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A Joint Optimization Approach of LIDAR-Camera
Fusion for Accurate Dense 3-D Reconstructions

Weikun Zhen"”, Yaoyu Hu

Abstract—Fusing data from LiDAR and camera is conceptually
attractive because of their complementary properties. For instance,
camera images are of higher resolution and have colors, while
LiDAR data provide more accurate range measurements and have
a wider field of view. However, the sensor fusion problem remains
challenging since it is difficult to find reliable correlations between
data of very different characteristics (geometry versus texture,
sparse versus dense). This letter proposes an offline LIDAR-camera
fusion method to build dense, accurate 3-D models. Specifically,
our method jointly solves a bundle adjustment problem and a
cloud registration problem to compute camera poses and the sensor
extrinsic calibration. In experiments, we show that our method
can achieve an average accuracy of 2.7 mm and resolution of 70
points/cm? by comparing to the ground truth data from a survey
scanner. Furthermore, the extrinsic calibration result is discussed
and shown to outperform the state-of-the-art method.

Index Terms—Sensor Fusion, Mapping, Calibration and Identi-
fication.

1. INTRODUCTION

HIS work is aimed at building accurate dense 3D models
by fusing multiple frames of LiDAR and camera data as
shown in Fig. 1. The LiDAR scans 3D points on the surface of an
object and the acquired data are accurate in range and robust to
low-texture conditions. However, the LiDAR data contain lim-
ited information of texture (only intensities) and are quite sparse
due to the physical spacing between internal lasers. Differently,
a camera provides denser texture data but does not measure
distances directly. Although a stereo system measures the depth
through triangulation, it may fail in regions of low-texture or
repeated patterns. Those complementary properties make it very
attractive to fuse LIDAR and cameras for building dense textured
3D models.
The majority of proposed sensor fusion algorithms typically
augment the image with LiDAR depth. Then the sparse depth
image may be upsampled to get a dense estimation, or used to
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2. Data Collection

1. System Setup

Fig. 1. A customized LiDAR-stereo system is used to collect stereo images
(only left images are visualized) and LiDAR point clouds. Our algorithm
estimates the camera poses, generates a textured dense 3D model of the scanned
specimen and a point cloud map of the environment.

Fig.2. Anillustration of inaccurate edge extraction. Left: The mixed edge point
(green) has range error. Right: The loose edge point (green) has angular error.

facilitate the stereo triangulation process. However, we observe
two drawbacks of these strategies. The first one is that the
depth augmentation requires sensor extrinsic calibration, which,
compared to the calibration of stereo cameras, is less accurate
since matching structural and textural features can be unreliable.
For example (see Fig. 2), many extrinsic calibration approaches
use edges of a target as the correspondences between point
clouds and images, which will have issues: 1) cloud edges due
to occlusion are not clean but mixed, and 2) edge points are not
on the real edge due to data sparsity but only loosely scattered.
The second drawback is that the upsampling or LiDAR-guided
stereo triangulation techniques are based on the local smooth-
ness assumption, which becomes invalid if the original depth is
too sparse. The accuracy of fused depth map is hence decreased,
which may still be useful for obstacle avoidance, but not ideal
for the purpose of mapping. For the reasons discussed above,
we choose to combine a rotating LiDAR with a wide-baseline,
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high-resolution stereo system to increase the density of raw data.
Moreover, we aim to fuse multiple sensor data and recover the
extrinsic calibration simultaneously.
The main contribution of this letter is an offline method to
process multiple frames of stereo and point cloud data and jointly
optimizes the camera poses and the sensor extrinsic transform.
The proposed method has benefits that:
® it does not rely on unreliable correlations between struc-
tural and textural data, but only enforces the geometric con-
straints between sensors, which frees us from handcrafting
heuristics to associate information from different domains.

® it joins the bundle adjustment and cloud registration prob-
lem in a probabilistic framework, which enables proper
treatment of sensor uncertainties.

® it is capable of performing accurate self-calibration, mak-

ing it practically appealing.

The rest of this letter is organized as follows: Section II
presents the related work on LiDAR-camera fusion techniques.
Section III describes the proposed method in detail. Experimen-
tal results are shown in Section I'V. Conclusions and future work
are discussed in Section V.

II. RELATED WORK

In this section, we briefly summarize the related work in
the areas of LiDAR-camera extrinsic calibration and fusion.
For extrinsic calibration, the proposed methods can be roughly
categorized according to the usage of a target. For example, a
single [1] or multiple [2] chessboards can be used as planar
features to be matched between the images and point clouds.
Besides, people also use specialized targets, such as a box [3],
a board with shaped holes [4] or a trihedron [5], where the
extracted features also include corners and edges. The usage
of a target simplifies the problem but is inconvenient when a
target is not available. Therefore target-free methods are de-
veloped using natural features (e.g. edges) which are usually
rich in the environment. For example, Levinson and Thrun [6]
make use of the discontinuities of LiIDAR and camera data, and
refine the initial guess through a sampling-based method. This
method is successfully applied on a self-driving car to track the
calibration drift. Pandey et al. [7] develop a Mutual Informa-
tion (MI) based framework that considers the discontinuities of
LiDAR intensities. However, the performance of this method
is dependent on the quality of intensity data, which might be
poor without calibration for cheap LiDAR models. Differently,
[8]-[10] recover the extrinsic transform based on the ego-motion
of individual sensors. These methods are closely related to the
well-known hand-eye calibration problem [11] and do not rely
on feature matching. However, the motion estimation and extrin-
sic calibration are solved separately and the sensor uncertainties
are not considered. Instead, we construct a cost function that
joins the two problems in a probabilistically consistent way and
optimizes all parameters together.

Available fusion algorithms are mostly designed for LiDAR-
monocular or LiDAR-stereo systems and assume the extrinsic
transform is known. For a LIDAR-monocular system, images
are often augmented with the projected LiDAR depth. The
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fused data can then be used for multiple tasks. For example,
Dolson et al. [12] upsample the range data for the purpose
of safe navigation in dynamic environments. Bok et al. [13]
and Vechersky et al. [14] colorize the range data using camera
textures. Zhang and Singh [ 15] show significant improvement on
the robustness and accuracy of the visual odometry if enhanced
with depth. For LiDAR-stereo systems [16]-[19], LiDAR is
typically used to guide the stereo matching algorithms since
a depth prior could significantly reduce the disparity searching
range and help to reject outliers. For instance, Miksik et al.
[17] interpolate between LiDAR points to get a depth prior
before stereo matching. Maddern and Newman [18] propose a
probabilistic framework that encodes the LiDAR depth as prior
knowledge and achieves real-time performance. Additionally, in
the area of surveying [20]-[22], point clouds are registered based
on the motion estimated using cameras. Our method differs from
these work in that LiDAR points are not projected on the image
since the extrinsic transform is assumed unknown. Instead, we
use LiDAR data to refine the stereo reconstruction after the
calibration is recovered.

III. JOINT ESTIMATION AND MAPPING
A. Overview

Before introducing the proposed algorithm pipeline, we clar-
ify the definitions used throughout the rest of this letter. In
terms of symbols, we use bold lower-case letters (e.g. x) to
represent vectors or tuples, and bold upper-case letters (e.g.
T) for matrices, images or maps. Additionally, calligraphic
symbols are used to represent sets (e.g. 7 stands for a set of
transformations). And scalars are denoted as light letters (e.g.
i, V).

As basic concepts, an image landmark 1 € R3 is defined as a
3D point that is observed in at least two images. Then a camera
observation is represented by a 5-tuple o. = {i, k,u,d, w},
where the elements are the camera id, the landmark id, image
coordinates, the depth and a weight factor of the landmark,
respectively. In addition, a LiDAR observation is defined as a
6-tuple o, = {4, j, p, q, n, w} that contains the target cloud id ¢,
the source cloud id 7, a key point in the source cloud, its nearest
neighbor in the target cloud, the neighbor’s normal vector and a
weight factor. In other words, one LiDAR observation associates
a 3D point to a local plane and the point-to-plane distance will
be minimized in the later joint optimization step.

The complete pipeline of proposed method is shown in Fig. 3.
Given the stereo images and LiDAR point clouds, we first
extract and match features to prepare three sets of observations,
namely the landmark set £, the camera observation set O,
and the LiDAR observation set ;. The observations are then
fed to the joint optimization block to estimate optimal camera
poses 7. and sensor extrinsic transform T7. Based on the
latest estimation, the LiDAR observations are recomputed and
the optimization is repeated. After a number of iterations, the
parameters converge to local optima. Finally, the refinement and
mapping block joins the depth information from stereo images
and LiDAR clouds to produce the 3D model. In the rest of this
section, each component is described in detail individually.
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A diagram of the proposed pipeline. In the observation extraction phase (front-end), SURF features are extracted and matched across all datasets to

build the landmark set £ and the camera observations O.. On the other hand, point clouds are abstracted with BSC features, and roughly registered to find cloud
transforms 7;. Then point-plane pairs are found to build the LiIDAR observation set O;. In the pose estimation and mapping phase (back-end), we solve the BA
problem and the cloud registration problem simultaneously. Here the O; is recomputed after each convergence based on the latest estimation 7., T and the
optimization is repeated for a few iterations. Finally, local stereo reconstructions are refined using LiDAR data and assembled to build the 3D model.

B. Camera Observation Extraction

Given a stereo image pair, we firstly perform stereo triangu-
lation to obtain a disparity image using Semi-Global Matching
(SGM) proposed in [23]. The disparity image is represented in
the left camera frame. Then SURF [24] features are extracted
from the left image. Note that our algorithm itself does not
require a particular type of feature to work. After that, a feature
point is associated with depth value if a valid disparity value
is found within a small radius (2 pixels in our implementa-
tion). Only the key points with depth are retained for further
computation. The steps above are repeated for all stations to
acquire multiple sets of features with depth. Once the depth
association is done, a global feature association block is used to
find correlations between all possible combinations of images.
We adopt a simple matching method that incrementally adds new
observations and landmarks to O, and £. Algorithm 1 shows the
detailed procedures. Basically, we iterate through all possible
combinations to match image features based on the Euclidean
distance of corresponding descriptors. £ and O, will be updated
accordingly if a valid match is found.

Additionally, an adjacency matrix A. encoding the corre-
lation of the images can be obtained. Since the camera FOV
is narrow, it is likely that the camera pose graph is not fully
connected. Therefore, additional connections have to be added
to the graph, which is one of the benefits of fusing point clouds.

C. LiDAR Observation Extraction

Although many 3D local surface descriptors have been pro-
posed (a review is given in [25]), they are less stable and not
accurate compared to image feature descriptors. In fact, it is
preferable to use 3D descriptors for rough registration and refine
the results using slower but more accurate methods such as
Iterative Closest Point (ICP) [26]. Our work follows a similar
idea. Specifically, the Binary Shape Context (BSC) descriptor
[27] is used to match and roughly register point clouds to
compute the cloud transforms 7;. As a 3D surface descriptor,
BSC encodes the point density and distance statistics on three
orthogonal projection plane around a feature point. Furthermore,
it represents the local geometry as a binary string which enables
fast difference comparison on modern CPUs. Fig. 4-left shows

Algorithm 1: SURF Feature Association

1 Given feature sets JFq.n from N stations;

2 for:=1:N do

3 for j=74+1: N do

4 for f in F; do

5 find the best match g in F;;

6 if £ and g NOT similar then

7 ‘ continue;

8 end

9 if f, g both unlabeled then

10 create new landmark id k < |L|;
11 label f, g with id k;

12 add new landmark 1 with id k to £;
13 add new observations or, og1 to O,;
14 else if f labeled, g unlabeled then
15 copy label from f to g;

16 add new observation og to O,;
17 else if f unlabeled, g labeled then
18 copy label from g to f;

19 add new observation og to O,;
20 else

21 continue;

22 end

23 end

24 end

25 end

26 return O, L.

log, 0g are observation tuples filled with information from f and g.

Fig. 4.
(grey). Middle: Registered point cloud map based on matched features. Right:
Comparison of rough registration (top-right) and refined registration (bottom-
right) in a zoomed-in window.

Left: An example of extracted BSC features (red) from a point cloud
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an example of extracted BSC features. However, feature-based
registration is of low accuracy. As shown in the right plots of
Fig. 4, misalignment can be observed in the rough registered
map. As a comparison, the refined map of higher accuracy
obtained by our method is also visualized.

After the rough registration, another adjacency matrix A;
encoding matched cloud pairs is obtained. We use the merged
adjacency matrix A, V A; to define the final pose graph, where
V means element-wise or logic operation.

To obtain Oy, a set of points are sampled randomly from each
point cloud as the key points. Note that the key points to refine
the registration are denser than the features. For each pair of
connected clouds in A, the one with a smaller index is defined as
the target while the other one as the source. Then each key point
in the source is associated with its nearest neighbor and a local
normal vector in the target within a given distance threshold.
Finally, all point matches are formatted as a LiDAR observation
and stacked into O;.

D. Joint Optimization

Given the observations O. and O;, we first formulate the
observation likelihood as the product of two probabilities

PO, O|T,L,T.) = P(O|T,L)P(O)|T, Te) (1)

where 7 = {T;|i = 1,2,...} is the set of camera poses with
T, =14, and T, is the extrinsic transform. Assuming the ob-
servations are conditionally independent, we have

P(OT. L) = [] P(oc|T:, 1) 2)
0.€0,

P(OIT,T.) = ] Ploi|Ts, T, T) 3)
0[601

where 4, are camera ids and k is the landmark id, which
are specified by observation o, or o;. The probability of one
observation is approximated with a Gaussian distribution as

1
P(o.|T;,1i) o< exp (—Qwoc (Ejzc + Eﬁ)) )

P(0y|T;, Tj,T.) o exp (—wol Ef) (5)
where w,_, wo, are the weighting factors of camera and LiDAR
observations. And the residual F; and E; encode landmark
reprojection and depth error, while £; denotes the point-to-plane
distance error. Those residuals are defined as

feature: Fy ‘|¢(lk|K Ti) —u]| ©)
Op
depth: Ey M @
o4
T .. J—
laser: B, = n (7’[}(p|TlﬂJ) q) ®)
ol

Here, u and d are observed image coordinates and depth of land-
mark k. T;;; = (TeTZ-)’lTjTe is the transform from target
cloud i to source cloud j. Function ¢(-) projects a landmark
onto the image 7 specified by input intrinsic matrix K and
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transform T;. Function ¢ (-) transforms a 3D point using the
input transformation. o, 04 and o; denote the measurement
uncertainties of extracted features, stereo depths and LiDAR
ranges, respectively.

Substituting (2)—(8) back into (1) and taking the negative log-
likelihood gives the cost function

Zwoc Ef +Ed

Oc

F(T, L, T.)

Z woLEl

which is iteratively solved over parameters 7, £, T using the
Levenberg-Marquardt algorithm.

To filter out incorrect observations in both images and point
clouds, we check the reprojection error ||¢(1;|K, T;) — u|| and
depth error |4 (1| T;)|| — d of camera observations and check
the distance error n' (¢)(p|T;;;) — q) of LiDAR observations
after the optimization converges. The observations whose errors
are larger than prespecified thresholds will be marked as outliers
and assigned with zero weights. The cost function (9) is opti-
mized repeatedly until no more outliers can be detected. The
thresholds can be tuned by hand and in the experiments we use
3 pixels, 0.01m and 0.1m respectively.

Similar to the ICP algorithm, the O; is recomputed based on
the latest estimation of 7., T, while the O, remains unchanged.
Once O, is updated, the outlier detection and optimization steps
are repeated as mentioned above. The O; only needs to be
recomputed a few times (4 times in our experiments) to achieve
good accuracy.

Additionally, the strategy of specifying the uncertainty pa-
rameters is as follows. Based on the stereo configuration, the
triangulation depth error e, is related to the stereo matching
error e, by a scale factor as in eg = (d?/bf)e,, where b is the
baseline, f is the focal length and d is the depth. Assuming
the uncertainties of feature matching and stereo matching are
equivalent, we have o4 = (d*/bf)o,. Therefore, we can now
set 0, to be the identity (i.e. 1) and set o4 by multiplying the
scale factor. On the other hand, the value of o; is tuned by
hand so that the total cost of camera and LiDAR observations
are roughly at the same magnitude. In the experiments, setting
op=104=5x 103 and o; between [0.02, 0.1] can generate
sufficiently good results.

E. Mapping

With the camera poses estimated, building a final 3D model
could be simply registering all stereo point clouds together.
However, the stereo depth maps typically contain outliers and
holes due to triangulation failure. In order to refine the stereo
depth maps, we further perform a simple but effective two-fold
fusion of LIDAR and camera data for each frame or station. In the
first fold, the stereo depth is compared with the projected LiDAR
depth and will be removed if there is a significant difference. In
the second fold, LiDAR depth is selectively used to fill holes
in the stereo depth. Particularly, we only use the regions that
are locally flat (such that the local smoothness assumption is
valid), and well observed (avoiding degenerated view angle).
The curvature of the local surface is used to measure the flatness.
And the normal vector is used to compute the view angle.
Fig. 5 shows an example of refining the stereo point cloud. It
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Fig. 5.
out by limiting its difference to the LiDAR depth within a maximum range
threshold. Then the holes are filled with the surrounding LiDAR depth only if
the local surface has a near-zero curvature.

An example of refining the stereo depth. The outliers are first filtered

can be observed that holes lying on a flat surface can be filled
successfully, while the missing points close to the edges are not
treated to avoid introducing new outliers.

F. Conditions of Uniqueness

The proposed approach relies on the ego-motion of individual
sensors to recover the extrinsic transform T'., making it possible
that T, is not fully observable if the motion degenerates. It turns
out to be the same problem encountered in hand-eye calibration,
where the extrinsic transform between a gripper and a cam-
era is estimated from two motion sequences. Here we discuss
conditions for a fully observable T, by borrowing knowledge
from the hand-eye calibration, whose classical formulation is
given by

T.T. =T.T, (10)

where T}, T, represent the relative motion of the hand and the
camera w.r.t. their own original frames. Incorporating multiple
stations will result in a set of (10) and then T, can be solved.
Accordingto [11], the following two conditions must be satisfied
to guarantee a unique solution of T'.:

1) At least 2 motion pairs (T, T},) are observed. Equiva-
lently, at least 3 stations are needed, with one of them to
be the base station.

2) The rotation axes of T, are not colinear for different
motion pairs.

In our case, the robot hand frame is substituted by the LIDAR
frame. Therefore, the configuration of each station must also
satisfy the above conditions of uniqueness. This provides formal
guidance to collect data effectively. From our experience of
deploying the developed system, an operator without adequate
background knowledge in computer vision, particularly in struc-
ture from motion, is likely to miss the second condition and only
rotates the sensor about the vertical axis, which will make the
extrinsic calibration unobservable.

IV. EXPERIMENTS
A. The Sensor Pod

To collect data for experiments, we developed a sensor pod
(as shown in Fig. 6) which has a pair of stereo cameras (global
shutter, resolution 4112 x 3008, baseline 38 cm), a Velodyne
Puck (VLP-16), an IMU and a thermal camera. This work only
uses the stereo image pairs and LiDAR clouds for reconstruction.
Particularly, the VLP-16 is mounted on a continuously rotating
(180° per second) motor to increase the sensor FOV.
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Thermal Cam

Left Cam

VLP-16 Motor Box

Fig. 6.  The sensor pod developed for data collection.

Fig. 7.

Built point cloud model of the T-shaped specimen.

The calibration between the involved sensors are performed
separately. We use the OpenCV library [28] to obtain camera
intrinsic and extrinsic parameters. The transform between the
motor and the LiDAR frame is obtained by placing the sensor
pod in a conference room, and carefully tuning the transform
until the accumulated points on walls and ceiling form thin
surfaces in the fixed motor base frame. From now on, we use
the term LiDAR frame to denote the fixed motor base frame
instead of the actual rotating Velodyne frame, and assume all
point clouds have been transformed into the LiDAR frame.

B. Reconstruction Tests

The first reconstruction test is carried out at the Shimizu
Institute of Technology in Tokyo to scan a T-shaped concrete
specimen that is under structural tests. In total, 25 stations of data
are collected around the specimen at a distance of about 2.5 me-
ters. Each station contains a stereo image pair, a point cloud that
accumulates scans for 20 seconds and contains approximately
1.6 million points. For station 1-17, the sensor pod is placed on a
tripod and pointed to the specimen. Station 18-25 are collected
with the sensor pod on the ground, tilted up to capture the bottom
of the specimen. Fig. 7 shows the reconstructed model and Fig. 8
visualizes the camera poses and landmarks. In the lower plots
of Fig. 8, correlations found between images (blue lines) and
point clouds (grey lines) are visualized. Since the cameras have
narrow FOV (48° horizontal), it is likely that adjacent images
don’t have enough overlap, which makes the pose graph not fully
connected. Fortunately, LiDAR clouds have much wider FOV
and therefore guarantees a fully connected graph.
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Fig. 8.  Top: Estimated camera poses (numbered in the order of capture) and
visual landmarks (blue points). We follow the convention to define camera frame
z (blue) forward, y (green) downward. Bottom: Pose graph connections from
images (blue) and poing clouds (gray).

As to the computation statistics, we provide a rough measure
of the processing time of the major components. On a standard
desktop (i7-3770 CPU, 3.40 GHz x 8), it takes less than 2min
to remove vignetting effects and triangulate a stereo pair (40-50
min for the whole dataset). The feature-based cloud registration
takes about 15 min in total and the joint pose estimation and
map refinement can be finished in about 15 min and 20 min
respectively.

In addition to the T-shaped specimen, we tested our algorithm
in different environments, where the shapes of reconstructed
objects vary from simple squared and cylinder pillars to more
complex bridge pillars (see Fig. 9). Table I summarizes the
model statistics. The averaged error is obtained by comparing
to a ground truth model and more details are provided in
Section IV-E.

C. LiDAR-Camera Calibration

In this section, we evaluate the accuracy of the recovered
extrinsic transform. As a comparison, we implemented a target-
free calibration method [6] which uses discontinuities in images
and point clouds to iteratively refine an initial guess. The key
steps of this method are shown in Fig. 10a—d. Basically, the initial
guess is perturbed in each dimension (z, y, z, roll, pitch, yaw)
separately and then moved towards the direction that increases
the correlation between image edges and projected cloud edges.
Eventually, a locally optimal solution can be found if any further
changes will decrease the edge correlation.

Since itis difficult to get ground truth calibration, we choose to
compare the extrinsic parameters computed from two methods.
The extracted point cloud edges are projected on to the image
plane and the projection is visualized in Fig. 10e and 10f. How-
ever, the edges are both well aligned and no obvious difference
can be identified. We then compare the overlay of LiDAR clouds
and stereo clouds (see Fig. 11). It can be observed that with our
results, the models are aligned consistently while there exists an
offset if calibrated using [6]. Further investigation shows that
the offset happens along the camera’s optical axis, in which
direction the motion will generate less flow on the image. As a
result, the total correlation score becomes less sensitive to the
motion of the LiDAR along the optical axis. This observation
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suggests that calibration methods using direct feature alignment,
including target-based and target-free, may require wide angle
lenses.

D. Observability of Extrinsic Transform

The uniqueness conditions stated in Section III basically
requires the sensor pod to change its position and orientation
for different stations. In this section, we aim at providing
more intuition behind the formal statements. Specifically, the
conditions are experimentally demonstrated by perturbing the
extrinsic parameters around their optimal values. Three tests are
designed to clarify the situations of degeneration.

1) Rotation is Fixed: In this case, the sensor pod is placed
at 3 different positions but keeps its orientation unchanged.
Specifically, station 1-3 are used for optimization. The total cost
after the perturbation is visualized in the left 2 plots of Fig. 12. It
can be seen that perturbing the translation won’t affect the cost
value at all, meaning unobservable. Besides, since the 3 frames
are almost collinear, the pitch angle is also under-constrained
(flat orange curve).

2) Rotation About One Axis: In this case, stations 1-17 are
used, where the sensor pod is placed around the T-shaped spec-
imen and all rotations are about the camera’s y-axis. As shown
in the middle plots of Fig. 12, position y is under-constrained.

3) Rotation About Two Axes: For reference, we show the
perturbed cost with all 25 available datasets in the right plots
of Fig. 12. In this case, the rotations can be about x- or y-axis.
As expected, the extrinsic transform is well constrained.

E. Model Accuracy Evaluation

Since the ground truth data are not available during the test in
Tokyo, we evaluate the reconstruction accuracy on the squared
concrete pillar instead. A FARO FOCUS?P scanner (see Fig. 13)
with +3 mm range precision is used to obtain the ground truth.
The comparison is performed by measuring the point to plane
distance between the reconstructed model and the ground truth
after precise ICP registration. Furthermore, we compare the
results of three models reconstructed using: (1) stereo images
only (standard stereo BA), (2) both LiDAR and stereo data but
extrinsic calibration is pre-calibrated using [6], and (3) both
LiDAR and stereo data with extrinsic calibration being adjusted
jointly (proposed in this work). Comparisons (1) and (2) share
the same cost function in (3). However, in comparison (1) LiDAR
observations are set to have zero weights and T, is fixed, and in
comparison (2) only T, is fixed during optimization.

The error maps and histograms are visualized in Fig. 13. It
can be observed that fusing LiDAR data helps to reduce the
model error from 6 mm to 2.7 mm, which already lies in the
precision range of the ground truth. In fact, due to the limited
number of matches between some image frames, the pure image-
based model does not align well, resulting in multiple layers
of the surface. Compared with the pre-calibrated case, jointly
optimizing the calibration improves the overall model accuracy
and we also benefit from the convenience of self-calibration.
Additionally, since our model is reconstructed from multiple
sets of data and each station is collected close to the wall (2-3
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Fig. 9. From top to bottom, the results of three tests are visualized: a squared pillar (top), a cylinder pillar (middle) and a bridge pillar (bottom). From left to

right, we visualize the camera poses and landmarks (blue points), a sample of the image data, complete LiDAR point cloud, overlaid LiDAR and stereo point cloud,
dense stereo point cloud.

TABLE I

x104 x104
DATASET AND MODEL STATISTICS 8000 332
- . 7900 . 331 _ 73
Dataset Stations # of LiDAR # of stereo Error 2 4 2
A | (Frames) | points (x106) | points (x106) | (mm) © 7800 © 33 ©7.28
T-shaped 25 324 78.4 N/A 7700 — I R = 7.26
squared 29 39.1 2103 2.7 20 0 20 20 0 20 -20 0 20
cylinder 54 66.5 111.7 N/A translation(mm) translation(mm) translation(mm)
i 2 . 168. . 4 4
bridge 3 38.6 68.7 3.9 8000 5 x10 12 x10
g 7900 = . =10
o o
© 7800 © ©
N\ £ 8
7700 3
-1 0 1 -1 0 1 -1 0 1
rotation(deg) rotation(deg) rotation(deg)
x & roll y & pitch z & yaw

Fig. 12.  Changes of cost values w.r.t. perturbed extrinsic transform. From left
to right, the three columns show the cost changes in three tests: with rotation
fixed, with rotation about one axis, and with rotation about two axes. Within
each test, translation (top plots) and rotation (bottom plots) perturbations are
visualized separately.

Image-based

(f) Edge alignement after joint optimization el o

Fig. 10.  (a)—(d) The key steps of [6]. (e)—(f) Comparison of extrinsic calibra- e SN N —
tion results from [6] (e) and ours (f). The color of projected cloud edge points GroundTruth & FARO Imag&sbased fﬂae":':a_t'gg;';:r:
encodes the correlation score: yellow means high while red means low. o

0016 0024 0032 004 0048

4 7 Jointly Optimized
- Mean = 0.0027m

LiDAR Cloud PRI e
Calibration Fixed Jointly:Optimized

0016 0024 0032 004 0048

Stereo Cloud

Fig. 13. Comparing the reconstructed models with the ground truth model
built by the FARO scanner. On the left are visualizations of the ground truth
model and the distance map of reconstructed models, where the color encodes the
distance error between two point clouds. On the right are the distance histograms
Fig.11. Cutaway view of the overlaid LIDAR clouds (white) and stereo clouds ~ corresponding to each comparison and the averaged errors are marked by the
(textured). Left: Jointly optimized. Right: Calibrated using [6]. red vertical bar.
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meters), it measures about 70 points/cm2, which is much denser
than the ground truth (10-15 points/cm?). The evaluation results
are obtained using the CloudCompare software.

V. CONCLUSIONS

This letter presents a joint optimization approach to fuse Li-
DAR and camera for pose estimation and dense reconstruction.
It is shown to be able to build dense 3D models and recover
camera-LiDAR extrinsic transform accurately. Besides, the ac-
curacy of the reconstructed model is evaluated by comparing
to a ground truth model and it shows our method can achieve
accuracy similar to a survey scanner.

The proposed method requires data to be collected station by
station, which can be time consuming and inconvenient if the
viewpoint is difficult to access. For example, the [-shaped beams
supporting the deck of a bridge are usually too high to reach.
Therefore, future work will be focused on handling sequential
data with the sensor pod moving in the environment. Micro
Aerial Vehicles (MAVs) may also be used to carry the sensor pod.
Another thread of future work is to improve the quality of stereo
reconstruction. For instance, given the LiDAR-camera extrinsic
calibration obtained from our method, probabilistic fusion meth-
ods such as [18] can be applied to recover a dense local map.
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