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Abstract

Safe and robust on-road navigation system is a crucial
component for achieving fully automated vehicles. [3] re-
cently proposed an end-to-end algorithm that can directly
learn steering commands from raw pixels of a front camera
by using one convolutional neural network. In this paper,
we leverage auxiliary information aside from raw images
and design a novel network structure to help boost the driv-
ing performance, while maintaining the advantage of min-
imal training data and end-to-end training method. First,
we incorporate human common sense into vehicle naviga-
tion by transferring features from image recognition tasks.
Second, we apply image semantic segmentation as an aux-
iliary task for navigation. Third, we consider temporal in-
formation by introducing an LSTM module to the network.
Finally, we combine vehicle kinematics with a sensor fusion
step. We show our method can outperform the state-of-the-
art visual navigation method both in the Udacity simulation
environment and on the real-world comma.ai dataset. Our
method also has faster training speed and more stable driv-
ing behavior compared to previous methods.

1. Introduction
Perception and control have long been two indepen-

dent key challenges for learning a driving model in the au-
tonomous driving industry. However, recent advances in
deep learning have introduced end-to-end learning as a new
method for learning action policies for self-driving cars.
Unlike traditional approaches [11] that divide the system
into two separate perception and control parts which con-
tain tasks like lane detection, path planning and control
logic, end-to-end approaches often directly learn the map-
ping from raw pixels to vehicle actuation. Recent demon-
strations have shown some successful examples of train-
ing systems end-to-end to perform simple tasks like lane-

keeping [4] or obstacle avoidance [7].

Figure 1. The overall network structure of our proposed end-to-end
learning architecture. Compared to the original network structure
proposed by [3], our network has additional modules: a segmen-
tation network, an LSTM, and vehicle kinematic input.

The end-to-end methods have the advantage of direct
optimization without manually defined rules which result
in better performance and less human engineering efforts.
However, current end-to-end models use one deep convo-
lutional neural network to map from perception to control
[3]. This straightforward representation simplifies the mod-
eling, but has a number of drawbacks. First, it loses a lot of
detailed dynamic information for the specific driving task.
Speed and map information and vehicle mechanics are all
important for the driving task apart from camera images.
Second, it lacks human prior knowledge in the network.
People obey a lot of basic assumptions like traffic rules



when driving, whereas the network is expected to learn from
scratch. Third, it only considers current perception infor-
mation for decision making. In contrast, people memorize
history information and process it along with current per-
ception information to drive.

To address these problems, we present an improved end-
to-end learning approach with auxiliary tasks. We still tar-
get the lane following driving task, but improve the system
performance in terms of training efficiency and accuracy.
The approach can converge in less time with higher perfor-
mance.

The new approach is built upon a convolutional neural
network, with several variations in the network and trainng
procedure. Our proposed network structure is shown in Fig-
ure 1. We get raw RGB images from the camera mounted in
the front of the autonomous vehicle. First, we do some data
preprocessing to increase the diversity of data. Then the
preprocessed data are fed into a pre-trained segmentation
network. From the segmentation network, we get the seg-
mentation map of the particular image. Then a traditional
convolutional network is used to extract necessary features
for learning the proper control parameters. After the con-
volutional layer, we have an LSTM network to incorporate
temporal dynamics of the system. The LSTM network here
is designed to remember past states of the road configura-
tion. Then finally, we add additional vehicle information,
to concatenate the learned features with necessary vehicle
kinematics. This concatenated vector is then fed into a fully
connected layer to finally learn the continuous steering an-
gle.

Our system differs from the original network structure in
four respects: (1) the overall system takes advantage of ad-
ditional information by first obtaining a segmentation map
instead of directly using the implicit raw image; (2) our
learning system transfers knowledge from other tasks and
hence speeds up training; (3) we consider the temporal in-
formation by adding a recurrent module into the network;
(4) we use vehicle kinematics information in addition to
image input. The final network improves the baseline pure
convolutional network by incorporating more information,
both from human knowledge and history states.

2. Related Work
With the rapid growth of deep learning technology, end-

to-end learning machines have appeared as a common solu-
tion to solve complex practical robotic systems. In robotics
literature, an end-to-end process refers to a robot or an
agent consisting of only one network without modulariza-
tion from sensors to motors.

The definition of end-to-end learning is in comparison
with traditional methods that divide a task into several mod-
ules. Traditional methods would break the system into sev-
eral fundamental building blocks, solve each one separately,

and then optimize the pipeline jointly. However, end-to-end
learning machines enable a direct mapping from raw sen-
sor input to the desired output only using one network. In
an end-to-end system, all parameters are trained at one time
jointly, unlike the step-by-step process of traditional meth-
ods.

End-to-end learning has shown great success in many
fields. Mnih [6] has surpassed human-level performance
in Atari game-playing by training an end-to-end deep rein-
forcement learning agent. Sergey [5] trained an end-to-end
policy for a PR2 robot to learn grasp from raw visual in-
put. Deep Speech [1] replaces the entire speech recognition
pipeline using hand-designed features with neural networks
and results in a more robust model in environments with
different noise, accents, and languages.

End-to-end learning has also emerged as a new approach
for self-driving cars [3]. In order to learn driving on the
road, a traditional approach would involve object and lane
detection in an image, path planning to calculate trajectory
and PID control for final control output. However, an end-
to-end approach would learn a single network to map from
sensor perception to steering angles. Despite the diminished
effort in engineering hand-crafted features, the end-to-end
approach gets better performance than traditional methods,
although it relies on large amounts of data.

3. Method

In this section, we introduce our proposed methods for
constructing the network in detail. The methods we dis-
cuss here include using auxiliary segmentation, transferring
from existing tasks, utilizing temporal information and in-
corporating vehicle information.

3.1. Auxiliary Segmentation

Image segmentation has been widely researched for
decades. Image segmentation is the process of partitioning
an image into multiple sets of pixels to simplify its repre-
sentation and derive something more meaningful and easier
to analyze. Image segmentation is often used to recognize
and locate certain categories of objects by assigning a label
to each pixel.

In autonomous driving, image segmentation is often per-
formed to understand the surrounding environment of the
ego vehicle, for example, to recognize surrounding vehicles,
pedestrians, road boundaries, buildings, etc. This informa-
tion is crucial for determining the next actions. However,
the result of the segmentation process is often used ambigu-
ously and hard to apply directly to drive the car.

Here, we incorporate image segmentation directly into
the task of learning to control a car in an end-to-end fashion.
We believe the learned segmentation map contains auxiliary
information for controlling the car’s behavior. So we add a



segmentation map as an extra input to the system. The aux-
iliary information will explicitly tell the network, for exam-
ple, where the road boundary is and where the surrounding
vehicles on the road are. This will decrease the difficulty of
learning everything implicitly from the original raw image.

We integrate the image segmentation into our architec-
ture by using the segmentation network proposed by [2].

3.2. Transferring from Existing Tasks

CNN has been applied recently to a significant number
of practical and essential tasks. The training results have
shown that this approach is very successful in jobs like ob-
ject recognition. This motivates us to leverage the power
of a pre-trained network and apply the concept of transfer
learning [8]. Currently, numerous famous network struc-
tures in the literature have been proven to be powerful. The
most popular task is to learn object recognition on the Im-
agenet dataset that contains 1.2 million images of approxi-
mately 1000 different classes. The resulting trained model
can generalize a generic set of features, and recognize a
large variety of objects with high accuracy. The interme-
diate features learned are found to have universal expres-
siveness across multiple domains. We hence want to use
this characteristic and transfer the pre-trained network from
a vast field to the specific task of learning the driving policy.

In this paper, we compare three models: Resnet, the
Vgg16 network and our baseline CNN for the CNN module
in our overall network. The Resnet and Vgg16 network are
pre-trained on Imagenet. For feature extraction purposes,
we only use the convolutional layers. The detailed configu-
ration of our CNN network is illustrated in Section 3.3. The
three networks differ in depth and number of total parame-
ters. To make the comparison fair and even, we froze some
of the parameters in Resnet and Vgg16 net, so that only
parts of the Resnet and Vgg16 net are tunable. This makes
the total number of adjustable parameters approximately the
same for each model tested.

Figure 2. Illustration of transfer learning from object recognition
in Imagenet to learning steering angle for the self-driving car.

3.3. Temporal Information

Decision making for an autonomous vehicle is not an
independent choice at every time step. A human would

consider past environment information and previous actions
taken and then make a consistent decision of driving behav-
ior. This requires our system not only to be based on the
current state but also incorporate past states. So, apart from
the convolutional neural network to capture the spatial in-
formation, we introduce recurrent modules into our network
architecture.

After getting the spatial features from the CNN layer, we
added an LSTM layer to pass in previous information of the
environment. The LSTM processes a feature vector v from
the CNN in a sliding window of size w. This means the
steering action prediction result is dependent on w past in-
put observations Xt−w+1−Xt. By changing the parameter
of w, we can alter how long the system considers to make
the decision. Small w leads to shorter-term memory, so it
has faster reaction time but is prone to sudden sensor failure.
Larger w, on the contrary, will lead to a much smoother and
stable behavior. The problem of larger w is that it requires
longer training and test time for choosing actions.

With the visual states at each time step, the LSTM fuses
all past states and current state into a single state. So the
state here is complete, and the autonomous car is theoreti-
cally given all the historical information to make the neces-
sary action choice.

3.4. Additional Vehicle Information

We further hypothesize that visual input alone is not
good enough to make a good steering angle decision. The
vehicle’s behavior is better estimated by adding the vehi-
cle’s kinematic information. The kinematic information en-
sures that the car does not execute a driving behavior that is
against some physical rules.

It can be speculated that making a U-turn at 10mph and
30 mph are different regarding turning angle and the strat-
egy used. However, the visual observations given are almost
the same. Although we can infer the speed of the vehicle by
the scene change speed, it remains ambiguous and is not
easy to learn from images. That’s the reason why we need
vehicle kinematic information like vehicle speed.

Limited to the simulation environment and real-world
dataset, we select the following kinematic parameters as an
extra input to the fully connected layer:

• vehicle acceleration rate

• vehicle speed

• vehicle heading

• vehicle lateral distance to road boundary

• vehicle previous steering angle

• vehicle steering torque



datasets settings type time length weather diversity day/night driving
Kitti city, rural, highway real world less than 2 hours clear weather day time

CityScape city real world less than 100 hours multiple weather conditions day time
Comma.ai highway real world 7.5 hours clear weather day time and night time

Oxford Robocar city real world 214 hours multiple weather conditions day time and night time
Torcs highway simulation - clear weather day time

Udacity rural simulation - clear weather day time

Table 1. Camparison between different benchmark datasets on autonomous driving.

4. Experimental Setup
In this section, we discuss our experimental environment

selection both in simulation and on the real dataset. We
show how we do data preparation and explain the details of
our experimental design and implementation.

4.1. Environment Selection

Recently more and more public datasets and simulation
platforms for on-road driving have become available. These
datasets contain diverse driving scenarios including cities,
highways, towns and rural areas in the US and across the
world. Here, we give a comprehensive overview and com-
parison of available datasets.

Datasets collected in the real world:

• The Kitti dataset contains sensor information cap-
tured with a car driving around the city of Karlsruhe,
Germany in rural areas and on highways. Image data
were collected using two high-resolution color and
grayscale video cameras. The ground truth is provided
by a Velodyne laser scanner and a GPS localization
system. The Kitti dataset is suitable for investigating
the task of stereo, optical flow, visual odometry, 3D
object detection and 3D tracking.

• The CityScape dataset is a diverse set of stereo video
sequences recorded in street scenes from 50 different
cities across the world. It has high-quality pixel-level
annotations of 5000 frames in addition to a larger set
of 20,000 weakly annotated frames. It can be best used
for semantic urban scene understanding.

• The Comma.ai dataset contains 7.5 hours of highway
driving. The sensor input is recorded at 20 Hz with a
camera mounted on the windshield of an Acura ILX
2016. Together with the images, the dataset contains
information such as the car’s speed, acceleration, steer-
ing angle, GPS coordinates and gyroscope angles.

• The Oxford Robocar dataset contains 100 repeti-
tions of consistent routes through Oxford, UK, cap-
tured over a period of over a year. The dataset captures
a combination of weather, illumination, dynamic ob-
jects, traffic, and pedestrian information, along with
seasonal changes, construction, and roadworks.

Simulation environments:

• The Torcs simulator is an open-source racing car sim-
ulator written in C++. It is a popular video game as
well as a common research platform for studying AI
agents. In Torcs, many trials with various environment
settings and car models with different behaviors are
available.

• The Udacity simulator is an open-source simulator
developed based on Unity. The simulation gives a re-
alistic 3D visualization of the vehicle driving on three
given tracks in the desert, mountain and forest.

A comparison of the different datasets regarding settings,
type, time length, scenario and weather diversity is given in
Table 1.

For the experiment parts, we used the Udacity simula-
tion environment and the Comma.ai dataset as evaluation
platforms for our algorithms. The selected datasets have
access to the driver’s control actions together with sensor
perception information, which met our needs.

4.2. Data Preparation

In the Udacity simulation environment, we use three
tracks. The three tracks respectively depict a highway run-
ning through a desert, suburb, and mountain. Example
screenshots of the different trials are shown in Figure 3. The
desert track is used for training purposes, and the suburb and
mountain tracks are used for testing.

We collected image data for training by driving the car
in the simulation environment. To introduce various driv-
ing styles from multiple people, we collected data from six
people, each driving the desert track twice. We recorded
the steering angle, speed, acceleration rate and braking rate
paired with the corresponding images while driving with
keyboard input. The system operates at a 10-hertz fre-
quency. Altogether we collected 6245 images, totaling
about 1 hour of driving data. We sampled images at 2 Hz to
prevent redundant pictures. The images captured simulate
the front view from the vehicle via a camera mounted on
top of the car.

The images obtained are not directly used for training
purposes. Before training, we preprocess and augment the



Figure 3. Sample screenshots of the environment in the Udacity autonomous driving simulator. The left one shows the training track in
the desert, while the two on the right show the test track in suburb and mountain. The test sets are different from the training set regarding
lighting conditions, curvature, inclination, road geometry and off-road scenery and thus are considered much more difficult.

data using techniques similar to those described in [3]. Data
augmentation is used here to increase the size of the training
set and also the diversity of training samples. The following
operations were performed.

• Cropping: The images are cropped to remove extrane-
ous elements. We removed the top of an image which
includes a large area of sky or mountain tops and the
bottom of the image which contains the car hood.

• Upsampling: In the original training set, most scenar-
ios are going straight along the road. Images with a
steering angle larger than 15 degrees are scarce com-
pared to a significant number of training samples with
a steering angle less than 5 degrees, which means the
steering angle distribution is strongly biased towards
zero. To overcome the problem of imbalanced data, we
manually upsample images with steering angle greater
than 10 degrees by ten times and steering angle greater
than 5 degrees by five times. The data are then ran-
domly shuffled before training.

• Brightness changes: Each frame is first converted to
HSV space and the value channel is then multiplied by
a random value from 0 to 10. This changes the lighting
situation and makes the model adaptive to all kinds of
weather.

• Flipping: We flip all frames to obtain their mirror in
the horizontal direction. This helps to make sure we
have exactly the same amount of left and right turning
samples. The algorithm won’t suffer from any bias in
the left or right direction.

For the real data from the Comma.ai driving dataset,
there is no need for cropping and brightness preprocess-
ing. We use the same upsampling and flipping techniques
to deal with the data balance problem. The dataset includes
11 video clips of 7.5 hours of highway driving at 20 Hz.
Here we only want to consider stable highway driving at

normal speed in daylight. We further exclude the driving
videos at night or in traffic jams with speed under 10mph.
The finally selected footage has a length of about 2 hours of
driving. We split it by using 130K frames for training and
20K frames for testing.

4.3. Implementation Detail

As a baseline to compare our algorithms against we use
a variation of the CNN network structure proposed in [3].
The difference here is that we add batch normalization and
dropout layers after each convolutional layer for better con-
vergence and performance.

The CNN network consists of 5 convolutional layers.
The first three layers have a kernel size of 5 × 5, and the
last two layers have a kernel size of 3 × 3. The depth of
each feature map is 24, 36, 48, 64, 64. The activation func-
tion we use here is ReLu.

Our model has an additional LSTM layer apart from con-
volutional layers, as shown in Figure 1. The LSTM has 128
hidden units. The output of LSTM and the vehicle kine-
matic dynamics are concatenated before fed into the FCN
module. The FCN module consists of 3 fully connected
layers with 256, 128 and 64 units followed by a Tanh acti-
vation function.

We use Adam optimization to train all networks. The
learning rate is fixed to 0.001 with a momentum decay of
0.9. The batch normalization and dropout layers are used to
prevent overfitting.

5. Evaluation and Results

We report our experimental results on the Udacity sim-
ulation and the Comma.ai dataset. For the steering angle
prediction task, we use Root Mean Square Error (RMSE)
as the evaluation metric. RMSE can express average sys-
tem prediction error on the dataset. The RMSE metric is



defined as

RMSE =

√√√√ 1

|D|

|D|∑
i=1

(âi − ai)2,

where âi and ai are the ground-truth and predicted steering
angle for frame i and |D| is the total number of frames in
the test set. The angles are measured in angular degrees.

The RMSE can estimate the precision of the system but
can neglect the stability of the system. So we also define
a stability metric based on the deviation of our prediction.
The intuition behind it is that we want our predictions to
change smoothly without any sudden bump in the steering
angle. We call this metric Mean Continuity Error (MCE).

MCE =

√√√√ 1

|D| − 1

|D|−1∑
i=1

(ai+1 − ai)2

We evaluate the influence of the different methods sug-
gested with the baseline method (see Table 2). We first com-
pare the baseline CNN structure with two popular networks
Vgg [10] and Resnet [9] for the image recognition tasks.
To maintain roughly the same number of weights for train-
ing in different models, we only train the last five layers of
Vggnet and Resnet. Here transfer learning shows that the
pre-knowledge from the image recognition task is benefi-
cial for the job of predicting steering angles. It should be
noted that the performance boost in the Comma.ai dataset
is much more substantial that Udacity simulation. This is
most likely due to the fact that the Comma.ai dataset con-
tains real imagery which has a higher resemblance with Im-
agenet dataset than the simulation environment.

To evaluate the effect of the segmentation map augmen-
tation, we compare the result of adding the segmentation
map as an extra feature map for input to the convolutional
layers. We use the segmentation map output categories of
the sky, road marking, road, tree, pavement, and vehicle.
We construct a binary map for each group and stack them
together with the original three channels of the image. As
can be seen in the fourth row of Table 4, the precision and
stability boost is massive compared to the raw image input.
Example segmentation map outputs are shown in Figure 4.

Next, we evaluated the effect of adding temporal infor-
mation by using the layer of LSTM. The results are shown
in the firth and sixth rows of Table 2. The performance is
increased both in the Comma.ai dataset and in the Udacity
simulation. We conducted grid-search for the optimal win-
dow size w for the LSTM and found that w = 3 generates
the best result, which means we look back for 1.5 seconds.
We compare the main difference of the prediction with the
baseline model and discover that after using temporal infor-
mation, absurd outlier predictions are significantly reduced.
The cases where two sequential frames make dramatically

Figure 4. Example intermediate segmentation outputs obtained in
the end-to-end learning procedure.

different steering angle predictions almost disappear. This
dramatically improves the stability of the algorithm and also
improves the prediction accuracy.

Adding the vehicle kinematics also slightly improves the
performance, by about 3%. The ablation test shows the ve-
hicle previous steering angle is the most useful, followed by
vehicle speed and vehicle heading. We observe no perfor-
mance boost in using the vehicle acceleration rate, vehicle
lateral distance to road boundary and vehicle steering angle.

Our overall proposed architecture has reduced predic-
tion RMSE error by 44.92% in the Udacity simulation and
48.44% in the Comma.ai dataset. The prediction MCE er-
ror was reduced by 41.81% in the Udacity simulation and
49.58% in the Comma.ai dataset.

We also do an empirical test on the Udacity simulation
environment to see if the car can successfully drive in a new
scenario. The result shows good driving performance on an
unseen map with various sceneries in suburb and mountain.
A video clip of our trained model is available at https:
//youtu.be/reqAHtXtnrI.

6. Conclusion

We suggested a network architecture that improves the
baseline vision-based end-to-end learning of steering angle.
The suggested network architecture uses four distinct meth-
ods: adding auxiliary segmentation, transferring from exist-
ing tasks, utilizing temporal information and incorporating
vehicle information. We found that using transfer learning
from the Imagenet recognition task can be helpful in learn-
ing the task of steering for on-road driving. Using the pre-
trained segmentation mask to categorize the image at the
pixel level can empower the network with more information
and thus result in better prediction accuracy. The incorpora-
tion of temporal information of history states indeed helps
to make better current decisions, which again proves the
concept that driving policy is a long-term decision-making
process. Finally, the proper addition of some vehicle kine-
matics makes the state representation more concrete.

https://youtu.be/reqAHtXtnrI
https://youtu.be/reqAHtXtnrI


Proposed Network
Structure

Udacity Simulation Comma.ai Dataset
RMSE/degrees MCE/degrees RMSE/degrees MCE/degrees

baseline CNN 7.68 2.32 19.84 7.26
Vgg CNN 7.45 2.12 15.86 5.73

Resnet CNN 7.34 2.09 15.23 5.35
Resnet CNN + SegMap 5.23 1.57 12.33 4.21

Resnet CNN + SegMap + LSTM 4.50 1.33 10.72 3.78
Resnet CNN + SegMap + LSTM + vehicle kinematics 4.23 1.32 10.23 3.66

Table 2. Comparison between different network structures for vision-based end-to-end learning of steering angle. Our proposed method
has the lowest RMSE and MCE both in the Udacity simulation and on the Comma.ai dataset compared to the baseline method.
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