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Abstract—Human-robot interactions that involve multiple 
robots are becoming common. It is crucial to understand how 
multiple robots should transfer information and transition users 
between them. To investigate this, we designed a 3 x 3 mixed-
design study in which participants took part in a navigation task. 
Participants interacted with a stationary robot who summoned 
a functional (not explicitly social) mobile robot to guide them. 
Each participant experienced the three types of robot-robot 
interaction: representative (the stationary robot spoke to the par-
ticipant on behalf of the mobile robot), direct (the stationary robot 
delivered the request to the mobile robot in a straightforward 
manner), and social (the stationary robot delivered the request to 
the mobile robot in a social manner). Each participant witnessed 
only one type of robot-robot communication: silent (the robots 
covertly communicated), explicit (the robots acknowledged that 
they were communicating), or reciting (the stationary robot said 
the request aloud). Our results show that it is possible to instill 
socialness in and improve likability of a functional robot by 
having a social robot interact socially with it. We also found that 
covertly exchanging information is less desirable than reciting 
information aloud. 

Index Terms—robots; human-robot interaction, user study; 
multi-robot; multi-robot-human interaction; transition; transfer 

I. INTRODUCTION 

Robots in public and private settings are no longer a far-off 
dream but a growing reality. With deployments of service and 
social robots in airports [1], shopping malls [2], hotels [3], and 
museums [4]–[6], interacting with commercial robots such as 
Softbank’s Pepper and Savioke’s Relay will become a staple 
of our daily lives. Yet each of these robots is unlikely to be the 
only robot in a building: it is more likely that many robots will 
collaborate to provide services. How multiple robots should 
interact with humans in such scenarios, particularly when they 
exchange information about users, remains an open question. 
Humans are limited in their communication capabilities by the 
necessity of verbal or nonverbal conversational cues in face-
to-face interaction, the need to rely on an external medium 
for remote interaction, and imperfect calibration of semantic 

Hi Yellow Robot, can you 
please lead <participant 
name> to the meeting 
room?

Fig. 1. Stationary robot recites a request to mobile robot in a social manner. 

meaning. However, robots are not subject to these constraints: 
they can communicate covertly through electronic signals, 
have near-perfect information transfer, and can even share the 
same personality across different robot embodiments [7]. 

As an initial step, we explore the transition of a human from 
one robotic system to another. In human-human interaction, 
starting an interaction with one person and transitioning to in-
teracting with another is common. For example, a receptionist 
may greet a visitor at the reception area in a building, provide 
them with a security badge, and then instruct them to follow 
a guide to their destination (and thus the visitor “transitions” 
from one interactant to another). For another example, consider 
a customer service exchange in which an employee lacks the 
skills or authority to complete a request and therefore asks 
their manager to take over. Such transitions may be planned 
(as in the receptionist/guide scenario), or they may emerge on 
the spot (as in the cashier/manager scenario). 

Transitions like these will occur when humans interact with 
multiple robots. This is especially likely for heterogeneous 
robot teams in which one of the robots lacks the capabilities 
to complete a task. In a receptionist scenario, a stationary 
receptionist robot might not be able to guide a visitor to a 
destination because it is immobile or needs to remain at its 
station to fulfill other duties. In this case, the stationary robot 
would need to summon a mobile robot to guide the user 
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to the destination. The other robot may also be specialized 
in mobility and lack social capabilities. Should robots in 
these situations invoke the norms and mimic the behavior of 
humans? Do they need to verbally communicate their intent 
and acknowledge users’ requests? These are the questions we 
address in this research. 

Effective communication between robots may have addi-
tional benefits beyond enhancing user experience. Equipping 
robots with social capabilities increases user engagement and 
enjoyment [8], [9]. Yet some robots, especially those that 
are intended to be purely functional, may not be designed to 
have human-like or animal-like features. By observing social 
behavior between a social robot and a functional (nonsocial) 
robot, users may attribute social intelligence, trust, and other 
properties normally associated with social robots to the nonso-
cial robot, even in the absence of its own social expressions. 
By being deliberate in the design of the way one robot treats 
another, we may be able to build up these attributions toward 
a functional robot that does not exhibit social qualities. 

To explore how information transfer and social interactions 
between robots affect user perceptions, we tested three types 
of information transfer and three degrees of sociality in an 
interaction among two robots and a human participant. Our 
study showed that the way a stationary social robot treats 
a functional mobile robot with minimal social capabilities 
changes the way humans perceive the mobile robot. 

II. RELATED WORK 

A. Multiple-Robot Interaction in HRI 

Prior work explored different properties of interactions 
between humans and multiple robots. A variety of issues has 
been examined, including spatial positioning [10], effects of 
the number of robots and their social features [11], [12], and 
people’s decisions to conform to robots’ opinions [13]. The 
applications of such systems have also been explored in educa-
tional [14] and shopping [15] settings. While most of this work 
explored humans interacting with multiple identical robots, 
some has explored how being exposed to different robots 
influences perceptions. Fraune and colleagues [16] found that 
robots were perceived more negatively when presented in a 
group of identical robots than alone or in a diverse group of 
robots. One of the novel contributions of our work is that 
our participants did not start the interaction with multiple 
robots. Instead, we examined an interaction in which a person 
began interacting with one robot and then transitioned via the 
interaction to a different robot. 

B. Robot-to-Robot Communication in HRI 

Previous work explored how robot-to-robot communication 
can be used to calibrate humans’ expectations of robots’ 
capabilities [17]. Designing for overt communication between 
robots has also been shown to be an engaging way to 
convey information [18], [19] and improve conversational 
coherency [20]. Some researchers have studied robot-to-robot 
communication to better understand the role of robots as 
sidekicks in interactions with and without humans [21], [22]. 

An early exploration of human perception of multi-robot 
interaction investigated how people interpreted a conversation 
between two robots [17]. After observing the interaction, 
participants were able to infer the robots’ verbal and nonverbal 
communicative capabilities. Later, Fraune and Sabanovic [23] 
examined how different types of inter-robot communication 
(none, loud, and silent) between basic functional robots af-
fected the attitude of a bystander. The study did not find 
any significant differences between conditions. The authors 
hypothesized that the result arose from participants assigning 
groupness rather than treating the robots as individual social 
entities. Our study differs from these in that participants 
directly interact with two robots rather than just observing 
them. 

Our study is similar to previous work [24] that explored how 
different robot-to-robot communication affected user prefer-
ences. In a simulated nuclear disaster scenario, participants 
issued commands to the robots. The robots communicated 
either verbally or covertly. Interestingly, participants described 
covert communication between the robots as creepy. Our work 
differs from [24] in that (1) we create a transition rather than 
fostering ongoing collaboration and (2) our interaction occurs 
in a setting where robots work together to provide a service. 

III. METHOD 

To explore how a social, stationary robot and a functional, 
mobile robot should communicate when “handing off” a user, 
we designed a study about how Information Transfer and 
Stationary Robot Behavior influenced participants’ preferences 
and perceptions. We created a navigation scenario in which a 
person requested assistance from a stationary robot that then 
summoned a mobile robot to lead the person to a destination. 
The study was approved by our Institutional Review Board. 

A. Study Design 

We designed a 3 x 3 mixed-design experiment with In-
formation Transfer as the between-subjects manipulation and 
Stationary Robot Behavior as the within-subjects manipula-
tion. Information Transfer explored different ways for robot-
robot information transfer to be conveyed to the user. This 
was not to determine the actual best way for information to 
be transferred (electrical signaling is often the best option due 
to low noise, high reliability, and high bandwidth); instead, 
it was to learn how robots should indicate to their users that 
certain information has been shared between two robots. Our 
Information Transfer conditions were as follows: 

• Silent – The stationary robot did not repeat the user’s re-
quest and did not explicitly acknowledge that the request 
had been transferred to the mobile robot. 

• Explicit – The stationary robot did not repeat the user’s 
request but did explicitly acknowledge that the informa-
tion had been sent to the mobile robot. 

• Reciting – The stationary robot recited the user’s request 
out loud to the mobile robot. 



Stationary Robot Behavior describes how a stationary robot 
interacts with a mobile robot that lacks speech capabilities. 
The conditions were as follows: 

• Representative – The stationary robot did not speak 
directly to the mobile robot, but instead spoke to the 
participant on behalf of the mobile robot. 

• Direct – The stationary robot spoke directly to the mobile 
robot, delivering the participant’s request in a complete 
sentence. 

• Social – The stationary robot spoke directly to the mobile 
robot, supplementing the participant’s request with social 
conversational behavior. 

In our mixed-design study, each participant was assigned to 
one of the Information Transfer conditions and experienced 
each of the three Stationary Robot Behavior conditions. The 
order of the Behavior conditions was counterbalanced and 
the Transfer conditions were spread out equally across the 
6 unique permutations of Stationary Robot Behavior. 

B. Hypotheses 

Our hypotheses predicted that both Information Transfer 
and Stationary Robot Behavior would affect participants’ 
preference and perception of both robots. 
H1. Participants will perceive the stationary robot to be more 

social, competent, and likable in the social condition than 
in the direct and representative conditions. 

H2. Participants will perceive the mobile robot to be more 
social, competent, and likable in the social condition than 
in the direct and representative conditions. 

H3. Information Transfer will have an effect on participants’ 
perception of both robots. 
(a) Participants will perceive the robots to be more compe-

tent in the reciting condition. 
(b) Participants will perceive lower competence in the 

mobile robot and be more wary of and disturbed by the 
stationary robot’s behavior in the silent condition. 

H4. Participants will be more likely to see the robots as equals 
in the social condition. 

H5. Participants will have a higher preference to work with 
the mobile robot they encounter in the social condition. 

C. System and Study Setup 

The study was conducted in a lab space on Carnegie Mellon 
University’s Pittsburgh campus. The stationary robot was a 
humanoid Baxter robot by Rethink Robotics with speakers 
added for a clear robot voice and a camera mounted on the 
chest to record participant reactions. The Baxter robot wore a 
different name tag in each of the Behavior conditions to add 
to the perception that the context had been switched between 
each of the 3 interactions that constituted the within-subjects 
manipulation. The robot was controlled through the ROS-
based SDK [25]. Realistic speech was generated using the 
Amazon AWS Polly SDK [26], and natural human responses 
were recognized through a pipeline consisting of Google 

Cloud Speech and SNIPS Natural Language Understanding 
Engine [27]. 

The mobile robot was a custom-modified Mobile Robots 
P3DX. The robot was controlled with ROS and could au-
tonomously navigate to multiple waypoints throughout the 
study area using the ROS Navigation Stack [28]. Additional 
motion corrections could be made using a joystick controller 
if the robot moved erroneously. The robot was decorated with 
colorful accessories to allow participants to easily distinguish 
between trials and enhance the illusion that each trial had a 
different mobile robot. All participants saw a “blue robot”, a 
“green robot”, and a “yellow robot”. There were two mappings 
of colors to Behavior conditions. 

Because both robots are independent units that operate sep-
arately by default, we wrote a ROS package, inspired by [17], 
to facilitate communication between the two robots through 
the ROS Bridge protocol [29]. This package allowed us to 
send signals between the robots so that one robot could tell 
the other robot to execute certain actions or that an action had 
been completed. In our study, the stationary robot wirelessly 
coordinated the experience and told the mobile robot when 
certain behaviors were needed. To move the mobile robot, the 
stationary robot sent a signal with a waypoint (next to the 
participant, at the door to the lab, etc.) to the mobile robot. The 
mobile robot then autonomously planned and executed a path 
to the given waypoint. When the path had been completed, the 
mobile robot sent back a “done” signal to the stationary robot, 
who waited for that signal before continuing the interaction 
with the participant. 

Both robots operated autonomously during the study. Occa-
sionally, the experimenter adjusted the mobile robot’s motion 
if it moved too slowly or too close to an obstacle. We have 
released the code behind the study online1. 

D. Procedure 

After obtaining informed consent, the experimenter ex-
plained to the participant that they would take part in a 
scenario in which they required guidance to navigate to a room 
in an unfamiliar building. The experimenter told the participant 
that they would engage in the interaction four times—with the 
first being a practice run—and that they would verbally interact 
with a differently programmed robot during each trial. 

To mitigate the impact of language processing failures, we 
told participants to be aware that the system was not perfect 
and might fail to recognize some commands, and we provided 
tips on what to do when failures occurred. 

In the practice run, the participant interacted with the 
stationary robot who summoned the mobile robot to lead the 
participant from our lab to a door in the hallway. Once the 
mobile robot arrived at its destination, it beeped once to signal 
task completion. The experimenter then led the participant 
back to the room. The experimenter explained that the robot 
would drive itself back to the “charging station” outside of 
the lab. We chose to have the mobile robot park itself outside 

1https://github.com/CMU-ARM/HRI19-MultiRobot-Transition-Study 
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Yellow Robot, 
lead <name> to 
<goal>. 

<name> would like 
to walk 
<quickly/slowly>, 
so walk 
<quickly/slowly>.

Yellow Robot 
will lead you 
to <goal>. 
Please follow 
Yellow Robot.

Yellow Robot, lead 
<name> to the 
destination. 

I have transmitted 
to you the 
destination and 
preferred walking 
speed.

Yellow Robot knows 
where you are going 
and will lead you 
there. Please follow 
Yellow Robot.

Yellow Robot will 
lead you there. 
Please follow Yellow 
Robot.

Yellow Robot 
get ready.

I have told Green Robot 
your name, destination, 
and preferred walking 
speed. <pause>

Green Robot knows 
where you are going 
and will lead you 
there. Please follow 
Green Robot.

I am now telling Green 
Robot that you would like 
to walk <quickly/slowly> 
and you want to go to 
<goal>.

Green Robot will lead 
you to <goal>. Please 
follow Green Robot.

Green Robot will 
lead you to your 
destination. Please 
follow Green Robot.

Green Robot is 
ready.

Hi Blue Robot. 
Can you please 
lead <name> to 
the destination?

I’ve sent you 
<name>’s 
destination, 
and preferred 
walking speed. 
Please move at 
that speed.

Blue Robot knows 
where you are 
going and will 
lead you there. 
Please follow Blue 
Robot.

Thank you 
Blue Robot.

Hi Blue Robot. 
Can you please 
bring <name> 
to <goal>?

<name> would like 
to walk 
<quickly/slowly>, 
so please walk 
<quickly/slowly>.

Blue Robot will 
lead you to  
<goal>. Please 
follow Blue 
Robot.

Thank you 
Blue Robot.

Hi Blue Robot. Are 
you ready to go? Blue Robot will 

lead you there. 
Please follow 
Blue Robot.

Thank you 
Blue Robot.

Fig. 2. Stationary and mobile robots’ dialogue for each condition. 

the lab (and out of sight of the participant) between trials 
for two reasons: (1) to prevent participants from thinking that 
the mobile robot gathered information by overhearing their 
conversation with the stationary robot rather than obtaining 
it directly from the stationary robot, and (2) to contribute 
to the illusion that there were three different mobile robot 
behavior “programs” by having the robot leave and return with 
a different appearance. When the participant re-entered the lab, 
they completed a demographic survey and a questionnaire (Q1) 
about the practice run. 

Following Q1, the experimenter explained that the partic-
ipant would need to follow the robot only to the door of 
the lab to complete each trial rather than all the way to a 
destination. We chose not to have the mobile robot navigate 
to a destination to ensure that the participant’s experience and 

opinion of the mobile robot were based on the transition rather 
than its success in guiding the participant. The participant was 
also told that they would be prompted to select a walking 
speed (“quickly” or “slowly”), but that the speed selection 
would not determine the mobile robot’s actual speed; this was 
to ensure that perceptions were not affected by the mobile 
robot’s success or failure to match expectations of speed. 

When the participant was ready, the experimenter pressed a 
button to start the next interaction. The stationary robot’s face 
appeared on its screen. The stationary robot waited for the 
participant to initiate the interaction and began when it heard 
a prompt. The robot then greeted the participant and asked for 
the participant’s name (which was entered in advance to ensure 
correctness). The robot then asked what kind of assistance the 
user required. Our system used the natural language pipeline 
to parse the request. Once the system correctly extracted the 
destination, it asked the participant to confirm, and then asked 
them for their preferred walking speed. Then, it summoned 
the mobile robot to a waypoint to the right of the participant. 
When the mobile robot arrived, it turned to the stationary 
robot and beeped to signal its arrival. In the explicit and 
reciting conditions, the stationary robot turned its arms and 
head towards the mobile robot. Dialogue for the condition 
was then executed (Figure 2), ending with the stationary 
robot instructing the participant to follow the mobile robot. 
The mobile robot moved outside of the lab, at which point 
the experimenter stopped the trial and administered the next 
questionnaire (Q2). The experimenter then exited the room, 
stating that they needed to switch the programs of both of 
the robots while the participant completed Q2. In reality, the 
experimenter only switched the program of the stationary 
robot, the name tag of the stationary robot, and the color 
accessories on the mobile robot. This interaction was then 
repeated two more times, once for each of the other within-
subjects conditions. Each condition was associated with a 
fictional setting and a color (blue, yellow, green). To ensure 
that robot color was not a confound, we rotated the color order 
after 18 sessions (6 per between-subjects condition). 

After completing Q2 for the last trial, the participant com-
pleted another questionnaire (Q3) comparing all three trials. 
We then conducted a semi-structured interview to gain further 
insight into participants’ impressions. The study took about 30 
minutes and participants were compensated 8 USD. 

E. Measures 

Because we were interested in the participants’ perceptions 
of the interactions, we relied primarily on subjective measures. 
Our measures included several Likert scales drawn from 
prior work, experiment-specific forced-choice questions, yes-
or-no questions about the robots’ knowledge, and open-ended 
questions. When drawing from validated scales, we selectively 
omitted less relevant items to prevent survey fatigue. 

1) Perception of Social Properties: To assess both robots, 
we combined sections of the Robotic Social Attributes Scale 
(RoSAS) [30] and the Godspeed questionnaire [31]. Partici-
pants were asked to rate the robot(s) with respect to 12 words 



TABLE I 
PARTICIPANT DEMOGRAPHICS (36 VALID SESSIONS) 

Condition Female Male Other Age (Std. Dev.) 
Silent 8 4 0 29.5 (16.2) 

Explicit 9 3 0 27.1 (12.5) 
Reciting 8 4 0 26.3 (8.5) 

from the warmth and competence RoSAS factors. We also 
asked them to rate 3 words from Godspeed (Likable, Mean, 
and Friendly) to measure perceived likability. 

2) Trust in Guide Robot: Participants’ trust in the system 
was measured by 6 questions, 4 of which were modified from 
Jian’s trust scale [32] and two that were specific to the task. 

3) Open Ended Questions: At the end of each trial, we 
asked participants to describe the relationship between the 
robots and what they liked or disliked about the interaction. 
After the third trial, we asked participants how they believed 
information transfer had occurred and which pieces of infor-
mation had been transferred between robots. 

4) Preferred Robot: The final questionnaire also included 
forced-choice questions asking participants which of the three 
mobile robots they would most want to use, which one they felt 
most connected to, which one they preferred the least, which 
one they found most likable, and which one they believed to 
be the most knowledgeable. We also asked in which trial the 
stationary robot was most likable and least preferred. 

F. Other Data 

We recorded each session and logged how often the robot 
repeated a question due to a natural language pipeline failure. 

G. Participants 

We recruited 44 participants from the Pittsburgh metropoli-
tan area using an online recruitment tool. Participants were 
between 18 and 61 years old. Eight participants were ex-
cluded due to logistical or technical issues, resulting in 36 
valid sessions (12 per between-subject condition; Table I). 
Participants reported using computers on a near-daily basis, 
M = 6.89, SD = 0.32, on a 7-point Likert scale that ranged 
from Never (1) to Daily (7). Participants also reported some 
familiarity with robots, M = 3.17, SD = 1.28 on a 7-point 
scale. 

IV. RESULTS 

Unless otherwise noted, we analyzed the results by fitting a 
multilevel linear model using REstricted Maximum Likelihood 
(REML) [33], [34] for all continuous measures with Informa-
tion Transfer and Behavior as fixed effects and participant as a 
random effect nested within Information Transfer. The number 
of system mistakes (times the robot repeated a question due 
to language pipeline errors) was treated as a covariate and 
included as a fixed effect to ensure that differences in ratings 
were due to our manipulation and not due to system usabil-
ity. All post-hoc analyses used Tukey’s Honest Significant 
Difference (Tukey HSD). We report significant differences 
(p < 0.05) and important trends (p < 0.1). 

A. Measure Reliability and Confounds 

The RoSAS warmth factor was reliable for both the sta-
tionary robot (Cronbach’s α = 0.92) and the mobile robot 
(Cronbach’s α = 0.94). The competence factor was also 
reliable for both robots (Cronbach’s α = 0.96 and 0.92, 
respectively). The Likability measure was calculated by aver-
aging participants’ responses to items pertaining to the robot’s 
Likability and Friendliness, which had item reliability of 
Cronbach’s α = 0.90 for the stationary robot and Cronbach’s 
α = 0.83 for the mobile robot. We did not include the 
reverse coding of meanness in this index because it had a 
low correlation with the other items. Instead, we analyzed 
meanness individually for both robots. Five of the six items 
that assessed trust in the mobile robot were highly correlated 
(r > 0.85). The exception was the item “I am wary of the 
guide robot”, which was weakly correlated with the other items 
(r < 0.34). We combined the five highly correlated items 
(Cronbach’s α = 0.98) as a measure of trust in the mobile 
robot. To assess the perceived relationship between robots, we 
constructed a relationship factor composed of responses to 
Likert items pertaining to beliefs that the robots knew each 
other well, ignored each other (reverse coded), and liked each 
other (Cronbach’s α = 0.76). 

To evaluate the possible effect of the mobile robot’s color, 
we included color in a similar multi-level linear model. We did 
not find significant effects of color on our dependent measures. 

B. Perception of Mobile Robot 

We measured participants’ perceptions of the mobile robot 
through RoSAS and other measures. For the warmth measure, 
we found that Behavior had a significant effect, F (2, 58.22) = 
5.70, p = .006. Pairwise analysis showed that participants felt 
that the warmth of the mobile robot was significantly higher 
in the social condition (M = 3.45, SE = 0.33) than in the 
representative condition (M = 2.67, SE = 0.31), p = .004. 
No other pairwise difference was found. We also found a trend 
wherein Stationary Robot Behavior impacted perceived com-
petence of the mobile guide robot, p = .092. On the mobile 
robot’s likability, we found a significant effect of the stationary 
robot’s Behavior, F (2, 58.09) = 6.62, p = .003. Pairwise 
comparison showed that when the stationary robot was social 
toward the mobile robot (M = 5.04, SE = 0.38), the mobile 
robot was more likable than when the stationary robot was 
representative (M = 3.99, SE = 0.37), p = .002. No other 
pairwise difference was found. We also found a trend where 
Information Transfer influenced the participant’s wariness of 
the mobile robot, p = 0.057. In particular, participants were 
more wary in the silent condition (M = 3.12) than in reciting 
condition (M = 1.73). We found no significant difference 
among factors for participants’ perceived meanness or trust of 
the guide robot. 

C. Perception of Stationary Robot 

The stationary robot’s Behavior significantly affected per-
ceived warmth, F (2, 58.19) = 8.53, p < .001. Pairwise 
comparisons showed that participants rated the stationary robot 
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Fig. 3. Left and middle: Effect of Stationary Robot Behavior on social perceptions. Right: Interaction effect of Stationary Robot Behavior and Information 
Transfer on rating of robot-robot relationship. * means p < .05, ** means p < .01, and *** means p < .001. Error bars denote ± 1 standard error. 

higher on warmth in the social (M = 5.01, SE = 0.34) condi-
tion than in the direct (M = 4.37, SE = 0.33) and represen-
tative (M = 4.03, SE = 0.33) conditions, p = .028 and p < 
.001, respectively. Though participants were treated equally by 
the stationary robot across conditions, their perceptions of its 
warmth changed when it treated the mobile robot in a nonso-
cial manner. We found a trend wherein Information Transfer 
influenced participants’ competence ratings of the stationary 
robot, p = 0.064, such that participants viewed the stationary 
robot as more competent in the reciting condition (M = 7.93) 
than in the silent condition (M = 6.36). Participants’ ratings 
of the stationary robot’s likability were significantly affected 
by Information Transfer, F (2, 31.84) = 3.90, p = .031, 
and the stationary robot’s Behavior, F (2, 58.22) = 3.81, 
p = .028. Pairwise comparisons revealed that participants 
perceived the stationary robot as more likable when it used 
reciting (M = 6.60, SE = 0.53) than when it was silent 
(M = 4.55, SE = 0.52), p = .025. Participants also 
perceived the robot to be more likable in the social condition 
(M = 6.20, SE = 0.37) than in the representative condition 
(M = 5.30, SE = 0.35), p = 0.025. Both Information 
Transfer and Behavior significantly affected meanness ratings 
for the stationary robot, F (2, 34.47) = 3.31, p = .049 and 
F (2, 62.82) = 4.91, p = 0.011. Again, pairwise comparisons 
showed that participants perceived that the robot was less 
mean in the reciting condition (M = 1.31, SE = 0.37) 
than in the silent condition (M = 2.61, SE = 0.35), p = 
.038. Participants rated the social (M = 1.33, SE = 0.31) 
stationary robot as significantly less mean than the direct 
(M = 2.45, SE = 0.29) stationary robot, p = 0.011. There 
was also a trend in which the stationary robot was perceived 
as less mean in the social condition than in the representative 
condition, p = .053. 

D. Robot-Robot Relationship 

We explored the perceived relationship between the robots 
via (1) a relationship factor and (2) an analysis of participants’ 
responses to a free response question asking them to describe 
the robots’ relationship after each trial. We found Behavior 
to have a significant effect on how participants perceived the 
relationship, F (2, 59.77) = 13.43, p < .001. However, we 
also found there was a significant interaction effect of Behavior 
and Information Transfer, F (4, 59.46) = 2.56, p = .048. 

The effect of Behavior differed depending on Information 
Transfer: participants perceived the mobile robot to have a 
better relationship with the social stationary robot than with 
the representative stationary robot in the explicit, d = 1.377, 
p = .031, and silent, d = 2.01, p < .001, Information 
Transfer conditions. Participants perceived the robots in the 
social condition to have a better relationship than the direct 
condition when the Transfer condition was silent, d = 1.51, 
p = .013. This interaction effect showed that the difference in 
robot Behavior was mainly in the silent condition. 

For the qualitative responses about the robots’ relationship, 
we annotated answers to the open-ended questions: “How 
would you describe the relationship between the receptionist 
robot and the guide robot?” and “What did you like and/or 
dislike about the interaction with the robots?” for information 
about the type and nature of the perceived relationship between 
the robots. Two of the authors inspected responses and identi-
fied 3 categories of relationship type: equal, unequal, and no 
relationship. Within the equal relationship type, there were 2 
categories of relationship nature: prescribed, e.g., commanded 
by the programmer to act as equals; and independent, e.g., 
friends or coworkers. Within the unequal type, there were 
3 categories of relationship nature: positive, e.g., teacher 
and student; neutral, e.g., boss and employee; and negative, 
e.g., master and slave. Some participants did not address 
relationships in their answers, and in this case, a code of “N/A” 
was assigned. 

Two coders coded 25% of the data to calculate inter-
rater reliability. For relationship type, Cohen’s κ was .84, 
and for relationship nature, Cohen’s κ was .79. One coder 
coded the rest of the data. The three Behavior conditions 
were analyzed individually within each Transfer condition. In 
the explicit Transfer condition, a Fisher’s Exact test revealed 
an association between Behavior conditions and relationship 
nature, p = .033. The representative and direct conditions 
were more likely to merit perceptions of unequal negative 
and unequal neutral relationships than the social condition, 
but pairwise comparisons using a Bonferroni corrected α of 
.0166 did not reveal significant differences. 

E. User Preference 

At the end of the study, participants chose which robot they 
preferred and matched certain descriptive words to one of the 



Fig. 4. Example F-formation. Left to right: (1) Participant faces the stationary 
robot, (2) Mobile robot arrives, (3) Stationary robot turns to talk to the mobile 
robot, (4) Participant shifts her orientation to ensure a shared space. 

three mobile robots. When asked which mobile robot they pre-
ferred to lead them to their destination, participants generally 
preferred the robot from the social condition (24/36), followed 
by the representative condition (7/36) and finally the direct 
condition (5/36). A Fisher’s Exact test found a significant 
association between choice of robots and Information Transfer 
condition, p = 0.008. Individual pairwise comparisons with 
a Bonferroni-corrected α of .0166 revealed a significant dif-
ference in robot preference between the silent and reciting 
conditions, p = .005: participants in the silent condition were 
more likely to prefer the mobile robot in the social condition. 
When participants reported which robot they preferred the 
least, 20 mentioned the robot in the representative condition, 
12 picked the robot in the direct condition, and 4 chose the 
robot in the social condition. Fisher’s Exact tests on all other 
forced-choice questions including least preferred showed no 
significant differences across conditions. 

In Q3, we also asked participants to rate the competence 
of each mobile robot on a 7-point scale. We stacked the 
responses and analyzed them using the same multi-level linear 
model but without mistakes as a covariate. We found a main 
effect of Information Transfer on perceived competence of 
the mobile robot, F (2, 87.92) = 5.26, p = .007. Pairwise 
comparisons found that participants rated the mobile robot as 
more competent in the reciting (M = 6.28, SE = 0.26) and 
explicit (M = 6.25, SE = 0.23) conditions than in the silent 
condition (M = 5.32, SE = 0.23), p = .020 and p = .016. 

F. Other Findings 

1) Human Position: We noticed shifts in participants’ posi-
tion and posture when the robots verbally interacted (Figure 4). 
The change in the human’s position followed Kendon’s F-
formation concept [35] such that they oriented to create a 
shared space between them and the robots. 

2) What Information Was Transferred: In the final survey, 
we also asked whether participants believed the mobile robot 
knew certain information. Nearly all the participants believed 
the robot knew their desired walking speed (34/36), their des-
tination (34/36), and that they had requested help navigating 
(33/36). However, only 17 out of the 36 reported believing that 
the robot knew their name. In the open-ended questionnaire 
responses and interviews, multiple participants mentioned that 
since the mobile robot could not speak, there was no reason 
for it to know their name and/or confirm knowing their name. 

3) How Information Was Transferred: Participants also 
explained how they believed the information was transferred 

between robots. We grouped responses by similarity and found 
that participants believed that information was transferred 
between the robots in several ways. A few participants thought 
that the robots communicated out loud, and that the mobile 
robot interpreted the stationary robot’s speech and beeped back 
in response. For example, P301 thought that information was 
transferred when “the guide robot beeped loudly... signaling to 
the receptionist that it was ready to begin”. Other participants 
believed (accurately) that the robots were exchanging informa-
tion through wireless signals. Several participants thought that 
communication was occurring via a combination of verbal and 
electronic signals. The conversation between the participant 
and the receptionist robot in fact depended on real-time 
events (though it was heavily structured), while the interaction 
between the receptionist robot and the guide robot was entirely 
predetermined. Some participants picked up on this and said 
that information was transferred via a combination of verbal 
and electronic signals: P217 said that the guide robot relied 
on “wireless data transfer, speech recognition”, P305 said “I 
think the beep signal from the guide robots were some sort 
of signal otherwise I think through internal communication”, 
and P314 thought that the information transfer happened 
when utterances were “listened to and compared to a list 
of things the guide robot is programmed to know”. Three 
participants suspected that the entire interaction had been pre-
programmed (e.g., “It could be programmed to just seem like 
the information was transmitted”, P310). 

V. DISCUSSION 

We found evidence partially supporting H1 whereby Sta-
tionary Robot Behavior changed participants’ overall percep-
tions of the stationary robot. Participants felt that the stationary 
robot displayed more warmth in the social condition than in 
other conditions. The stationary robot was also more likable 
in the social condition than in the representative condition. 
Participants also rated the stationary robot as meaner in the 
direct condition than the social condition. While we found the 
stationary robot to be more social and likable, the stationary 
robot’s Behavior did not change the perceived competence of 
the robot, and likability of the robot was only significantly 
different between the social and representative conditions (and 
not the direct condition). In this study, we intended to evoke 
social perceptions about a nonsocial robot by changing the 
way it interacted with a social robot. Collectively, our results 
suggest that this was achieved. 

H2 was partially supported as Behavior affected perceived 
socialness and likability of the mobile robot, but we were 
unable to find strong evidence that it influenced perceptions 
of the robot’s competence and trust of the robot. We believe 
our inability to find an effect for both competence and trust 
is attributable to a ceiling effect: participants reported high 
confidence in the mobile robot. They reported an average trust 
of 6.0 (SD = 0.98) on a 7-point Likert scale and rated 
competence at 6.6 (SD = 1.69) on a 9-point scale. Their 
experience of successful guidance in the practice run might 
have also biased towards a belief that the mobile robot was 



capable of completing the task. There was a trend in which 
the mobile robot in the social condition was considered more 
competent than in the representative condition. 

We found some support for H3. The type of Information 
Transfer changed the effect of Stationary Robot Behavior 
on the perceived relationship between the robots. Ratings of 
stationary robot competence trended higher in the reciting 
condition than in the silent condition, but this is not sufficient 
evidence to support H3(a). Participants also felt that the 
stationary robot was less mean and more likable in the reciting 
condition than in the silent condition. There was also a trend 
where participants reported being more wary of the mobile 
robot in the silent than the reciting conditions. Together, these 
results support H3(b) and prior research [24] stating that 
people do not like covert and silent communication between 
robots. While we found an effect of explicit Information 
Transfer on the perceived robot relationship nature, how it 
affected the exact nature of the relationship was inconclusive. 

While H4 was supported in that participants felt the robots 
in the social condition had the best relationship, the effect 
of Stationary Robot Behavior on perceived relationship was 
affected by the form of the information transfer. The difference 
between the social and other Behavior conditions was more 
evident in the silent condition. We hypothesize that the absence 
of similar effects in the other Transfer conditions may be due 
to participants inferring a long-term relationship between the 
robots after seeing them hold a longer interaction. The open-
ended responses also suggest that more participants perceived 
an equal relationship in the social Behavior condition. 

When asked to choose a preferred mobile robot, most 
participants picked the robot in the social condition and found 
the mobile robot in the representative condition to be the least 
preferable. This provides support for H5. 

Our work has design implications for facilitating transitions 
between robots. Users may appreciate acknowledgments that 
certain information has passed between robots. Our results 
suggest that whether the robots recite the information aloud or 
simply acknowledge that a transfer has occurred, some confir-
mation is better than no confirmation in terms of establishing 
perceptions of robot competence. 

Our results also show that even though robots do not need to 
treat each other socially to function, there are benefits to hav-
ing two robots socially interact. Users may perceive the robots 
as more likable and social if they observe a social interaction 
between the two robots. Multiple participants wished that they 
had seen the robots treat each other the way humans do—that 
is, even more cordially—but appreciated that the interaction 
was social. We found a preference for socialness, even for 
functional robots that lack social capabilities. However, a 
few participants also commented that the social interaction 
was unnecessarily long and they might prefer a streamlined 
interaction: P210[explicit + social] commented, “The dialogue 
between the robots went on a bit longer. It didn’t bother me, 
but I could see people get irritated with it.” We believe the 
interaction can be optimized for brevity and socialness. Future 
work should explore this relationship. 

VI. LIMITATIONS 

In multiple sessions, the system had difficulty parsing the 
participant’s speech and required them to repeat their request. 
Often, participants simply raised their voice in response to a 
delay, and that solved the issue. However, in a few cases, 
the experimenter had to step in and ask the participant to 
speaker louder or rephrase their answers. While we controlled 
for the potential effect of these mistakes through the inclusion 
of system mistakes as a covariate, it is likely that it still added 
noise to our study. Future work can explore how failures of one 
robot influence participants’ trust and confidence in another 
robot. In designing the experiment, we knew that technical 
problems might emerge, and we considered having a human-
in-the-loop or using a Wizard-of-Oz design to avoid such 
issues. However, we believe it is crucial for HRI studies to 
utilize real, operational technologies and systems: they better 
reflect how HRI practitioners may use findings in the wild, and 
they have potential to expose findings and insights that cannot 
be captured by other methods [36]. Lastly, we did not include 
gender as a variable in our analysis because we had fewer 
male participants. We do not believe that gender influenced 
the results, but future work should test for gender effects. 

Although we counterbalanced the order of the within-
subjects conditions and attempted to control for novelty effects 
and comfort level with a practice run, there was still potential 
for learning effects during the study. Some participants may 
have picked up on the phrasing that worked well with the 
natural language pipeline. We used this design in spite of 
inherent learning effects because it allowed us to account for 
individual differences in people’s perceptions of social robots. 

VII. FUTURE WORK AND CONCLUSION 

Our results pertain to a heterogeneous robot pair (social 
and stationary vs. functional and mobile) with an obvious 
size difference. Future work should explore how the perceived 
socialness of the robots changes if both robots are human-like 
(e.g., two Peppers) or otherwise similar to each other. Whether 
the influence of the social interaction will be overshadowed by 
robots’ nonsocial features remains to be seen. 

The emergence of F-formations when the stationary robot 
turned towards the mobile robot was an unexpected find-
ing. Future work should not only explore how to detect F-
formations in these settings but also investigate the possibility 
of influencing a human’s orientation and position by changing 
multiple robots’ orientations and positions (e.g., [37]–[39]). 

Our work demonstrated that transitioning a user from one 
robot to another is not a trivial design problem, but an impor-
tant aspect of a smooth interaction. Through the expression 
of information exchange and designing social interactions 
between robots, we can instill confidence in the robots and 
change how users perceive their abilities. Having robots treat 
each other in ways that are consistent with social expectations 
was the most preferred form of robot-robot interaction. How-
ever, it is clear there are subtleties that require careful designs. 
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