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Recent progress in soft-matter sensors has shown improved fabrication tech-
niques, resolution, and range. However, scaling up these sensors into an
information-rich tactile skin remains largely limited by designs that require a
corresponding increase in the number of wires to support each new sensing
node. To address this, a soft tactile skin that can estimate force and localize
contact over a continuous 15 mm2 area with a single integrated circuit and four
output wires is introduced. The skin is composed of silicone elastomer loaded
with randomly distributed magnetic microparticles. Upon deformation, the
magnetic particles change position and orientation with respect to an embedded
magnetometer, resulting in a change in the net measured magnetic field. Two
experiments are reported to calibrate and estimate both location and force of
surface contact. The classification algorithms can localize pressure with an
accuracy of >98% on both grid and circle pattern. Regression algorithms can
localize pressure to a 3 mm2 area on average. This proof-of-concept sensing skin
addresses the increasing need for a simple-to-fabricate, quick-to-integrate, and
information-rich tactile surface for use in robotic manipulation, soft systems, and
biomonitoring.

1. Introduction

Growing interest in wearable technologies, soft robotics, and
human–robot interaction has renewed focus on the development
of soft sensing. These materials gather information while
remaining soft and stretchable by using a wide range of sensing
technologies and modalities. Many artificial or electronic skin
technologies commonly use resistive or capacitive sensing, but
there have also been exciting advancements in the use of piezo-
electrics, triboelectricity, optics, and acoustics.[1–4] Soft sensors

can also be engineered that leverage the
coupling of strain or pressure with changes
in electrical resistance across fluidic chan-
nels embedded in the elastomer.[5,6]

Composites can also be developed to add
sensing properties to naturally soft host
substrates, such as gel or elastomer. For
example, loading elastomer with micro-
or nano-particles of liquid metal or carbon
black can markedly improve the host’s
thermal, electrical, mechanical, or radio-
frequency properties.[7] However, these
sensing technologies are difficult to scale-
up to large sensing areas due to corre-
sponding challenges from fabrication, del-
icate interfaces, and the additional wiring
that is required. Not only does integration
of these larger systems become more diffi-
cult but also the probability of failure at one
of the interfaces also increases.

Here, we introduce a tactile skin com-
posed of a fixed 3-axis magnetometer cov-
ered with a soft elastomer that is embedded
with a dispersion of magnetic micropar-

ticles (Figure 1A). As deformation is applied to the surface of
the composite, the microparticles are displaced with respect to
the static position of the magnetometer. The magnetometer
can measure the changes in the surrounding magnetic field,
without direct electrical contact, and estimate the location
and force of the contact (Figure 1B,C). An approximate model
for this sensing mode is described in Section 1.1, Supporting
Information. We also leverage morphological computation
through the inherent dimension reduction performed in the
material itself. Although there are many individual magnetic par-
ticles distributed throughout the skin contributing to the signal,
we can measure a simple 3-axis output that preserves informa-
tion about the deformation.[8–10]

Magnetic and ferromagnetic elastomer composites have been
well studied and reported.[11–14] Previously established relation-
ships between conductivity and applied pressure,[15,16] damping
properties and external field,[17] and shear modulus and external
field,[18] make them valuable for sensing[19] and actuation.[20]

Recent approaches to magnetic tactile sensing measure magnetic
flux with arrays of Hall effect sensors and rigid permanent mag-
nets embedded within an elastomer.[21–24] Magnetic flux can also
be measured through inductance changes with giant magneto-
impedance materials.[25] In contrast, our approach uses elasto-
mers embedded with magnetic Ne-Fe-B microparticles that are
on the order of �200 μm in diameter. The use of microscale
magnetic particles reduces the intensity of internal stress concen-
trations when mechanical load is applied and also allows the
potential for sensing skins that are flexible or stretchable.
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Moreover, they allow for geometries that are thin or contain
sharp 3D geometries.

We begin with a brief overview of the fabrication of the soft
tactile skin and the method for collecting pressure data over a
15mm2 square and 5mm radial circle. Due to the nonuniform
distribution of particles, we opt for data-driven techniques to clas-
sify the location and estimate the depth of the contact, which have
been shown to be successful for tactile data in many cases.[26–30]

The top five classification and regression algorithms are reported
and discussed. In particular, we show that we can classify loca-
tion with 98% accuracy for both 3mm resolution 5� 5 grid, and
5mm radial circle with three discrete depths. Regression algo-
rithms localize the contact to a 3mm2 area. In summary, this
work introduces a novel approach to address the need for a con-
tinuous and soft tactile surface with simple fabrication, quick
integration, and adaptable geometry.

2. Results and Discussion

The skin is made by mixing a commercial silicone with magnetic
microparticles and curing the composite under a magnetic field
(see Section 4.1 for more details). We programmed a 4-degree-
of-freedom (DOF) robotic arm to automate applied pressure and
collect magnetic field change and force over time (see Section 4.3
for more details). Here, we discuss two experiments: a 5� 5
grid to demonstrate the spatial and force resolution given a
fixed indentation depth and an 8-point circle to test both
depth and force resolution given a fixed distance from the
magnetometer. The time-series data was represented by a set
of static features (see Section 4.2 for more details). Classifica-
tion and regression algorithm comparisons can be found in

Section 1.2, Supporting Information and Figure S3,
Supporting Information.

2.1. Location Sensing

For the 5� 5 grid experiment, force and magnetic field changes
were collected over a 3mm resolution 5� 5 grid up to a 3mm
depth (Figure 2A). We collected 2750 contact samples at these
25 locations using a uniform random distribution. Each class
(25 total) has about 100 samples each.

Several different classification algorithms were able to accu-
rately distinguish between the 25 locations (see Section 1.2,
Supporting Information). Here, we present classification results
using quadratic discriminant analysis (QDA), which achieved the
best performance. In the event of a misclassification, the pre-
dicted class is always adjacent to the true location (Figure 2B).
Classification accuracy for every location are shown in Figure 2C
and perform well across all 25 locations.

To estimate the location, we transformed the 25 discrete loca-
tions into their coordinate locations. For the 5� 5 grid and linear
regression, the x-position has an average error of 1.1mm and the
y-position has an average error of 3.8 mm. We attribute this dif-
ference in accuracy to the larger misalignment in the y-axis
frame. If the location grid is not perfectly centered over the mag-
netometer, the y signal will measure smaller changes in signal.
In Figure 2D, the x-axis looks well-centered with very similar
accuracy across 25 locations. However, the y-axis accuracy is
biased toward the right-hand side (Figure 2E). This can be attrib-
uted to a combination of alignment, particle distribution, or chip
manufacturing errors. These errors make model-based techni-
ques very difficult to calibrate, further supporting our use of
data-driven methods.

Figure 1. Sensor Overview: A) The elastomer composite loaded with magnetic microparticles is cured under a field. B) The composite retains the
stretchability and flexibility of the host substrate, and is compatible with stretchable circuitry. C) The magnetic field measured at the magnetometer
changes with the deformation of the elastomer. We attribute this to the change in location between each magnetic particle and the fixed magnetometer.
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The output estimations near the edge of the sensor tend to
have a lower accuracy and higher standard deviation. Due to
the magnetic signal to distance relationship of 1=d3, the quality
of signal is expected to decrease drastically with distance. At these
points along the edge, we believe that the random distribution of
particles begins to have a larger effect on output signal than the
applied deformation. This leads to unusual signal changes, and is
the main reason why we chose data-driven techniques instead of
function fitting. A more detailed example of this type of noise can
be found in Section 1.3, Supporting Information.

2.2. Location and Depth Sensing

For the 8-point circle experiment, the force-controlled changes in
magnetic field were measured for eight different XY locations
and three different depths (dZ¼ 1, 2, or 3 mm) (Figure 3A).
We collected 2850 contact samples for these 24 XYZ locations
using a uniform random distribution. Each class (24 total) had
approximately 110 samples each. See Figure S5, Supporting
Information, for the experimental set-up.

As in Section 2.1, QDA can be used to classify location based
on both XY location and depth. If the predicted class is wrong, it
is commonly predicted as an adjacent class (Figure 3B).
Misclassification between adjacent locations is much more com-
mon than adjacent depths. The large correlation between z-axis
magnetic field and pressure can be used to easily distinguish
between the three depths. Since all the tested locations are closer
to the magnetometer than the 5� 5 experiment, we do not see
the same introduced noise from the particle aggregates. Classifi-
cation accuracy for every location are shown in Figure 3C. In

general, less applied pressure (depth¼ 1) leads to a smaller sig-
nal change and lower accuracy. For this sample, location 3 and
depth 1 had noticeably lower classification accuracy. We attribute
this to a combination of misalignment leading to smaller signals
on the right-hand side, which is also apparent in the larger error
in locations 2, 3, and 4 in Figure 3D,E.

The 24 classes were transformed into their true (x,y,z) coor-
dinates for location estimation. For the 8-point circle and linear
regression, the x-position has a mean absolute error of 1.2 mm
and the y-position has a mean absolute error of 3.4 mm across all
the classes. The difference in error between the x and y coordi-
nates imply a small misalignment in this test as well—also
shown in varied error by location in Figures 3D,E. The z-position
error is much smaller (0.03mm) due to larger signal changes
associated with 1mm depth changes (Figure 3F).

2.3. Estimating Force

We can also estimate force with our time-series data and a
k-nearest neighbors (k-NN) regression. The inputs are the Bx ,
By, and Bz components of the magnetic field, the internal tem-
perature of the magnetometer Bt, and load cell output at each
time step. For the 5� 5 grid experiments, the force estimation
has a mean error of 0.44 N (Figure 2F), a minimum output of
0.03 N, and the maximum output of 1.9 N. For the 8-point circle,
the force estimation has a mean error of 0.25 N (Figure 3G), the
minimum output of 0.14 N, and a maximum output of 2.4 N.
The z-axis of the magnetic field has the strongest correlation with
the applied pressure, making force estimation quite accurate.
However, a good signal change is dependent on the amount

Figure 2. Grid Results Overview: A) Themagnetic skin is sampled at 25 locations to a depth of 3 mm for a total of 25 classes. B) QDA classification results
for location 13, and C) all QDA classification results grouped by class. Mean absolute error from linear regression grouped by location for D) x-position,
E) y-position, and F) mean absolute error from k-NN regression for force.
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of deformation. Therefore, we expect that if the elastomer had a
higher Young’s modulus, then the force resolution would be
much larger. The force range applied during both tests was
approximately between 0 and 2.5 N, which was limited by our
chosen maximum depth of 3mm.

2.4. Sensor Demonstrations

A simple use-case of the tactile skin is demonstrated by using the
magnetic elastomer as a 4-key directional game pad. Four acrylic
arrows are adhered to the surface to help the user locate where to
apply pressure to input a direction command. The four com-
mands can be identified by the changes in the X, Y, and Z com-
ponents of the magnetic field. No classifier is used for this
example, and instead simple thresholding is found to be ade-
quate when the buttons are sufficiently spaced. The positive and
negative X and Y changes are mapped to the four arrow keys on
the keyboard to move an image around the screen. Example data
for each direction is shown in Figure 4A.

To demonstrate the speed and accuracy of the 5� 5 grid clas-
sifier, we play a short game of Minesweeper with a robot-
controlled cylindrical indenter. Each of the 25 grid locations is
mapped to a mouse location on the screen. The length of the
signals (i.e., duration of applied pressure) indicates whether
the user wants a left-click to reveal the square or a right-click
to place a flag. Immediately after the signal returns to resting,
the QDA classifier is used to predict the location and then the
appropriate actions are performed. Raw data and classification
results are shown in Figure 4B.

These demonstrations show that the magnetic skin can func-
tion with varied inputs and noise. However, all three inputs are
relatively low frequency. As with most elastomer-based sensors,
we expect hysteresis to play a larger role in more dynamic appli-
cations. Since the sensing mode is dependent on the deforma-
tion of the magnetic skin, any mechanical improvements that
help the skin keep up with dynamic change would be beneficial.

3. Conclusions and Future Work

In conclusion, a novel integration of magnetic elastomer with
data-driven analysis leads to a continuous interaction surface that
can estimate location and depth of indentation. Classification
results can distinguish between 25 grid locations in a 15mm2

area with >98% accuracy. The algorithms can also classify 24
classes in a constant diameter circle with varied depth.
Regression algorithms can localize the contact to a 3mm2 area
within the 15mm2 active sensing area. The magnetic skin lever-
ages morphological computation properties to inherently reduce
the dimensionality of the output before analysis, thereby elimi-
nating the need for a dense array of underlying microelectronic
chips and wiring.

In the future, we plan to improve the range and resolution for
force and contact location by tuning the fabrication process of the
magnetic elastomer, training procedure, and adding additional
magnetometers. In addition, mechanical improvements to the
composite can mitigate hysteresis to enable use in more dynamic
applications. We also anticipate future applications in soft

Figure 3. Circle Results Overview: A) The magnetic skin is sampled at 8 locations at 1, 2, or 3 mm depth for a total of 24 classes. B) QDA classification
results for location 3 and a depth of 1 mm, and C) all QDA classification results grouped by class. Mean absolute error from linear regression output
grouped by location for D) x-position, E) y-position, and F) z-position. G) Mean absolute error from k-NN regression grouped by location for force.
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robotics, medical devices, manipulation, and tactile surfaces. As
necessary, the magnetic skin can be molded to conform to the
geometry of the host system and be magnetically programed
to respond to prescribed mechanical loads or deformations.

4. Experimental Section

Fabrication: The pre-polymer and cross-linker were shear mixed (AR-100;
Thinky) for 30 s in a 1:1 ratio. The pre-cured elastomer mixture was imme-
diately hand-mixed with magnetic particles (MQP-15-12; Magnequench) in
a 1:1 weight ratio. The composite was then poured into a 3D-printed mold
and degassed for 5 min. A thin plastic film was placed on top of the mold
and excess elastomer was squeezed out. The filled mold was then placed
upside down on the surface of a permanent magnet (N48; Applied
Magnets). The elastomer was cured at room temperature and removed
from the mold in an hour. Finally, the elastomer was adhered (Sil-Poxy;
Smooth-On) to the top of the commercial magnetometer board
(MLX90393; Sparkfun) (Figure S6, Supporting Information). The magnetic
skin required no electrical connection to the underlying magnetometer
board. Instead, it required proximity for the magnetic flux changes to
be detected.

Feature Selection: For this article, we chose to represent the time-series
data as a set of representative features. We chose to manually identify
21 features to aid our intuition on the results, in lieu of automated feature
selection methods. The 21 features included the minimum, maximum,
mean, standard deviation, median, and sum of the magnetic signal in
each direction and the scalar ratios between the three axes. At the
end of the contact, we calculated the features from data collected over
the time of the contact, and immediately output the classification and
regression results. We were most interested in supporting evidence
of our claim that deformation of the randomly distributed magnetic
particles created repeatable and separable signals. Classification and
regression methods using these features are described in Section 1.2,
Supporting Information.

Data Collection: Data collection was automated using a desktop 4-DOF
robotic arm (uArm Swift Pro; UFactory). The magnetic skin board was
mounted onto an acrylic plate with a 500 g load cell (TAL221;
SparkFun). During contact, 3-axis magnetometer, load cell, and position
data was collected and stored at approximately 50 Hz. The indention loca-
tions were programed in two patterns: a 5� 5 grid (depth¼ 3 mm) and
8-point circle (depth¼ 1, 2, or 3 mm). All indentations were performed at

the same speed, 10mmmin�1. We used the robot arm kinematics as our
ground truth location. The indenter was a cylindrical rigid punch with a
radius of 1.5 mm. In both cases, the location was considered as a classifi-
cation and a regression problem to focus on modeling the sensor imple-
mentation and supporting the proof-of-concept sensing mode. The
magnetometer was located directly underneath location 13 of the 5� 5
grid and center of the 8-point circle.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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Figure 4. Demos: A) Four direction arrow keys can be used to move images around the screen with simple thresholds and sign comparisons. B) More
precise positioning requires a robotic arm and the previously trained QDA classification model to classify locations to place mines and flags in
Minesweeper.
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