
Maximum Likelihood Path Planning for Fast Aerial
Maneuvers and Collision Avoidance

Ji Zhang, Chen Hu, Rushat Gupta Chadha, and Sanjiv Singh

Abstract— We propose a planning method to enable fast
autonomous flight in cluttered environments. Typically, au-
tonomous navigation through a complex environment requires
a continuous search on a graph generated by a k-connected
grid or a probabilistic scheme. As the vehicle travels, updating
the graph with data from onboard sensors is expensive as is
the search on the graph especially if the paths must be kino-
dynamically feasible. We propose to avoid the online search
to reduce the computational complexity. Our method models
the environment differently in two separate regions. Obstacles
are considered to be deterministically known within the sensor
range and probabilistically known beyond the sensor range.
Instead of searching for the path with the lowest cost (typically
the shortest path), the method maximizes the likelihood to reach
the goal in determining the immediate next step for navigation.
With such a problem formulation, the online method realized
by a trajectory library can determine a path within 0.2-0.3ms
using a single CPU thread on a modem embedded computer.
In experiments, it enables a lightweight UAV to fly at 10m/s in
a cluttered forest environment (see Fig. 1 as an example).

I. INTRODUCTION

The paper aims to solve a path planning problem to
enable fast autonomous flight in complex environments.
The problem remains challenging because planning paths
to avoid obstacles discovered by onboard sensors requires
creating and updating a representation of the environment
that can be searched for kinodynamically feasible paths. The
process is computationally expensive. Since computational
resources available for lightweight aerial vehicles are limited,
we need a method that can guide an aerial vehicle with
low computational complexity. A typical way is to use a
hierarchical approach that separates the planning problem
into two subproblems. The first problem solves a global
planning problem possibly assisted by a heuristic to ensure
the path does not fall into local minima. A second problem
solves a local planning problem that runs in parallel to track
the global path as well as avoid obstacles. This method has
been used successfully in autonomous navigation [1]–[3] but
still requires considerable computation. In this paper, we
propose a method that reduces the computational complexity
considerably such that it can ensure safe flight using very
lightweight computation onboard the aerial vehicle.

The key idea to make the low computational complexity
possible is avoiding the online search. Instead of searching a
graph that is continuously being updated by onboard sensors,
we formulate the planning problem from a likelihood point of

J. Zhang and C. Hu are with Carnegie Mellon University, R. Gupta
Chadha is with Near Earth Autonomy, Inc, and S. Singh is with Carnegie
Mellon University and Near Earth Autonomy, Inc.

Fig. 1. A photo from a flight experiment where our method enables
a lightweight aerial vehicle to maneuver at 10m/s in a cluttered forest
environment. More details regarding the experiment are in Section V-B.

view. The method does not seek the path with the lowest cost
(typically the shortest path) but maximizes the probability
to reach the goal in determining the immediate next step
for execution of the navigation. This is through model-
ing of the configuration space differently in two separate
regions. Obstacles are considered to be deterministically
known within the sensor range as they are perceived by
onboard sensors, and probabilistically known beyond the
sensor range as they are from a prior map. If the prior map
is unavailable, the method can also use a simple heuristic to
guide the navigation. A trajectory library is used to bridge the
probabilities across the sensor range, where the trajectories
are separated into groups. During the navigation, the method
evaluates each of the groups to determine the path.

Solving the planning problem with a probabilistic repre-
sentation of the environment also associates new behaviors to
the vehicle. Most of the existing methods find a single path
with the lowest cost. The path can be the shortest in length
but may guide the vehicle through narrow pathways leaving
very few choices for the vehicle to avoid more obstacles, if
more obstacles are discovered due to dynamic obstacles or
environmental changes such that the prior map is outdated.
The proposed method, seeking the highest probability of
successful navigation, prefers opener spaces for traversal
even though the resulting path can be longer, leaving more
choices for obstacle avoidance during the navigation. Further,
we have identified certain cases where existing methods
based on deterministic representations of the environment
encounter difficulty in finding feasible paths. The proposed
method handles the cases (see Section V-A for details).

During the navigation, the method can find a path within
0.2-0.3ms using a single CPU thread on a modem embedded
computer. Our experiment results are in a public video1.

1Experiment video: https://youtu.be/VYtQt2NcY0Q

2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Macau, China, November 4-8, 2019

978-1-7281-4003-2/19/$31.00 ©2019 IEEE 2805

II. RELATED WORK

The proposed method is most related to the literature in
path planning and collision avoidance. The problem involves
solving for a path for a vehicle to travel from start to goal
given a representation of the environment. Graph search-
based methods such as Dijkstra [4], A* [5], and D* [6]
algorithms traverse different states on the graph to search for
paths. On the other hand, sampling based methods cover the
graph with random samples. Paths are generated by connect-
ing selected samples. Contemporary sampling-based methods
such as Rapidly-exploring Random Tree (RRT) [7] and its
variants [8]–[11] have shown promising results to handle
maps in large scales, generating paths in a relatively short
amount of time. However, these methods require updating
the graph and searching the graph continuously during the
navigation. The computational complexity can be excessive
if the environment is cluttered and complex. Finding a path
is not guaranteed within a fixed amount of time.

Certain planning methods pre-process a map to extract
traversable information as a means to facilitates the online
search. For example, Probabilistic Roadmap (PRM) [12],
[13] based methods randomly sample on the map to create
a connectivity graph. Paths are then found by searching the
graph. Other examples include Voronoi graph [14] and vector
field [15]. In essence, these methods share the insight of
moving part of the processing offline before the navigation
starts to accelerate the online processing. However, the online
processing still needs to traverse the graph to search for the
path, and hence can be computationally expensive.

The proposed method employs a probabilistic represen-
tation of the environment. The concept of modeling uncer-
tainty has been introduced to the path planning literature
[16]. For example, the method of Berg et al. [17] uses
a linear-quadratic controller with Gaussian models to take
into account the uncertainties of the robot motion and state.
Melchior and Simmons [18] extend RRT with particles on
each node to handle the uncertainty of terrain friction. These
methods involve probabilities to model the motion or state
of the vehicle. Chung et al. [19] model the edge costs on a
graph with uncertainties for graph search. Heiden et al. [20]
use probabilities to model the traversability of map voxels.
The proposed method, however, models obstacles within the
sensor range deterministically, and beyond the sensor range
probabilistically as they are known from a prior map.

Our previous work dedicated to enabling fast autonomous
flight in cluttered environments [21], [22]. These methods
use a prior map to pre-plan alternative paths offline. The
online navigation chooses one of the pre-planned paths to
execute. The contribution of this paper is proposing a method
to enable the capability without the necessity of a prior map.
Based on a probabilistic representation of the environment,
the method maximizes the likelihood of successful naviga-
tion to the goal. If a prior map is unavailable, the method
uses a simple heuristic to guide the navigation. To the best
of our knowledge, the resulting capability of aerial maneuver
without a prior map has not yet been demonstrated.

III. PROBLEM DEFINITION

Define Q ⊂ R as the configuration space of a vehicle. Let
A ∈ Q be the vehicle current position and B ∈ Q be the
goal point. The vehicle is equipped with perception sensors.
Define S ⊂ Q as the space covered in the range of the
perception sensors, namely sensor range. Obstacles are mod-
eled to be deterministically known in S and probabilistically
known in Q\S. Consider the vehicle has multiple directions
to choose for the immediate first step as it starts to move from
A. For convenience, let us name the state of the vehicle at
this step the start state, denoted as xs. Obviously, different
choices of xs can lead to different routes. As a convention
of this paper, let us define PB(·) to be the probability for
the vehicle to successfully reach B from a given state. The
probability associated with start state xs is PB(xs). Our
planning problem can be defined as the following,

Problem 1: Given A,B ∈ Q, S ⊂ Q, and obstacles in Q,
determine start state x∗s to maximize the probability PB(xs),

x∗s = arg max
xs

PB(xs). (1)

The above problem is solved at each step as the vehicle trav-
els along the path, i.e. the vehicle maximizes the probability
to reach B at every instant time during the navigation.

IV. METHOD

A. Probabilistic Model

The proposed method maximizes the likelihood for the
vehicle to successfully travel from A to B. As stated in
the problem definition, obstacles within sensor range S are
considered to be deterministically known as the information
is acquired from the perception sensors. Obstacles beyond S
are considered to be probabilistically known if a prior map
is available. Otherwise, however, the case is equivalent to
no obstacle being present a priori. Fig. 2 illustrates S as the
gray area. Define F ⊂ S as the sensor frontier indicated by
the red solid curve. Given start state xs, a path connects A
and B as the black curve. For all possible paths, they must
intersect with F . Here, one can argue that the vehicle can
move laterally and does not intersect with F . In this case, due
to the nature of the problem, S has to be expanded based on
the vehicle motion model so that the vehicle does not traverse
an area uncovered by S. Define xf as the state of the vehicle
while passing F . The conditional distribution of xf given
xx, p(xf |xs), can be derived from the obstacle information
provided by the perception sensors. Further, the probability

A B

pB(xf)p(xf|xs)
xfxs

S
F

Fig. 2. Illustration of sensor range S ⊂ Q as the gray area and sensor
frontier F ⊂ S as the red solid curve. The black curve is a path to navigate
from A to B, which starts at xs and intersects with F at xf .

2806

Fig. 3. Example path groups. On the top row, we show 7 path groups curving from left to right in top-down view. On the bottom row, we show 5 path
groups curving from downward to upward in side view. Consider both horizontal and vertical directions, there are 7×5 = 35 path groups.

density for the vehicle to reach B from xf , pB(xf), can be
obtained from the obstacles on the prior map. We have

pB(xs) =

∫
pB(xf)p(xf |xs)dxf . (2)

Here, notation PB(xs) in (1) is rewritten as pB(xs) to denote
the probability density. Consider n ∈ Z+ samples ξi, i =
1, 2, ..., n, drawn from p(xf |xs). According to the Monte
Carlo theory of sampling [23], we can establish,∫

pB(xf)p(xf |xs)dxf ≈n↑∞
1

n

n∑
i=1

pB(ξi). (3)

Combine (2)-(3) and consider n as a constant,

pB(xs) ≈
1

n

n∑
i=1

pB(ξi). (4)

Eq. (4) indicates that the probability density to navigate to
B from xs, pB(xs), can be approximated by n� 1 samples
drawn from the conditional distribution p(xf |xs).

B. Local Probabilities

Given start state xs, the vehicle can follow different paths
to reach sensor frontier F . Here, let us name a path group
as the set of paths sharing the same xs. Consider a discrete
model of xs. Fig. 3 gives an example of path groups. On the
top row, 7 path groups are present in top-down view, where
xs is at the start of the paths curving left or right. The path
group in the middle corresponds to straight forward motion.
On the bottom row, 5 path groups are shown in side view,
where the paths curve upward or downward. Consider both
horizontal and vertical directions, there are totally 7×5 = 35
path groups in this example. All paths end on F .

Each path is generated as a cubic spline curve. The
paths in a group split in multiple directions horizontally and
vertically. In Fig. 3, the path first splits in 35 directions
(7 horizontal and 5 vertical) and each splits in another 35
directions. This results in 352 = 1225 paths in a group.
Consider the 35 path groups, there are 35×1225 = 42875
paths in total. Fig. 4 shows all path groups together where
color codes the group index. Note that these example paths
are generated based on the vehicle motion constraints. The

Fig. 4. All 35 path groups. The paths are color coded based on the group
index. There are 1225 paths in each group and 42875 paths in total.

Fig. 5. Collision-free paths in a group with an obstacle as the gray dot.
The paths start at xs. The path ends are considered Monte Carlo samples
ξi, i = 1, 2, ..., n, whose distribution is drawn from p(xf |xs).

method, however, is not limited to a specific motion model
and can support various path group configurations.

The paths in a group can be considered as viable routes
from xs to F . The states of the paths at the ends can be
viewed as samples ξi, i = 1, 2, ..., n, of xf , where the
distribution is drawn from p(xf |xs). During the naviga-
tion, obstacles are detected by perception sensors occluding
certain paths. Fig. 5 gives an example of an obstacle and
the corresponding collision-free paths in a group. Define a
Boolean function c(ξi) to indicate the path clearance,

c(ξi) =

{
1, ξi is unoccluded,
0, otherwise.

(5)

We can compute PB(xs) based on (4),

PB(xs) ≈
∑n
i=1 c(ξi)pB(ξi)∑n

i=1 c(ξi)
, (6)

Eq. (6) is applied to all path groups and x∗s of the group with
the highest PB(xs) is chosen for the vehicle to execute.

2807

xj
k xj

k-1

xj
k+1

j

(a)

j

jl

jr

θk
xj

k

xj
k-1 xj

k xj
k+1

xj
k-1 xj

k xj
k+1

r r r

l l l

(b)

Fig. 6. (a) Voxel representation. Each voxel contains multiple directions at
a constant angular interval. The state of a voxel is denoted as xkj , j, k ∈ Z,
where j is the voxel index and k is the direction index in the voxel. (b)
Probability transmission. The probabilities are transmitted to xkj from the
adjacent voxels jl and jr in three directions from each voxel.

C. Global Probabilities

Our environment is represented with voxels. Different
from the traditional voxel representation, our voxels contain
both position and orientation information. As shown in
Fig. 6(a), a voxel is separated into multiple directions based
on a constant angular interval, denoted as δ. Define xkj ,
j, k ∈ Z as the state of the voxel, where j is the voxel index
and k is the direction index. The position associated with
xkj is modeled to be uniformly distributed within the voxel
and the orientation is modeled to be uniformly distributed
within [−δ/2 δ/2] around the direction of xkj . The probability
density to reach B from xkj is denoted as pB(xkj).

The probabilities are transmittable between adjacent vox-
els. As illustrated in Fig. 6(b), consider the case that the
probabilities are transmitted to xkj from the adjacent voxels,
denoted as jl on the left side and jr on the right side.
Let θk be the direction associated with xkj . As the position
is modeled to be uniformly distributed within a voxel, the
probabilities to be transmitted to xkj are from the gray regions
in voxels jl and jr, with areas 1 − tan θk/2 and tan θk/2
of a voxel, respectively. From each of the gray regions, the
probabilities are transmitted from three adjacent directions.
The probability density transmission is defined as,

pB(xkj) = ((1− tan θk
2

)a+
tan θk

2
b)rj , (7)

where

a =wypB(xk−1jl
) + wfpB(xkjl) + wypB(xk+1

jl
),

b =wypB(xk−1jr
) + wfpB(xkjr) + wypB(xk+1

jr
).

In (7), rj represents the traversability of voxel j due to
obstacles, where rj = 1 means complete clearance and
rj = 0 means complete occlusion. wf and wy determine
the probability distribution corresponding to forward motion
and tuning in yaw, respectively. We require that,

wf + 2wy = 1. (8)

The 3D case is a direct extension from the 2D case.
Each voxel is separated into multiple directions not only
in yaw but also in pitch. When transmitting probabilities,
we take into account the probabilities transmitted between
voxels at the same level as well as adjacent levels. Here, we
omit the equations of the probability density transmission

Fig. 7. Propagated probability densities in a 2D environment. The arrow
represents the direction in the voxels that the probability densities are
associated. Red areas are obstacles with the traversability defined in (7) set
at rj = 0.01. Brighter voxels have higher probability densities to navigate
from itself to B and darker voxels have lower probability densities.

in 3D case due to their redundancy. During initialization,
the probability densities are evenly distributed among all
directions in the voxel containing B. Propagation of the
probability is through an iteration process. Fig. 7 gives an
example of the propagated probability densities in a 2D
environment. Brighter indicates higher probability density.

D. Method Implementation

The path groups described in Section IV-B are generated
offline. For collision check, we use a voxel grid overlaid with
sensor range S. The correspondences between the voxels and
paths are pre-established and stored in an adjacency list.
In the adjacency list, each row is associated with a voxel
and consists of indexes of the paths that are occluded by
the voxel. Here, the vehicle radius is taken into account for
calculating the occlusions. Upon system starts, the paths and
adjacency list are loaded into the vehicle computer memory.
The online collision check processes all perception sensor
data points and labels the corresponding paths to be occluded
according to the adjacency list. Then, the algorithm traverses
all paths in each group to compute PB(xs) based on (6) and
chooses the path group with the highest PB(xs).

Theorem 1: The online processing has a computational
complexity of O(mn), were m is the number of perception
sensor data points and n is the number of paths.

Theorem 1 analyzes the computational complexity in the
worst case where every perception sensor data point blocks
all paths in each group. In practice, a data point can block
a few paths so that the computation is much lighter.

The probability propagation in the global scale uses a
second voxel grid covering the environment, run only once
before the navigation. This uses an implementation similar to
the A* algorithm [24], where only the probability densities in
the voxels adjacent to those in the open set are updated. This
process terminates if the changes to the probability densities
in the voxel containing A are smaller than a threshold. In
the case that a prior map is unavailable, we can alternatively
use a heuristic function to compute pB(ξi) in (6),

pB(ξi) = −|∆pi∆yi|, (9)

where ∆pi and ∆yi are the relative angles between ξi and
the goal direction in pitch and yaw, respectively.

2808

V. EXPERIMENTS

The underlying experiments use the path groups described
in Section IV-B. Sensor range S is set at 30m in front of the
vehicle. The collision check uses a voxel grid overlaid with S
at 0.1m resolution. The probability propagation uses another
voxel grid covering the environment at 1m resolution. A
3.1GHz i7 computer records the CPU processing time.

A. Simulation

We first validate the method in simulation. Fig. 8 shows
the result of a test containing a narrow pathway and a wide
pathway. Existing planning methods mostly find the shortest
path connecting A to B regardless of the width of the
pathway. In Fig. 8, the orange curve is generated by RRT*
[10]. Our method, however, seeks the highest probability
to reach the goal and therefore prefers the wider pathway.
Wide pathways are preferable in aerial navigation keeping
the vehicle safe as well as leaving more choices for obstacle
avoidance. Note that the same behavior can be produced in
the existing methods by considering the distance from a node
to the closest obstacle in the cost function. The resulting
methods need tuning between different environments.

Fig. 9 shows the result of a test involving an environment
change between the prior map and actual world. Fig. 9(a)
shows the prior map where an opening is available to
the right. Our method uses the prior map for probability
propagation before the navigation starts. Obstacles on the
prior map have the traversability set at rj = 0.01. Fig. 9(b)
shows the actual world where the opening on the prior map
is closed. Another opening is now available to the front.
After the navigation starts, our method generates a path
curving to the right as an effect of the opening on the prior
map. As the vehicle approaches, the method realizes the
environment change from the perception sensors and then
guides the vehicle toward the opening to the front. Thanks
to the minor probabilities propagated through the obstacles
on the prior map. On the other hand, traditional methods
based on deterministic representations of the environment
encounter difficulty. In Fig. 9(c) RRT* generates a path using

Fig. 8. Narrow pathway test result. The environment contains a narrow
pathway on the left and a wide pathway on the right. The widths of the
narrow and wide pathways are 5m and 20m, respectively. Existing planning
methods such as RRT* (magenta curve) mostly seek the shortest path
regardless of the width of the pathway. Our method (red curve) maximizes
the probability to reach the goal and therefore prefers the wider pathway.
Wider pathways help keep the vehicle safe during the flight and leave more
choices for obstacle avoidance in the presence of dynamic obstacles.

the prior map when the navigation starts. As the vehicle
travels, in Fig. 9(d), the environment seen by the perception
sensors is updated indicating that the opening to the right is
unavailable. However, the opening to the front has not been
seen. As a result, RRT* finds no path from A to B.

The proposed method is further tested in 2D random world
environments. The result is in Fig. 10, where our method is
compared to RRT [7], RRT-Connect [8], RRT*, and BIT*
[11] planners. Fig. 10(a) shows an example environment and
representative paths generated by all methods. The obstacle
ratio is set at 20%. Fig. 10(b) compares the runtime and
corresponding success rate. The runtime of our method is
from the probability propagation. Each method is tested in 50
randomly generated environments and executed 10 times in
each of the environments. Note that RRT and RRT-Connect
terminate after finding the first path. Given the same success
rate, their runtime is faster than ours but the resulting paths
are not practically useful. RRT* and BIT* are configured to
terminate after finding the near-optimal path. Their runtime
is much slower than ours given the same success rate.

We also test the method in 2D maze environments. As
shown in Fig. 11, the size of the maze is set at 45×45.
Fig. 11(a) shows an example environment. All methods

(a) (b)

(c) (d)

Fig. 9. Outdated prior test result. The test involves an environment change
between the prior map and actual world. (a) shows the prior map where
an opening is available to the right. Our method uses the prior map for
probability propagation. Obstacles on the prior map have the traversability
set at rj = 0.01. (b) shows the actual world where the opening is to the
front due to the environment change. Upon the navigation starts, the vehicle
curves to the right as an effect of the opening on the prior map. As the
vehicle approaches, perception sensor data indicates the environment change
and the vehicle is then guided toward the opening to the front because of
minor probabilities propagated through the obstacles on the prior map. On
the other hand, existing methods based on deterministic representations of
the environment encounter difficulty. In (c), at the start of the navigation,
RRT* uses the prior map to plan a path. During the navigation, the
environment within S is updated continuously by the perception sensors.
In (d), the vehicle realizes the opening to the right is unavailable. However,
the opening to the front has not yet been seen. RRT* finds no path.

2809

(a)

(b)

Fig. 10. 2D random world test result. The proposed method is compared to
RRT, RRT-Connect, RRT*, and BIT* in random world environments. The
obstacle ratio is set at 20%. (a) shows an example environment and the path
from each method. (b) shows a comparison of the runtime by testing in 50
environments. Note that RRT and RRT-Connect terminate after finding the
first path. Their runtime is faster than our method but the paths are not
practically useful. RRT* and BIT* terminate after finding the near-optimal
path. Their paths are similar to our method but the runtime is slower.

(a)

(b)

Fig. 11. 2D maze test result. The proposed method is compared to RRT,
RRT-Connect, RRT*, and BIT* in maze environments. The size of the maze
is set at 45×45. (a) shows an example environment and the paths where all
methods generate similar paths. (b) shows a comparison of the runtime by
testing in 50 environments. Our method is more than 10 times faster than
RRT-Connect and about 100 times faster than RRT, RRT*, and BIT*.

generate similar paths in the maze environments because of
constrained space for navigation. Fig. 11(b) compares the
runtime. Our method runs more than 10 times faster than
RRT-Connect and about 100 times faster than RRT, RRT*
and BIT* while producing the same success rate.

The proposed method is tested in 3D cases. Fig. 12
presents the result in 3D random world environments.
Fig. 12(a) gives an example environment with a representa-
tive path from each method. The obstacle ratio is set at 20%.
Fig. 12(b) shows the runtime and corresponding success rate,
tested in 50 randomly generated environments and executed
10 times in each environment. Similar to the result in Fig. 10,
RRT and RRT-Connect terminate after finding the first path.
Even though their runtime is faster then ours, the resulting
paths are practically useless. Compared to RRT* and BIT*,
our method consumes much less runtime at the same success
rate while the three methods produce similar paths.

Finally, we evaluate the method in 3D maze environments.
The result is in Fig. 13. The size of the maze is set
at 25×25×25. Fig. 13(a) shows an example environment.
Similar to Fig. 11, all methods produce similar paths in the
maze environments. Fig. 11(b) compares the runtime. Our
method outperforms the other methods by a factor of 10 in
terms of runtime while producing the same success rate.

B. UAV Experiment

Our experiment platform is shown in Fig. 14. This is
a DJI Matrice 600 Pro aircraft carrying a DJI Ronin MX

(a)

(b)

Fig. 12. 3D random world test result. The obstacle ratio is set at 20%. (a)
shows an example environment and the path from each method. (b) shows a
comparison of the runtime by testing in 50 environments. Similar to Fig. 10,
RRT and RRT-Connect terminate after finding the first path. Their runtime
is faster than our method but the paths are practically useless. RRT* and
BIT* are set to find the near-optimal path. Their paths are similar to our
method but the runtime is slower given the same success rate.

2810

gimbal. A sensor-computer pack is mounted to the gimbal
and therefore is kept in the flight direction for obstacle
detection. The sensor-computer pack consists of a Velodyne
Puck laser scanner, a camera at 640× 360 pixel resolution,
and a MEMS-based IMU. A 3.1GHz i7 embedded computer
carries out all onboard processing. The state estimation is
based on our previous work [25], which integrates data from
the three sensors to provide vehicle poses and registered laser
scans. The software also builds a map during the flight.

The test site is in a forest as shown in Fig. 15. The flight
test does not use a prior map but the heuristic function
in (9) to guide the navigation. Fig. 15(a) shows an aerial
overview of the test site. Fig. 15(b) presents an image logged
by an onboard camera during the flight. Fig. 15(c) shows a
render of the map built during the flight with the executed
path overlaid on the map, from the same viewpoint as in
Fig. 15(b). Fig. 15(d) presents the registered scans as the
perception sensor data during the flight (colored points)
and the determined collision-free paths (white curves). The
yellow curve is the selected path for the vehicle to execute.
The vehicle pose in Fig. 15(d) is the same as in Fig. 15(b).
Fig. 15(e) shows the entire map and overall path of the flight.
The vehicle position in Fig. 15(b) and Fig. 15(d) are labeled
with number 1 in Fig. 15(e). The canopy of the forest is
manually cropped to reveal the flight path. The traveling
distance is approximately 300m and the maximum speed
during the flight reaches 10m/s as indicated in Fig. 16.

Finally, let us inspect some metrics from the UAV test.
Different from the simulation tests, the UAV test does not use

(a)

(b)

Fig. 13. 3D maze test result. The size of the maze is set at 25×25×25. (a)
shows an example environment and the paths where all methods generate
similar paths. (b) shows a comparison of the runtime by testing in 50
environments. Given the same success rate, our method outperforms RRT,
RRT-Connect, RRT*, and BIT* by a factor of 10 in terms of runtime.

a prior map or propagate the probabilities. At initialization,
the onboard navigation system reads the paths and adjacency
list (described in Section IV-D) into the computer memory.
The onboard processing time is listed in Table I. Collision
check first processes all perception sensor data points to de-
termine the collision-free paths, taking 213.7µs on average.
Then, the processing traverses all paths to compute PB(xs)
for each group and select the path group with the highest
PB(xs), taking 38.4µs on average. The method runs at 5Hz.
The resulting CPU load is < 5% of a single thread.

VI. CONCLUSION AND FUTURE WORK

The paper proposes a planning method to enable fast au-
tonomous flight in complex environments. The environment
is modeled to be deterministically known within the sensor
range where obstacle information is from the perception sen-
sors, and probabilistically known beyond the sensor range.
Instead of searching for the path with the lowest cost, the
method maximizes the likelihood to successfully reach the
goal in determining the immediate next step for execution
of the navigation. If a prior map is available, probabilities
are propagated offline through the environment. The online
method realized by a trajectory library determines a path
within 0.2-0.3ms using a single CPU thread on a modem
embedded computer. In experiments, it enables a lightweight
UAV to fly at 10m/s in a cluttered forest environment.

TABLE I
ONLINE PROCESSING TIME IN UAV TEST

Collision check Path selection Overall
Mean Worst Mean Worst Mean Worst

213.7µs 286.2µs 38.4µs 41.3µs 252.1µs 327.5µs

Fig. 14. UAV experiment platform. A DJI Matrice 600 Pro aircraft carries
our sensor-computer pack on a DJI Ronin MX gimbal. The gimbal keeps the
sensors in the flight direction for obstacle detection. The sensor-computer
pack consists of a Velodyne Puck laser scanner, a camera at 640×360 pixel
resolution, and a MEMS-based IMU. An i7 embedded computer carries out
all onboard processing. Note that GPS data is unused in the test.

Fig. 16. Speed in UAV test. The maximum speed of the UAV reaches
10m/s while flying in a forest environment as presented in Fig. 15.

2811

(a) (b) (c)

(d) (e)

Fig. 15. UAV test result. The flight test is conducted in a forest environment. No prior map is used in the test. The method uses the heuristic function in
(9) to guide the navigation. (a) shows an aerial overview of the test site. (b) is an image from an onboard camera captured during the flight. (c) shows a
render of the map built during the flight and the executed path overlaid on the map. (d) presents the perception sensor data during the flight as the colored
points and the corresponding collision-free paths as the white curves. The yellow curve is the selected path for the vehicle to execute. The vehicle pose is
the same as in (b). (e) shows the entire map and overall path of the flight. The vehicle position in (b) and (d) is labeled with number 1 in (e). The canopy
of the forest is removed to reveal the path. The flight has 300m of travel and the vehicle speed is at 10m/s through the course of the flight.

REFERENCES

[1] D. Gonzlez, J. Prez, V. Milans, and F. Nashashibi, “A review of
motion planning techniques for automated vehicles,” IEEE Trans. on
Intelligent Transportation Sys., vol. 17, no. 4, pp. 1135–1145, 2016.

[2] D. Droeschel, M. Nieuwenhuisen, M. Beul, D. Holz, J. Stuckler, and
S. Behnke, “Multi-layered mapping and navigation for autonomous
micro aerial vehicles,” Journal of Field Robotics, vol. 33, no. 4, pp.
451–475, 2016.

[3] S. Scherer, S. Singh, and L. Chamberlain, “Flying fast and low among
obstacles: Methodology and experiments,” The International Journal
of Robotics Research, vol. 27, no. 5, pp. 549–574, 2008.

[4] R. Kala and K. Warwick, “Multi-level planning for semi-autonomous
vehicles in traffic scenarios based on separation maximization,” J. of
Intelligent and Robotic Systems, vol. 72, no. 3/4, pp. 559–590, 2013.

[5] B. MacAllister, J. Butzke, A. Kushleyev, H. Pandey, and M. Likhachev,
“Path planning for non-circular micro aerial vehicles in constrained
environments,” in IEEE International Conference on Robotics and
Automation (ICRA), Karlsruhe, Germany, May 2013.

[6] M. Rufli and R. Y. Siegwart, “On the application of the D search
algorithm to time-based planning on lattice graphs,” in The European
Conf. on Mobile Robots (ECMR), Dubrovnik, Croatia, Sept. 2009.

[7] S. M. LaValle, Planning Algorithms. New York, NY, USA: Cam-
bridge University Press, 2006.

[8] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach
to single-query path planning,” in IEEE Intl. Conf. on Robotics and
Automation (ICRA), San Francisco, CA, April 2019.

[9] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Informed RRT*:
Optimal sampling-based path planning focused via direct sampling
of an admissible ellipsoidal heuristic,” in IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS), Chicago, IL, Sept. 2014.

[10] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The International Journal of Robotics Research,
vol. 30, no. 7, pp. 846–894, 2011.

[11] J. Gammell, S. Srinivasa, and T. Barfoot, “Batch informed trees
(BIT*): Sampling-based optimal planning via the heuristically guided
search of implicit random geometric graphs,” in IEEE Intl. Conf. on
Robotics and Automation (ICRA), Seattle, WA, May 2015.

[12] D. Hsu, J.-C. Latombe, and H. Kurniawati, “On the probabilistic
foundations of probabilistic roadmap planning,” The International
Journal of Robotics Research, vol. 25, no. 7, pp. 627–643, 2006.

[13] L. E. Kavraki, M. N. Kolountzakis, and J.-C. Latombe, “Analysis
of probabilistic roadmaps for path planning,” IEEE Transactions on
Robotics and Automation, vol. 14, no. 1, pp. 166–171, 1998.

[14] P. Beeson, N. K. Jong, and B. Kuipers, “Towards autonomous
topological place detection using the extended Voronio graph,” in
IEEE International Conference on Robotics and Automation (ICRA),
Barcelona, Spain, April 2005.

[15] G. A. S. Pereira, S. Choudhury, and S. Scherer, “A framework for
optimal repairing of vector field-based motion plans,” in Intl. Conf.
on Unmanned Aircraft Systems (ICUAS), Arlington, VA, June 2016.

[16] T. Fraichard and R. Mermond, “Path planning with uncertainty for
car-like robots,” in IEEE International Conference on Robotics and
Automation (ICRA), Leuven, Belgium, May 1998.

[17] J. Van Den Berg, P. Abbeel, and K. Goldberg, “LQG-MP: Optimized
path planning for robots with motion uncertainty and imperfect state
information,” The International Journal of Robotics Research, vol. 30,
no. 7, pp. 895–913, 2011.

[18] N. A. Melchior and R. Simmons, “Particle RRT for path planning
with uncertainty,” in IEEE International Conference on Robotics and
Automation (ICRA), Roma, Italy, April 2007.

[19] J. Chung, A. Smith, R. Skeele, and G. Hollinger, “Risk-aware graph
search with dynamic edge cost discovery,” The International Journal
of Robotics Research, vol. 38, no. 2-3, pp. 182–195, 2019.

[20] E. Heiden, K. Hausman, G. Sukhatme, and A. Agha-mohammadi,
“Planning high-speed safe trajectories in confidence-rich maps,” in
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS),
Vancouver, Canada, Sept. 2017.

[21] J. Zhang, R. G. Chadha, V. Velivela, and S. Singh, “P-CAP: Pre-
computed alternative paths to enable aggressive aerial maneuvers in
cluttered environments,” in IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems (IROS), Madrid, Spain, Oct. 2018.

[22] ——, “P-CAL: Pre-computed alternative lanes for aggressive aerial
collision avoidance,” in The 12th International Conference on Field
and Service Robotics (FSR), Tokyo, Japan, Aug. 2019.

[23] C. Robert, Monte carlo methods. John Wiley & Sons, Ltd, 2004.
[24] W. Zeng and R. L. Church, “Finding shortest paths on real road

networks: the case for A*,” International Journal of Geographical
Information Science, vol. 23, no. 4, pp. 531–543, 2009.

[25] J. Zhang and S. Singh, “Laser-visual-inertial odometry and mapping
with high robustness and low drift,” Journal of Field Robotics, 2018.

2812

