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Abstract

In image captioning where fluency is an important
factor in evaluation, e.g., n-gram metrics, sequen-
tial models are commonly used; however, sequen-
tial models generally result in overgeneralized ex-
pressions that lack the details that may be present
in an input image. Inspired by the idea of the
compositional neural module networks in the vi-
sual question answering task, we introduce a hier-
archical framework for image captioning that ex-
plores both compositionality and sequentiality of
natural language. Our algorithm learns to compose
an detail-rich sentence by selectively attending to
different modules corresponding to unique aspects
of each object detected in an input image to in-
clude specific descriptions such as counts and color.
In a set of experiments on the MSCOCO dataset,
the proposed model outperforms a state-of-the art
model across multiple evaluation metrics, more im-
portantly, presenting visually interpretable results.
Furthermore, the breakdown of subcategories f-
scores of the SPICE metric and human evaluation
on Amazon Mechanical Turk show that our compo-
sitional module networks effectively generate accu-
rate and detailed captions.

1 Introduction

Image Captioning:  The task of image captioning lies at
the intersection of computer vision and natural language pro-
cessing. Given an image, the task is to generate a natural lan-
guage sentence describing the information conveyed in the
input image. Image captioning has received increasing at-
tention over the years. The prevalent encoder-decoder frame
work [1] serves as the backbone of many derived models. [2]
and [3] introduced and refined the attention mechanism that
allows for better feature extraction and interpretability. [4]
further used Faster-RCNN [5] to replace the fixed-resolution
attention mechanism. Researchers [6] [7] also found that
high-level concepts can provide a more concise representa-
tion for an image.

Main drawbacks:  The majority of existing approaches
follows the sequential model where words in a caption are
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Figure 1: Top: Visualization of attribute attention over time: the
line plot shows one instance of time varying module attention. Note:
Init.Est. stands for initial estimation. Bottom: An example of the
workflow is shown in a diagram for time step 1 where the word
“two” is generated. The model first chooses a region to focus on
in the input image and the modules predict the attributes associated
with the region. Note: SEM and SPA stand for semantic and spatial
modules, respectively.

produced in a sequential manner—i.e., the choice of each word
depends on both the preceding word and the image feature.
Such models largely ignore the fact that natural language has
an inherent hierarchical structure [8] [9]. For example, each
object can be associated with various attributes. Even with
better feature representations and attention mechanisms, the
sequential structure of these models tends to lead to generic
descriptions that lack specificity. The models [10] [11] ex-
ploring compositionality have been shown to produce more
accurate, specific, and out-of-distribution sentences. Compo-
sitional models, however, do not compare well to the sequen-
tial models on the n-gram metrics such as BLEU [12]. Be-
cause semantic evaluation metrics such as SPICE [13] tend to
ignore fluency and assume well-formed captions, the n-gram
metrics are still important in judging the fluency of the gen-
erated captions.

Our approach: In this paper, we propose an image cap-
tioning model that combines the merit of sequential and com-
positional models by following a word-by-word generation
process and combining grounded attributes from specialized
modules. A high-level illustration of the workflow at one time
step and visualization of the module attention is shown in Fig-
ure 1. More specifically, the algorithm first proposes regions



of interest and then chooses a region to focus on depending
on the context. The chosen region and the whole image are
fed to a collection of functionally specialized modules where
each module is delegated to predict one aspect of the objects
such as count, color, and size. This is analogous to the Neu-
ral Module Networks (NMN) [14], where each module is re-
sponsible for a specialized functionality and the final result is
a dynamic composition of different modules. In our case, the
model generates the final caption by dynamically attending to
different modules. The attributes, therefore, have a hierarchi-
cal dependency on and are grounded to the proposed regions.

With the proposed Compositional Neural Module Net-
works, we aim to generate detailed, specific captions without
losing fluency, e.g., “a red apple” instead of “a piece of fruit”
or “three people” instead of “a group of people.” Overall, the
main contributions of this paper are:

e We develop a hierarchical model that employs both com-
positionality and sequentiality of sentence generation.

e Quantitatively, the model outperforms a state-of-the-art
model on a set of conventional n-gram metrics and
yields a noticeable improvement over the subcategories
f-scores of the SPICE metric that is a more meaningful
measurement of the semantics of generated captions.

e Qualitatively, we perform human evaluation using Ama-
zon Mechanical Turk. According to the results, our
model more often produces more detailed and accurate
sentences when compared to the state-of-the-art model.
A further analysis shows that the empirical results cor-
relate positively with the quantitative results.

2 Related Work

In this section, we briefly introduce related and similar works
and emphasize the differences of our model.

Sequential Models:  Most recent state-of-the-art models
adopt the encode-decoder paradigm, NIC [1], where the im-
age content is vectorized by a convolutional network and
then decoded by a recurrent network into a caption. In
this paradigm, attention-based models have been explored
widely. AdaptATT [3] followed a top-down attention ap-
proach where attention is applied to the output of CNN lay-
ers. [6] used a word-based bottom-up attention mechanism.
Top-Down [4] proposed a feature-based bottom-up attention
mechanism that retains spatial information whereas the word-
based approach does not.

Compositional Models: [11] presented a coarse-to-fine
two-stage model. First, a skeleton sentence is generated
by Skel-LSTM, containing main objects and their relation-
ships in the image. In the second stage, the skeleton is en-
riched by attributes predicted by an Attr-LSTM for each skele-
tal word. ComCap [10] proposed a compositional model,
where a complete sentence is generated by recursively join-
ing noun-phrases with connecting phrases. A Connecting
Module is used to select a connecting phrase given both left
and right phrases and an Evaluation Module is used to deter-
mine whether the phrase is a complete caption. In this work,
noun-phrases are objects with associated attributes. In gen-
eral, compositional models exhibit more variation and details

in generated captions; however, they tend to perform poorly
on the conventional n-gram metrics which are important mea-
surements of fluency.

Neural Module Network (NMN): Researchers have tried
to explicitly model the compositionality of language in Ques-
tion Answering (QA). This line of research shares a similar
paradigm, namely, module networks. Module networks are
an attempt to exploit the representational capacity of neural
networks and the compositional linguistic structure of ques-
tions. [14] learned a collection of neural modules and a net-
work layout predictor to compose the modules into a com-
plete network to answer a question. Rather than relying on
a monolithic structure to answer all questions, the NMN can
assemble a specialized network tailored to each question. We
adopt this idea in QA to design a one-layer NMN with a col-
lection of modules and a composition mechanism. Our model
can compose a customized network depending on the context
of a partially generated sentence.

Image Captioning with Attributes: [6] combined visual
features with visual concepts in a recurrent neural network.
LSTM-AS [7] also mined attributes as inputs to a language
model. Although our model also uses attributes, the model
differs fundamentally in several aspects. First, our model is
hierarchical because attributes are grounded exclusively to se-
lected regions that change over time. Second, the model is
compositional because it combines grounded attributes and
objects from separate detectors to predict the next word.
Third, the attention is over the set of functionally specialized
modules instead of individual visual concepts. Each module
specializes in a single descriptive aspect of an object and de-
termines the most probable attribute for that subcategory. For
example, the color module generates different color predic-
tions for different objects in an image depending on where
the model’s focus is.

3 Method

The proposed hierarchical model for image captioning con-
sists of three main components: Recurrent Neural Network
(RNN) Trio, Stacked Noisy-Or Object Detection, and Modu-
lar Attribute Detection. We describe the overall captioning ar-
chitecture as shown in Figure 2, followed by technical details
for the three components in Section 3.1 —3.3 and the objective
function used for training in Section 3.4.

Inspired by recent successes of region-level attention
mechanism [4] [15] [16], we use a Faster-RCNN in con-
junction with a Resnet-101 backbone [17] to segment an im-
age into a set of regions that likely contain objects of inter-
est and encode each region 7 as a fixed-length feature vector
{v1,..vp,} € RPv where D, is the number of regions, and
D, the size of the feature vector. The feature vectors are used
as inputs to other parts of the network.

The captioning model selects which region to attend to
depending on the context. Given the region proposals, the
stacked noisy-or object detection mechanism estimates all
possible objects in the image regions. The modular attribute-
detection mechanism operates on the attended regions to de-
termine appropriate attributes for the attended object at each
time step. The object and attribute detection makes up the
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Figure 2: Overview of the architecture: Right(Black): Recur-
rent Neural Network Trio, Top-Left(Blue): Modular Attribute De-
tection, Bottom-Left(Red): Stacked Noisy-Or Object Detection.
Note: SE denotes Semantic and SP denotes Spatial.

compositional component while the RNN trio incorporates
the detection results to generate a sentence in a sequential
manner.

Visual-Nouns and Attributes: Similar to [13], we di-
vide the vocabulary into meaningful subcategories: an object
set and five attribute sets which are color, size, count, spa-
tial relationship, and semantic relationship. We select the six
word-lists based on word occurrence frequency in the train-
ing data. The object set consists of visual nouns and the other
attribute sets consist of adjectives. For example, red, green,
blue are in the color set and sitting, playing, flying are in the
semantic relationship set.

3.1 Recurrent Neural Network Trio

The captioning model uses three recurrent neural networks,
namely, Attention (A)-LSTM, Visual (V)-LSTM and Seman-
tic (S)-LSTM, to guide the process of generating captions se-
quentially. The input vector to the A-LSTM at each time step
consists of the previous output of the S-LSTM, concatenated
with the mean-pooled image feature o = & Zi’;l v; and en-
coding of the previous word. The attended image region fea-
ture, ¥y, is used as input to the V-LSTM to make an initial
estimation of the next word based purely on visual evidence.
In the final step, the information from the initial estimation,
hY, objects detection, w; % and attributes detection, &, are
combined to make the final prediction of the next word.

The attended image region feature v, is obtained through
the Region Attention mechanism after the A-LSTM:

a; = softmax(W;! tanh(W,V + (W,h;_1)))
D

Uy = Z az ;v;
i=1

where V' € RP»*Pr is the set of image region features, D,
is the dimension of visual features and D, is the number of
region features.

3.2 Stacked Noisy-Or Object Detection

Multi-label classification is a difficult task, where classes are
not mutually exclusive in an image. Here, we propose a
stacked model that consists of two types of Multiple Instance
Learning (MIL) object detectors to consider both image re-
gions and the entire image simultaneously. First, following
the Noisy-Or Multiple Instance Learning (MIL) model used
in [18] [19], we devise a noisy-or detector to predict a dis-
tribution over a set of object labels. The noisy-or operation
(Or-MIL) is well suited to this task because it operates on
each region separately and a positive detection from any re-
gion yields a high probability for the whole image. Second,
inspired by [20], we adopt an attention based MIL (A#t-MIL)
detector to consider the whole image, which contains large
background objects such as “grass.” The two detection prob-
abilities are combined with a second Noisy-Or operation, thus
named the stacked approach.

Suppose that, for a given image I, there are V =
{v1,v2,...,up,} € RP* image region features proposed by
the Faster-RCNN network. The probability of an image con-
taining object a; is calculated by a Noisy-Or operation on all
image regions of this image as follows:

a a;
P, =1- H (1 _pij>
v, €V
where p?j is the probability of object a; in image region v;;
p?j is calculated through a sigmoid layer on top of the image
region features.

For the attention-based MIL detector, instead of an addi-
tional attention mechanism, we use the mean-pooled image
region feature v as follows:

, 1
ag
P = 1+ e Jrane(®
where f; .+ denotes parameters in a two-layer fully con-
nected network. ,

The final prediction, P;”, is computed using a second

Noisy-or operation to combine the two probabilities P},

a
and P
a; a; a;
P =1- (1 - PI,]or) (1 - PI,Jatt)

We also design a gating mechanism to refine the object de-
tection result at each time step. For example, if the word “cat”
has already appeared in a sentence, we decrease its priority in
the detection result for later time steps even though “cat” re-
mains a positive instance for the image:

Pﬁft = relu (Whhf_l + va)t) o P

where PIa ’t € RPobi s the time-dependent prediction; Dp;,
the size of the object set; hi_;, the output of the S-LSTM
at the previous time step; and v;, the attended image region
feature at time ¢.

The output of the object detection module is a word-vector,
wfbj = EobjPIa{t, where Eop; € RPvoexDobj ig a word em-
bedding matrix from distribution over labels, D, to the
word-embedding space, D,,.. The word-vector w; % is used
as an input to the S-LSTM for final decoding.



3.3 Modular Attribute Detection

Attribute detection is achieved by using a collection of mod-
ules, each module m € M = {m1,...m;} with associated
detection parameters 6,,, and a Module Attention mechanism
to predict the layout of the modules. In this section, we de-
scribe the set of modules and the composition mechanism.

We use £ = 5 modules corresponding to different attributes
of an object. They are: color, count, size, spatial relationship
and semantic relationship modules. The modules map inputs
to distributions over discrete sets of attributes. Each module
has its own labels and, therefore, learns different behaviours.

The modules all share the same simple architecture, a two-
layer fully connected network. Customizing module archi-
tectures for different purposes might result in better perfor-
mances as in [15] and [21]; in this paper, however, we fo-
cus on the overall architecture and leave more sophisticated
module architecture designs to future work. The distribution,
P, over labels for module m at time ¢ is computed using a
softmax-activated function denoted by f,,:

Ptm = fm(ﬁta hfflvw?bj)'

The outputs of the modules are word vectors w;"* = E,, P,
where F,, is the word embedding matrix for module m.

Next, we describe the compositional Module Attention
mechanism that selects which module to use depending on the
context. Inspired by [3], we use an adaptive attention mecha-
nism and a softmax operation to get an attention distribution
of the modules:

2 = Wxtanh(W,,,wi™ + (W, hi_,))

oy = softmax(z;)

k
Cy = Qg Wy
i=1

where w™ € RPveeXF js the module network outputs at time
t. k denotes the number of modules in consideration. We add
a new element wi"* = Eyi" (o the attention formulation.
This element is the word vector of the initial estimation of the
next word from the V-LSTM.

& = softmax ([z;; W, tanh(W;w;™" + (Wyhi_1))])
By = alk +1]

é = Brw™ + (1= Be)e
Depending on the context, the network composes a different
set of modules to obtain word-vector ¢; € RPvee for the S-
LSTM.

3.4 Objectives

Our system is trained with two levels of losses, sentence-
level loss and word-level loss. We first describe the more
conventional sentence-level loss and then the auxiliary word-
level losses.

Sentence-Level Loss
We apply two cross entropy losses to the V-LSTM and S-
LSTM respectively:
T
Lys ==Y logp(yilyn, .. yr-1: 1;0)
t=1

where 6 are the parameters of the models; I, the image; and
y = {v1, Y2, ..., y1 }, the ground truth sequence.

Word-Level Loss
We subdivide the word-level loss into two types: loss Lf,ffl/ o
to train the object and attribute detectors, and loss L™ to train
the module attention mechanism for composing attributes.
Loss from Stacked Noisy-Or object detection: as described
in 3.2, the MIL object detection has a stacked design. We
train the noisy-or detector and attention-based detector using
the two sigmoid cross entropy losses respectively:

LU = 3"~y log(p™) + (1 — y™) log(1 — p*)
a;

where y%/ is 1 when ground-truth object a; is present and 0

otherwise. p% € {P;? .., P/ } is a sigmoid-activated func-

~ att’~ I,or
tion.
Loss from Modular Attribute detection: we use five masked
cross entropy loss to train the attribute detection modules:

T
L™ ="M (—ylog(P") + (1 — y) log(1 — P™))
t=1

where m € M and M;" is 1 if an attribute from set m is
present and O otherwise at time ¢.

The composition mechanism is trained with the following
additional loss:

Lc - ZMt (ym,t log(d) + (1 - ym,t) 1Og(1 - d))

t=1

where M, is 1 if any ground-truth attribute is present and 0
otherwise. 4, € R*+1 is a one-hot vector indicating which
module is active at time .

The final loss is a summation of all losses:

L=Ly+Ls+ LM+ L%+ Y Lm+Le

meM

where m € M denotes an individual loss for each attribute
module.

4 Experiments

4.1 Datasets

We use MSCOCO [22] for evaluation. MSCOCO contains
82,783 training and 40,504 validation images; for each image,
there are 5 human-annotated sentences. We use the widely-
used Karpathy Split [23] to incorporate portion of the vali-
dation images into the training set. In total, we use 123,287
images for training and leave 5K for testing. As a standard
practice, we convert all the words in the training set to lower
cases and discard those words that occur fewer than 5 times
and those do not intersect with the GloVe embedding. The
result is a vocabulary of 9,947 unique words. For usage of
the Visual Genome dataset [24], we reserve 5K images for
validation, 5K for testing and 98K images as training data.
We refer the readers to [4] for more details on training of the
Faster-RCNN network.



Model BL1 BL4 ROUGE CIDER SPICE
NIC** - 302 52.3 92.6 17.4
AdaptATT** - 312 53.0 97.0 18.1
LSTM-AS5** - 312 53.0 96.6 18.0
Top-Down** - 324 53.8 101.1 18.7
CompCap* - 251 47.8 86.2 19.9
Top-Down 76.7 320 59.0 105.4 19.9
Ours:Complete 77.2  33.0 594 108.9 204

Table 1: Performance on the COCO Karpathy test split [23]. Higher
is better in all columns. * indicates results from the original paper.
** indicates re-implementation of the original papers by [10]. Note:
our implementation of the Top-Down model and the proposed model
do not use beam-search whereas other results do. BL4/1 denotes
BLEU-4 and BLEU-1 respectively.

Model OBJ] ATTR RE CL CT SZ
Top-Down 38.0 827 6.83 659 9.12 3.86
Ours:Complete 38.7 939 723 792 1470 4.10

Table 2: SPICE subcategory f-score breakdown on the COCO
Karpathy test split [23]. Higher is better in all columns. Note the
following abbreviations: OBJ-object, ATTR-attribute, RE-relations,
CL-color, CT-count, SZ-size.

4.2 TImplementation details

We set the number of hidden state units in all LSTMs to 512,
and the size of input word embedding to 300. We use a pre-
trained GloVe embedding [25] and do not finetune the em-
bedding during training. The pre-trained embedding is from a
public website' and consists of 6B tokens in total. In training,
we set the initial learning rate as 5e-4 and anneal the learn-
ing rate to 2.5e-4 at the end of training starting from the 20th
epoch using a fixed batch size of 128. We use the Adam opti-
mizer [26] with 81 to be 0.8. We train the Stacked Noisy-Or
Object Detector jointly for 5 epoches and stop. The training
is complete in 50K iterations.

To ensure fair comparison, we re-train the Top-Down us-
ing the same hyperparameters as the proposed model. We
report the results with greedy decoding to reduce the effect of
hyperparameter search for different models.

We use the top 36 features in each image as inputs to the
captioning models and do not finetune the image features dur-
ing training.

4.3 Amazon Mechanical Turk setup

Amazon Mechanical Turk (AMT) is a popular crowdsourcing
service from Amazon. To investigate the effect of using com-
positional modules qualitatively, we design a Human Intel-
ligence Task (HIT) to compare two captions generated from
our implementation of the top-down model and the proposed
compositional module networks. Each turker is asked to se-
lect from four options as shown in Figure 6: either of the two
captions, equally good, or equally bad. For each image, we
ask 5 workers to evaluate.

"https://nlp.stanford.edu/projects/glove/

For 1,250 images, 6,250 responses are received. The im-
ages are uniformly sampled from the test split; those images
with identical captions from the two models are discarded.
We design a qualification test to test workers’ understanding
of the problem and English proficiency. We adopt a max vot-
ing scheme to determine the quality of captions per image.
When there is a clear winner, we use it as the result for that
image. In the case of ties, we give one vote to each tied op-
tion.

4.4 Experimental Results

We compare our proposed model with our implementation
of the Top-Down model [4], which achieved state-of-the-art
performance on all evaluation metrics previously. We also
list the published results of CompCap [10], which is an-
other recent compositional model. We also include the pub-
lished performance of NIC [1], AdaptATT [3], Top-Down
and LSTM-AS [7] re-implemented by [10] because the re-
implementations use comparable visual features and are eval-
uated on the same test split. There are other models with bet-
ter performances such as the model proposed by [15], which
uses additional datasets to train spatial and semantic relation-
ship detectors. Our work is a fair comparison to the Top-
Down model since both models use only MSCOCO as the
main training data and Visual-Genome to train the Faster-
RCNN, which is also used in [15]. Our implementation of the
Top-Down achieves better performance than the implementa-
tion by [10] and we use our implementation as the baseline
for all comparison.

Shown on the right side of Figure 6, a preliminary analysis
of the generated captions shows that our proposed composi-
tional module modle is able to generate captions that include
more specific attribute words such as color and count. For ex-
ample, the proposed model includes 4 times more of specific
counts such as three in its generated captions.

Evaluation Metrics

We evaluate the approaches on the test portion of the Karpa-
thy Split and compare the proposed approach against best-
performing existing models using a set of standard metrics
SPICE [13], CIDEr [27], BLEU [12], ROUGE [28], and ME-
TEOR [29] as in Table 1. Our proposed model obtains signif-
icantly better performance across all n-gram based metrics.

The n-gram metrics alone do not tell the whole story. We
also report the performance on a recent metric, SPICE, and
its subcategories f-scores in Table 2. When compared to Top-
Down, our module model achieves noticeable improvement
on all subcategories but one. The count subcategory is im-
proved the most. We hypothesize that counting is an inher-
ently difficult task for neural networks and sequential models
tend to “play safe” by using generic descriptions instead. This
result demonstrates the effect of having dedicated functional
modules for composition. It also shows that our proposed
model can generate more detailed captions while improving
fluency according to the n-gram metrics.

We also note that the size subcategory does not gain im-
provement over the Top-Down model. We hypothesize that
this is due to the simple design of the module. Because the
concept of size is a comparison between one object and its en-
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A group of children sitting on a
conch playing a video game

Three children sitting on a couch
playing a video game.

A man is standing on the
sidewalk next to a fire hydrant
A man is leaning over a fire
hydrant on a street

A person holding a piece of fruit

in a tree

A person holding a red apple in a
park

Ours: Baseline

A boat sitting on top of a sandy
beach

Two boats sitting on the shore
of a beach

A woman is eating a sandwich
at a table

A woman is eating a carrot ata
table

A group of cows are standing in
apen

A group of cows are eating hay

in a barn

Ours: Module

A large jetliner taking off from
a runway

A large blue and white

airplane on a runway

A herd of sheep grazing in a
field

A dog is herding sheep in a
field
A group of zebras standing in

the water

A group of zebras drinking
water in the water

Figure 3: Qualitative examples of captions generated by the Top-Down model (blue) and the proposed compositional module model (green).
The proposed model produces more specific action attributes, e.g., “leaning” instead of “standing,” due to the semantic module.

A bird is sitting on a tree branch.

A blue bird perched on a branch
in a tree

A little girl standing on a beach
flying a kite

Two children are flying a kite on
the beach

A man is doing a trick on a

skateboard

A man flying through the air
while riding a skateboard

Ours: Baseline

Three giraffes standing next to
each other in a forest

Two giraffes standing next to
each other in a forest

A small goat standing on a
rocky hill

A ram standing on a rocky hill
with a mountain in the back

A motorcycle parked on the
side of a street

A red motorcycle parked on the

side of the road

Ours: Module

A woman in a dress is riding a
cart with a dog

A woman in a blue shirt is
pulling a cart with a dog

A group of birds swimming in
the water

A group of swans swimming
in the water

A man talking on a cell phone

while walking down a street

A man in a hat talking on a
cell phone

Figure 4: Qualitative examples of captions generated by the Top-Down model (blue) and the proposed compositional module model (green).
The proposed model produces more specific action attributes, e.g., “pulling” instead of “riding,” due to the semantic module.



A swan and a duck in the grass

Two white swans swimming in
the grass near a pond

A hot dog with mustard and
ketchup on a paper

Two hot dogs with toppings on a
table

A dog and a sheep in a field

A dog and two sheep in a field

Ours: Baseline

Two giraffes standing next to
each other in a forest

Three giraffes standing next to
each other in a forest

A man standing in front of a
wall holding a remote

Two men are playing a video
game in a room

A toilet with a bunch of plants

in the grass

A toilet with a red seat on it
sitting in the grass

A man and a woman are
playing a video game

Two men sitting on a conch
with a teddy bear

A woman in a costume
standing next to a large teddy
bear

A woman in a yellow dress
standing next to a large teddy
bear

A group of people standing
around a table with a cake

Three men in suits are sitting
at a table with a cake

Ours: Module

Figure 5: Qualitative failed examples of captions generated by the Top-Down model (blue) and the proposed compositional module model
(green). The proposed model makes mistakes in counting and associates color to the wrong objects in an image ocassionally.
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Figure 6: Left: Human evaluation results on the Caption Compar-
ison task. The pie plot shows percentage of votes for different op-
tions. There are four options for participants, Option 1: caption I,
Option 2: caption 2, Option 3: equally good, Option 4: equally bad.
Right: We count the number of occurrences of words from each
subcategory word list in the 5K test split. The pie plot shows the
ratio of word occurrences between the two models. We also show
two specific examples from the count list, e.g., two and three.

vironment, our design only considers the object itself and the
whole image. A more explicit representation of the concept
of size such as bounding box might also be helpful.

Ablation Study

To show the effectiveness of each component, we conduct an
ablation study on different variants of our model and compare
the performance on SPICE f-scores and n-gram metrics. We
use the following notations: Mod stands for the modular at-
tribute detectors; MIL stands for the stacked Noisy-Or object
detectors; AMIL stands for the attention based MIL detector.
For example, Ours:w/o (Mod+AMIL) is a model without
modular attribute detectors or stacked MIL detector (but it
has a single layer Noisy-Or detector).

In Table 3, comparing row 2 and row 6 shows that the
modular attribute detectors do not contribute to the improve-
ment on the n-gram metrics. Comparing row 4, 5, and 6

indicates that the MIL object detectors are the prime con-
tributors for the improvements on those metrics (CIDEr
106.1—+107.1—108.9) and our stacked design further im-
proves the single layer Noisy-Or detector.

In Table 4, comparing row 3 and 6, we can see that the
MIL object detectors contribute to the object subcategory the
most and also affects the performance on other subcategories
a little. However, the absence of modular attribute detec-
tors further deteriorated the performance on other subcate-
gories, such as count (11.9—14.0) and color (6.29—7.95)
when comparing row 2 and 6.

In summary, the MIL object detectors contribute to the
improvement on the n-gram metrics and object subcategory,
while the attributes modules improve on other subcategories.
The attribute detectors are responsible for improved seman-
tics and object detectors are primarily responsible for im-
proved fluency.

Human Evaluation using Amazon Mechanical Turk

We report the human judgment on the captions generated
by the module model and the Top-Down model. As shown
in Figure 6, 5% more people prefer our model over the Top-
Down. The difference becomes more significant when we
consider subsets of the images. We split the evaluation set
into subsets depending on whether their 5 ground truth sen-
tences contain related attributes. For example, images in the
Color subset contain at least one ground-truth sentence with
a color attribute. The difference is 7% in the color subset
and 14% in the count subset. The result correlates with the
largest improvement on the color and count subcategories in
the SPICE subcategory f-scores. This highlights the strength
of our model in the subcategories. The human evaluation
results qualitatively indicates that there is a discernible im-
provement recognized by human users.



Model BL1 BL4 ROUGE METEOR CIDER SPICE
1. Up-Down 76.7 32.0 59.0 - 105.4 19.9
2. Ours:w/o Mod 77.0 330 59.5 274 108.4 20.4
3. Ours:w/o MIL 764 321 59.0 27.2 106.1 20.1
4. Ours:w/o (Mod+MIL) 76.5 322 59.0 27.2 106.1 20.1
5. Ours:w/o (Mod+AMIL) 77.0 324 59.0 27.4 107.1 20.2
6. Ours:Complete 772  33.0 59.4 27.6 108.9 204

Table 3: Ablation study: Performance on the COCO Karpathy test split [23]. The higher, the better in all columns.

Model SPICE OBJ ATTR RE CL CT SZ
1. Top-Down 19.9 38.0 827 6.83 659 9.12 3.86
2. Ours:w/o Mod 20.5 38.8 880 7.02 6.29 11.9 433
3. Ours:w/o MIL 20.0 38.0 894 687 7.80 122 4.11
4. Ours:w/o (Mod+MIL) 20.1 383 820 6.89 6.03 923 432
5. Ours:w/o (Mod+AMIL) 20.2 385 8.64 7.01 6.51 9.37 445
6. Ours:Complete 204 38.7 939 723 792 14.70 4.10

Table 4: Ablation study: SPICE subcategory f-score breakdown on the COCO Karpathy test split [23]. Higher is better in all columns. Note
the following abbreviations: OBJ-object, ATTR-attribute, RE-relations, CL-color, CT-count, SZ-size.
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Figure 7: Interpretable visualization of Module attention over time.
Note: Init.Est. stands for the Initial Estimation from the V-LSTM

Qualitative Analysis

Figure 3 and 4 show sample captions generated by the Top-
Down model and our proposed model. The examples show
that our model gives more accurate description of counting,
color, and actions, e.g., more precisely describing a person’s
bent-over pose in the picture by using “leaning” instead of
“standing.”

Figure 5 shows failure cases of the proposed model. Two
most common mistakes are incorrect counting and color asso-
ciation. Occasionally, the proposed model tries to give a more
specific description of counts of people/objects but the count
is wrong whereas the baseline model uses a safe description
such as “a group of”’; sometimes color is associated with a
wrong object, e.g., our model predicts “a woman in yellow
dress” whereas, in fact, the yellow attribute should have been
associated with the teddy bear in the background.

Figure 7 shows two examples of changing module attention
over time. From the visualization we can analyze the model’s
choice of attributes in the generated caption. We observe that
the color, count, and size modules are more active at the be-
ginning of a sentence and the initial estimation appears more
dominant in the later half. More investigation will be needed
to draw a conclusive explanation, but we hypothesize that it

may be due to the fact that verbs and objects come first in the
English language structure.

Nonetheless, by explicitly proposing grounded attributes
to the language model our model is able to include the pro-
posed attributes in the target sentence more often and it is
more likely to give “risky” but detailed descriptions of the
content in an image.

5 Conclusion

In this work, we propose an image captioning model that
utilizes neural module networks to propose specialized and
grounded attributes. Experimental results show that our
model achieves both the fluency of sequential models and
the specificity of compositional models. Specifically, our ap-
proach excels at including fine-grained details such as count-
ing that are generally avoided or overlooked. The framework
is easily expandable to include additional functional modules
of more sophisticated designs. Improved interpretability via
visualized attention is another bonus because the model en-
ables a quantitative analysis of both visual and semantic in-
formation.
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