a predictive engine to provide an initial estimate of the
other agents’ possible future trajectories and the associated
uncertainty. The Intelligent Driver Model (IDM) [8] based al-
gorithms optimized the ego-vehicle’s reactions in interaction-
required scenarios such as freeway entrances and turns in
intersections. The algorithms assumed that all other vehicles
applied the identical behavioral model (IDM). Given a pro-
posed intention for the ego-vehicle, the optimization algo-
rithms converge to a proper cooperative trajectory regarding
the reactions from the IDM-driven agents. This approach has
several problems. Firstly, the assumption of IDM does not
necessarily fit all vehicles, especially in interactive scenarios.
Secondly, the IDM relies on several parameters which require

hand-tuning. Thirdly, IDM is one of the most robust distance-
keeping models, but interactive scenarios involve various
interactions other than car-following, such as yield or not-
yield reactions.

C. Probabilistic methods

Probabilistic methods form the largest percentage of solu-
tions to lane changing or cooperative driving. Montemerlo
et al. [9] integrated lane-changing behavior into Stanford
Junior’s global path planner, which is an instance of dynamic
programming (DP). In fact, the problem is formulated as
optimizing a variant Bellman equation, which implicitly
follows the MDP framework and value iteration. Each action
is assigned a penalty cost. The lane changing behavior is a
penalty term in the cumulative cost function which is opti-
mized by the DP. However, the algorithm does not consider
other traffic participants. Yao et al. [10] search for k-nearest-
neighbors in a lane-change scenario database to generate a
trajectory. Measuring differences between trajectories and
scenarios remains a problem. And if the dataset contains
a large number of samples, searching for the k-nearest-
neighbors is time-consuming. Galceran et al. [11] make
decisions depending on the probability of past trajectories of
all traffic participants. Both of them report discrete actions
such as left-lane-change, right-lane-change etc., which can
be used as an upper-level module in our method. Dong et
al. [12] detect whether the other car will merge in by using
PGM. However, this method only provides binary output of
whether a car is likely to yield or not yield.

Ulbrich et al. [13] and Wei et al. [14] proposed an
online Partial Obervable Markov Decision Process (POMDP)
for lane-change using real-time belief space search [15].
However, to achieve real-time performance and use a sim-
ple POMDP framework, they discretized state and action
spaces. To avoid discrete states, Bai et al. [16] proposed a
continuous-state POMDP using a belief tree, and the model
was applied to navigating intersections. However its actions
are discrete and represented by a generalized policy graph
(GPG). Seir et al. [17] proposed an online and approximate
solver for a continuous-action POMDP, but only tested on toy
problems. The POMDP solutions above still need manually
designed probabilistic transition models and reward func-
tions. Kuefler et al. [18] used Generative Adversarial Net-
works to mainly imitate and estimate single-lane behaviors.
Qiao et al. [19] used reinforcement learning to model the
interaction behaviors among vehicles and decision making
for autonomous driving cars in intersections. Sadigh et al.
[20] establish the transition models by (inverse) reinforce-
ment learning, but their solutions are limited to the specific
scenario. Chen et al. [21] solve the sequential prediction of
the trajectory by using Long Short-Term Memory (LSTM).

Our method serves as a predictive engine which provides
trajectory estimations. The estimated trajectory then helps the
motion planner to make a desired path in dynamic environ-
ments. The trajectory estimation is based on an interactive
model that captures mutual influences among all surrounding

cars and sequential information. The model is optimized
from real training data.

III. METHOD

A. Meta Induction Program and Conditional Neural Process

The meta induction architecture takes a set of demonstra-
tion examples and an additional observation as the inputs,
i.e., D =

(
(X1, Y1), ..., (Xn, Yn)

)
and X̂ , and then it outputs

the the corresponding estimation Ŷ . The size of D can be
as small as 1 ∼ 5, i.e., n ∈ [1, 5]. In each training step,
n demonstration examples as well as a new observations
X̂ are used to approximate the corresponding output Ŷ .
The main difference between the Meta Induction Program
with the plain deep learning approaches (e.g., the plain
LSTM trajectory prediction [21]) is the demonstration part.
In stead of directly looking for the mapping between the
new observed input X̂ to its corresponding output Ŷ , the
demonstration part encodes a higher level description of prior
condition of the task. More specifically, most of the previous
method is looking for P (Ŷ |X̂), but the Meta Induction
Program uses one more condition: D (i.e., the demonstration
examples), which results in P (Ŷ |X̂,D).

The lane change problem can be considered as a set
of trajectory prediction tasks that have various number of
surrounding cars, different type of dynamic changes and etc.
The condition D and the network is used to generalize tasks
in the training process, and ”categorizes” the current task
from demonstration examples when evaluating new inputs.
Therefore, the condition D can better guide the training and
evaluation of the network to achieve sound performance.

Conditional Neural Process is one of the meta-learning
induction [22] methods. There are three sub-modules in the
original Conditional Neural Process (CNP) [23], shown in
Equation 1:

ri = h(Xi, Yi)

r =

n⊕
i

ri

φi = g(Xt, r)

(1)

where h is the demonstration network, which can be con-
sidered as a encoder for the historical input, and g is the
generator network, which can be considered as a decoder.
The middle line is the condition which is extracted from
the historical input. Using the result from the demonstration
network, it generates a set of intermediate results ri. Along
with the latest demonstration, the result r which is aggregated
from ri is used to generate factorized parameters for a
stochastic process. Due to the induction and the conditioning
framework, it can be considered as an adaptive kernel.
The kernel that defines the stochastic process can change
according to the recent observations. For example, if the
CNP’s results are tied to a Gaussian Process (GP), its kernel,
i.e., mean µt and variance σt, will be the function of the
observation data, and determined by the CNP.

Fig. 2: The proposed recurrent structure. The green box indicates
the observer sub-net. The LSTM is a asynchronous setup, which
gives outputs until obtaining enough demonstrations. This output
is then passed through a fully connected network (FCN) to obtain
r, the intermediate condition tensor. X̂ is the current observation
right before the prediction, Ŷ is the expected trajectory. and g is
the generator.

B. Recurrent Induction Network

In the vanilla CNP, the result of each demonstration is
summarized by ri. For N demonstrations, r0, ...rn−1 will
be obtained from the observation sub-net. The total condition
which is generated from the N demonstrations is represented
by the aggregation of ri, i.e.,

r = r0
⊕

r1....
⊕

rn−1 (2)

The main purpose of doing the aggregation is to ensure
permutation invariance, which further satisfies the require-
ment for CNP being a stochastic process. In most cases, the
aggregation is implemented by mean, i.e., Eq. 2 becomes

r = 1
n

n−1∑
0
ri.

The permutation invariance property is theoretically sound
for most static tasks, for example, function regression or
image completion, whereas in applications where sequence
is more important, the aggregation eliminates the sequential
information. However, in most dynamic scenarios and tasks,
such as trajectory prediction, the observation and result
are highly serialized, and permutation invariance cannot be
satisfied.

To retain the sequential information, it is intuitive to
introduce recurrent neural networks into the demonstration
sub-net. In Fig. 2, the green box indicates the demonstration
sub-net, which consists of an asynchronous LSTM network.
The figure shows a roll-out description of the LSTM. The
dashed-arrow lines between LSTMs indicate its inner vari-
ables, which are passed inside the LSTM cell over time.
The LSTM’s results remain internal until it obtains enough
demonstrations. The result of LSTM is passed through a
fully connected network before being used as a conditioning
tensor. Therefore, the how process can be expressed as:

r = h(Xn,Yn)
Ŷ = g(X̂, r)

(3)

Fig. 3: Illustration of the input and output of the network in a lane
change scenario. The figure shows the idea, does not correspond to
real trajectories. x-axis is timestamp; y-axis is the lateral position,
labeled as ’X’.

where h is the LSTM layer and followed by a fully connected
layer. Comparing with the original CNP’s expression, shown
in Equation (1), here the aggregation operation

⊕
is replaced

by the recurrent network (which mainly retains the sequential
information) and a fully connected network. Xn contains
n segments of observed trajectories. Yn contains n corre-
sponded trajectories for the target vehicle. In detail, Xi ∈ Xn

is the observation of historical trajectories from time t of
all vehicles at including the target and its surrounding cars;
Yi+1 ∈ Yn is one segment of the trajectory of the target
vehicle from time i+1. A pair of (Xi, Yi+1 is taken as one
demonstration. Note that for the input of one step for the
LSTM cell, Xi and Yi+1 are asynchronous (Xi contains all
cars’ trajectories in the i-th time interval, Yi+1 contains the
target car’s trajectory in the (i+1)-th time interval). Xn+1 is
the new input who is ready to be evaluated.

To avoid confusion, the inputs to the observer and gener-
ator sub-nets will be described separately. To better demon-
strate the idea, only lateral translation vs timestamp plot is
shown and discussed, (Fig. 3, x-axis is timestamp, y-axis is
lateral position). Solid lines indicate the observed changes of
lateral position over time of all related cars, i.e., one target
and its surrounding cars. At time T , the goal is to predict the
future trajectory of the target car, which is shown as the dark
dashed line. L is the observation segment’s time interval.

1) Input of the observer sub-net: The input of the demon-
stration network is the ordered set of examples D =(
(X0, Y1), (X1, Y2), ...(Xn−1, Yn)

)
, where the input set here(

·
)

retains the order of the demonstration (Xi, Yi+1) for each
time interval. At each timestamp, the single observation Xi

is a segment of past trajectories of length L for all cars.
In Fig. 3, Xi corresponds to the pink region. Yi+1 is the
trajectory of the target vehicle in the next time interval of
Yi. Yi+1 corresponds to the green region in Fig. 3.

2) Input of the generator sub-net: The input of the
generator sub-net has two parts: a) The condition repre-
sentation, which is generated from the observer sub-net.
b) The segments of all vehicles’ trajectories in the time
interval immediately before the time of prediction T . More
specially, this input contains all vehicles’ trajectories in the

Fig. 4: An illustration of the labeled data for an individual lane-
changing vehicle.

TABLE I: Number of the trajectories in the dataset for each vehicle.

Vehicle s f r rt ft st

No. 870 705 764 214 233 43

time interval [T-L, T).
The main difference between the Conditional Meta induc-

tion and the plain Conditional Neural Process induction is
that, instead of using an aggregator to remove the sequential
effects, the proposed method uses a recurrent sub-network
(LSTM) to extract conditions for the generator sub-network.

The loss function is a combination of the loss in two
directions:

C = Clon + λClat (4)

where C is the total loss, and Clon, Clat are the losses in
the longitudinal and lateral directions, respectively. The main
reason for this separation is that the longitudinal translation
and lateral drifting are not in the same range. Empirically,
the ratio is set to λ = 10 in the lane changing scenario.
In detail, since we consider the sequence of the trajectory,
a mean-squared-error is applied for both longitudinal and
lateral losses.

IV. EXPERIMENTAL RESULTS

A. Dataset Description

Real trajectory data from NGSIM[24] (US-101 and I-80
subsets) are used for training and testing in the experiments.
Lane-change scenarios are extracted from the real data, and
organized into groups. As shown in Fig. 1, each group
contains one host car (Veh-s) and five surrounding cars,
i.e., Veh-f, Veh-r, Veh-rt, Veh-ft, Veh-st. As shown in Fig.
4, the trajectory of each car in the group is recorded from
10 seconds before to 10 seconds after the target car (Veh-s)
crossing the lane-marking.

TABLE I shows the total number of trajectories for
each car type in the lane-change scenarios in the dataset.
Segments of trajectories from all participants before the host
car starts turning towards the target lane. Three seconds of
historical trajectories are used for input. The prediction is the
future trajectory in the next 5s after obtaining the historical
observations.

B. Baseline Models
Three baseline models are implemented to demonstrate the

features and improvements of the proposed algorithm.
1 Continuous trajectory estimation in RKHS [1];
2 Conditional Neural Process [23];
3 Plain LSTM trajectory estimation.

Note that all of the baseline algorithms predict the trajectory
by considering the interactions between the target and its
surrounding cars. Historical trajectories of all involved cars
also contribute to the prediction in these baseline methods.

Conditional Neural Process (CNP) is implemented as a
baseline model. The main difference between CNP and
MIN is that, to retain the property of a stochastic process,
CNP should be permutation-invariant. Therefore, there is
an aggregation operation

⊕
in an intermediate layer be-

tween the observer and generator sub-net. The implemen-
tation also retains this property, and as is recommended,
the aggregation operation

⊕
is implemented by a mean

operator, which means that r = 1
n

n∑
1
ri. In addition, the

dimension of the intermediate condition representation r
is 128. The intermediate condition r is the output of the
observer sub-network h. The observer h contains a three-
layer fully connected network, with increasing dimensions
of 32, 64, and 128. Note that the last layer of the fully
connected network outputs the condition representation r.
Followed by the r, a new observation input xt is combined.
A concatenated tensor which contains r and xt is then fed
into the generator network g. The generator g also consists
of a three-layer fully connected network. The CNP baseline
shows the performance of the induction network. However,
it does not consider the sequential information. This lack
inspired the proposed method, which takes the sequentiality
of trajectories into consideration.

A plain LSTM sequence-to-sequence trajectory estimation
is also implemented, one-stack LSTM model is used. Instead
of using a whole observed trajectory as the input, it feeds
individual (x, y) coordinates once a step.

In the design of the proposed method, only one LSTM
is stacked for the observer sub-net. The LSTM cell uses an
asynchronous structure, which means that it will not output
the intermediate condition representation r until it has pro-
cessed enough data. We set the number of the demonstration
to three, so that the observer sub-net will generate a result r
only once it has processed three segments of past trajectory.
However, the output dimension of the LSTM cell is the
same as its input. With a possible variable dimension of the
input, its output dimension is desired to be fixed. Then a
fully connected network follows immediately after the LSTM
observer network. To make the structure more comparable to
the CNP implementation, the fully connected network only
has one layer, containing 128 hidden nodes. The dimension
of the condition representation r is equal to the one in CNP.
The generator architecture uses the same design as that in
the CNP implementation, i.e., a three-layer fully connected
network. NOte that in the implementation of the continuous
trajectory estimation in RKHS (the first baseline method),

TABLE II: Mean error and its standard deviation of the trajectory
prediction comparing with the ground-truth, in the lateral direction.
The unit is meter (m).

Methods 1s 2s 3s 4s 5s

RKHS µ 0.052 0.251 — — —
σ 0.051 0.250 — — —

LSTM µ 0.286 -0.330 -0.588 -0.776 -1.209
σ 0.776 0.880 0.919 1.020 1.160

CNP µ 0.085 0.181 0.382 0.379 0.444
σ 0.476 1.268 1.995 2.325 2.472

RMIN µ 0.019 0.090 0.195 0.235 0.248
σ 0.501 1.299 1.997 2.343 2.492

TABLE III: Mean error and its standard deviation of the trajectory
prediction comparing with the ground-truth, in the longitudinal
direction. The unit is meter (m).

Methods 1s 2s 3s 4s 5s

RKHS µ 1.425 9.925 — — —
σ 0.871 5.794 — — —

LSTM µ -2.100 -4.429 -6.050 -9.851 -17.932
σ 6.356 8.225 10.303 14.608 20.553

CNP µ -0.229 -0.565 -0.782 -0.979 1.126
σ 2.184 4.846 7.685 10.764 13.995

RMIN µ 0.169 0.485 0.666 0.831 1.091
σ 2.606 5.476 8.611 11.946 15.510

scenarios that have different numbers of surrounding vehicles
are separately trained and the model is updated by a selection
matrix. Otherwise, the result of the RKHS will be poor.
However, the induction models (including CNP and the
proposed RMIN) are more robust than other methods when
facing the uncertainty of the surrounding traffic, as long as
the total number of surrounding cars does not exceed the
design value. In the current implementation, the upper bound
on the number of surrounding cars is five, excluding the
target car itself.

C. Comparison Results

TABLEs II and III show the prediction errors of the dif-
ferent methods at each timestamp. Mean errors and standard
deviation are used in the comparison. To better demonstrate
the results, errors are separately shown in longitudinal and
lateral directions. All of these methods have increasing mean
errors and standard deviations. The RKHS method can only
predict over a 2s horizon within an acceptable accuracy.

In the lateral direction, the proposed method achieved the
lowest mean error at each examined timestamp. The mean
error of the RKHS at 2s is at the same level as that of RMIN
at the 5-second mark. At 2s, RMIN has a mean error that
is half of CNP’s and 36% of the error of RKHS. However,
RMIN has the largest standard deviation at that timestamp.
At 5s, RMIN has a mean error of 0.248 meter, which is
55% of the CNP error at the same timestamp. Their standard
deviations are at roughly the same level. Though the LSTM
approach has the lowest standard deviation in the lateral

direction, its absolute mean error is almost five times larger
than that of RMIN.

In the longitudinal direction, the proposed method also
achieves the lowest (absolute) mean error at each examined
timestamp. RKHS is significantly worse than other methods
in terms of mean error, even looking at the first two seconds.
At 2s, the standard deviations are at the same level. However,
the absolute mean errors of CNP and RMIN are around
0.5, which is 1/20th of the error of RKHS. One possible
reason is that the RKHS uses one kernel function to estimate
the whole trajectory with 2 dimensions. In detail, only one
kernel function is used for the estimates in both lateral and
longitudinal directions. At 5s, the mean error of RMIN is
27.8% smaller than that of CNP. The standard deviation of
RMIN is only 9.8% larger than CNP’s. The LSTM approach
perform badly in longitudinal approach, though its lateral
performance is comparable to that of the other methods.
Note that its absolute mean error at 1s is already larger
than that of CNP or RMIN at 5s. There are several reasons
that contribute to the differences: 1) The input of the plain
LSTM directly takes individual coordinates at each time step.
However, RMIN and CNP take a segment of trajectories at
each time step respectively as input to either an LSTM or
a fully connected layers-based observer network. The latter
provides more data and relations to the observer network.
The induction models also use both historical observations
and their expected output as inputs to extract the correlations
between the observation and output, and the relationship is
encoded as the condition tensor. This design makes it easier
for induction models to accurately extract the tendency of the
trajectory changes. In addition, the speed along the longitu-
dinal direction is larger than that of the lateral direction. 2)
The output (generator) network of the induction models uses
a fully connected network, whereas the plain LSTM uses
one LSTM cell. Since the fully connected network (FCN)
describes the relationships among positions in the predicted
trajectory more explicitly than the LSTM cell does, with a
small set of training data, the FCN in the induction models
can work better. 3) Therefore, any subtle changes of the
observation (especially for the longitudinal positions) and
model prediction error can result in a larger derivation in the
longitudinal direction than in the lateral one.

V. CONCLUSIONS

This paper proposed a recurrent meta induction neural
network for the trajectory prediction of human-driven cars
considering all surrounding traffic. It uses an LSTM structure
for demonstration and condition to capture sequential infor-
mation in the historical trajectories. The method significantly
outperforms traditional kernel methods in terms of mean
error. In addition, compared to the original CNP aggregation
which eliminates the effect of sequence, the use of the
recurrent network in the demonstration and condition helps
to obtain a lower level of mean error for the trajectory
prediction, in both longitudinal and lateral directions. In the
future, a more advanced generator and observer structure
will be developed to further reduce error. The framework

will also be extended to be more general, i.e., to apply
to additional scenarios, such as turns in intersections and
highway merging.

REFERENCES

[1] C. Dong, Y. Zhang, and J. M. Dolan, “Lane-change social behavior
generator for autonomous driving car by non-parametric regression
in reproducing kernel hilbert space,” in 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2017, pp. 4489–
4494.

[2] C. Dong, J. M. Dolan, and B. Litkouhi, “Continuous behavioral
prediction in lane-change for autonomous driving cars in dynamic
environments,” in 2018 IEEE 21th International Conference on In-
telligent Transportation Systems (ITSC) (ITSC2018), 2018.

[3] C. R. Baker and J. M. Dolan, “Traffic interaction in the urban
challenge: Putting boss on its best behavior,” in Intelligent Robots
and Systems, 2008. IROS 2008. IEEE/RSJ International Conference
on. IEEE, 2008, pp. 1752–1758.

[4] J. E. Naranjo, C. Gonzalez, R. Garcia, and T. De Pedro, “Lane-change
fuzzy control in autonomous vehicles for the overtaking maneuver,”
IEEE Transactions on Intelligent Transportation Systems, vol. 9, no. 3,
pp. 438–450, 2008.

[5] X.-Y. Lu and K. Hedrick, “Longitudinal control algorithm for auto-
mated vehicle merging,” in Decision and Control, 2000. Proceedings
of the 39th IEEE Conference on, vol. 1. IEEE, 2000, pp. 450–455.

[6] C. Liu, C.-Y. Lin, Y. Wang, and M. Tomizuka, “Convex feasible set
algorithm for constrained trajectory smoothing,” in American Control
Conference (ACC), 2017. IEEE, 2017, pp. 4177–4182.

[7] J. Nilsson, M. Brännström, J. Fredriksson, and E. Coelingh, “Longitu-
dinal and Lateral Control for Automated Yielding Maneuvers,” IEEE
Transactions on Intelligent Transportation Systems, vol. 17, no. 5, pp.
1404–1414, may 2016.

[8] M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states in
empirical observations and microscopic simulations,” Physical review
E, vol. 62, no. 2, p. 1805, 2000.

[9] M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp, D. Dolgov, S. Et-
tinger, D. Haehnel, T. Hilden, G. Hoffmann, B. Huhnke et al., “Junior:
The stanford entry in the urban challenge,” Journal of field Robotics,
vol. 25, no. 9, pp. 569–597, 2008.

[10] W. Yao, H. Zhao, P. Bonnifait, and H. Zha, “Lane change trajectory
prediction by using recorded human driving data,” in Intelligent
Vehicles Symposium (IV), 2013 IEEE. IEEE, 2013, pp. 430–436.

[11] E. Galceran, A. G. Cunningham, R. M. Eustice, and E. Olson, “Multi-
policy decision-making for autonomous driving via changepoint-based
behavior prediction: Theory and experiment,” Autonomous Robots,
2017, in Press.

[12] C. Dong, J. M. Dolan, and B. Litkouhi, “Intention estimation for ramp
merging control in autonomous driving,” in 2017 IEEE 28th Intelligent
Vehicles Symposium (IV’17), Jun. 2017, pp. 1584 – 1589.

[13] S. Ulbrich and M. Maurer, “Probabilistic online POMDP decision
making for lane changes in fully automated driving,” in 16th Interna-
tional IEEE Conference on Intelligent Transportation Systems (ITSC
2013). IEEE, oct 2013, pp. 2063–2067.

[14] J. Wei, J. M. Dolan, J. M. Snider, and B. Litkouhi, “A point-based mdp
for robust single-lane autonomous driving behavior under uncertain-
ties,” in Robotics and Automation (ICRA), 2011 IEEE International
Conference on. IEEE, 2011, pp. 2586–2592.

[15] S. Paquet, L. Tobin, and B. Chaib-draa, “Real-time decision making
for large pomdps,” in Conference of the Canadian Society for Com-
putational Studies of Intelligence. Springer, 2005, pp. 450–455.

[16] H. Bai, D. Hsu, and W. S. Lee, “Integrated perception and planning in
the continuous space: A POMDP approach,” The International Journal
of Robotics Research, vol. 33, no. 9, pp. 1288–1302, 2014.

[17] K. M. Seiler, H. Kurniawati, and S. P. N. Singh, “An online and
approximate solver for pomdps with continuous action space,” in 2015
IEEE International Conference on Robotics and Automation (ICRA),
May 2015, pp. 2290–2297.

[18] A. Kuefler, J. Morton, T. Wheeler, and M. Kochenderfer, “Imitating
driver behavior with generative adversarial networks,” in Intelligent
Vehicles Symposium (IV), 2017 IEEE. IEEE, 2017, pp. 204–211.

[19] Z. Qiao, K. Muelling, J. M. Dolan, P. Palanisamy, and P. Mudalige,
“Automatically generated curriculum based reinforcement learning for
autonomous vehicles in urban environment,” in Intelligent Vehicles
Symposium (IV), 2018 IEEE. IEEE, 2018, pp. 1233–1238.

[20] D. Sadigh, S. S. Sastry, S. A. Seshia, and A. Dragan, “Information
gathering actions over human internal state,” in Intelligent Robots and
Systems (IROS), 2016 IEEE/RSJ International Conference on. IEEE,
2016, pp. 66–73.

[21] Y. Chen, “Learning-based lane following and changing behaviors for
autonomous vehicle,” Master’s thesis, Carnegie Mellon University,
Pittsburgh, PA, May 2018.

[22] J. Devlin, R. R. Bunel, R. Singh, M. Hausknecht, and P. Kohli,
“Neural program meta-induction,” in Advances in Neural Information
Processing Systems, 2017, pp. 2080–2088.

[23] M. Garnelo, D. Rosenbaum, C. Maddison, T. Ramalho, D. Saxton,
M. Shanahan, Y. W. Teh, D. Rezende, and S. M. A. Eslami, “Con-
ditional neural processes,” in Proceedings of the 35th International
Conference on Machine Learning, ser. Proceedings of Machine Learn-
ing Research, J. Dy and A. Krause, Eds., vol. 80. Stockholmsmssan,
Stockholm Sweden: PMLR, 10–15 Jul 2018, pp. 1704–1713.

[24] NGSIM, “U.S. Department of Transportation, NGSIM - Next genera-
tion simulation,” http://www.ngsim.fhwa.dot.gov, 2007.

