
Graph-Structured Visual Imitation

Maximilian Sieb*, Zhou Xian*, Audrey Huang, Oliver Kroemer, Katerina Fragkiadaki
Carnegie Mellon University

{msieb, xianz1, audreyh, okroemer, kfragki2}@andrew.cmu.edu

Abstract: We cast visual imitation as a visual correspondence problem. Our
robotic agent is rewarded when its actions result in better matching of relative
spatial configurations for corresponding visual entities detected in its workspace
and the teacher’s demonstration. We build upon recent advances in Computer
Vision, such as human finger keypoint detectors, object detectors trained on-the-
fly with synthetic augmentations, and point detectors supervised by viewpoint
changes [1] and learn multiple visual entity detectors for each demonstration with-
out human annotations or robot interactions. We empirically show that the pro-
posed factorized visual representations of entities and their spatial arrangements
drive successful imitation of a variety of manipulation skills within minutes, us-
ing a single demonstration and without any environment instrumentation. It is
robust to background clutter and can effectively generalize across environment
variations between demonstrator and imitator, greatly outperforming unstructured
non-factorized full-frame CNN encodings of previous works [2].

Keywords: Imitation learning, Robotic manipulation, Reinforcement learning

1 Introduction

Humans learn skills by watching other humans [3]. The ability to learn from observation —called
visual imitation [4] or third-person imitation [5]— has always been a much-desired goal in artifi-
cial intelligence as a means of quickly programming agents in an intuitive manner, as opposed to
hard-coding their behaviors. Visual imitation requires fine-grained understanding of the demonstra-
tor’s visual scene and its changes over time. The imitator then will use its own embodiment and
dynamics to cause a similar change in its own environment. Visual imitation then boils down to
learning a visual similarity function between the demonstrator’s and imitator’s environments, whose
maximization—via the imitator’s actions—would result in correct skill imitation. This similarity
function determines which aspects of the visual observations are relevant to reproducing the demon-
strated skill, i.e., it defines what to imitate and what to ignore [6].

We propose hierarchical graph video representations, called Visual Entity Graphs (VEGs), where
nodes represent visual entities (objects, parts or points) tracked in space and time, and edges
represent their relative 3D spatial arrangements. Our video graph encoding is based on the
observation that the appearance of the scene in some level of abstraction (objects, parts or points)
remains constant over time, but the spatial arrangements of entities change over time, an observation
which follows directly from the laws of Newtonian physics. The proposed hierarchical visual entity
graphs disentangle the “what” and “where” of the scene in multiple levels of abstraction: nodes
represent visual entities that persist over time, and edges within each graph represent their relative
3D spatial arrangements that may change over time. For each pair of timesteps, we build two VEGs,
one for the demonstrator and one for the imitator. Their nodes are in one-to-one correspondence,
as shown in Figure 1. Our imitation reward function then measures agreement of the relative
spatial configurations between corresponding node pairs, and guides reinforcement learning of
manipulation tasks from a single video demonstration using a handful of real-world interactions.

Under the proposed VEG encoding, visual imitation boils down to learning to detect corresponding
visual entities (objects, parts, or points) between the demonstrator’s and imitator’s environments.

* Indicates equal contribution. This work was partly funded by the Sony Corporation. Maximilian Sieb was
supported by the German Academic Exchange Service, the Ulderup Foundation and the German Academic
Scholarship Foundation during the course of this research.

3rd Conference on Robot Learning (CoRL 2019), Osaka, Japan.

Figure 1: Graph-structured visual imitation. We show the VEGs for a human demonstration and
robot imitation for two timesteps. Corresponding nodes in the human demonstration (left) and robot
imitation (right) share the same color. The graphs are hierarchical. Edges exist between object,
robot and human hand nodes and point feature nodes, and are added and deleted dynamically over
time based on motion saliency, as shown in the figure with solid and dashed lines, respectively. Our
graph representation is robust to viewpoint variation between demonstrator and executor, and can
handle cluttered backgrounds, as illustrated in the figure.

This requires fine-grained visual understanding of both demonstrator’s and imitator’s environments.
The challenge in this visual parsing problem is that objects used by the demonstrator are often not
included in the labelled image or object categories of ImageNet [7] and MS-COCO [8] datasets,
making off-the-shelf pre-trained object-detectors less useful. We instead opt for scene-specific self-
supervised detectors for points and objects. We use self-supervised point visual feature detectors
trained by viewpoint changes, and visual detectors of objects and parts trained from synthetically
generated images that augment a video at hand. Lastly, we also use human hand keypoint detectors
to parse the demonstrator’s hand trajectories. The proposed scene-conditioned visual entity detec-
tors establish correspondences between the demonstrator’s and imitator’s workspaces, despite dif-
ferences in occlusion patterns, viewpoint changes or robot-human body visual discrepancies (Figure
1). We use the resulting reward function for trajectory optimization [9], and show that it can imitate
a single human demonstration from a handful of real world trials on a Baxter robot.

In summary, our contributions are as follows: i) We propose a what-where hierarchical graph visual
encoding for visual correspondence estimation. ii) We propose scene-specific point and object visual
detectors, as well as human hand detectors. To the best of our knowledge, this is the first work that
uses human finger visual detectors as opposed to environment instrumentation [10] to track the
demonstrator’s hand for visual imitation learning of object manipulations. iii) We imitate using a
single demonstration, without any robot random exploration as in [11, 4], or any data of the robot
performing the task as in [2]. We do so without ever having access to expert actions. iv) We show
imitation results on a real robotic platform.

We compare our proposed representation against full-frame image encodings of previous works
[2, 11] that do not use a what-where decomposition during matching. Our experiments suggest they
require a very large number of video examples of humans and robots executing the task to acquire
generalization abilities similar to our method. They fail to imitate the demonstrated skill most of the
times, as we show in our experiments. When humans imitate fellow humans, they are equipped with
excellent visual detectors, visual feature extractors, and motion estimators as opposed to learning
those from scratch for every new task. We opt for a similar transfer of machine vision knowledge
during imitation for robotic agents.

Our code and accompanying videos are included in the supplementary materials.

2 Related Work

Visual imitation learning. Imitation learning addresses the problem of learning skills by observ-
ing expert demonstrations [6]. However, most previous approaches assume that expert demonstra-
tions are given in the workspace of the agent, (e.g., through kinesthetic teaching or teleoperation
[12, 13]) and the actions/decisions of the expert can be imitated directly [14]. Imitating humans
based on visual information is much more challenging due to the difficult visual inference needed
for fine-grained activity understanding [5]. In this case, a mapping between observations in the
demonstrator space to observations in the imitator space is required and is essential for successful

2

imitation [15]. Numerous works bypass the difficult perception problem by using special instrumen-
tation of the environment, such as AR tags, to read off object and hand 3D locations and poses dur-
ing video demonstrations, and use rewards based on known 3D object goal configurations [16, 17].
Other works use hand-designed reward detectors that work only in restrictive scenarios [18]. Direct
matching of pixel intensities is not a meaningful measure of similarity [19] as it is easily spoiled by
difference in viewpoints, human body versus robot body parts, illumination changes, or changes in
object poses.

Recent approaches to attempt instead to learn such visual similarity by training and matching whole
image feature embeddings directly, and avoid explicit extraction of the scene structure in terms
of objects and their 3D poses. Numerous objectives have been proposed to learn full image or
image sequence convolutional image embeddings, such as multiview invariant and time-contrastive
objectives in [2, 20], forward and inverse dynamics model learning in [4, 21], or reconstruction and
temporal prediction objectives in [22, 23]. Work of [24] provides an overview of common objectives
and inductive biases for state representation learning. However, the data used to train such image
embeddings are both human video demonstrations as well as robot executions of the task, or parts
of the task, so that the neural network embedding function learns to be robust to the presence of
the robotic gripper or human hand. Yet, the requirement of the robot executing the task beats the
purpose of visual imitation, and brings it closer to kinesthetic teaching. The same holds for recent
work of [25], which learns an image encoding via frame prediction using robot’s execution data,
albeit the paper title. Instead, learning our graph video encoding does not require robot executions.

Similar to our work, work of [26] also uses 3D spatial object arrangements to guide visual imitation
of manipulation tasks. However, they do not consider human keypoints or any entities finer than
objects, which suggests their method can only imitate simple translation tasks, where object pose is
not relevant (e.g., they cannot handle rotation). Work of [27] utilizes human pose detectors to imitate
3D human motion extracted from YouTube videos of acrobatic activities in simulation. However, no
contact with objects is considered, and imitation of human motion only happens in a simulated agent.
In comparison, we do not imitate motion alone, but rather, we carry out a desired manipulation of
the environment. Human hands are part of the graph we attempt to create, but so are the surrounding
objects in the scene.

Scene graphs, object-centric reinforcement learning, and relational neural networks. Repre-
senting a visual observation in terms of objects or parts and their pairwise relations has been found
beneficial for generalization of action-conditioned scene dynamics [28, 29, 30], body motion and
person trajectory forecasting [31, 32], and reinforcement learning [33]. Such graph-encodings have
also been used to learn a model of the agent [34], and use it for model-predictive control in non-
visual domains. Work of Devin et al. [35] uses pretrained object detectors and learns attention over
the obtained detection boxes, which are incorporated as part of the state representation for policy
learning. The graph representation we propose in this work not only employs explicit attention to
relevant objects, parts, and points, but also preserves their correspondence in time, i.e., the detectors
bind with specific objects, parts, points over time.

3 Formulation

We encode a demonstration video of length T provided by the human expert and an imitation video
of the same length T provided by the imitator in terms of two graph sequences GtD = {Vt

D, EtD}, t =
1 · · ·T and GtI = {Vt

I , EtI}, t = 1 · · ·T , respectively. We omit the subscript D or I when either it
is clear from the context or it is not important to which workspace we are referring to. A node Vt

i
corresponds to the ith visual entity and its respective 3D (X,Y, Z) world coordinate xt

i, and an edge
Et(i,j) correspond to a 3D spatial relation between two node entities to be preserved during imitation.
We define a visual entity node Vt

i to be any object, object part, or point that can be reliably detected in
the demonstrator’s and imitator’s workspace. All nodes are in one-to-one correspondence between
the demonstrator and imitator graph, as shown in Figure 1. An entity can dynamically appear and
disappear over time. We only require each entity associated with the demonstration sequence to
have a corresponding entity in the imitation sequence.

We consider three types of nodes: object nodes Vo, point nodes Vp, and hand/robot nodes Vh. An
object node represent any rigid or non-rigid object that constitutes a separate physical entity in the
world, while a point node represents any 3D physical point on an object, as seen in Figure 1. Hand

3

Figure 2: Detecting visual entities. We use human hand keypoint detectors, multi-viewpoint feature
learning, and synthetic image generation for on-the-fly object detector training from only a few
object mask examples. Using a manually designed mapping between the human hand and the robot,
the visual entity detectors can effectively bridge the visual gap between demonstrator and imitator
environment, are robust to background clutter, and generalize across different object instances.

and robot nodes represent the human wrist 3D location, and the robotic gripper center 3D location,
respectively. We do not consider edges between point nodes. Rather, each point node is connected
only to the object node it is part of. In that sense, our graphs are hierarchical.

Our cost function at each time step t measures visual dissimilarity across the demonstrator and
imitator graphs GtD and GtI in terms of relative spatial arrangements of corresponding entity pairs, as
follows:

C(GtD,GtI) =
∑

i,j,i<j

w(Et(i,j)) · att(E
t
(i,j)) ·

∥∥∥(xt
D,i − xt

D,j

)
−
(
xt
I,i − xt

I,j

)∥∥∥, (1)

where att(Et(i,j)) ∈ {0, 1} is a binary attention function that determines whether a particular edge
is present depending on the motion of the corresponding nodes, and w(Et(i,j)) ∈ R denotes edge
weights. We tie weights across all edges of the same type, namely, object-hand edges, object-object
edges and object-point edges. They are hyper-parameters of our framework and we set them them
empirically. Learning to adjust those weights per task is an interesting and straightforward direction
which wee leave for future work.

3.1 Detecting Visual Entities
We define a visual entity to be any object, object part, or point that can be reliably detected in the
demonstrator’s and imitator’s workspace. For imitating fine-grained manipulation of an object, infer-
ring the translation of its bounding box is not enough, rather, the object’s 3D pose and deformation
needs to be inferred and imitated. A central design choice in our work is using point feature detec-
tors and motion of the detected points to infer the object’s change of pose between demonstrator’s
and imitator’s environments, without additional learning, as opposed to training object appearance
features extracted within the object’s bounding box to encode object change pose or deformation.
We opt for what-where decomposition of the object’s appearance, as opposed to whole object box
embedding learning.

We assume no access to human annotations that would mark relevant corresponding entities across
demonstrator’s and imitator’s environments. We instead train scene-specific object and point detec-
tors for entities that can be reliably recognized across demonstrator’s and imitator’s workspaces, and
human hand keypoint detectors for tracking the human hand. The point detector re-samples points at
each step randomly on detected area of objects in demonstration and computes corresponding points
in the imitator’s view, and is thus robust to partial occlusions. In case of full occlusion, our hand and

4

object detectors use last known location in the past. Thus, our detection pipeline possesses certain
robustness to object occlusions and possible detector failures.

Human hand keypoint detectors. We make use of state-of-the-art hand detectors of Simon et
al. [36] to detect human finger joints, and obtain their 3D locations using a D435 Intel RealSense
RGB-D camera. We rely on forward kinematics and a calibrated camera with respect to the robots
coordinate frame to detect the 3D locations of the tips of the robots end-effector. We map the
finger tips of a Baxter robot’s parallel-jaw gripper to the demonstrator’s thumb and index finger
tips. We detect grasp and release actions by thresholding the distance between the two finger tips of
the human during the demonstration of the task. End-to-end approaches such as [37] rely on large
amounts of data to train hand-to-robot correspondences, and are therefore prohibitive in few-shot
learning scenarios, whereas our method works thanks to the thousands of labelled hand examples
the human hand detectors of [36] has seen.
Point feature detectors from cross-view correspondence. An agent that has access to its egomo-
tion and observes a static scene from multiple views can infer visual correspondences across views
through triangulation [38]. We use these self-generated visual correspondences to drive visual met-
ric learning of deep feature descriptors that are robust to changes in the object pose or camera
viewpoint. After training, we match such point features across imitator’s and demonstrator’s envi-
ronments to establish correspondence [1]. We collect multiview image sequences of the workspace
of the robotic agent in an automatic fashion: we use an RGB-D camera attached to the robot’s end-
effector and move the camera while following random trajectories that cover many viewpoints of
the scene and at various distances from the objects. We use the robot’s forward kinematics model to
estimate the camera poses via hand-eye calibration, which, in combination with the known intrinsic
parameters and aligned depth images, allows for robust 3D-reconstruction of the scene and provides
accurate pixel correspondences across different viewpoints. The complete feature learning setup is
illustrated in Figure 2(b). During training, we randomly sample image pairs and generate a number
of matching and non-matching pixel pairs. We then minimize pixel-wise contrastive loss [39, 40],
which forces matching pixels to be close in the learned feature spaces, while maintaining a distance
margin for non-matching pixels. This point feature learning pipeline produces a mapping from an
RGB image to dense per-point descriptors. Even though supervision comes via within-instance cor-
respondences, generalization across different objects is expected due to the limited capacity of the
network model. This enables our VEG representation with powerful generalizability to novel ob-
jects unseen in demonstration, as shown in Figure 3b. We use ResNet-34 as our backbone, and learn
a 4-dimensional point embedding vector for each pixel in the image.
Synthetic data augmentation. We use background subtraction to propose object 2D segmentation
masks, and train a visual detector for each mask using synthetic data augmentation, as shown in Fig-
ure 2. Specifically, we create a large synthetic dataset by translating, scaling, rotating and changing
the pixel intensity of the extracted RGB segmentation masks. The object masks often partially over-
lap with one another in the synthetic images. These overlaps help the agent learn to detect amodal
object boxes under partial occlusions. Since we generate such images, we automatically know the
groundtruth bounding box and mask that correspond to each object in each image. We then finetune
a Mask R-CNN object detector [41]—initialized from weights learned under the object detection
and segmentation task in MS-COCO—to predict boxes and masks for the synthetically generated
images.

3.2 Motion Saliency for Dynamic Graph Construction
We use similar motion saliency heuristics to decide dynamically over time what edges (i, j) to
consider in our imitation cost function of Eq. 1, by setting att(Et,(i,j)) = 1 to denote edge presence.
We define an anchor object to be any object in motion, and in the case of no moving objects—e.g.,
when the demonstrator is simply reaching towards an object—we define the anchor object to be the
closest-in-the-future moving object. We consider edges between the anchor object node and all other
corresponding object nodes in the scene, as well as the hand/robot node, and all point nodes that
belong to the anchor object. This type of motion attention is a well-established principle that drives
human attention when imitating other humans. Work of [42] uses AR markers to estimate such task
relevance based on motion attention. We simply use our object detection network to track objects in
time to infer movement between the different objects in the scene.

3.3 Policy Learning with Visual Entity Graphs
Our goal is the robot to imitate the intended object manipulation task from a single human visual
demonstration. We formulate this as a reinforcement learning problem, where at each time step

5

(a) Pushing

(b) Pouring (c) Stacking and cost comparison

Figure 3: Examples of the imitation tasks we consider. (a): pushing, (b): pouring (c): stacking and
cost comparison of the proposed VEG cost function and the TCN embedding cost [2]. The
VEG based cost curves are highly discriminative of the imitation quality for the stacking task, in
contrast to TCN. Costs are scaled between [0, 1] by dividing by the maximum absolute value of
the respective feature space for visualization purposes. correct end is simply repeating the last
frame of a successful imitation, showing our lost function serves well as an attractor towards the
final goal configuration. Note that correct and cluttered overlap due to both having zero
VEG cost, showing that our method is robust to background clutter.

the cost is given by Eq. 1. We use PILQR [9] to minimize the cost function in Eq. 1, a state-
of-the-art trajectory optimization method that combines a model-based linear quadratic regulator
with path integral policy search to better handle non-linear dynamics. We learn a time-dependent
policy πt(ut|xt; θ) = N (Ktxt + kt,Σt) , where the time-dependent control gains are learned by
alternating model-based and model-free updates, where the dynamical model p(xt|,xt−1,ut) of
the a priori unknown dynamics is learned during training time. The actions u are defined as the
changes in the robot end-effector’s 3D position and orientation about the vertical axis, giving a 4-
dimensional action space. The state representation—over which we learn linear dynamics— consists
of the joint angles, end-effector position, and the graph configuration of the scene, concatenated into
one vector. For N objects, this featurization scheme results in a 3 + njoints +

∑Nanchors

i=1 (Ntotal −
1) ∗ 3 +

∑Nanchors

i=1 dim(φ) dimensional state space, where njoints denotes the number of joints
of the robot and φ encodes the chosen node feature for a visual entity in the graph. In our case,
we perform uniform sampling of node-specific point features at each time step, and we directly
incorporate the averaged pairwise distance of all pixels across demonstration and imitation into the
state space, yielding dim(φ) = 1. We further use behavioral cloning to infer opening and closing
of the robot gripper by thresholding the distance between the human index finger and thumb during
the demonstration.

4 Experiments

We test our visual imitation framework on a Baxter robot. We consider the following tasks to imitate:
i) Pushing: The robot needs to push an object while following specific trajectories. ii) Stacking:
The robot needs to pick up an object, put it on top of another one and release the object. iii) Pouring:
The robot needs to pour liquid from one container into another.

6

For every task, we train corresponding object detectors using synthetic data augmentation and point
features using multi-view self-supervised feature learning. Note that both processes are fully auto-
mated and do not require human demonstrations or robot interactions. Rather, it suffices to use
a camera that is setup to move around the scene in a prerecorded fashion

We compare our method against time-contrastive networks (TCN) of Sermanet et al. [2]. We are
not aware of other instrumentation-free methods that have attempted single shot imitation of ma-
nipulation skills, without assuming extensive pre-training with random actions for model learning
[11]. TCN trains an image embedding network using a triplet ranking loss [43], ensuring that tempo-
rally near pairs of frames are closer to one another in embedding space than any temporally distant
pairs of frames. In this way, the feature extractor focuses on the dynamic part of the demonstration
video. We implemented the TCN baseline using the same architecture as in [2], which consists of
an Inception-v3 model [44], pretrained on ImageNet, up to the Mixed 5d layer which is then fol-
lowed by two convolutional layers, a spatial softmax layer and a fully-connected layer. The network
finally outputs a 32-dimensional embedding vector for the input image. For each imitation task,
we train a corresponding TCN using 10 video sequences, 5 human demonstrations and 5 robot ex-
ecutions while performing tasks with relevant objects and environment configuration, together with
the human demonstration we provide for learning the policy with VEG. With respect to the policy
learning with TCN, we use a cost function of the form α||zt −wt||22 + β

√
γ + ||zt −wt||22, where

we choose γ = 10−5, α = 1.0, and β = 0.001. Here, zt and wt denote the state embedding at each
time step for the imitation and demonstration, respectively. While our method uses only a single
human demonstration, it does require training object detection and point-feature networks, although
both the data synthesizing for the object detector and the data collection for the point-feature net-
work are fully automated. To ensure a fair comparison, we put the same amount of time effort into
data collection for training the TCN baseline.

Our experiments aim to compare the proposed graph structured encoding against convolutional im-
age encodings of previous work [2] for imitating skills, evaluate the robustness of our method against
detectors’ failures and occlusions, evaluate its robustness to variability in the objects’ spatial con-
figurations & background clutter and its generalizability across objects with different shapes and
textures.

Reward Shaping. In Figure 3c, we show reward curves for our method and the TCN baseline
for each robot execution, measuring how well the robot is imitating the human demonstration. The
horizontal axis denotes time and the vertical axis denotes imitation cost. The proposed graph-based
cost function correctly identifies all correct robot imitations, despite heavy background clutter in the
5th row, and correctly signals the wrong imitation segments in 2nd and 3rd rows. In contrast, the
baseline TCN cost curves are non-discriminative. Highly discriminative cost curves are critical for
effective policy learning, which we discuss right below.

Task - Pushing. In this task, the robot needs to push the yellow octagon towards the purple ring
following the trajectory showed by the demonstrator (Figure 3a). We evaluate three task variations:
i) straight-line: Pushing the object following a straight line. ii) straight-line-grasped: Moving
the yellow octagon along a straight line while it is being grasped. iii) direction-change: Pushing
the yellow octagon along a trajectory with a sharp direction change of 90 degrees. Imitating such
direction change requires the robot to change the point of contact with the object during pushing.
For straight-line pushing, we attempted imitation in two different environments, one with a yellow
octagon block, and one with a smaller orange square block to evaluate the generalization capability
of our graph-based framework across objects with different geometries. Essentially, we substitute
the object detector for the small orange square block in the second case for the detector of the yellow
octagon block.

Table 1: Success rates for the pushing and stacking tasks.

7

In order to test the robustness of VEG to variations in the objects’ spatial configurations, for the
basic straight-line pushing task, we randomly perturb the starting configurations of all the objects
and the robot’s end-effector within a norm ball of diameter 6cm, and run the policy training 5 times
for each object. We consider the task solved if the robot is able to push the object within 1cm
of the desired target position. We report the success rate for each case in Table 1(a). The robot
successfully solves the task for all 5 runs for the original yellow octagon, and for 4 runs out of
5 for the smaller orange square, demonstrating robustness against perturbation in objects’ spatial
configuration and strong generalization over objects with novel geometries. TCN failed in almost
all runs, and in case for simple straight-line pushing, it failed to push the object into the target region
even with significantly more iterations. For the straight-line-grasped task, the robot is forced to
keep the gripper closed. Hence, the robot cannot simply hard-imitate the hand trajectory, but rather
needs to follow a trajectory that differs from the human demonstrator to successfully solve the task.
In this sense, the hand trajectory of the human serves as a weak guiding signal during the policy
learning. The robot solves both straight-line-grasped and direction-change pushing after 8 iterations
of trajectory optimization. Note that we increased the hand edge weight w to account for stronger
guidance of the hand during the direction-change task. TCN fails to solve any of the latter two
tasks, generally performing poorly in tasks where the robot does not have continuous contact with
the object.
Task - Stacking. In this task, the robot needs to reach and grasp the yellow octagon and position
it on top of the purple ring, as shown in the 1st and 4th rows in Figure 3c. As in our pushing
experiments, we randomize the starting configurations of the scene and the robot, and evaluate
our method on this augmented setup for stacking both yellow octagon and the orange square. We
report the results in Table 1(b). VEGs enables robust policy learning for the yellow octagon, and
shows generalization towards objects with novel geometries that have not been observed during
demonstration. Being flatter than the octagon, the orange square is much harder to grasp, yet the
robot is able to learn the skill successfully most of the times. The TCN baseline is not able to learn
a successful grasping action, which requires precise and coordinated end-effector movement. We
then evaluate TCN on a simpler task: stacking an already-grasped yellow octagon (simple-stacking
in Table 1(b)). The TCN performs reasonably well on this task, demonstrating its ability to imitate
smooth trajectories, but having difficulty to imitate fine-grained grasping actions.
Task - Pouring. In this task, the robot needs to simultaneously translate and rotate the can to reach
the desired orientation above the mug, as shown in 2nd row in Figure 3b. Using the same pouring
demonstration, we additionally evaluate generalizability of VEGs by using a novel object with a
different shape and texture during imitation (Figure 3b 3rd row). Trajectory optimization converges
after 10 iterations, and the robot solves the task for all objects. The TCN baseline is able to move
the can along the trajectory, but fails to rotate it to the right configuration for successful pouring.
Discussion/Limitations. Imitating the human hand critically improves performance during reach-
ing and grasping motions in human demonstrations, which cannot be easily inferred from any object
motion. While our method can deal with partial occlusions during imitation, we currently do not
attempt tracking of fully occluded objects over a prolonged period of time. In light of this, a clear av-
enue for future work is learning to track through occlusions, e.g., by using temporal visual memory
from which the reward graph can be extracted, as opposed to relying on visual frames only. Active
vision can also be used both to undo occlusions during imitation, and to observe the demonstrator
from the most convenient viewpoint for the imitator. Another limitation is the lack of any prior
model information, which would accelerate the policy search. An interesting avenue for future work
would be learning a model over the motion of such visual entities, and use it as a prior for better
exploration during policy search.

5 Conclusion

We proposed encoding video frames in terms of visual entities and their spatial relationships, and we
used this encoding to compute a perceptual cost function for visual imitation. Between end-to-end
learning and engineered representations, we combine the best of both by incorporating important
inductive biases regarding object fixation and motion saliency in our robot imitator. Experimental
results on a real robotic platform demonstrate the generality and flexibility of our approach. Quoting
the authors of [45], “just as biology uses nature and nurture cooperatively, we reject the false choice
between “hand-engineering” and “end-to-end” learning, and instead advocate for an approach which
benefits from their complementary strengths.”

8

References
[1] P. Florence, L. Manuelli, and R. Tedrake. Dense object nets: Learning dense visual object descriptors by

and for robotic manipulation. Conference on Robot Learning, 2018.

[2] P. Sermanet, C. Lynch, J. Hsu, and S. Levine. Time-Contrastive Networks: Self-Supervised Learning from
Multi-view Observation. IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion Workshops, 2017-July:486–487, 2017. ISSN 21607516. doi:10.1109/CVPRW.2017.69.

[3] K. Y. Learning from examples: Imitation learning and emerging cognition. In Humanoid Robotics and
Neuroscience: Science, Engineering and Society., 2015.

[4] D. Pathak, P. Mahmoudieh, G. Luo, P. Agrawal, D. Chen, Y. Shentu, E. Shelhamer, J. Malik, A. A. Efros,
and T. Darrell. Zero-shot visual imitation. In ICLR, 2018.

[5] B. C. Stadie, P. Abbeel, and I. Sutskever. Third-person imitation learning. CoRR, abs/1703.01703, 2017.
URL http://arxiv.org/abs/1703.01703.

[6] S. Schaal. Is imitation learning the route to humanoid robots? 3(6):233–242, 1999.
URL http://www-clmc.usc.edu/publications/S/schaal-TICS1999.pdf;http://
www-clmc.usc.edu/publications/S/schaal-TICS1999-rep.pdf.

[7] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical
Image Database. In CVPR09, 2009.

[8] T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick, J. Hays, P. Perona, D. Ramanan, P. Dollár,
and C. L. Zitnick. Microsoft COCO: common objects in context. CoRR, abs/1405.0312, 2014. URL
http://arxiv.org/abs/1405.0312.

[9] Y. Chebotar, K. Hausman, M. Zhang, G. Sukhatme, S. Schaal, and S. Levine. Combining Model-Based
and Model-Free Updates for Trajectory-Centric Reinforcement Learning. 2017. ISSN 00308870. doi:
10.1016/j.aqpro.2013.07.003. URL http://arxiv.org/abs/1703.03078.

[10] T. Schmidt, R. Newcombe, and D. Fox. DART: Dense Articulated Real-Time Tracking. (1), 2015.
ISSN 0094243X. doi:10.15607/rss.2014.x.030. URL http://www.roboticsproceedings.
org/rss10/p30.pdf.

[11] A. Nair, D. Chen, P. Agrawal, P. Isola, P. Abbeel, J. Malik, and S. Levine. Combining self-supervised
learning and imitation for vision-based rope manipulation. CoRR, abs/1703.02018, 2017. URL http:
//arxiv.org/abs/1703.02018.

[12] A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne. Imitation learning: A survey of learning methods.
ACM Comput. Surv., 50(2):21:1–21:35, Apr. 2017. ISSN 0360-0300. doi:10.1145/3054912. URL http:
//doi.acm.org/10.1145/3054912.

[13] B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of robot learning from demonstration.
Robot. Auton. Syst., 57(5):469–483, May 2009. ISSN 0921-8890. doi:10.1016/j.robot.2008.10.024. URL
http://dx.doi.org/10.1016/j.robot.2008.10.024.

[14] T. Zhang, Z. McCarthy, O. Jow, D. Lee, K. Goldberg, and P. Abbeel. Deep imitation learning for complex
manipulation tasks from virtual reality teleoperation. CoRR, abs/1710.04615, 2017. URL http://
arxiv.org/abs/1710.04615.

[15] C. L. Nehaniv and K. Dautenhahn. Imitation in animals and artifacts. chapter The Correspondence
Problem, pages 41–61. MIT Press, Cambridge, MA, USA, 2002. ISBN 0-262-04203-7. URL http:
//dl.acm.org/citation.cfm?id=762896.762899.

[16] A. Rajeswaran, V. Kumar, A. Gupta, J. Schulman, E. Todorov, and S. Levine. Learning complex dexterous
manipulation with deep reinforcement learning and demonstrations. CoRR, abs/1709.10087, 2017. URL
http://arxiv.org/abs/1709.10087.

[17] O. Kroemer and G. S. Sukhatme. Learning relevant features for manipulation skills using meta-level
priors. CoRR, abs/1605.04439, 2016. URL http://arxiv.org/abs/1605.04439.

[18] K. Mülling, J. Kober, O. Kroemer, and J. Peters. Learning to select and generalize striking movements in
robot table tennis. International Journal of Robotics Research, 32(3):263–279, 2013.

[19] J. Johnson, A. Alahi, and F. Li. Perceptual losses for real-time style transfer and super-resolution. CoRR,
abs/1603.08155, 2016. URL http://arxiv.org/abs/1603.08155.

9

http://dx.doi.org/10.1109/CVPRW.2017.69
http://arxiv.org/abs/1703.01703
http://www-clmc.usc.edu/publications/S/schaal-TICS1999.pdf; http://www-clmc.usc.edu/publications/S/schaal-TICS1999-rep.pdf
http://www-clmc.usc.edu/publications/S/schaal-TICS1999.pdf; http://www-clmc.usc.edu/publications/S/schaal-TICS1999-rep.pdf
http://arxiv.org/abs/1405.0312
http://dx.doi.org/10.1016/j.aqpro.2013.07.003
http://dx.doi.org/10.1016/j.aqpro.2013.07.003
http://arxiv.org/abs/1703.03078
http://dx.doi.org/10.15607/rss.2014.x.030
http://www.roboticsproceedings.org/rss10/p30.pdf
http://www.roboticsproceedings.org/rss10/p30.pdf
http://arxiv.org/abs/1703.02018
http://arxiv.org/abs/1703.02018
http://dx.doi.org/10.1145/3054912
http://doi.acm.org/10.1145/3054912
http://doi.acm.org/10.1145/3054912
http://dx.doi.org/10.1016/j.robot.2008.10.024
http://dx.doi.org/10.1016/j.robot.2008.10.024
http://arxiv.org/abs/1710.04615
http://arxiv.org/abs/1710.04615
http://dl.acm.org/citation.cfm?id=762896.762899
http://dl.acm.org/citation.cfm?id=762896.762899
http://arxiv.org/abs/1709.10087
http://arxiv.org/abs/1605.04439
http://arxiv.org/abs/1603.08155

[20] D. Dwibedi, J. Tompson, C. Lynch, and P. Sermanet. Learning actionable representations from visual
observations. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 1577–1584. IEEE, 2018.

[21] P. Agrawal, A. Nair, P. Abbeel, J. Malik, and S. Levine. Learning to poke by poking: Experiential learning
of intuitive physics. CoRR, abs/1606.07419, 2016. URL http://arxiv.org/abs/1606.07419.

[22] C. Finn, X. Y. Tan, Y. Duan, T. Darrell, S. Levine, and P. Abbeel. Learning visual feature spaces for
robotic manipulation with deep spatial autoencoders. CoRR, abs/1509.06113, 2015. URL http://
arxiv.org/abs/1509.06113.

[23] M. Watter, J. T. Springenberg, J. Boedecker, and M. A. Riedmiller. Embed to control: A locally linear
latent dynamics model for control from raw images. CoRR, abs/1506.07365, 2015. URL http://
arxiv.org/abs/1506.07365.

[24] T. Lesort, N. D. Rodrı́guez, J. Goudou, and D. Filliat. State representation learning for control: An
overview. CoRR, abs/1802.04181, 2018. URL http://arxiv.org/abs/1802.04181.

[25] O. Rybkin, K. Pertsch, A. Jaegle, K. G. Derpanis, and K. Daniilidis. Unsupervised learning of sen-
sorimotor affordances by stochastic future prediction. CoRR, abs/1806.09655, 2018. URL http:
//arxiv.org/abs/1806.09655.

[26] M. Sieb and K. Fragkiadaki. Data Dreaming for Object Detection: Learning Object-Centric State Rep-
resentations for Visual Imitation. 2018 IEEE-RAS 18th International Conference on Humanoid Robots
(Humanoids), pages 1–9, 2019. ISSN 21640580. doi:10.1109/humanoids.2018.8625007.

[27] X. B. Peng, A. Kanazawa, J. Malik, P. Abbeel, and S. Levine. Sfv: Reinforcement learning of physical
skills from videos. ACM Trans. Graph., 37(6), Nov. 2018.

[28] K. Kansky, T. Silver, D. A. Mély, M. Eldawy, M. Lázaro-Gredilla, X. Lou, N. Dorfman, S. Sidor, D. S.
Phoenix, and D. George. Schema networks: Zero-shot transfer with a generative causal model of intuitive
physics. CoRR, abs/1706.04317, 2017.

[29] K. Fragkiadaki, P. Agrawal, S. Levine, and J. Malik. Learning visual predictive models of physics for
playing billiards. CoRR, abs/1511.07404, 2015. URL http://arxiv.org/abs/1511.07404.

[30] P. W. Battaglia, R. Pascanu, M. Lai, D. J. Rezende, and K. Kavukcuoglu. Interaction networks for learning
about objects, relations and physics. CoRR, abs/1612.00222, 2016. URL http://arxiv.org/abs/
1612.00222.

[31] A. Jain, A. R. Zamir, S. Savarese, and A. Saxena. Structural-rnn: Deep learning on spatio-temporal
graphs. CoRR, abs/1511.05298, 2015. URL http://arxiv.org/abs/1511.05298.

[32] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and S. Savarese. Social lstm: Human
trajectory prediction in crowded spaces. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 961–971, June 2016. doi:10.1109/CVPR.2016.110.

[33] C. Diuk, A. Cohen, and M. L. Littman. An object-oriented representation for efficient reinforcement
learning. In Proceedings of the 25th International Conference on Machine Learning, ICML ’08, pages
240–247, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-205-4. doi:10.1145/1390156.1390187.
URL http://doi.acm.org/10.1145/1390156.1390187.

[34] A. Sanchez-Gonzalez, N. Heess, J. T. Springenberg, J. Merel, M. Riedmiller, R. Hadsell, and P. Battaglia.
Graph networks as learnable physics engines for inference and control. arXiv preprint arXiv:1806.01242,
2018.

[35] C. Devin, P. Abbeel, T. Darrell, and S. Levine. Deep Object-Centric Representations for Generalizable
Robot Learning. 2017. URL http://arxiv.org/abs/1708.04225.

[36] T. Simon, H. Joo, I. Matthews, and Y. Sheikh. Hand keypoint detection in single images using multiview
bootstrapping. In CVPR, 2017.

[37] S. Li, X. Ma, H. Liang, M. Görner, P. Ruppel, B. Fang, F. Sun, and J. Zhang. Vision-based Teleoperation
of Shadow Dexterous Hand using End-to-End Deep Neural Network. URL https://arxiv.org/
pdf/1809.06268.pdf.

[38] R. Hartley and A. Zisserman. Multiple view geometry in computer vision. Cambridge university press,
2003.

10

http://arxiv.org/abs/1606.07419
http://arxiv.org/abs/1509.06113
http://arxiv.org/abs/1509.06113
http://arxiv.org/abs/1506.07365
http://arxiv.org/abs/1506.07365
http://arxiv.org/abs/1802.04181
http://arxiv.org/abs/1806.09655
http://arxiv.org/abs/1806.09655
http://dx.doi.org/10.1109/humanoids.2018.8625007
http://arxiv.org/abs/1511.07404
http://arxiv.org/abs/1612.00222
http://arxiv.org/abs/1612.00222
http://arxiv.org/abs/1511.05298
http://dx.doi.org/10.1109/CVPR.2016.110
http://dx.doi.org/10.1145/1390156.1390187
http://doi.acm.org/10.1145/1390156.1390187
http://arxiv.org/abs/1708.04225
https://arxiv.org/pdf/1809.06268.pdf
https://arxiv.org/pdf/1809.06268.pdf

[39] T. Schmidt, R. Newcombe, and D. Fox. Self-supervised visual descriptor learning for dense correspon-
dence. IEEE Robotics and Automation Letters, 2(2):420–427, 2017.

[40] C. B. Choy, J. Gwak, S. Savarese, and M. Chandraker. Universal correspondence network. In Advances
in Neural Information Processing Systems, pages 2414–2422, 2016.

[41] K. He, G. Gkioxari, P. Dollár, and R. B. Girshick. Mask R-CNN. CoRR, abs/1703.06870, 2017. URL
http://arxiv.org/abs/1703.06870.

[42] K. H. Lee, J. Lee, A. L. Thomaz, and A. F. Bobick. Effective robot task learning by focusing on task-
relevant objects. 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009,
pages 2551–2556, 2009. doi:10.1109/IROS.2009.5353979.

[43] E. Hoffer and N. Ailon. Deep metric learning using triplet network. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9370
(2010):84–92, 2015. ISSN 16113349. doi:10.1007/978-3-319-24261-3 7.

[44] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the Inception Architecture for
Computer Vision. 2015. ISSN 08866236. doi:10.1109/CVPR.2016.308. URL http://arxiv.org/
abs/1512.00567.

[45] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. F. Zambaldi, M. Malinowski, A. Tac-
chetti, D. Raposo, A. Santoro, R. Faulkner, aglar Gülehre, F. Song, A. J. Ballard, J. Gilmer, G. E. Dahl,
A. Vaswani, K. R. Allen, C. Nash, V. Langston, C. Dyer, N. Heess, D. Wierstra, P. Kohli, M. Botvinick,
O. Vinyals, Y. Li, and R. Pascanu. Relational inductive biases, deep learning, and graph networks. CoRR,
abs/1806.01261, 2018.

11

http://arxiv.org/abs/1703.06870
http://dx.doi.org/10.1109/IROS.2009.5353979
http://dx.doi.org/10.1007/978-3-319-24261-3_7
http://dx.doi.org/10.1109/CVPR.2016.308
http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.00567

A Hyperparameters for Experimental Section

This is a comprehensive list of the hyperparameters used for our experiments. We note that this list
might be non-exhaustive in the sense that we do not list hyperparameters which were copied over
from their respective source implementation or if they are not detrimental to the performance our
method to our knowledge. For example, we refrain from listing parameters such as the number of
Anchor Scales used for training the Mask R-CNN architecture since this can be inferred from their
source implementation.

Pushing Task:

1. Action space: 4-dimensional (XYZ + rotation)
2. Time step length: 0.4 sec
3. Episode length: 30
4. Cost weight hand edges: 1.0 (50.0 for direction-change variant)
5. Cost weight object edges: 1.0
6. Cost weight point edges: 0.0 (not used)
7. Number of rollouts per update cycle: 8
8. Controller gains: XYZ: 0.001, rotation: 0.02

Stacking Task:

1. Action space: 4-dimensional (XYZ + gripper state)
2. Time step length: 0.4 sec
3. Episode length: 30
4. Cost weight hand edges: 1.0
5. Cost weight object edges: 1.0
6. Cost weight point edges: 0.0 (not used)
7. Number of rollouts per update cycle: 8
8. Controller gains: XYZ: 0.001

Pouring Task:

1. Action space: 4-dimensional (XYZ + rotation)
2. Time step length: 0.4 sec
3. Episode length: 20
4. Cost weight hand edges: 1.0
5. Cost weight object edges: 1.0
6. Cost weight point edges: 1.0
7. Number of rollouts per update cycle: 10
8. Controller gains: XYZ: 0.00125, rotation: 0.02

12

	Introduction
	Related Work
	Formulation
	Detecting Visual Entities
	Motion Saliency for Dynamic Graph Construction
	Policy Learning with Visual Entity Graphs

	Experiments
	Conclusion
	Hyperparameters for Experimental Section

