Exploration with Expert Policy Advice

Ashwin Khadke, Arpit Agarwal, Anahita Mohseni-Kabir, Devin Schwab
Robotics Institute, Carnegie Mellon University
5000 Forbes Ave, Pittsburgh, PA, USA.

Abstract

Exploration for Reinforcement Learning is a challenging
problem. Random exploration is often highly inefficient and
in sparse reward environments may completely fail. In this
work, we developed a novel method which incorporates ex-
pert advice for exploration in sparse reward environments.
In our formulation, the agent has access to a set of expert
policies and learns to bias its exploration based on the ex-
perts’ suggested actions. By incorporating expert suggestions
the agent is able to quickly learn a policy to reach rewarding
states. Our method can mix and match experts’ advice during
an episode to reach goal states. Moreover, our formulation
does not restrict the agent to any policy set. This allows us to
aim for a globally optimal solution. In our experiments, we
show that using expert advice indeed leads to faster explo-
ration in challenging grid-world environments.

The field of Reinforcement Learning (RL) has made a
number of major breakthroughs in recent years. Mnih et
al. (2013) introduced Deep Q-Networks that successfully
learned to play Atari games. More recently RL techniques
have been applied to learn to play Go at human perfor-
mance (Silver et al. 2016; 2017). There have also been suc-
cesses in high-dimensional control applications (Heess et al.
2017). Despite these many breakthroughs, how to efficiently
explore a domain, is still an open problem.

During the learning process an agent must try different ac-
tions, in order to learn both how actions affect the world and
what actions should be included in the final policy. An agent
that efficiently samples interesting and unique parts of the
state-action space can converge to a good policy with fewer
samples, an important metric when considering applications
such as robotics where sample collection has a real cost.

One potential way to reduce the number of samples that
must be collected, is to transfer knowledge from similar
tasks that the agent has already learned. However, overly bi-
asing with previous experience can lead an agent to miss
better policies for the specific task. Moreover, if a task is
sufficiently different, the bias may hurt performance.

In this work we propose an algorithm for transferring pre-
vious knowledge from agents trained in similar tasks to ef-
ficiently learn a new task. The goal is to collect samples

Copyright (© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

more efficiently, while still being able to learn a good pol-
icy in the case of bad advice. Our method works by bi-
asing the exploration strategy based on the previous poli-
cies. This exploration strategy draws parallels with Random-
ized Weighted Majority Algorithm (RWMA) (Littlestone
and Warmuth 1994) for prediction in sequential trials with
expert advice. RWMA maintains a set of weights that cap-
ture the utility of each expert’s advice. Our strategy for us-
ing expert policies is similar. However, our method differs
in two ways, firstly, the weights we maintain are state de-
pendent and secondly, we use long term returns instead of
immediate feedback in updating them.

We show that our algorithm speeds up policy learning
on grid-world environments, Frozen Lake and Four Rooms,
compared to baselines.

Related Work

A large body of work on exploration for RL exists. Some
of the earlier approaches include, e-greedy exploration (Sut-
ton and Barto 1998) in which the agent randomly samples an
action € fraction of the time, and Boltzman distributed explo-
ration (Thrun 1992) in which actions are sampled from the
Boltzman distribution over the agent’s Q-value estimates.
Another idea is to perturb policy parameters with Gaussian
noise and sampling actions from such a policy to explore
(Plappert et al. 2017). Count based methods such as (Belle-
mare et al. 2016) and (Tang et al. 2017) encourage visit-
ing infrequently visited states through an additional reward.
A slightly different approach is to provide Intrinsic Motiva-
tion rewards (Chentanez, Barto, and Singh 2005). The agent
builds a forward model while learning a policy and receives
additional reward proportional to the error in forward model
predictions. None of these methods use policies learned in
similar tasks or any prior knowledge about the environment
to guide exploration which is unlike our approach.

There have been works that use prior knowledge about a
task to improve policy learning. This prior knowledge could
be in the form of previously learned policies that achieve
sub-goals potentially relevant to the current task (Sutton,
Precup, and Singh 1999), or could be in the form of a task
decomposition which breaks down the problem into sim-
pler sub-problems (Dietterich 2000). However, these meth-
ods only find policies that are composed of the specified
sub-policies or which adhere to the given task decomposi-

tion. Our approach uses previously learned policies simply
for exploration and is capable of finding globally optimal
solutions. Although the idea of using a given task decompo-
sition or previously learned policies just for exploration has
been examined in (Schwab and Ray 2017) and (Fernidndez
and Veloso 2005) respectively. Schwab and Ray’s approach
only samples actions allowed by the task decomposition.
Ferndndez and Veloso’s approach, viz Policy Library, is the
most similar to our work. It maintains a collection of policies
and picks one to follow e-greedily during an entire episode.
The more reward a policy collects, the more likely it is to be
picked in future episodes. Our method attempts to improve
the Policy Library algorithm by allowing the agent to switch
the expert policy for sampling within a single episode. This
way if one expert is good for the beginning of an episode,
and another expert is good for the end of an episode, our
approach can leverage the information from both.

The area of transfer learning (Taylor and Stone 2009)
also tries to leverage prior knowledge from similar tasks for
speeding up learning in the current task. Some of the tech-
niques reuse low-level knowledge such as Q-values (Self-
ridge, Sutton, and Barto 1985) and policies (Asadi and Hu-
ber 2007). Like Asadi and Huber’s approach, this work at-
tempts to leverage previous policy information. However,
our work does not construct a task hierarchy, nor does it
reuse the learned skills wholesale in the new environments.
Learning with a task hierarchy can lead to policies with less
return than globally optimal, as well as requiring the more
complicated Semi-Markov Decision Process (SMDP) do-
main representation. Other techniques use learned high-level
knowledge such as rules (Taylor and Stone 2009) and state
features (Walsh, Li, and Littman 2006). Rule based systems
require the behaviors of previous agents to be distilled into
rules that can be evaluated and applied in new environments.
But these rules may be difficult to distill. Finally, state fea-
ture approaches, such as (Walsh, Li, and Littman 2006) at-
tempt to find similarities between states in old domain and
those in the new domain, such that irrelevant changes are
ignored, leading to generalization of a policy across states
in different environments. Our work, attempts to use the
prior expert policies directly, without finding a new state-
abstraction that works across environments.

Method

We assume a standard Markov Decision Process (MDP) for-
mulation: M = (S, A, R, P,v) (Puterman 2005). Where S
is the set of discrete states, A is the set of discrete actions,
R : S x A — Ris the reward function, P : S x A x S —
[0, 1] is the transition function, and + is the discount factor.
Furthermore, the agent has access to e € E different expert
policies, m. € Ilg. Each policy corresponds to a specific
MDP m, € Mpg. We assume all MDPs in the set Mg have
the same action space (A) and state space (S). However, the
reward functions and the transition functions may vary be-
tween MDPs in the set. We also assume that the policies in
11y are all deterministic, and that each policy 7. has an as-
sociated value function V.(s) € Vg that the agent can query
when learning.

We learn a policy Il and its Q-values Q. using the

expert policies policies II; and value functions Vg for bi-
asing action sampling. Our approach is to maintain a set of
state dependent weights that capture the utility of suggested
actions. We update these weights based on the Monte-Carlo
returns observed in an episode. This approach can be used
with any value-based policy learning algorithm. Here, we
use Q-Learning.

Adaptive Expert Distribution Exploration

Algorithm 1, describes our method. Throughout the learning
phase, the agent has a choice to either use its own Q-value
estimates to pick an action or to choose an action suggested
by one of the expert policies. Since our expert policies are
deterministic, V,(s)! is a relevant metric to judge the util-
ity of the expert’s recommended action in state s. Therefore,
we bootstrap our estimate Ve(s) of how good an expert’s
suggested action is with V,(s) (Line 2). However, V,(s) is
an accurate metric only if the agent is acting in the MDP
m.. For the current task, V,(s) may be an arbitrarily bad in-
dicator of the utility of expert’s suggested action. Thus, we
update our estimates V. (s) using the Monte-Carlo return ob-
tained from state s if the agent chooses to act on the recom-
mended action 7. (s) (Lines 23-29). We perform this update
after each episode (Line 14).

For selecting actions while learning, we compute a cumu-
lative value Q for every action using our estimates Vg, and
the agent’s own policy (Il,.) and Q-value estimates (Qsey)
(Lines 17-20). Instead of e-greedy, we sample an action from
a Multinomial distribution over softmax of Q (Line 21). IL
and Q). are updated as in Q-Learning algorithm (Line 12).

Evaluation

We first describe the environments and baseline algorithms
used for evaluation and then compare the performance of our
method for different sets of expert policies.

Environments

Frozen Lake In this environment (Figure 1a), we have
three types of grid cells, holes, goals and normal cells and
the agent is randomly spawned in a normal cell. The episode
terminates if the agent enters a hole or reaches the goal. The
agent gets -0.1 reward if it enters a hole, +1 reward for reach-
ing the goal and 0 otherwise. The experts are trained to reach
goals marked in blue.

Four Rooms In this environment (Figure 1b), we have
four rooms separated by walls and the agent is randomly
spawned at a location. The agent gets +1 reward for reach-
ing the goal. The agent gets no other reward and the episode
terminates if it reaches the goal or travels for 200 steps. The
experts are trained to reach goals marked in blue.

Baselines
We implemented five baselines namely Q-Learning, Q-
Learning with count-based exploration, Bootstrapped

"Value function V' (s) is the expected cumulative discounted re-
ward accrued starting from state s by following policy 7.

Algorithm 1: Adaptive Expert Distribution (Vg, I1g)
1 Q-Learning-with-AED (Vg,1lg,€)

2 Ve € E and Vs € stateSpace, Ve(s) < Ve(s)

3 | Ve« {V.|Vec E}

4 Initialize ILiy, Qgerr

5 fori € {1, - , NumEpsiodes} do

6 Terminal < False, stateVisits < [|

7 s < Reset()

8 while not Terminal do

9 a < SelectAction(s,]A/E, g, ey, Qserr)

10 r, s’, Terminal < Step(s, a)

11 stateVisits.append((s, a, r))

12 UpdatePolicy(ILyeir, Qserf, 5, a, s, 1,
Terminal)

13 s’

14 UpdateExpertValues(state Visits,])E, IIg)

15 return II,.;

16 SelectAction (s, Vg, llg, Iy Quey)

17 for a € actionSpace do

18 | Qs,0) 3 (o)mam ey Ve(s)

19 a’ ~ Tlep(s)
| Qs,a) Qs @) + Quy(s.a)

Q(s,a1) Q(s.an)
€ [&]
A ar Mult((za“ eQGsa”) T S Qe))

22 return a

23 UpdateExpertValues (stateVisits, VE 11g)
24 R+ 0
25 while not Empty(stateVisits) do

26 (s, a, r) — stateVisits.popBack()
27 R+—r+9R

28 if 7. (s) == a then

» | Vils) « a(R—Vi(s)

Q-Learning, Policy Library and a Fixed Expert Distribution
version of our algorithm to show the improvements obtained
by our approach.

e ()-Learning is the base algorithm for our approach.

o (-Learning with count-based exploration assigns addi-
tional rewards to actions proportional to 1/4/n, where n
is the number of times an action is chosen from a partic-
ular state. Moreover, it initializes Q-values to optimistic
guesses rather than starting with zero.

e Bootstrapped Q-Learning initializes Q-values with those
provided by one of the experts and learns a policy similar
to vanilla Q-Learning. We picked the expert, bootstrap-
ping with who’s Q-values, led to fastest policy learning to
compare against.

e Policy Library either picks its current policy or an ex-
pert policy and follows it e-greedily to sample actions in
an episode. If experts are bad, the algorithm defaults to
vanilla Q-Learning.

e Fixed Expert Distribution uses the same action selec-

(a) Frozen lake environment. (b) Four Rooms environment.

Figure 1: Test Environments

tion strategy as our algorithm but keeps V. € Vg fixed
throughout the learning.

Experiments

Near Goal Experts In this experiment, we use the ex-
perts trained to reach locations that are close to the actual
goal (Figure 1, marked in light blue). Getting the experts
which are trained to reach slightly different goal location or
halfway towards the goal are very common in robotic navi-
gation and manipulation domains.

Figure 2a shows that our algorithm is able to explore
faster than all the baselines when we have useful expert ad-
vice. Unlike Policy Library, our approach can switch be-
tween experts in a single episode. The Fixed Expert Distri-
bution algorithm is also able to learn faster than Q-Learning.
Q-Learning with count based exploration gives incentives
for exploring unvisited states and thus is slow to learn. Our
method is able to perform better than the baselines in a larger
environment such as Four Rooms (Figure 3a).

Constant Action Experts In this experiment, we have
four experts. One suggests action ’left’ in each state. Sim-
ilarly, other three suggest ’right’, up’ and ’down’ in each
state respectively. We set V(s) = 0 for all these experts for
every state s. Figures 2b and 3b depict the results with con-
stant action experts on Frozen Lake and Four Rooms respec-
tively. Our approach outperforms the baselines. Even when
the experts do not provide much useful information to the
agent, our method is able to quickly learn a good policy for
the environments. We believe part of the reason that our al-
gorithm outperforms e-greedy is because it biases actions
that return better Monte-Carlo returns. Policy Library per-
forms very badly with such experts because it sticks with
one policy to sample throughout the episode.

Near Goal + Constant Action Experts In this experi-
ment, we combined the expert sets from the previous two
settings to test how our algorithm performs when the number
of experts increases. The obtained results as shown in Fig-
ures 2c¢ and 3c, indicate that our algorithm is able to choose
the good experts to follow when exploring, even if we have
other experts to choose from. However, the Fixed Expert
Distribution algorithm maintains similar performance as in
the previous experiment. This is because the sampling dis-
tribution remains constant unlike our algorithm which mod-
ifies the sampling distribution based on episodic returns.

20

40 60 60
Number of steps x 100 Number of steps x 100

(a) Near Goal Experts (b) Constant Action Experts

80 o 20 80

60) 60
Number of steps x 100 Number of steps x 100

(C) Near Goal + Constant Action Experts (d) Far Goal + Constant Action Experts

Figure 2: Results for Frozen Lake environment.

daptive Exper
Bootstrapped Q Learning

Aday
Bootstrapped Q Learnin

0 20) 0 80 o 20
Number of steps x 500

0 60 80
Number of steps x 500

(a) Near Goal Experts (b) Constant Action Experts

0 20 80 75 100 125

40 60
Number of steps x 500 Number of steps x 1000

(c) Near Goal + Constant Action Experts (d) Far Goal + Constant Action Experts

Figure 3: Results for Four Rooms environment.

Far Goal + Constant Action Experts In this experiment,
we use experts trained to reach goal locations far away from
the actual goal (Figure 1, marked in dark blue) as well as
experts that suggest the same action in each state. In this
setting no expert provides useful advice. Moreover, acting
on the suggested actions by some of these experts would
actually drive the agent away from the goal. Figures 2d and
3d show that even when advice is bad our approach is better
than, if not at par with, vanilla Q-Learning

Future work and conclusion

Through various experiments we showed that our Adap-
tive Expert Distribution algorithm quickly learns the optimal
policy in presence of experts. Our work is orthogonal to pol-
icy learning algorithms. Therefore our exploration process
could be potentially used to mix best training algorithm on
different MDPs. Our algorithm is also additive in terms of
experts. Therefore we can potentially keep growing our ex-
pert set to perform better exploration as the complexity of
our task improve. In future work, we are planning to work
on following ideas:

e Learn in continuous state and action domains while incor-
porating expert advice;

e Extend the formulation to accommodate stochastic expert
policies;
o Investigate the idea of safe exploration using expert poli-

cies that warn against taking damaging actions such as
running into walls;

e Apply our approach to use policies learned in simulation
as experts while learning on a robotic system;

o Address the problem when experts are trained on different
state spaces.

References

Asadi, M., and Huber, M. 2007. Effective control knowl-
edge transfer through learning skill and representation hier-
archies. In IJCAI, volume 7, 2054-2059.

Bellemare, M.; Srinivasan, S.; Ostrovski, G.; Schaul, T.;
Saxton, D.; and Munos, R. 2016. Unifying count-based
exploration and intrinsic motivation. In NIPS, 1471-1479.

Chentanez, N.; Barto, A. G.; and Singh, S. P. 2005. In-
trinsically motivated reinforcement learning. In Advances in
neural information processing systems. MIT Press. 1281—
1288.

Dietterich, T. G. 2000. Hierarchical Reinforcement Learn-
ing with MAXQ Value Function Decomposition. Journal of
Artificial Intelligence Research 13:227-303.

Fernandez, F., and Veloso, M. 2005. Building a library of
policies through policy reuse. Technical report, Carnegie
Mellon University, School of Computer Science.

Heess, N.; TB, D.; Sriram, S.; Lemmon, J.; Merel, J.;
Wayne, G.; Tassa, Y.; Erez, T.; Wang, Z.; Eslami, S. M. A;
Riedmiller, M.; and Silver, D. 2017. Emergence of locomo-
tion behaviours in rich environments. CoRR.

Littlestone, N., and Warmuth, M. 1994. The weighted ma-
jority algorithm. Information and Computation 108(2):212
-261.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. 2013. Play-
ing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.;
Fidjeland, A. K.; Ostrovski, G.; et al. 2015. Human-

level control through deep reinforcement learning. Nature
518(7540):529-533.

Plappert, M.; Houthooft, R.; Dhariwal, P.; Sidor, S.; Chen,
R. Y.; Chen, X.; Asfour, T.; Abbeel, P.; and Andrychowicz,
M. 2017. Parameter space noise for exploration. arXiv
preprint arXiv:1706.01905.

Puterman, M. L. 2005. Markov Decision Processes: Dis-
crete Stochastic Dynamic Programming. Hoboken, NJ USA:
John Wiley & Sons, Inc.

Schwab, D., and Ray, S. 2017. Offline reinforcement
learning with task hierarchies. Machine Learning 106(9-
10):1569-1598.

Selfridge, O. G.; Sutton, R. S.; and Barto, A. G. 1985. Train-
ing and tracking in robotics. In IJCAI, 670-672.

Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre,
L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou,
I.; Panneershelvam, V.; Lanctot, M.; Dieleman, S.; Grewe,
D.; Nham, J.; Kalchbrenner, N.; Sutskever, L.; Lillicrap, T.;
Leach, M.; Kavukcuoglu, K.; Graepel, T.; and Hassabis, D.
2016. Mastering the game of go with deep neural networks
and tree search. Nature 529(7587):484—489.

Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton,
A.; et al. 2017. Mastering the game of go without human
knowledge. Nature 550(7676):354.

Sutton, R. S., and Barto, A. G. 1998. Introduction to rein-
forcement learning, volume 135. MIT press Cambridge.

Sutton, R. S.; Precup, D.; and Singh, S. 1999. Between
mdps and semi-mdps: A framework for temporal abstrac-
tion in reinforcement learning. Artificial intelligence 112(1-
2):181-211.

Tang, H.; Houthooft, R.; Foote, D.; Stooke, A.; Chen, O. X.;
Duan, Y.; Schulman, J.; DeTurck, F.; and Abbeel, P. 2017.
exploration: A study of count-based exploration for deep
reinforcement learning. In NIPS, 2750-2759.

Taylor, M. E., and Stone, P. 2009. Transfer learning for rein-
forcement learning domains: A survey. Journal of Machine
Learning Research 10(Jul):1633-1685.

Thrun, S. B. 1992. Efficient exploration in reinforcement
learning.

Walsh, T. J.; Li, L.; and Littman, M. L. 2006. Transfer-
ring state abstractions between mdps. In ICML Workshop
on Structural Knowledge Transfer for Machine Learning.

