
PRECOG: PREdiction Conditioned On Goals in Visual Multi-Agent Settings

Nicholas Rhinehart1 Rowan McAllister2 Kris Kitani1 Sergey Levine2
1Carnegie Mellon University
{nrhineha,kkitani}@cs.cmu.edu

2University of California, Berkeley
{rmcallister,svlevine}@berkeley.edu

Abstract

For autonomous vehicles (AVs) to behave appropriately
on roads populated by human-driven vehicles, they must be
able to reason about the uncertain intentions and decisions
of other drivers from rich perceptual information. Towards
these capabilities, we present a probabilistic forecasting
model of future interactions between a variable number of
agents. We perform both standard forecasting and the novel
task of conditional forecasting, which reasons about how all
agents will likely respond to the goal of a controlled agent
(here, the AV). We train models on real and simulated data
to forecast vehicle trajectories given past positions and LI-
DAR. Our evaluation shows that our model is substantially
more accurate in multi-agent driving scenarios compared
to existing state-of-the-art. Beyond its general ability to
perform conditional forecasting queries, we show that our
model’s predictions of all agents improve when conditioned
on knowledge of the AV’s goal, further illustrating its capa-
bility to model agent interactions.

1. Introduction
Autonomous driving requires reasoning about the fu-

ture behaviors of agents in a variety of situations: at stop
signs, roundabouts, crosswalks, when parking, when merg-
ing etc. In multi-agent settings, each agent’s behavior af-
fects the behavior of others. Motivated by people’s ability
to reason in these settings, we present a method to fore-
cast multi-agent interactions from perceptual data, such as
images and LIDAR. Beyond forecasting the behavior of all
agents, we want our model to conditionally forecast how
other agents are likely to respond to different decisions each
agent could make. We want to forecast what other agents
would likely do in response to a robot’s intention to achieve
a goal. This reasoning is essential for agents to make
good decisions in multi-agent environments: they must rea-
son how their future decisions could affect the multi-agent
system around them. Examples of forecasting and condi-
tioning forecasts on robot goals are shown in Fig. 1 and
Fig. 2. Videos of the outputs of our approach are available
at https://sites.google.com/view/precog.

Left Front Right

Figure 1: Forecasting on nuScenes [4]. The input to our model is
a high-dimensional LIDAR observation, which informs a distribu-
tion over all agents’ future trajectories.
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Figure 2: Conditioning the model on different Car 1 goals pro-
duces different predictions: here it forecasts Car 3 to move if Car
1 yields space, or stay stopped if Car 1 stays stopped.

https://sites.google.com/view/precog


Throughout the paper, we use goal to mean a future
states that an agent desires. Planning means the algorith-
mic process of producing a sequence of future decisions (in
our model, choices of latent values) likely to satisfy a goal.
Forecasting means the prediction of a sequence of likely
future states; forecasts can either be single-agent or multi-
agent. Finally, conditional forecasting means forecasting
by conditioning on one or more agent goals. By planning
an agent’s decisions to a goal and sampling from the other
agents’s stochastic decisions, we perform multi-agent con-
ditional forecasting. Although we plan future decisions in
order to perform conditional forecasting, executing these
plans on the robot is outside the scope of this work.

Towards conditional forecasting, we propose a factorized
flow-based generative model that forecasts the joint state of
all agents. Our model reasons probabilistically about plau-
sible future interactions between agents given rich observa-
tions of their environment. It uses latent variables to capture
the uncertainty in other agents’ decisions. Our key idea is
the use of factorized latent variables to model decoupled
agent decisions even though agent dynamics are coupled.
Factorization across agents and time enable us to query the
effects of changing an arbitrary agent’s decision at an arbi-
trary time step. Our contributions are:

1. State-of-the-art multi-agent vehicle forecasting: We
develop a multi-agent forecasting model called Esti-
mating Social-forecast Probabilities (ESP) that uses
exact likelihood inference (unlike VAEs or GANs) to
outperform three state-of-the-art methods on real and
simulated vehicle datasets [4, 8].

2. Goal-conditioned multi-agent forecasting: We
present the first generative multi-agent forecasting
method able to condition on agent goals, called PRE-
diction Conditioned on Goals (PRECOG). After mod-
elling agent interactions, conditioning on one agent’s
goal alters the predictions of other agents.

3. Multi-agent imitative planning objective: We de-
rive a data-driven objective for motion planning in
multi-agent environments. It balances the likelihood of
reaching a goal with the probability that expert demon-
strators would execute the same plan. We use this ob-
jective for offline planning to known goals, which im-
proves forecasting performance.

2. Related Work

Multi-agent modeling and forecasting is a challenging
problem for control applications in which agents react to
each other concurrently. Safe control requires faithful mod-
els of reality to anticipate dangerous situations before they
occur. Modeling dependencies between agents is especially
critical in tightly-coupled scenarios such as intersections.

Game-theoretic planning: Traditionally, multi-agent plan-
ning and game theory approaches explicitly model multiple
agents’ policies or internal states, usually by generalizing
Markov decision processes (MDPs) to multiple decisions
makers [5, 35]. These frameworks facilitate reasoning about
collaboration strategies, but suffer from “state space explo-
sion” intractability except when interactions are known to
be sparse [24] or hierarchically decomposable [11].
Multi-agent forecasting: Data-driven approaches have
been applied to forecast complex interactions between mul-
tiple pedestrians [1, 3, 10, 14, 21], vehicles [6, 19, 26], and
athletes [9, 18, 20, 34, 36, 37]. These methods attempt to
generalize from previously observed interactions to predict
multi-agent behavior in new situations. Forecasting is re-
lated to Imitation Learning [25], which learns a model to
mimic demonstrated behavior. In contrast to some Imita-
tion Learning methods, e.g. behavior cloning [29], behav-
ior forecasting models are not executed in the environment
of the observed agent – they are instead predictive models
of the agent. In this sense, forecasting can be considered
non-interactive Imitation Learning without execution.
Forecasting for control and planning: Generative mod-
els for multi-agent forecasting and control have been pro-
posed. In terms of multi-agent forecasting, our work is re-
lated to [33] which uses a conditional VAE [17] encoding
of the joint states of multiple agents together with recurrent
cells to predict future human actions. However, our work
differs in three crucial ways. First, we model continual
co-influence between agents, versus “robot-only influence”
where a robot’s responses to the human are not modeled.
Second, our method uses contextual visual information use-
ful for generalization to many new scenes. Third, we model
interactions between more than two vehicles jointly. While
[15] assumes conditional independencies for computational
reasons, we do not, as they impose minimal overhead.

We consider scenarios in which the model may control
one of the agents (a “robot”). In terms of planned con-
trol, our method generalizes imitative models [31]. In [31],
single-agent forecasting models are used for deterministic
single-agent planning. Our work instead considers multi-
agent forecasting, and therefore must plan over a distribu-
tion of possible paths: from our robot’s perspective, the fu-
ture actions of other human drivers are uncertain. By mod-
eling co-influence, our robot’s trajectory are conditional on
the (uncertain) future human trajectories, and therefore fu-
ture robots states are necessarily uncertain. Thus, our work
proposes a nontrivial extension for imitative models: we
consider future path planning uncertainty induced by the
uncertain actions of other agents in a multi-agent setting.
While [31] could implicitly model other agents through its
visual conditioning, we show explicit modeling of other
agents yields better forecasting results, in addition to giv-
ing us the tools to predict responses to agent’s plans.



3. Deep Multi-Agent Forecasting
In this section, we will describe our likelihood-based

model for multi-agent forecasting, and then describe how
we use it to perform planning and multi-agent conditional
forecasting. First, we define our notation and terminol-
ogy. We treat our multi-agent system as a continuous-
space, discrete-time, partially-observed Markov process,
composed of A agents (vehicles) that interact over T time
steps. We model all agent positions at time t as St ∈ RA×D,
where D=2. Sat represents agent a’s (x, y) coordinates on
the ground plane. We assume there is one “robot agent”
(e.g. the AV) and A−1 “human agents” (e.g. human drivers
that our model cannot control). We define Srt

.
= S1

t ∈ RD
to index the robot state, and Sht

.
= S2:A

t ∈ R(A−1)×D to
index the human states. Bold font distinguishes variables
from functions. Capital English letters denote random vari-
ables. We define t = 0 to be the current time. Subscript
absence denotes all future time steps, and superscript ab-
sence denotes all agents, e.g. S

.
= S1:A

1:T ∈ RT×A×D.
Each agent has access to environment perception φ .

=
{s−τ :0,χ}, where τ is the number of past multi-agent po-
sitions we condition on and χ is a high-dimensional ob-
servation of the scene. χ might represent LIDAR or cam-
era images, and is the robot’s observation of the world. In
our setting, LIDAR is provided as χ = R200×200×2, with
χij representing a 2-bin histogram of points above and at
ground level in 0.5m2 cells. Although our perception is
robot-centric, each agent is modeled to have access to χ.

3.1. Estimating Social-forecast Probability (ESP)

We propose a data-driven likelihood-based generative
model of multi-agent interaction to probabilistically predict
T -step dynamics of a multi-agent system: S ∼ q(S|φ;D),
where D is training data of observed multi-agent state tra-
jectories. Our model learns to map latent variables Z via
an invertible function f to multi-agent trajectories S con-
ditioned on φ. f ’s invertibility induces q(S|φ), a pushfor-
ward distribution [23], also known as an invertible genera-
tive model [7, 12, 13, 16, 30]. Invertible generative models
can efficiently and exactly compute probabilities of sam-
ples. Here, it means we can compute the probability of joint
multi-agent trajectories, critical to our goal of planning with
the model. We name the model “Estimating Social-forecast
Probabilities” (ESP). S is sampled from q as follows:

Z ∼ N (0, I); S = f(Z;φ); S,Z ∈ RT×A×D. (1)

Our latent variables Z
.
= Z1:A

1:T factorize across agents and
time, which allows us to decide agent a’s reaction at time t
by setting Zat ← zat , discussed later. Our model is related
to the R2P2 single-agent generative model [30], which con-
structs a deep likelihood-based generative model for single-
agent vehicle forecasting. For multi-step prediction, we

generalize R2P2’s autoregressive one-step single-agent pre-
diction for the multi-agent setting, and assume a one-step
time delay for agents to react to each other:

Sat = µaθ(S1:t−1, φ) + σaθ (S1:t−1, φ) · Zat ∈ RD, (2)

where µaθ(·) and σaθ (·) are neural network functions (with
trainable weights θ) outputting a one-step mean prediction
µat ∈ RD and standard-deviation matrix σat ∈ RD×D of
agent a, defining the system’s transition function q as

q(St|S1:t−1, φ) =
∏A
a=1N (Sat ;µat ,Σ

a
t ), (3)

where Σa
t = σat σ

a>
t . Note that (2) predicts the ath agent’s

state Sat given the previous multi-agent states S1:t−1. We
can see that given S1:t−1, the one-step prediction in (2) is
unimodal Gaussian. However, multi-step predictions are
generally multimodal given the recursive nonlinear condi-
tioning of neural network outputs µat and σat on previous
predictions. The final joint of this model can be written as

q(S|φ) =
∏T
t=1q(St|S1:t−1, φ). (4)

3.2. Model Implementation

To implement our model q(S|φ), we design neural net-
works that output µat and σat . Similar to [30], we expand
µaθ(·) to represent a “Verlet” step, which predicts a constant-
velocity mean when ma

t = ma
θ(S1:t−1,φ) = 0:

Sat = 2Sat−1−Sat−2+m
a
θ(S1:t−1,φ)︸ ︷︷ ︸

µa
t

+σaθ (S1:t−1,φ)︸ ︷︷ ︸
σa

t

·Zat . (5)

A high-level diagram of our implementation shown in
Fig. 3c. Recall φ = {s−τ :0,χ}: the context contains the
past positions of all agents, s−τ :0, and a feature map χ,
implemented as LIDAR observed by the robot. We en-
code s−τ :0 with a GRU. A CNN processes χ to Γ at the
same spatial resolution as χ. Features for each agent’s pre-
dicted position Sat are computed by interpolating into Γ as
Γ(Sat ). Positional “social features” for agent a are com-
puted: Sat−Sbt ∀ b∈A\{a}, as well as visual “social features”
γat = Γ(s1t )⊕· · ·⊕Γ(sAt ). The social features, past encod-
ing, and CNN features are fed to a per-agent GRU, which
produces ma

t and σat in (5). We train with observations of
expert multi-agent interaction S∗ ∼ p(S∗|φ) by maximiz-
ing likelihood with respect to our model parameters θ. We
use shared parameters to produce Γ and the past encoding.
See Appendix C for an architecture table and other details.
Flexible-count implementation: While the implementa-
tion described so far is limited to predict for a fixed-count
of agents in a scene, we also implemented a flexible-count
version. There are two flavors of a model that is flexible in
practice. (1) A fully-flexible model applicable to any scene
with agent count Atest ∈ N. (2) A partially-flexible model
applicable to any scene with agent count Atest ∈ {1..Atrain},
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Figure 3: Our factorized latent variable model of forecasting and planning shown for 2 agents. In Fig. 3a our model uses latent variable
Za

t+1 to represent variation in agent a’s plausible scene-conditioned reactions to all agents St, causing uncertainty in every agents’ future
states S. Variation exists because of unknown driver goals and different driving styles observed in the training data. Beyond forecasting,
our model admits planning robot decisions by deciding Zr =zr (Fig. 3b). Shaded nodes represent observed or determined variables, and
square nodes represent robot decisions [2]. Thick arrows represent grouped dependencies of non-Makovian St “carried forward” (a regular
edge exists between any pair of nodes linked by a chain of thick edges). Note Z factorizes across agents, isolating the robot’s reaction
variable zr . Human reactions remain uncertain (Zh is unobserved) and uncontrollable (the robot cannot decide Zh), and yet the robot’s
decisions zr will still influence human drivers Sh

2:T (and vice-versa). Fig. 3c shows our implementation. See Appendix C for details.

controlled by a hyperparameter upper-bound Atrain set at
training time. To implement (1), the count of model param-
eters must be independent of Atest in order for the same ar-
chitecture to apply to scenes with different counts of agents.
To implement (2), “missing agents” must not affect the joint
distribution over the existing agents, equivalent to ensuring
∂Sexisting

/∂Zmissing = 0 in our framework. We implemented (2)
by using a maskM ∈{0, 1}Atrain to mask features of missing
agents. In this model, we shared parameters across agents,
and trained it on data with varying counts of agents.

3.3. Conditional Forecasting

A distinguishing feature of our generative model for
multi-step, multi-agent prediction is its latent variables Z

.
=

Z1:A
1:T that factorizes over agents and time. Factorization

makes it possible to use the model for highly flexible con-
ditional forecasts. Conditional forecasts predict how other
agents would likely respond to different robot decisions at
different moments in time. Since robots are not merely pas-
sive observers, but one of potentially many agents, the abil-
ity to anticipate how they affect others is critical to their
ability to plan useful, safe, and effective actions, critical to
their utility within a planning and control framework [22].

Human drivers can appear to take highly stochastic ac-
tions in part because we cannot observe their goals. In our
model, the source of this uncertainty comes from the la-
tent variables Z∼N (0, I). In practical scenarios, the robot
knows its own goals, can choose its own actions, and can
plan a course of action to achieve a desired goal. Recall
from (2) that one-step agent predictions are conditionally
independent from each other give the previous multi-agent
states. Therefore, certainty in the latent state Zat corre-

sponds to certainty of the ath agent’s reaction at time t to
the multi-agent system history S1:t−1. Different values of
Zat correspond to different ways of reacting to the same in-
formation. Deciding values of Zat corresponds to control-
ling the agent a. We can therefore implement control of the
robot via assigning values to its latent variables Zr ← zr.
In contrast, human reactions Zht cannot be decided by the
robot, but remain uncertain from the robot’s perspective.
Thus, humans can only be influenced by their condition-
ing on the robot’s previous states in S1:t−1, as seen Fig. 3b.
Therefore, to generate conditional-forecasts, we decide zr,
sample Zh, concatenate Z=zr⊕Zh, and warp S=f(Z, φ).
This factorization of latent variables easily facilitates con-
ditional forecasting. To forecast S, we can fix zr while
sampling the human agents’ reactions from their distribu-
tion p(Zh)=N (0, I), which are warped via (1).

3.4. PREdiction Conditioned On Goals (PRECOG)

We discussed how forecasting can condition on a value
of zr, but not yet how to find desirable values of zr, e.g.
values that would safely direct the robot towards its goal
location. We perform multi-agent planning by optimizing
an objective L w.r.t. the control variables zr, which allows
us to produce the “best” forecasts under L.

While many objectives are valid, we use imitative mod-
els (IM), which estimate the likeliest state trajectory an ex-
pert “would have taken” to satisfy a goal, based on prior
expert demonstrations [31]. IM modeled single-agent envi-
ronments where robot trajectories are planned without con-
sideration of other agents. Multi-agent planning is differ-
ent, because future robot states are uncertain (states Srt>1 in
Fig. 3b), even when conditioned on control variables zr, be-



cause of the uncertainty in surrounding human drivers Zh.
We generalize IM to multi-agent environments, and plan

w.r.t. the uncertainty of human drivers close by. First, we
chose a “goal likelihood” function that represents the like-
lihood that a robot reaches its goal G given state trajectory
S. For instance, the likelihood could be a waypoint w∈RD
the robot should approach: p(G|S, φ)=N (w; SrT , εI). Sec-
ond, we combine the goal likelihood with a “prior proba-
bility” model of safe multi-agent state trajectories q(S|φ),
learned from expert demonstrations. Note that unlike many
other generative multi-agent models, we can compute the
probability of generating S from q(S|φ) exactly, which is
critical to our planning approach. This results in a “poste-
rior” p(S|G, φ). Finally, we plan a goal-seeking path in the
learned distribution of demonstrated multi-agent behavior
under the log-posterior probability derived as:

logEZh [p(S|G, φ)] ≥ EZh [log p(S|G, φ)] (6)

= EZh [log
(
q(S|φ)p(G|S, φ)

)
]−log p(G|φ) (7)

L(zr,G)
.
= EZh [log q(S|φ) + log p(G|S, φ)] (8)
= EZh [logq(f(Z)|φ)︸ ︷︷ ︸

multi-agent prior

+ log p(G|f(Z), φ)︸ ︷︷ ︸
goal likelihood

], (9)

where (6) follows by Jensen’s inequality, which we use to
avoid the numerical issue of a single sampled Zh dominat-
ing the batch. (7) follows from Bayes’ rule and uses our
learned model q as the prior. In (8), we drop p(G|φ) be-
cause it is constant w.r.t. zr. Recall Z = zr ⊕ Zh is the
concatenation of robot and human control variables. The
robot can plan using our ESP model by optimizing (9):

zr∗ = argmaxzr L(zr,G). (10)

Other objectives might be used instead, e.g. maximizing
the posterior probability of the robot trajectories only. This
may place human agents in unusual, precarious driving sit-
uations, outside the prior distribution of “usual driving in-
teraction”. (10) encourages the robot to avoid actions likely
to put the joint system in an unexpected situation.

4. Experiments
We first compare our forecasting model against existing

state-of-the-art multi-agent forecasting methods, including
SocialGAN [14], DESIRE [19]. We also include a base-
line model: R2P2-MA (adapted from R2P2 [30] to instead
handle multiple agent inputs), which does not model how
agents will react to each others’ future decisions. Second,
we investigate the novel problem of conditional forecast-
ing. To quantify forecasting performance, we study sce-
narios where we have pairs of the robot’s true goal and the
sequence of joint states. Knowledge of goals should enable
our model to better predict what the robot and each agent
could do. Third, we ablate the high-dimensional contextual

input χ from our model to determine its relevance to fore-
casting. Appendix F and G provide: (1) more conditional
forecasting results, (2) localization sensitivity analysis and
mitigation (3) evaluations on more datasets, and (4) several
pages of qualitative results.
nuScenes dataset: We used the recently-released full
nuScenes dataset [4], a real-world dataset for multi-agent
trajectory forecasting, in which 850 episodes of 20 seconds
of driving were recorded and labelled at 2Hz with the posi-
tions of all agents, and synced with many sensors, including
LIDAR. We processed each of the examples to train, val,
and test splits. Each example has 2 seconds of past and 4
seconds of future positions at 5Hz and is accompanied by a
LIDAR map composited from 1 second of previous scans.
We also experimented concatenating a binary road mask to
χ, indicated as “Road” in our evaluation.
CARLA dataset: We generated a realistic dataset for
multi-agent trajectory forecasting and planning with the
CARLA simulator [8]. We ran the autopilot in Town01
for over 900 episodes of 100 seconds each in the presence
of 100 other vehicles, and recorded the trajectory of every
vehicle and the autopilot’s LIDAR observation. We ran-
domized episodes to either train, validation, or test sets. We
created sets of 60,701 train, 7586 validation, and 7567 test
examples, each with 2 seconds of past and 2 seconds of
future positions at 10Hz. See Appendix E for details and
https://sites.google.com/view/precog for data.

4.1. Metrics

Log-likelihood: As our models can perform exact likeli-
hood inference (unlike GANs or VAEs), we can precisely
evaluate how likely held-out samples are under each model.
Test log-likelihood is given by the forward cross-entropy
H(p, q) = −ES∗∼p(S∗|φ) log q(S∗|φ), which is unbounded
for general p and q. However, by perturbing samples from
p(S∗|φ) with noise drawn from a known distribution η (e.g.
a Gaussian) to produce a perturbed distribution p′, we can
enforce a lower bound [30]. The lower bound is given by
H(p′, q) ≥ H(p′) ≥ H(η). We use η=N (0, 0.01 · I) (n.b.
H(η) is known analytically). Our likelihood statistic is:

ê
.
=
[
H(p′, q)−H(η)

]
/(TAD) ≥ 0, (11)

which has nats/dim. units. We call ê “extra nats” because
it represents the (normalized) extra nats above the lower
bound of 0. Normalization enables comparison across mod-
els of different dimensionalities.
Sample quality: For sample metrics, we must take care
not to penalize the distribution when it generates plausi-
ble samples different than the expert trajectory. We extend
the “minMSD” metric [19, 26, 30] to measure quality of
joint trajectory samples. The “minMSD” metric samples a
model and computes the error of the best sample in terms of

https://sites.google.com/view/precog


MSD. In contrast to the commonly-used average displace-
ment error (ADE) and final displacement error (FDE) met-
rics that computes the mean Euclidean error from a batch of
samples to a single ground-truth sample [1, 6, 10, 14, 28],
minMSD has the desirable property of not penalizing plau-
sible samples that correspond to decisions the agents could
have made, but did not. This prevents erroneously penal-
izing models that make diverse behavior predictions. We
hope other multimodal prediction methods will also mea-
sure the quality of joint samples with minMSD, given by:

m̂K
.
= ES∗ min

k∈{1..K}
||S∗ − S(k)||2/(TA), (12)

where S∗ ∼ p(S∗|φ),S(k) iid∼ q(S|φ). We denote the per-
agent error of the best joint trajectory with

m̂a
K
.
= ES∗∼p(S∗|φ)||S∗a − Sa,(k

†)||2/T ,
k†

.
= argmink∈{1..K} ||S∗ − S(k)||2.

(13)

4.2. Baselines

KDE [27, 32] serves as a useful performance bound on all
methods; it can compute both m̂ and ê. We selected a band-
width using the validation data. Note KDE ignores φ.
DESIRE [19] proposed a conditional VAE model that ob-
serves past trajectories and visual context. We followed the
implementation as described. Whereas DESIRE is trained
with a single-agent evidence lower bound (ELBO), our
model jointly models multiple agents with an exact likeli-
hood. DESIRE cannot compute joint likelihood or ê.
SocialGAN [14] proposed a conditional GAN multi-agent
forecasting model that observes the past trajectories of all
modeled agents, but not χ. We used the authors’ public
implementation. In contrast to SocialGAN, we model joint
trajectories and can compute likelihoods (and therefore ê).
R2P2 [30] proposed a likelihood-based conditional genera-
tive forecasting model for single-agents. We extend R2P2
to the multi-agent setting and use it as our R2P2-MA model;
R2P2 does not jointly model agents. We otherwise fol-
lowed the implementation as described. We trained it and
our model with the forward-cross entropy loss. R2P2-MA’s
likelihood is given by q(S|φ) =

∏A
a=1 q

a(Sa|φ).

4.3. Multi-Agent Forecasting Experiments

Didactic Example: In the didactic example, a robot (blue)
and a human (orange) both navigate in an intersection, the
human has a stochastic goal: with 0.5 probability they will
turn left, and otherwise they will drive straight. The human
always travels straight for 4 time steps, and then reveals its
intention by either going straight or left. The robot attempts
to drive straight, but will acquiesce to the human if the hu-
man turns in front of the robot. We trained our models and
evaluate them in Fig. 4. Each trajectory has length T = 20.
While both models closely match the training distribution
in terms of likelihood, their sample qualities are signifi-
cantly different. The R2P2-MA model generates samples

that crash 50% of the time, because it does not condition
future positions for the robot on future positions of the hu-
man, and vice-versa. In the ESP model, the robot is able to
react to the human’s decision during the generation process
by choosing to turn when the human turns.
CARLA and nuScenes: We build 10 datasets from
CARLA and nuScenes data, corresponding to modeling dif-
ferent numbers of agents {2..5}. Agents are sorted by their
distances to the autopilot, at t = 0. When 1 agent is in-
cluded, only the autopilot is modeled; for A agents, the au-
topilot and the A−1 closest vehicles are modeled.

For each method, we report its best test-set score at the
best val-set score. In R2P2 and our method, the val-set score
is ê. In DESIRE and SocialGAN, the val-set score is m̂, as
they cannot compute ê. Tab. 1 shows the multi-agent fore-
casting results. Across all 10 settings, our model achieves
the best m̂ and ê scores. We also ablated our model’s ac-
cess toχ (“ESP, no LIDAR”), which puts it on equal footing
with SocialGAN, in terms of model inputs. Visual context
provides a uniform improvement in every case.

Qualitative examples of our forecasts are shown in
Fig. 5. We observe three important types of multimodal-
ity: 1) multimodality in speed along a common specific
direction, 2) the model properly predicts diverse plausible
paths at intersections, and 3) when the agents are stopped,
the model predicts sometimes the agents will stay still, and
sometimes they will accelerate forward. The model also
captures qualitative social behaviors, such as predicting that
one car will wait for another before accelerating. See Ap-
pendix G for additional visualizations.

R2P2-MA R2P2-MA ESP ESP

Model Test m̂K=12 Test ê Forecasting crashes Planning crashes

R2P2-MA 0.331 0.085 50.8% 49.5%
ESP 0.000 0.031 1.17% 0.00%

Figure 4: Didactic evaluation. Left plots: R2P2-MA cannot model
agent interaction, and generates joint behaviors not present in the
data. Right plots: ESP allows agents to influence each other, and
does not generate undesirable joint behaviors.

4.4. PRECOG Experiments

Now we perform our second set of evaluations. We in-
vestigate if our planning approach enables us to sample
more plausible joint futures of all agents. Unlike the pre-
vious unconditional forecasting scenario, when the robot is
using the ESP model for planning, it knows its own goal.
We can simulate planning offline by assuming the goal was
the state that the robot actually reached at t= T , and then



Table 1: CARLA and nuScenes multi-agent forecasting evaluation. All CARLA-trained models use Town01 Train only, and are tested
on Town02 Test. No training data is collected from Town02. Means and their standard errors are reported. The en-dash (–) indicates
an approach unable to compute ê. The R2P2-MA model generalizes [30] to multi-agent. Variants of our ESP method (gray) outperform
prior work. For additional evaluations on Town01 Test and single agent settings, see Appendix F.

Approach Test m̂K=12 Test ê Test m̂K=12 Test ê Test m̂K=12 Test ê Test m̂K=12 Test ê

CARLA Town02 Test 2 agents 3 agents 4 agents 5 agents

KDE 4.488± 0.145 8.179± 1.523 5.964± 0.099 6.029± 0.394 7.846± 0.087 5.181± 0.172 9.610± 0.078 5.116± 0.097
DESIRE [19] 1.159± 0.027 – 1.099± 0.018 – 1.410± 0.018 – 1.697± 0.017 –
SocialGAN [14] 0.902± 0.022 – 0.756± 0.015 – 0.932± 0.014 – 0.979± 0.015 –
R2P2-MA [30] 0.454± 0.014 0.577± 0.004 0.516± 0.012 0.640± 0.022 0.575± 0.011 0.598± 0.010 0.632± 0.011 0.620± 0.010
Ours: ESP, no LIDAR 0.633± 0.017 0.579± 0.006 0.582± 0.014 0.620± 0.013 0.655± 0.013 0.591± 0.006 0.784± 0.013 0.584± 0.004
Ours: ESP 0.393 ± 0.014 0.550± 0.004 0.377 ± 0.011 0.529± 0.004 0.438± 0.010 0.540± 0.004 0.565± 0.009 0.592± 0.004
Ours: ESP, flex. count 0.488± 0.017 0.537 ± 0.002 0.412± 0.012 0.508 ± 0.001 0.398 ± 0.010 0.499 ± 0.001 0.435 ± 0.011 0.496 ± 0.001

nuScenes Test 2 agents 3 agents 4 agents 5 agents

KDE 19.375± 0.798 3.760± 0.015 31.663± 0.894 4.102± 0.023 41.289± 1.170 4.369± 0.026 52.071± 1.449 4.615± 0.028
DESIRE [19] 3.473± 0.102 – 4.421± 0.130 – 5.957± 0.162 – 6.575± 0.198 –
SocialGAN [14] 2.119± 0.087 – 3.033± 0.110 – 3.484± 0.129 – 3.871± 0.148 –
R2P2-MA [30] 1.336± 0.062 0.951± 0.007 2.055± 0.093 0.989± 0.008 2.695± 0.100 1.020± 0.011 3.311± 0.166 1.050± 0.012
Ours: ESP, no LIDAR 1.496± 0.069 0.920 ± 0.008 2.240± 0.084 0.955 ± 0.008 3.201± 0.113 1.033± 0.012 3.442± 0.139 1.107± 0.018
Ours: ESP 1.325± 0.065 0.933± 0.008 1.705± 0.089 1.018± 0.011 2.547± 0.095 1.053± 0.015 3.266± 0.155 1.082± 0.013
Ours: ESP, Road 1.081 ± 0.053 0.929± 0.008 1.505 ± 0.070 1.016± 0.011 2.360 ± 0.093 1.013 ± 0.012 2.892 ± 0.162 1.114± 0.024
Ours: ESP, Road, flex. 1.464± 0.067 0.980± 0.003 2.029± 0.079 1.001± 0.003 2.525± 0.099 1.015± 0.002 2.933± 0.129 1.029 ± 0.002

Left Front Right Left Front Right

Figure 5: Examples of multi-agent forecasting with our learned ESP model. In each scene, 12 joint samples are shown, and LIDAR colors
are discretized to near-ground and above-ground. Left: (CARLA) the model predicts Car 1 could either turn left or right, while the other
agents’ future maintain multimodality in their speeds. Center-left: The model predicts Car 2 will likely wait (it is blocked by Cars 3 and
5), and that Cars 3 and 5 sometimes move forward together, and sometimes stay stationary. Center-right: Car 2 is predicted to overtake
Car 1, which itself is forecasted to continue to wait for pedestrians and Car 2. Right: Car 4 is predicted to wait for the other cars to clear
the intersection, and Car 5 is predicted to either start turning or continue straight.

planning a path from the current time step to this goal posi-
tion. We can then evaluate the quality of the agent’s path
and the stochastic paths of other agents under this plan.
While this does not test our model in a full control sce-
nario, it does allow us to evaluate whether conditioning on
the goal provides more accurate and higher-confidence pre-
dictions. We use our model’s multi-agent prior (4) in the
stochastic latent multi-agent planning objective (9), and de-
fine the goal-likelihood p(G|S, φ)=N (SrT ; S∗rT , 0.1·I), i.e.
a normal distribution at the controlled agent’s last true fu-
ture position, S∗rT . As discussed, this knowledge might be
available in control scenarios where we are confident we can
achieve this positional goal. Other goal-likelihoods could
be applied to relax this assumption, but this setup allows us
to easily measure the quality of the resulting joint samples.
We use gradient-descent on (9) to approximate zr∗ (see sup-
plement for details). The resulting latent plan yields highly

likely joint trajectories under the uncertainty of other agents
and approximately maximizes the goal-likelihood. Note
that since we planned in latent space, the resulting robot
trajectory is not fully determined – it can evolve differently
depending on the stochasticity of the other agents. We next
illustrate a scenario where joint modeling is critical to accu-
rate forecasting and planning. Then, we conduct planning
experiments on the CARLA and nuScenes datasets.

4.4.1 CARLA and nuScenes PRECOG
DESIRE planning baseline: We developed a straightfor-
ward planning baseline by feeding an input goal state and
past encoding to a two-layer 200-unit ReLU MLP trained
to predict the latent state of the robot given training tuples
(x= (HX ,SrT ∼ qDESIRE(S|φ, zr)T )), y = zr). The latents
for the other agents are samples from their DESIRE priors.
Experiments: We use the trained ESP models to run PRE-



Table 2: Forecasting evaluation of our model on CARLA Town01 Test and nuScenes Test data. Planning the robot to a goal position
(PRECOG) generates better predictions for all agents. Means and their standard errors are reported. See Tab. 6 for all A = {2..5}.

Data Approach Test m̂K=12 Test m̂a=1
K=12 Test m̂a=2

K=12 Test m̂a=3
K=12 Test m̂a=4

K=12 Test m̂a=5
K=12

CARLA A=2

DESIRE [19] 1.837± 0.048 1.991± 0.066 1.683± 0.050 – – –
DESIRE-plan 1.858± 0.046 0.918± 0.044 2.798± 0.073 – – –
ESP 0.337± 0.013 0.196± 0.009 0.478± 0.024 – – –
PRECOG 0.241± 0.012 0.055± 0.003 0.426± 0.024 – – –

CARLA A=5

DESIRE [19] 2.622± 0.030 2.621± 0.045 2.422± 0.048 2.710± 0.066 2.969± 0.057 2.391± 0.049
DESIRE-plan 2.329± 0.038 0.194± 0.004 2.239± 0.057 3.119± 0.098 3.332± 0.090 2.758± 0.083
ESP 0.718± 0.012 0.340± 0.011 0.759± 0.024 0.809± 0.025 0.851± 0.023 0.828± 0.024
PRECOG 0.640± 0.011 0.066± 0.003 0.741± 0.024 0.790± 0.024 0.804± 0.022 0.801± 0.024

nuScenes A=2

DESIRE [19] 3.307± 0.093 3.002± 0.088 3.613± 0.140 – – –
DESIRE-plan 4.528± 0.151 0.456± 0.015 8.600± 0.298 – – –
ESP 1.094± 0.053 0.955± 0.057 1.233± 0.078 – – –
PRECOG 0.514 ± 0.037 0.158 ± 0.016 0.871 ± 0.070 – – –

nuScenes A=5

DESIRE [19] 6.830± 0.204 4.999± 0.219 6.415± 0.294 7.027± 0.360 7.418± 0.324 8.290± 0.532
DESIRE-plan 6.562± 0.207 2.261± 0.100 6.644± 0.314 6.184± 0.325 9.203± 0.448 8.520± 0.514
ESP 2.921± 0.175 1.861± 0.109 2.369± 0.188 2.812± 0.188 3.201± 0.254 4.363± 0.652
PRECOG 2.508 ± 0.152 0.149 ± 0.021 2.324 ± 0.187 2.654 ± 0.190 3.157 ± 0.273 4.254 ± 0.586

(a) CARLA, ESP (b) CARLA, PRECOG (c) nuScenes, ESP (d) nuScenes, PRECOG

Figure 6: Examples of planned multi-agent forecasting (PRECOG) with our learned model in CARLA and nuScenes. By using our
planning approach and conditioning the robot on its true final position, our predictions of the other agents change, our predictions for the
robot become more accurate, and sometimes our predictions of the other agent become more accurate.

COG on the test-sets in CARLA and nuScenes. Here, we
use both m̂K and m̂a

K to quantify joint sample quality in
terms of all agents and each agent individually. In Tab. 2
and Fig. 6, we report results of our planning experiments.
We observe that our planning approach significantly im-
proves the quality of the joint trajectories. As expected, the
forecasting performance improves the most for the planned
agent (m̂1

K). Notably, the forecasting performance of the
other agents improves across all datasets and all agents. We
see the non-planned-agent improvements are usually great-
est for Car 2 (m̂2

K). This result conforms to our intuitions:
Car 2 is the closest agent to the planned agent, and thus,
it the agent that Car 1 influences the most. Qualitative ex-
amples of this planning are shown in Fig. 6. We observe
trends similar to the CARLA planning experiments – the
forecasting performance improves the most for the planned
agent, with the forecasting performance of the unplanned
agent improving in response to the latent plans. See Ap-
pendix G for additional visualizations.

5. Conclusions
We present a multi-agent forecasting method, ESP, that

outperforms state-of-the-art multi-agent forecasting meth-
ods on real (nuScenes) and simulated (CARLA) driving
data. We also developed a novel algorithm, PRECOG,
to condition forecasts on agent goals. We showed condi-
tional forecasts improve joint-agent and per-agent predic-
tions, compared to unconditional forecasts used in prior
work. Conditional forecasting can be used for planning,
which we demonstrated with a novel multi-agent imitative
planning objective. Future directions include conditional
forecasting w.r.t. multiple agent goals, useful for multi-AV
coordination via communicated intent.
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A. Planning and Forecasting Algorithms

To execute planning, we perform gradient ascent to ap-
proximately solve the optimization problem (10). Recall
the latent joint behavior is Z

.
= Z1:A

1:T , the latent human be-
havior is Zh

.
= Z2:A

1:T , and the robot behavior is zr
.
= z11:T .

We approximate the expectation in (9) with a sample ex-
pectation over K samples from p(Zh) = N (0, I), denoted
1:Kzh, where the kth sample is kzh. Each of these samples
for the latent human behavior is combined with the single
latent robot plan, each denoted kz = [zr, kzh]. This batch is
denoted 1:Kz. The approximation of (9) is then given as

L̂(1:Kz,G,φ)=
1

K

K∑
k=1

log(q(f(kz)|φ)p(G|f(kz), φ)), (14)

with L̂ parameterized by (q, f, p), and f ’s dependence on
φ dropped for notational brevity. The 1:Kzh is redrawn be-
fore each gradient ascent step on (14). This procedure is
illustrated in Alg. 1.

Algorithm 1 MULTIIMITATIVEPLAN(q, f, p, φ,K)

1: Define L̂ with q, f, p
2: Initialize zr1:T ∼ N (0, I)
3: while not converged do
4: 1:Kzh

iid∼ N(0, I)
5: zr1:T ← zr1:T +∇zr

1:T
L̂(1:Kz,G, φ)

6: end while
7: return zr1:T

In our implementation, we use K = 12, track the zr1:T
that achieved the best L̂ score, terminate the ascent if the
best zr1:T has not improved in 10 steps, and return the cor-
responding best zr1:T . To initialize zr1:T more robustly, we
sample a full 1:Kz multiple times (15), and use the zr corre-
sponding to the best L̂. We can also run the planning over
multiple initial samples of zr1:T .

Now, we further detail how we can use this planning
to perform goal-conditioned forecasting. As described in
Sec. 4.4, we model goals in our experiments by defining
our goal-likelihood p(G|S1:T , φ) = N (SrT ; S∗rT , 0.1·I), i.e.
a normal distribution at the controlled agent’s last true fu-
ture position, S∗rT . In general, we can pass any final de-
sired robot position, s†rT as the mean of this distribution.
Then, we perform goal-conditioned forecasting on a spe-
cific scene φ to a specific robot goal s†rT , with our trained
multi-agent density q, defined by f . This forecasting is per-
formed by first planning zr according to Alg. 1, then sam-
pling Zh again to generate stochastic joint outcomes, con-
ditioned on the robot’s plan. This procedure is illustrated in
Algs. 2 and 3.

Algorithm 2 PRECOG(q, f, p, s†rT , φ,K)

1: zr ← MULTIIMITATIVEPLAN(q, f, p, φ,K)

2: Sample 1:Kzh1:T
iid∼ N(0, I)

3: Forecast 1:Ks1:A1:T ← f(1:Kz1:A1:T , φ)
4: return 1:Ks1:A1:T

Algorithm 3 POSPRECOG(q, f, s†rT , φ,K)

1: Define p(G|S1:T , φ) = N (SrT ; s†rT , 0.1·I)

2: return PRECOG(q, f, p, s†rT , φ,K)

B. Alternate Joint PDF forms
The original joint can be expanded over each agent:

q(S|φ) =
T∏
t=1

q(St|S1:t−1, φ) =

T∏
t=1

A∏
a=1

N (Sat ;µat,Σ
a
t ).

Additionally, the change-of-variables rule yields an equiva-
lent density [7, 12, 16, 30]:

q(S|φ) = N (f−1(S;φ); 0, I)

∣∣∣∣det
df

dZ
|Z=f−1(S;φ)

∣∣∣∣−1 ,
We can derive expressions via the rollout equation (5),

reproduced here as (15), which implicitly defines f :

Sat = 2Sat−1−Sat−2+m
a
θ(S1:t−1,φ)︸ ︷︷ ︸

µa
t

+σaθ (S1:t−1,φ)︸ ︷︷ ︸
σa

t

·Zat .

(15)
The full Jacobian is given as:

df
dZ =


∂S1

∂Z1
0 . . . 0

∂S2

∂Z1

∂S2

∂Z2
. . . 0

...
...

. . . 0
∂ST

∂Z1

∂ST

∂Z2
. . . ∂ST

∂ZT

 ,
where

∂St

∂Zt
=


σ1
t 0 . . . 0

∂S2
t

∂Z1
t

σ2
t . . . 0

...
...

. . . 0
∂SA

t

∂Z1
t

∂SA
t

∂Z2
t

. . . σAt

=


σ1
t 0 . . . 0

0 σ2
t . . . 0

...
...

. . . 0
0 0 . . . σAt


Due to the block triangular nature of the Jacobian and

applying Laplace expansion along the diagonal:

det df
dZ =

∏
t

det
∂St
∂Zt

=

T∏
t=1

A∏
a=1

det σat (S1:t−1, φ).



Z = f−1(S;φ) is given by computing each Zat =

(σat (S1:t−1, φ))
−1

(Sat − µat (S1:t−1, φ)) . Algorithmically,
the functions f and f−1 are implemented separately, each
with a double for-loop over agents and time. Note that
since we use RNNs to produce µt and σt, the forward
f and its inverse must be computed in the same direc-
tion by stepping the RNN’s forward in time over the in-
put S. To aid implementation, we use the following checks
to ensure f is a bijection: ||Z − f−1(f(Z, φ), φ)||∞ < ε,
||S− f(f−1(S, φ), φ)||∞ < ε.

C. Architecture and Training Details
Both past and future trajectories for each agent are repre-

sented in each agent’s own local coordinate frame at t = 0,
with agent’s forward axis pointing along the agent’s yaw
at t = 0. Each agent a observes positions of the other
agents in the coordinate frame of agent a. We use a 9-layer
fully-convolutional network with stride 1 and 32 channels
per layer, and kernel sizes of 3 × 3, to process χ into a
feature grid Γ at the same spatial resolution as χ. The LI-
DAR is mounted on the first agent, thus it is generally more
informative about nearby agents. This enables the predic-
tion to be learned relative to the agent, with global con-
text obtained by feature map interpolation. At each time
step, each agent’s predicted future position sat is bilinearly-
interpolated into Γ: Γ(sat ), which ensures dΓ(sat )/dsat exists.
The “SocialMapFeat” component performs this interpola-
tion by converting the positions (in meters) to feature grid
coordinates (in 0.5 meters/cell), and bilinearly-interpolating
each into the feature map Γ. The interpolation is performed
by retrieving the features at the corners of the nearest unit
square to the current continuous position.

We also employed an additional featurization scheme,
termed “whiskers”. Instead of interpolating only at sat ,
we interpolated at nearby positions subsampled from arcs
relative to sat at various radii. By letting sat − sat−1 de-
fine the predicted orientation, the arcs were generated by
evenly sampling 7 points along arcs of length 5π/4 at radii
[1, 2, 4, 8, 16, 32] meters, which loosely simulates the fore-
casted agent’s future field-of-view. The midpoint of each
arc lied along the ray from sat−1 through sat . After inter-
polating at points {ωn}42n=1, the resulting feature is of size
8 ·7 ·6 (8 is the size of the last dimension of Γ, 7 is the num-
ber of points per arc, and 6 is the number of arcs). We found
this approach to yield superior performance and employed
it in the R2P2-MA baseline, as well as all of our methods.
The full details of the architecture are provided in Tab. 3.

Finally, we performed additional featurization in the
nuScenes setting by replacing χ with a signed-distance
transform, similar to [30]. It provides a spatially-smoother
input to the convolutional network, which we found aug-
mented performance. The signed distance transform (SDT)
of χc ∈ RH×W can be computed by first binarizing to χc ∈

Figure 7: Images from the CARLA simulator [8]. Left: frontal
view. Right: overhead view.

{0, 1}H×W and using the Euclidean distance transform
(DT), which is commonly provided (e.g. in scipy). We
compute it by binarizing with threshold τ : SDT(χc, τ) =
DT(χc ≥ τ) − DT(χc < τ), then clipping the result to
[−10, 1], and finally normalizing to [0, 1]. For LIDAR chan-
nels, we use τ = 5. When we use the already-binarized road
prior, binarization is unnecessary.

In Fig. 8, we illustrate various forms of the probabilistic
graphical models corresponding to our main model (ESP),
a baseline model (R2P2-MA), and how the assignment of
latent variables (Z) in these models affects the production of
the states (S). In Fig. 9, we illustrate the graphical models
of ESP and PRECOG for A = 3.

We trained our model with stochastic gradient descent
using the Adam optimizer with learning rate 1 · 10−4, with
minibatch size 10, until validation-set performance (of ê, as
discussed in the main paper) showed no improvement for a
period of 10 epochs.

D. Baseline Implementations

SocialGAN We used the public implementation https:

//github.com/agrimgupta92/sgan. We found the default
train.py parameters yielded poor performance. We
achieved significantly better SocialGAN performance by
using the network parameters in the run traj.sh script.
In contrast to SocialGAN, we model joint trajectories, and
can compute likelihoods for planning (and for ê).
DESIRE We re-implemented DESIRE following the au-
thors’ description in the paper and supplement, as there
is no open-source version available. In our domain, χ
is purely LIDAR-based, whereas their model combines
image-based semantic segmentation features into the same
coordinate frame. We found most provided parameters to
work well, except those related to the re-ranking compo-
nent. The re-ranking often did not improve the trajecto-
ries. The best results were obtained with 1 re-ranking step.
Whereas DESIRE is trained with a single-agent evidence
lower bound (ELBO), our model jointly models multiple
agents with an exact likelihood. As DESIRE does not com-

https://github.com/agrimgupta92/sgan
https://github.com/agrimgupta92/sgan


Table 3: Detailed ESP Architecture that implements s1:A1:T = f(z1:A1:T , φ). Typically, T = 20, A = 5, D = 2. In CARLA, H = W = 100.
In nuScenes, H =W = 200. An asterisk (∗) denotes a component whose output is masked in the flexible-count version of ESP by using
the agent-presence mask M ∈{0, 1}Atrain , discussed in Sec. 3.2.

Component Input [dimensionality] Layer or Operation Output [dimensionality] Details

Static featurization of context: φ = {χ, s1:A−τ :0}. Shared parameters for each agent.

MapFeat χ [H,W, 2] 2D Convolution 1χ [H,W, 32] 3× 3 stride 1, ReLu
MapFeat i−1χ [H,W, 32] 2D Convolution iχ [H,W, 32] 3× 3 stride 1, ReLu, i ∈ [2, . . . , 8]
MapFeat 8χ [H,W, 32] 2D Convolution Γ [H,W, 8] 3× 3 stride 1, ReLu
PastRNN∗ s1:A−τ :0 [τ + 1, A,D] RNN 1α1:A [A, 128] GRU across time dimension
PastRNN α [A, 128] 1αa ⊕

∑
b∈{1..A}\a

1αb 2αa [256] Index, Concat, & Sum for agent-a context

Dynamic generation via double loop: for t ∈ {0, . . . , T − 1}, for a ∈ {1, . . . , A}. Shared or separate parameters for each agent.

SocialFeat∗ s1:At [AD] sat − sbt , b ∈ {1..A} \ a 0ηat [AD −D] Agent displacements
SocialFeatMLP 0ηat [AD −D] Affine (FC) 1ηat [200] Tanh activation
SocialFeatMLP 1ηat [200] Affine (FC) 2ηat [50] Identity activation
WhiskerMapFeat ω1 . . . ωN [42, D] Interpolate wat = Γ(ω1)⊕ · · · ⊕ Γ(ωN ) [8 · 42] Interpolate ahead of the sample’s P.O.V.
SocialMapFeat∗ s1:At [AD] Interpolate γat = Γ(s1t )⊕ · · · ⊕ Γ(sAt ) [8A] Differentiable interpolation, concat. (⊕)
JointFeat γat , s

1:A
0 , 2ηa,

2αa, wat γat ⊕ s1:A0 ⊕ 2ηa ⊕ 2αa ⊕ wat ρat [8A+AD + 50 + 256 + 336] Concatenate (⊕)
FutureRNN ρat [8A+AD + 50 + 256] RNN 1ρat [50] GRU
FutureMLP 1ρat [50] Affine (FC) 2ρat [200] Tanh activation
FutureMLP 2ρat [200] Affine (FC) ma

t [D], ξat [D,D] Identity activation
MatrixExp ξat [D,D] expm(ξat + ξa,transposet ) σat [D,D] Differentiable Matrix Exponential [30]
VerletStep st, st−1,m

a
t ,σ

a
t , z

a
t 2st − st−1 +ma

t + σat z
a
t sat+1 [D] (Eq. 5)
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Figure 8: Graphical model comparison between prior work (Fig. 8a, Fig. 8b); a baseline we used (Fig. 8c); and our proposed methods
(Fig. 8d, Fig. 8e). All figures show A = 2 and two steps of the true T -step horizon. Shaded nodes represent observed variables, and
square nodes represent robot decisions. Thick arrows represent non-Makovian “carry-forward” dependencies (i.e. a state can depend on
multiple previous states): add a thin arrow for every two nodes connected by a chain of thick arrows. Future reactions are always unknown
in the case of the human drivers (“h” superscript), but can be decided in the case of robot (“r” superscipt) planning. How vehicles react
affects—and induces uncertianty into—the multi-agent system state S.
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Figure 9: Graphical models of ESP and PRECOG for A = 3. See Fig. 8’s caption for notation.



pute multi-agent likelihoods, we cannot compute its ê, nor
use it for planning in a multi-agent setting.
R2P2 We re-implemented R2P2 following the authors’ de-
scription in the paper and supplement, as there is no open-
source version available. We extended R2P2 to the multi-
agent setting and use it as our R2P2-MA model; R2P2 does
not jointly model agents. We can compute R2P2’s likeli-
hood, and therefore ê, by assuming independence across
agents: q(S|φ) =

∏A
a=1 q

a(Sa|φ). Note that since this
joint likelihood does not model agent’s future actions to in-
fluence each other, R2P2 cannot be used for planning in a
multi-agent setting. Fig. 8 compares the R2P2 baseline to
our ESP model.

E. CARLA Dataset Details

To remind the reader, we generated a realistic dataset
for multi-agent trajectory forecasting and planning with
the CARLA simulator [8]. Images from the simulator are
shown Fig. 7. We ran the autopilot in Town01 for over
900 episodes of 100 seconds each in the presence of 100
other vehicles, and recorded the trajectory of every vehi-
cle and the autopilot’s LIDAR observation. We randomized
episodes to either train, validation, or test sets. We created
sets of 60,701 train, 7586 validation, and 7567 test scenes,
each with 2 seconds of past and 4 seconds of future position
information at 5Hz. The dataset also includes 100 episodes
obtained by following the same procedure in Town02. We
used this data to further evaluate our ESP model. We ap-
plied our saved models (the same models used to report re-
sults in the paper) to this data. We generated the CARLA
data using version 0.8.4. We used the default vehicle. We
used a LIDAR position of (0.0, 0.0, 2.5), with 32 channels,
a range of 50, 100,000 points per second, a rotation fre-
quency of 10, an upper FOV limit of 10, and a lower FOV
limit of −30. We will release the 100GB of collected data.

F. Additional Evaluation

F.1. Robustness to Agent Localization Errors

In real-world data, there may be error in the localiza-
tion of the other agents (s−τ :0). We can simulate this er-
ror in our test-set by perturbing sa−τ :0 with a random vec-
tor va ∼N (0,εID×D). We also train a model by injecting
noise generated similarly. In Fig. 10 we compare nuScenes
A = 2 ESP models trained without (Mε=0.0) and with
(Mε=0.1) noise injection. We observe that Mε=0.0 is much
more sensitive to test-time noise than Mε=0.1 at all pertur-
bation scales, which shows noise injection is an effective
strategy to mitigate the effects of localization error. We also
note Mε=0.1 improves performance even when the test-data
is not perturbed.

Figure 10: Evaluating the effects of noisy localization on nuScenes
A = 2.

Figure 11: Histogram of m̂K=12 of forecasts made by the ESP
flexible-count model on CARLA Town02 Test A = 5, T = 20 at
10Hz (2 seconds of future). The median m̂K=12 is 0.09.

Figure 12: Histogram of m̂K=12 of forecasts made by the ESP
flexible-count model on nuScenes Test A = 5, T = 20 at 5Hz (4
seconds of future). The median m̂K=12 is 1.31.

(a) Plot of m̂K vs. K of the
ESP flexible-count model on
CARLA Town02 Test A =
5, T = 20 at 10Hz (2s).

(b) Plot of m̂K vs. K of the
ESP flexible-count model on
nuScenes Test A = 5, T =
20 at 5Hz (4s).

Figure 13: Mean m̂K and its standard error vs. K in two settings.

F.2. Additional CARLA and nuScenes Evaluations.

We show additional evaluations on CARLA in Tab. 4.
Table 4 shows the Town01 of the models trained on



Table 4: CARLA multi-agent forecasting evaluation. All CARLA-trained models use Town01 Train only, and are tested on Town01
Test. Mean scores (and their standard errors) of sample quality m̂ (12), and log likelihood ê (11), are shown. The en-dash (–) indicates
if an approach cannot compute likelihoods. The R2P2-MA generalizes the single-agent forecasting approach of [30]. Variants of our ESP
method (highlighted gray) mostly outperform prior work in the multi-agent CARLA setting. For single agent evaluations, see Tab. 5.

Approach Test m̂K=12 Test ê Test m̂K=12 Test ê Test m̂K=12 Test ê Test m̂K=12 Test ê
(minMSD) (extra nats) (minMSD) (extra nats) (minMSD) (extra nats) (minMSD) (extra nats)

CARLA Town01 Test 2 agents 3 agents 4 agents 5 agents

DESIRE [19] 1.943± 0.033 – 1.587± 0.020 – 2.234± 0.023 – 2.422± 0.017 –
SocialGAN [14] 0.977± 0.016 – 0.812± 0.013 – 1.098± 0.014 – 1.141± 0.015 –
R2P2-MA [30] 0.540± 0.009 0.625± 0.002 0.387± 0.008 0.645± 0.002 0.690± 0.009 0.621± 0.002 0.770± 0.008 0.618± 0.002
Ours: ESP, no LIDAR 0.724± 0.013 0.688± 0.003 0.719± 0.011 0.640± 0.002 0.919± 0.011 0.650± 0.002 1.102± 0.011 0.652± 0.002
Ours: ESP 0.311 ± 0.008 0.615± 0.002 0.385 ± 0.007 0.585± 0.002 0.509± 0.007 0.599± 0.002 0.675± 0.007 0.630± 0.001
Ours: ESP, flex. count 0.415± 0.014 0.531 ± 0.002 0.398± 0.011 0.513 ± 0.001 0.411 ± 0.010 0.507 ± 0.001 0.447 ± 0.009 0.509 ± 0.001

Table 6: Forecasting evaluation of our model on CARLA Town01 Test and nuScenes Test data. Planning the robot to a goal position
(PRECOG) generates better predictions for all agents. Means and their standard errors are reported. The en-dash (–) represents statistics
of agents that are not present in a dataset.

Data Approach Test m̂K=12 Test m̂a=1
K=12 Test m̂a=2

K=12 Test m̂a=3
K=12 Test m̂a=4

K=12 Test m̂a=5
K=12

CARLA A=2

DESIRE 1.837± 0.048 1.991± 0.066 1.683± 0.050 – – –
DESIRE-plan 1.858± 0.046 0.918± 0.044 2.798± 0.073 – – –
ESP 0.337± 0.013 0.196± 0.009 0.478± 0.024 – – –
PRECOG 0.241± 0.012 0.055± 0.003 0.426± 0.024 – – –

CARLA A=3

DESIRE 1.699± 0.032 1.570± 0.037 1.661± 0.047 1.865± 0.047 – –
DESIRE-plan 2.343± 0.047 0.232± 0.009 3.130± 0.078 3.667± 0.096 – –
ESP 0.426± 0.013 0.204± 0.009 0.556± 0.027 0.519± 0.021 – –
PRECOG 0.355± 0.012 0.052± 0.003 0.519± 0.025 0.493± 0.020 – –

CARLA A=4

DESIRE 2.402± 0.038 2.422± 0.054 2.065± 0.044 2.531± 0.071 2.589± 0.064 –
DESIRE-plan 1.828± 0.035 0.149± 0.004 2.480± 0.062 1.256± 0.047 3.426± 0.098 –
ESP 0.537± 0.011 0.236± 0.009 0.615± 0.021 0.656± 0.023 0.643± 0.023 –
PRECOG 0.478± 0.011 0.054± 0.003 0.583± 0.021 0.637± 0.022 0.638± 0.023 –

CARLA A=5

DESIRE 2.622± 0.030 2.621± 0.045 2.422± 0.048 2.710± 0.066 2.969± 0.057 2.391± 0.049
DESIRE-plan 2.329± 0.038 0.194± 0.004 2.239± 0.057 3.119± 0.098 3.332± 0.090 2.758± 0.083
ESP 0.718± 0.012 0.340± 0.011 0.759± 0.024 0.809± 0.025 0.851± 0.023 0.828± 0.024
PRECOG 0.640± 0.011 0.066± 0.003 0.741± 0.024 0.790± 0.024 0.804± 0.022 0.801± 0.024

nuScenes A=2

DESIRE 3.307± 0.093 3.002± 0.088 3.613± 0.140 – – –
DESIRE-plan 4.528± 0.151 0.456± 0.015 8.600± 0.298 – – –
ESP 1.094± 0.053 0.955± 0.057 1.233± 0.078 – – –
PRECOG 0.514 ± 0.037 0.158 ± 0.016 0.871 ± 0.070 – – –

nuScenes A=3

DESIRE 4.840± 0.135 3.931± 0.127 4.984± 0.207 5.606± 0.234 – –
DESIRE-plan 5.887± 0.187 0.409± 0.015 7.731± 0.337 9.521± 0.399 – –
ESP 1.511± 0.077 1.128± 0.061 1.543± 0.118 1.862± 0.147 – –
PRECOG 1.016 ± 0.062 0.121 ± 0.005 1.320 ± 0.105 1.606 ± 0.122 – –

nuScenes A=4

DESIRE 5.771± 0.151 4.195± 0.159 5.854± 0.243 6.138± 0.280 6.896± 0.324 –
DESIRE-plan 5.045± 0.158 0.471± 0.019 5.567± 0.245 5.492± 0.257 8.652± 0.407 –
ESP 2.200± 0.090 1.604± 0.099 1.940± 0.123 2.405± 0.149 2.851± 0.213 –
PRECOG 1.755 ± 0.083 0.133 ± 0.006 1.804 ± 0.126 2.319 ± 0.141 2.764 ± 0.231 –

nuScenes A=5

DESIRE 6.830± 0.204 4.999± 0.219 6.415± 0.294 7.027± 0.360 7.418± 0.324 8.290± 0.532
DESIRE-plan 6.562± 0.207 2.261± 0.100 6.644± 0.314 6.184± 0.325 9.203± 0.448 8.520± 0.514
ESP 2.921± 0.175 1.861± 0.109 2.369± 0.188 2.812± 0.188 3.201± 0.254 4.363± 0.652
PRECOG 2.508 ± 0.152 0.149 ± 0.021 2.324 ± 0.187 2.654 ± 0.190 3.157 ± 0.273 4.254 ± 0.586

Town01 (on separate episodes). We show single-agent
CARLA forecasting results in Tab. 5. We show histograms
of m̂ in Fig. 11, Fig. 12, and Fig. 14. We show a compari-
son to longer time-horizon forecasting in Tab. 7. We show
a plot of means and their standard errors of m̂K vs. K in
Fig. 13.

F.3. Full Conditional Forecasting Experiments

Due to main-text space limits, we report some remaining
results (i.e. for A = {3, 4}) in Tab. 6. We observe similar
trends in these results as in A = 2 and A = 5: PRECOG
improves predictions of all agents’ future trajectories, and
that knowledge of the ego-agent’s goal provides improves
predictions for closer agents more than farther agents.



Table 5: Performance in CARLA A = 1 (n.b. here the model is
identical to R2PA-MA (denoted by ∗)).

Approach Test m̂K=12 Test ê
(minMSD) (extra nats)

CARLA Town01 Test 1 agent

DESIRE [19] 1.067± 0.040 –
SocialGAN [14] 0.921± 0.031 –
R2P2-MA [30] ∗ ∗

Ours: ESP, no LIDAR 0.496± 0.024 0.699± 0.006
Ours: ESP 0.136 ± 0.010 0.634 ± 0.006

Table 7: Performance on CARLA Town01 Test with T = 40 at
10Hz (4 seconds of future). This data has larger dimensionality
than CARLA T = 20, 10Hz (2 seconds) data and the nuScenes
T = 20, 5Hz (4 seconds) data.

Approach Test m̂K=12 Test ê
(minMSD) (extra nats)

Town01 Test, T = 20, 10Hz (2s) 5 agent

ESP, flex. count 0.447± 0.009 0.509± 0.001

Town02 Test, T = 20, 10Hz (2s) 5 agent

ESP, flex. count 0.435± 0.011 0.496± 0.001

Town01 Test, T = 40, 10Hz (4s) 5 agent

ESP, flex. count 2.500± 0.077 0.492± 0.001

nuScenes Test, T = 20, 5Hz (4s) 5 agent

ESP, flex. count 2.933± 0.129 1.029± 0.002

G. Additional Visualizations

We display additional visualization of our results in Fig-
ures 16, 17, 18, 19, and 22. In Fig. 16, we show additional
forecasting results on the nuScenes dataset. In Fig. 17, we
show additional forecasting results on the CARLA dataset.
In Fig. 18, we show additional planning results on the
CARLA dataset. In Fig. 19, we show additional planning
results on the nuScenes dataset. In Fig. 20, we show qualita-
tive results of high, medium, and low quality on the CARLA
A = 5 dataset (ordered by m̂), paired with their correspond-
ing m̂ scores. In Fig. 21, we show qualitative results of high,
medium, and low quality on the nuScenes A = 5 dataset
(ordered by m̂), paired with their corresponding m̂ scores.
In Fig. 22, we visualize the planning criterion (L̂) across
many different spatio-temporal goal positions in CARLA,
which gives a qualitative interpretation of where the model
prefers goal. In Fig. 23, we visualize the same posterior on
nuScenes.

Figure 14: Histogram of m̂K=12 of forecasts made by the ESP
flexible-count model on CARLA Town01 Test A = 5, T = 40 at
10Hz (4 seconds of future). The median m̂K=12 is 0.38.

(a) Plot of m̂K vs. K of the ESP flexible-count model on CARLA
Town01 Test A = 5, T = 40 at 10Hz (4s).
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Figure 16: Example forecasting results on held-out nuScenes data with our learned ESP model. In each scene, 12 joint samples are shown,
and LIDAR colors are discretized to near-ground and above-ground



Figure 17: Examples of multi-agent forecasting with our learned ESP model. In each scene, 12 joint samples are shown, and LIDAR colors
are discretized to near-ground and above-ground.



(a) Scene 1, forecasted (b) Scene 1, planned

(c) Scene 2, forecasted (d) Scene 2, planned

(e) Scene 3, forecasted (f) Scene 3, planned

(g) Scene 4, forecasted (h) Scene 4, planned

Figure 18: Additional examples of planned multi-agent forecasting (PRECOG) with our learned model in CARLA. By using our planning
approach and conditioning the robot on its true final position, our predictions for the robot become more accurate, and often our predictions
of the other agent become more accurate.



(a) Scene 1, forecasted (b) Scene 1, planned

(c) Scene 2, forecasted (d) Scene 2, planned

(e) Scene 3, forecasted (f) Scene 3, planned

Figure 19: Additional examples of planned multi-agent forecasting (PRECOG) with our learned model in nuScenes. By using our planning
approach and conditioning the robot on its true final position, our predictions for the robot become more accurate, and often our predictions
of the other agent become more accurate.



(a) Best (> 99%). m̂K=12 = 3.9× 10−4 (b) Best (> 99%). m̂K=12 = 4.0× 10−4 (c) Best (> 99%). m̂K=12 = 5.4× 10−4

(d) Median (≈ 50%). m̂K=12 = 0.38 (e) Median (≈ 50%). m̂K=12 = 0.38 (f) Median (≈ 50%). m̂K=12 = 0.37

(g) Worst (<0.2%). m̂K=12=64.7 (h) Worst (< 0.2%). m̂K=12 = 41.3 (i) Worst (< 0.2%). m̂K=12 = 41.2

Figure 20: Various qualities (Row 1: ≈ 100%, Row 2: ≈ 50%, and Row 3: ≈ 0%) of qualitative results of the ESP flex. count model on
Town01 Test, A = 5, T = 40 at 10Hz (4 seconds of future), ordered by m̂K=12. Recall since m̂ is a joint-agent statistic, per-agent
trajectory sample coverage is insufficient for a good m̂ score. Also, recall m̂ measures the error of the closest joint trajectory to the true
future, as opposed to the error of all joint trajectories, which is key to its property of not penalizing otherwise-plausible trajectories.



(a) Best (≈ 99%). m̂K=12=3.1× 10−4 (b) Best (≈ 94%). m̂K=12=2.3× 10−2 (c) Best (≈ 93%). m̂K=12=2.9× 10−2

(d) Median (≈ 50%). m̂K=12=1.3 (e) Median (≈ 50%). m̂K=12=1.3 (f) Median (≈ 50%). m̂K=12=1.3

(g) Worst (<3%). m̂K=12=15.6 (h) Worst (<3%). m̂K=12=13.4 (i) Worst (<3%). m̂K=12=11.5

Figure 21: Various qualities (Row 1: ≈ 100%, Row 2: ≈ 50%, and Row 3: ≈ 0%) of qualitative results of the ESP flex. count model
on nuScenes Test, A = 5, T = 20 at 5Hz (4 seconds of future), ordered by m̂K=12. Recall since m̂ is a joint-agent statistic, per-agent
trajectory sample coverage is insufficient for a good m̂ score. Also, recall m̂ measures the error of the closest joint trajectory to the true
future, as opposed to the error of all joint trajectories, which is key to its property of not penalizing otherwise-plausible trajectories.



Figure 22: Plotting the planning criterion, L̂, after planning to various positions (small circular dots in each plot) input to Alg. 3, with
values interpolated between each position, in CARLA. The planning criterion input corresponds to a spatio-temporal goal at T = 20 in the
future (4 seconds). The planning criterion prefers locations within its lane, unless it is uncertain about the possibility of turning. When the
vehicle was stationary in the past, the planning criterion is highest at positions at or close in front of the vehicle.



Figure 23: Plotting the planning criterion, L̂, after planning to various positions (small circular dots in each plot) input to Alg. 3, with
values interpolated between each position, in nuScenes. The planning criterion input corresponds to a spatio-temporal goal at T = 20 in
the future (4 seconds). The planning criterion prefers locations within its lane, unless it is uncertain about the possibility of turning. When
the vehicle was stationary in the past, the planning criterion is highest at positions at or close in front of the vehicle.


