
Behavior Planning at Roundabouts

Aman Khurana

CMU-RI-TR-19-54

August 10, 2019

The Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee:
John M. Dolan, CMU RI, (Chair)

David Held, CMU RI
Fahad Islam, CMU RI

Submitted in partial fulfillment of the requirements
for the degree of Masters in Robotics.

Copyright c© 2019 Aman Khurana.

Abstract

Roundabouts or traffic circles represent a significant portion of unsignal-
ized intersections commonly found in urban and rural roads due to their
capability in managing significant traffic flow safely. Such circular in-
tersections pose a specific challenge for autonomous or self-driving cars
due to the variations in their geometric layout, difficulty in perception,
increased interactions between the traffic participants, and possible driv-
ing strategies available to the drivers. This work investigates behavior
planning approaches for a self-driving vehicle as a part of a hierarchical
planning structure for such scenarios.

We present the benefits of using a POMDP formulation along with divid-
ing the task into different stages (merging, traversal, and exit) to tackle
the problem. Using recent advances in deep reinforcement learning we
find that using recurrent elements with the given framework allows an
autonomous vehicle to interact with other participants, make long-term
decisions, account for perception errors, and safely navigate the round-
about. We compare these to traditional, rule-based methods and simple
neural-network architectures like DQN. The model-free learning POMDP
framework is further extended to include the agent’s previous actions into
the network architecture.

Additionally, we present multiple techniques to generalize policies across
different traffic densities. The presented novel architecture involves explic-
itly encoding a continuous variable describing the non-stationary environ-
ment as an input to the network. We compare this to the hidden-mode
method of dividing the problem into distinct modes of traffic densities
and learning different policies for individual modes. These methods
can also be extended to other intersection scenarios and/or to different
deep-reinforcement learning formulations.

ii

Acknowledgments

I would like first to thank my advisor, Dr. John Dolan, whose constant
support, patience, and guidance have helped me navigate through the fog
of research. His fearless approach to robotics and practical knowledge
continue to captivate and inspire me. Thank you for giving me the freedom
to explore, collaborate with others, to voice criticisms and to evolve as a
researcher.

I am grateful to my thesis committee members for their invaluable feed-
back. Dr. David Held, thank you for your inputs in this work and
other collaborations. Fahad Islam, thank you for your insightful and
fundamental questions that helped in improving this work.

Robotics is a team effort, and I could not have asked for a better team
than the people working along with John. Thanks especially to folks with
whom I have had the opportunity to work with - (now Dr.) Chiyu Dong,
Chen Fu, Zhiqian Qiao, Adam Villaflor, Yanjun Pan, Jing Zhao, Yeqiang,
Chengfeng Zhao and Qin Lin. Thanks to the people involved in the CMU
Assured Autonomy project- Edward Ahn, Dr. Stefan Mitsch, and others.
Thanks to Emily Yunan and Jordan Ford for their work on the RC Car
platform.

Thanks to my friends at CMU - Anne, Siddhant, Sowmya, Aayush, Yash,
Pulkit - for navigating CMU with me, balancing academics with research,
sharing lives and steadying the ship.

Finally, words cannot express my feelings for my family. Thanks, Mom,
Dad and Brother, for your unconditional love, encouragement, and sacrifice
- you have made us feel unbreakable. This achievement is as much yours
as it is mine.

iii

Contents

1 Introduction 3
1.1 Overview . 3
1.2 The roundabout problem . 3
1.3 Motion planning Hierarchy in Self Driving vehicles 5
1.4 Outline of this work . 7

2 Background 9
2.1 Related work . 9
2.2 MDPs and POMDPs . 10
2.3 Behavior Planning using POMDPs 12

3 Planning using Deep Reinforcement Learning 13
3.1 Reinforcement learning framework . 13

3.1.1 Network architecture . 14
3.1.2 State and observation space 15
3.1.3 Reward . 16

3.2 Driving stages at Roundabouts . 16
3.2.1 Merging . 17
3.2.2 Traversal . 17
3.2.3 Exit . 17

3.3 Simulation setup . 18
3.4 Training process . 18
3.5 Experimental Results . 19

3.5.1 Standard test results . 20
3.5.2 Generalization results . 21

4 Generalizing behaviors across different traffic densities 23
4.1 Overview . 23
4.2 Hidden modes for traffic density . 24

4.2.1 Learning policies for hidden modes 24
4.2.2 Change-point detection . 25

4.3 Traffic Conditioned Models for behavior planning 27
4.3.1 Discrete modes (TCM-d) . 28
4.3.2 Continuous modes (TCM-c) 29

iv

4.4 Experimental Results . 29

5 Conclusions 31
5.1 Summary and discussion . 31
5.2 Future work . 32

6 Appendix 33
6.1 Driver models . 33

Bibliography 35

v

List of Figures

1.1 Number of roundabouts and their distribution in United States as per
[21] . 4

1.2 A bird’s-eye view of a standard four-exit, double lane roundabout
geometry. The vehicle trajectories for left turn or exit 3, right turn or
exit 1, U-turn or exit 4, and going straight or exit 2 are shown in blue,
green, red, and yellow, respectively. 5

1.3 Planning hierarchy in self-driving vehicles 5

3.1 DRQN network architecture for model-free POMDP learning which
only considers observation history of the agent 13

3.2 ADRQN network architecture for model-free POMDP learning. Unlike
DRQN, ADRQN also considers the action history of the agent. 14

3.3 Top-view of the sensor range and vehicle tracking setup used. 16
3.4 A simulation setup of a roundabout generated using SUMO [2]. (Left)

depicts the four-exit roundabout with double lanes with the intersection
network. (Right) The ego-vehicle is highlighted in red and the yellow
vehicles represent other vehicles in the roundabout. 19

4.1 A Hidden-Mode representation with n modes. Each mode is a MDP
or POMDP . 25

4.2 A bird’s-eye view of expected traffic zones around Pittsburgh, PA
during morning hours. Yellow, orange, red, deep red represent the
traffic severity in increasing order. 26

4.3 A graphical representation of a model-based MDP formulation where
arcs describe the dependencies between nodes and each node represents
either a mode, state or action. 27

4.4 Traffic-Conditioned model framework for generalization across different
traffic scenarios. Unlike a hidden-mode framework, this uses a single
model where the non-stationary environment mode is encoded as a
mode vector. The mode vector can be either a discrete or continuous
variable. 28

vi

List of Tables

3.1 Simulation scenario and Vehicle parameters 18
3.2 Single Interacting Vehicle . 21
3.3 Multiple Interacting Vehicles . 21
3.4 Imperfect State estimation (going straight) 22
3.5 Different roundabout geometry (going straight) 22

4.1 Generalization performance across different traffic densities 30

6.1 Effect of changing driver imperfection for multiple vehicle interaction
scenario . 34

1

LIST OF TABLES

2

Chapter 1

Introduction

1.1 Overview

Autonomous or self-driving vehicles present an interesting look into the future of

transportation due to their perceived advantages, including improved safety, reduced

congestion, lower emissions, and greater mobility. Safe and efficient autonomous

behavior in the presence of other participants on public roads is a challenging task.

An autonomous vehicle must be programmed to do these things, unlike human

drivers, who have the inborn ability of making decisions, perceiving the environment,

extracting essential information and using past experiences.

Toward this end, a lot of work has been done for driving in lanes, negotiating

intersections, etc., but only a limited focus has been given to unsupervised roundabouts

or traffic circles, which are increasingly becoming popular in most countries as a

means of regulating traffic flow.

1.2 The roundabout problem

Roundabouts or traffic-circles guide the traffic flow around a circular shape to avoid

the need to make left turns. Compared to other traffic intersections roundabouts

are capable of reducing the likelihood of collisions since the traffic flows in a circular

direction. As per a 2015 survey [21], there are more than 5000 roundabouts in the

3

CHAPTER 1. INTRODUCTION

Figure 1.1: Number of roundabouts and their distribution in United States as per
[21]

USA alone, with the majority having been added over the last decade to better

manage traffic within cities (see Fig. 1.1).

The majority of roundabouts in urban and rural settings do not have any traffic

signals to manage the traffic flow and are commonly referred to as unsignalized

or unsupervised roundabouts. As a result, a vehicle approaching the unsignalized

roundabout yields to those already in the circle. Figure 1.2 presents an overview

of two-lane, four-exit roundabout. Roundabouts also present a specific challenge

in the complexity of driving behavior, high variance in road geometry (some have

one lane while others may have multiple lanes with varying road orientations),

and increased uncertainty in perception due to road geometry. It is crucial that

autonomous vehicles exhibit a natural and social behavior on roundabouts for the

safety and smooth flow of mixed traffic (where autonomous vehicles operate along

with human-driven vehicles). Due to the need for consecutive maneuvers in a short

time at roundabouts, conventional planning approaches lead to sub-optimal behavior

of autonomous vehicles.

4

CHAPTER 1. INTRODUCTION

Figure 1.2: A bird’s-eye view of a standard four-exit, double lane roundabout geometry.
The vehicle trajectories for left turn or exit 3, right turn or exit 1, U-turn or exit 4,
and going straight or exit 2 are shown in blue, green, red, and yellow, respectively.

1.3 Motion planning Hierarchy in Self Driving

vehicles

A commonly adopted approach to planning the motion of an autonomous vehicle is

to partition the tasks into a hierarchical structure. The system may have multiple

planners and sub-routines running in a sequence or parallel and that may or may not

provide feedback to each other, but all of them can be grouped into the following

four-component sequential architecture:

Figure 1.3: Planning hierarchy in self-driving vehicles

1. Route Planner:

This planner is at the highest level of planning and selects the best route from the

5

CHAPTER 1. INTRODUCTION

starting position to the destination given a road network. A standard technique

is to find an optimal path given a road network modeled as a connected graph

under constraints like following traffic rules. The path is generally specified as a

set of waypoints to be followed by the motion planner. [1] provides an example

of such a planning technique.

2. Behavior Module:

The behavior module or planner acts as an intermediate layer between the route

planner and motion planner. It’s mainly responsible for deciding the vehicle’s

interaction with the other agents, obeying the traffic rules, ensuring safety, and

reaching the goals optimally. The behavior can be high-level instructions like

turn-left, change-lane or cruise in the lane. For example, if a car on the highway

is being slowed down due to the traffic in its lane, then the behavior planner is

responsible to first evaluate if a lane-change would help, and determine when

to change lanes.

3. Motion Planner:

The motion planner is responsible for generating a continuous trajectory to reach

a given waypoint while following the strategy or behavior defined by the behavior

planner within the safety and comfort constraints. It’s also responsible for

collision avoidance with static and dynamic objects or agents in the environment.

Approaches based on search-based planning and sample-based planning are

commonly used to find a feasible solution. The planner may be composed of

multiple sub-routines or involve a separate trajectory optimization to make

this problem computationally tractable. The work of Gu et al. [8] provides an

insight into motion planning systems.

4. Trajectory Controller:

The controller controls the steering and throttle to follow and track the trajectory

generated by the motion planner. It’s responsible for following the plans

generated by the above layers within certain bounds and providing necessary

feedback. Techniques such as Model Predictive Control (MPC) and pure-pursuit

are commonly employed for the task of following either a trajectory or a path.

6

CHAPTER 1. INTRODUCTION

1.4 Outline of this work

The main focus of this work is the real-time decision making or behavior planning of

an autonomous vehicle at roundabouts. The algorithm is responsible for selecting the

appropriate maneuver, interacting and negotiating with other traffic participants with

unknown intentions, and dealing with perception uncertainties similar to a human

driver in the complex unsupervised roundabout scenario. Related aspects such as

the required information for decision making /planning, data for learning and the

algorithm output are also addressed in the following chapters.

The remainder of this thesis is structured as follows:

• Chapter 2 summarizes existing work on behavior planning or decision making

in urban scenarios along with related work on driving at roundabouts. This

chapter highlights that, while numerous works have already produced advanced

algorithms for simplified urban intersections, not much emphasis has been given

to decision making at roundabouts.

The subsequent sections provide a mathematical foundation for formulating the

behavior planning problem as a Markov Decision Process (MDP) or Partially

Observable Markov Decision Process (POMDP) along with the justification for

using POMDPs.

• Chapter 3 presents two deep reinforcement learning paradigms for decision-

making at roundabouts. It explains the model architecture, training process, the

simulation setup, and results for these. The presented approaches are compared

with a conventional decision making strategy and tested for generalization across

different environments and under imperfect perception.

• Chapter 4 focuses on methods to generalize policies learned using deep rein-

forcement learning to different traffic densities. Two unique frameworks are

presented that can also be extended to other driving scenarios.

• Chapter 5 concludes this thesis by summarizing the findings and presenting

future directions in the development of planning frameworks for urban driving

scenarios.

7

CHAPTER 1. INTRODUCTION

• Chapter 6 or Appendix provides supporting material and discussion for the

methods presented in Chapter 4.

8

Chapter 2

Background

2.1 Related work

Katrakazas et al. [11] present a detailed survey to classify recent research on modelling,

prediction and behavior planning for intelligent vehicles. Discussion on the works

that are related to our work (MDPs, unsignalized intersections, and roundabouts) is

presented below. Early work on autonomous cars like that of Urmson et al. [22] used

simplified slot-based approaches in the hierarchy of planning for such problems. As

the decision of such approaches is based only on the current states, it’s difficult to

obtain a robust behavior.

The work of Galceran et al. [7] involves the design of a closed-loop forward

simulation of all vehicles with assigned policies using dynamics and observation

models, and evaluating interactions in unsupervised intersections. The ego vehicle

executes a policy from a discrete set of policies which limits possible behaviors.

Dong et al. [6] present a probabilistic graphical model-based approach for merging

onto a highway. Their work successfully integrates the history of participants into the

planner and doesn’t require any reward function. Similarly, Wei et al. [26] present a

simplified framework for intention estimation and cooperative merging, but it does

not consider the history of participating agents. Both these works only tackle a subset

(merging) of the problem of navigating at roundabouts, which also involves exiting

and lane changes.

Hubmann et al. [10] present a POMDP framework which is applicable to any

9

CHAPTER 2. BACKGROUND

number of agents and is an online, anytime algorithm in continuous state space.

They evaluated the use of heuristics to speed up computation and present results

based on unsupervised intersections. They use probabilistic sampling (particle filter)

guarantees for an optimal solution and do not present results for multiple maneuvers

over short distances which are seen in roundabouts.

The work of Liu [15] uses road context for situation modeling, involving typical

vehicles motion patterns and computes approximate solution of POMDPs using an

online solver, DESPOT [19]. Although they present their results on a variety of

unsupervised scenarios including a single lane roundabout, a major limitation of their

work is the chosen actions, as they only consider acceleration and deceleration of the

vehicle on the reference path.

Zyner et al. [29] use a supervised learning method with a recurrent neural-network

for predicting the trajectories of vehicles in a roundabout. Learning a robust prediction

system is a challenging task and still requires developing a complex planning module to

make decisions. Zhao et al. [27] present a method for merging into roundabouts using

support vector machines based on a dataset collected on a single lane roundabout.

The work of Wang et al. [23] for camera-based decision making at roundabouts poses

generalization challenges, as it operates on raw sensor data. Beaucorps [5] uses data

collected by vehicles driven by selected humans in a simulation to learn their decision

making framework. Their work is validated on the same dataset and may not reflect

the true distribution of behaviors observed in roundabouts.

In many of the works listed above either the problem of consecutive decision

making in short time, present at roundabouts, is not considered or the proposed

approaches have limited action space and tested on a small amount of data without

a discussion on their performance across different traffic densities. In this work, we

tackle the problem of consecutive decision making with a larger action space involving

possible lane changes, and also present methods to generalize the performance across

different traffic densities.

2.2 MDPs and POMDPs

Reinforcement learning problems are often formalized as Markov Decision Processes

(MDPs), described by a 4-tuple 〈S,A, T,R〉, and Partially Observable Markov Decision

10

CHAPTER 2. BACKGROUND

Processes (POMDPs), described by 〈S,A, Z, T,O,R〉. Unlike MDPs, which assume

that the states (st ∈ S) are fully observable, POMDPs assume that the state of a robot

or a vehicle is not known. Z is a set of observations, T (st, at, st+1) = p(st+1|st, at) is

the probability of transitioning to state st+1 when the agent takes action at in state

st, O(st, at, zt) = p(zt|st, at) is the probability of observing zt if the agent takes action

at and ends in state st. At each timestep t, an agent interacting with the environment

using policy π′ receives a reward rt ∼ R(st, at) with the objective of maximizing the

expected discounted reward Rt.

Rt = rt + γrt+1 + γ2rt+2 + ... (2.1)

where γ ∈ [0, 1] is the discount factor.

Watkins et al. [24] proposed Q-learning as a model-free learning approach to

computing optimal policies for MDPs. The Q-value is the value of executing an action

in a given state followed by an optimal policy π, as defined below:

Qπ(s, a) = Eπ(Rt|st = s, at = a) (2.2)

The Q-values are learned in an online, iterative fashion using:

Q(s, a) = Q(s, a) + α(r + γmaxa′Q(s′, a′) − Q(s, a)) (2.3)

While POMDPs are better suited to modeling tasks with uncertain effects and

partial state observability, methods for computing their optimal policies are not very

efficient. A few POMDP solvers focus on approximating a finite subset of beliefs

that provide reasonable results while reducing computational complexity [13][19]. For

a more detailed survey of conventional techniques for solving MDPs and POMDPs

readers may refer to [20].

Mnih et al. [16] used a neural network (DQN) as a function approximator to

estimate Q-values (parameterized as Q(s, a, θi)) for MDPs by minimizing the following

loss function:

L(θi) = Es,a,r,s′ [(ytargeti − Q(s, a, θi))
2] (2.4)

(ytargeti = r + γmaxa′Q(s′, a′, θi) (2.5)

11

CHAPTER 2. BACKGROUND

2.3 Behavior Planning using POMDPs

Modeling the behavior planning problem as a POMDP allows us to incorporate all

the perception uncertainties, road context of roundabouts,and unknown intentions

of varying number of traffic participants into a single problem. This also enables us

to integrate planning and prediction into a single problem, as the agent learns to

reason about its future. In this work, the word ego vehicle is used interchangeably

with agent.

An important factor in many works related to deep reinforcement learning for

complex MDPs is the assumption of full state observability that allows neural networks

to use only a few samples to find optimal policies. Recently, Hausknecht [9] and

Zhu et al. [28] presented slight modifications to DQN that alleviate this assumption

and allow for efficient computation for POMDPs. These were only evaluated on

flickering Atari games where the agent sometimes does not get any state estimates

and therefore, their results represent only a subset of POMDP tasks. Chapter 3

extends these deep-reinforcement learning formulations of POMDPs to the task of

navigating a roundabout.

12

Chapter 3

Planning using Deep

Reinforcement Learning

3.1 Reinforcement learning framework

In the sections below, we describe the framework that allows us to plan efficiently using

deep reinforcement learning techniques based on POMDPs, use of a state encoding that

enables generalization for different roundabout geometries and a training procedure

that enables intuitive and efficient training.

Figure 3.1: DRQN network architecture for model-free POMDP learning which only
considers observation history of the agent

13

CHAPTER 3. PLANNING USING DEEP REINFORCEMENT LEARNING

Figure 3.2: ADRQN network architecture for model-free POMDP learning. Unlike
DRQN, ADRQN also considers the action history of the agent.

3.1.1 Network architecture

We use two different network architectures for model-free POMDP learning and

compare them to DQN [16], which is based on model-free MDP learning. Our

implementation of DQN consists of 4 fully connected layers. To tackle the problem of

learning from partially observable states we use an implementation similar to that of

[9] in which an LSTM layer was added after DQN layers, which enables it to integrate

an arbitrarily long history. We refer to this architecture as DRQN as per the original

work. Thus, the presented architecture of DRQN (Fig. 3.1) estimates the function

Q(zt, ht−1|θ) instead of Q(st, at|θ) (DQN). ht = LSTM(ht−1, zt) denotes the output

of the LSTM layer, ht−1 is the output at the previous step, and θ are the parameters

of the estimating function.

Given that the past actions influence past observations, we try to explicitly

incorporate the full influence of the agent’s history by using a network similar to

[28] (Fig. 3.2). This is referred to as ADRQN here. In this architecture we use

observation and action pairs and pass them through fully connected layers before

concatenating their features, which are then passed trough a network similar to

DRQN. For this we also modify our replay buffer to store the updated transition

tuples, ({at−n, zt}, at, rt, zt+1).

14

CHAPTER 3. PLANNING USING DEEP REINFORCEMENT LEARNING

We experimented with the number of layers for LSTM, number of past observations,

actions considered and loss functions (Huber, MSE). We present results for our best

hyper-parameters, which are: 2 LSTM layers, 15 past observations and Huber loss.

3.1.2 State and observation space

We assume that the ego-vehicle has a perception system that detects and tracks

other participants in its sensor field. Fig. 3.3 depicts the sensor field for which the

vehicle tracks the position and velocity of a maximum of four cars, one vehicle ahead

of and behind the ego vehicle in the same lane, and one ahead of and behind it in

the merging lane. The parameters of sensor field used are given in Table 3.1. We

also assume that the vehicle has an estimate of its current position, velocity, lanes

surrounding it, and distance to the next junction.

Using the above information, the state and observation space of the ego vehicle is

defined as follows:

Sego = 〈x, y, vx, vy, dj, lanel, laner〉 (3.1)

where x, y, vx, vy are the position and velocity vector components along the x, y axis of

the vehicle and dj is the distance to the next junction. The coordinate transformation

that aligns the vehicle position and velocity along the vehicle axis makes the vehicle

state invariant to road geometry. lanel, laner is a binary value that is 1 if a left or

right lane exists with respect to its current lane.

The state or observations of other participants is recorded as:

Ocar1 = 〈cp, x, y, vx, vy, dj〉 (3.2)

where Ocar1 refers to the observed estimates of one car, cp is a binary variable that is

0 if no car is present. Similarly, for other cars that may be present in the ego vehicle’s

perception field Ocar2, Ocar3, Ocar4 are computed. If no vehicle is present in one of

these four slots, then the x, y coordinates are set to sensor range limits, and velocities

and cp are set to 0.

Using the above, the complete state of the agent at each time step can be defined

as follows:

st = 〈Sego, Ocar1, Ocar2, Ocar3, Ocar4〉 (3.3)

15

CHAPTER 3. PLANNING USING DEEP REINFORCEMENT LEARNING

As per terminology, we refer to st as the state of the agent in the case of DQN

(MDP) and as the observation of the agent, zt, for the POMDP formulation.

Figure 3.3: Top-view of the sensor range and vehicle tracking setup used.

3.1.3 Reward

The reward function acts as the objective for the optimization problem. For our

scenario, the goal is to safely and efficiently navigate a roundabout without impeding

the traffic flow. A naive approach of defining a sparse reward based or on time for

successful termination would not only increase the time required for convergence, but

also encourage aggressive behavior, as the agent will try to go as fast as possible. To

account for traffic rules we also include a negative reward for exceeding the speed

limit, lane change, and also for getting too close to a vehicle in front. The reward

function is also modified to include a high negative reward for colliding with another

vehicle which terminates the episode. Changing into an invalid lane is also considered

a collision.

3.2 Driving stages at Roundabouts

A typical vehicle behavior in a roundabout consists of the following: merging, traversal

and exit. We divide the problem into these distinct stages and learn a separate model

for each of these. We define a discrete action space based on the intuition on how

humans maneuver in traffic. We use a discrete action space, as behavioral planning

16

CHAPTER 3. PLANNING USING DEEP REINFORCEMENT LEARNING

happens on a slower time scale than motion planning or trajectory control. We also

assume that the path computation and trajectory control are handled by an existing

module.

3.2.1 Merging

This stage involves approaching the roundabout, making the vehicle merge into the

roundabout, and yielding to the traffic already in the roundabout. As the only

decision to be made at this stage is when to merge into the roundabout, we use a

simplified action space:

at = {go, no go} (3.4)

where, at = go signifies that a vehicle at the junction follows the trajectory defined

by the motion planner. This simplification helps in learning a more robust planner

for this complex behavior.

3.2.2 Traversal

This stage consists of driving on the circular roadway inside the roundabout and may

involve lane changes in case of multi-lane roundabouts. An action space similar to

the merging stage will result in sub-optimal performance of the agent; therefore, the

following action space is used for this stage:

at = {acc, decelerate, changeleft, changeright , cv} (3.5)

where the vehicle accelerates,decelerates at fixed rates, changes lane or continues at

velocity specified by cruise control cv on its defined path. To accelerate at different

rates and to obtain a more detailed behavior one can also define discrete actions with

multiple predefined accelerations.

3.2.3 Exit

This stage involves making a right turn that leads the vehicle out of the roundabout.

This may involve yielding to other traffic participants like pedestrians, bicyclists, etc.

We use the same action space as the one defined for the traversal stage, as the vehicle

17

CHAPTER 3. PLANNING USING DEEP REINFORCEMENT LEARNING

may be required to make a lane change before exiting.

at = {acc, decelerate, changeleft, changeright , cv} (3.6)

3.3 Simulation setup

For simulating the roundabout scenario the Simulation of Urban Mobility (SUMO)

traffic simulator [2] was used along with TraCI [25] for interfacing. Fig. 3.4 depicts

a bird’s-eye view of the double-lane roundabout scenario with four exits. SUMO is

not suited for rendering large-curvature roads, as it defines them as multiple linear

segments; therefore, we chose to ignore the curvature of the road. Also, the curvature

of the road is handled by the motion and trajectory planning modules and our task

is to obtain robust consecutive behaviors.

The roundabouts are connected to long approach roads with give-way lines at the

junctions. Each road within and approaching the roundabout has a suggested speed

limit that can be exceeded by the ego vehicle as well as other vehicles. The simulator

is setup to allow collisions. The simulation parameters for the selected roundabout

and the vehicle properties are presented in Table 3.1. These values are consistent

with the recommendation of US DoT for rural and urban double-lane roundabouts

[18]. The ego vehicle follows the policies computed using our algorithm, whereas

other participants use the default car following model (Kraus) of SUMO.

Table 3.1: Simulation scenario and Vehicle parameters

Inner island radius 22.5 m Vehicle Length 4.5m
Lane Width 3.5 m Vehicle Width 1.6m

Velocity Limit 11.2 m/s(25mph) Max Acceleration/Deceleration 2 m/s2

Sensor range parameter ’a’ 150m Sensor range parameter ’b’ 50m

3.4 Training process

Similar to their work of Lin [14] and that of [16] we also store previous samples in a

replay buffer set up to a fixed size and train on uniformly sampled mini-batches from

18

CHAPTER 3. PLANNING USING DEEP REINFORCEMENT LEARNING

Figure 3.4: A simulation setup of a roundabout generated using SUMO [2]. (Left)
depicts the four-exit roundabout with double lanes with the intersection network.
(Right) The ego-vehicle is highlighted in red and the yellow vehicles represent other
vehicles in the roundabout.

this replay buffer. Additionally, we also create a separate, target network Q(s, a, θ′)

that provides updates to the main network Q(s, a, θ) for learning stability. Both the

networks are identical except that the target network is updated at each iteration

and its weights are copied to the main network at every 1,000 iterations or time-steps.

Finally, RMSProp, an adaptive learning rate method, is used.

During training, we use a curriculum learning approach, wherein each model is

first trained without any other interacting vehicle so that it learns the most optimal

policy and later with other vehicles with random initialization. In later stages, an

additional bonus reward is given to merging and traversal if they lead to successful

exit to enable long-term consistent behaviors. The rewards were tuned using initial

tests such that probability of crash is highly minimized and an expected human-like

behavior is obtained.

3.5 Experimental Results

We evaluate the models on the training simulation setup and others with variations in

observability and roundabout geometry. Since we consider the models to be trained

without the need for further exploration we set ε = 0 for the ε-greedy approach. We

19

CHAPTER 3. PLANNING USING DEEP REINFORCEMENT LEARNING

replay each scenario based on the learned model 100 times to obtain an average of

the evaluation metrics that are presented in the sections below. We present results

for the complete scenario - merging, traversal,and exit.

Unlike other reinforcement learning tasks, using cumulative rewards as an evalua-

tion metric is of little significance for autonomous-driving cases. An agent exhibiting

fast and aggressive behavior may obtain higher rewards than others. Therefore, we

use other metrics like time to traverse the roundabout, collision rate and distance to

other vehicles. Similar to [15], we use two different metrics for minimum distance,

small gap (less than 5m) and large gap (5-7m), that are computed for each replay and

averaged. The values of of small or large gaps are presented as the ratio of time the

ego vehicle is within the specified range from the leading vehicle to the total travel

time. The collision rate are reported as a percentage between [0,1] across the number

of trials. During our work we also assume that other participants have a 50% chance

of deviating from their driver model, thus representing a difficult scenario. As there

are no real world data available to calibrate the uncertainty in driver models a high

value of 50 % is used to reflect a worst case scenario. A discussion on driver models

is presented in the Appendix (6.1) at the end of this document.

3.5.1 Standard test results

We test the behavior on the same scenario in which the vehicle was trained. The

number of participating vehicles and their routes are fixed for a given experiment but

their initial positions is varied randomly. Table 3.2 presents results for one interacting

vehicle which is within the roundabout and Table 3.3 summarizes the results for 5

interacting vehicles with ego vehicle going straight (exit 2). We also tested a simple

rule-based planner to evaluate the need for complex behavioral planners. It uses

Time to Collision metrics for merging and then an adaptive cruise control maintains

the speed in the given lane.

Table 3.2 demonstrates that simple planners and our proposed methods have

similar performance in the case of a single interacting vehicle. However, our models sig-

nificantly outperform the rule-based planner with a lower collision rate and decreased

travel time in the case of multiple vehicles, as highlighted in Table 3.3. Particularly,

we also observe that the two POMDP-based architectures have less collisions and

20

CHAPTER 3. PLANNING USING DEEP REINFORCEMENT LEARNING

Table 3.2: Single Interacting Vehicle

Algorithm Time to Small Large Collision
traverse (s) Gap Gap Rate

Rule-based 27.1 0.17 0.56 0
DQN 27.1 0.10 0.64 0.01

DRQN 27.3 0.26 0.47 0
ADRQN 27.3 0.19 0.53 0

Table 3.3: Multiple Interacting Vehicles

Algorithm Time to Small Large Collision
traverse(s) Gap Gap Rate

Rule-based 33.1 0.62 0.26 0.31
DQN 31.8 0.74 0.16 0.26

DRQN 30.7 0.65 0.31 0.22
ADRQN 30.9 0.81 0.09 0.23

lower travel time than DQN, which formulates this problem as a fully observable

MDP. Both POMDP formulations have similar scores so it can’t be determined if

encoding actions explicitly has a significant effect on collision rate and travel time.

This could be due to the fact for a given sequence of observations there exists a

deterministic policy, and a network could infer that for a given problem. ADRQN

also has a higher ratio of small gap to large gap as compared to DRQN and others

which illustrates that the system prefers to follow a leading vehicle more closely than

others which might result in the slightly higher collision rate observed.

3.5.2 Generalization results

Imperfect state estimation

After being trained with perfect observations, where the agent receives all estimates

of the vehicles in its perception field, we test the learned policies in settings with

observation probability of 0.8; i.e. at each time step there is a 0.2 probability that

a car present in the agent’s perception field is dropped, setting cp = 0. The results

are shown in Table 3.4. We observe that POMDP (ADRQN) formulations perform

21

CHAPTER 3. PLANNING USING DEEP REINFORCEMENT LEARNING

better even with imperfect state estimation that may arise due to errors in perception

pipelines. The ability to account for missing information provides a large advantage

for the behavioral planners that do not use a separate prediction module.

Table 3.4: Imperfect State estimation (going straight)

Perfect estimations Imperfect estimation
Algorithm Collision Rate Collision Rate
Rule-based 0.31 0.36

DQN 0.26 0.34
ADRQN 0.23 0.27

Different roundabout geometries

Roundabouts vary a lot from one place to another, so it is crucial for the learning

based planners to account for these variations. The presented formulation encodes

the states and observations that aren’t dependent on these variations. To test the

generalization ability we test the learned planners for different exits for a different

geometry with a single lane and 3 exits.

Table 3.5: Different roundabout geometry (going straight)

Double-lane, 4 exit Double-lane, 3 exit Single-lane, 3 exit
(baseline)

Algorithm Collision Rate Collision Rate Collision Rate
Rule-based 0.31 0.31 0.19

DQN 0.26 0.25 0.34
ADRQN 0.23 0.18 0.29

As shown in Table 3.5, the performance achieved by the POMDP-based technique

does not vary drastically as the number of roundabout exits changes. Table 3.5 also

illustrates that the rule-based planner outperforms others in the case of a single-lane

roundabout as there’s no scope for lane change. Whereas, the policies learnt on

double-lane roundabout do not transfer directly to a single-lane scenario.

22

Chapter 4

Generalizing behaviors across

different traffic densities

4.1 Overview

The previous work, similar to traditional reinforcement-learning approaches (especially

those based on MDPs) assumes that the environment model is always fixed. This

is not a realistic assumption in many real-world applications such as the case of

self-driving vehicles. For instance, the traffic scenario in major urban centers can

vary significantly depending on the time of the day, and effective algorithms need to

adapt to those changes.

This problem of ’non-stationary’ environments is difficult to solve if sufficient data

or environment dynamics are not known. Our approach of model free-learning using

POMDP formulation alleviates some aspects of the non-stationary environments by

assuming it as a part of partially observable states. In early 2000, research showed

that better performance can be achieved using hidden-state formulations for unknown

environments over POMDP formulations if there exists some regularity in the way

environment dynamics change. This chapter extends that work for driving behaviors

across different traffic densities. In section 2 we introduce a new method to tackle

this problem.

23

CHAPTER 4. GENERALIZING BEHAVIORS ACROSS DIFFERENT TRAFFIC
DENSITIES

4.2 Hidden modes for traffic density

In this section, we formulate the problem of generalization across different traffic

scenarios using the formulation first presented by Choi et al. [4] using a formal non-

stationary environment model (Fig. 4.1) with repeated dynamics. Their proposed

model decomposes the non-stationary environment into multiple stationary environ-

ments called modes. Each mode is an MDP with distinct dynamics, requiring different

policies, and an agent can only be a part of one mode at any time. A key feature of

their formulation was that transition between different modes is not dependent on

the agent’s action and the mode dynamics are slower than the agent dynamics. The

following properties of our scenario make it suitable to use the proposed model:

Their proposed model had the following properties as described in their original

work:

1. A Finite Number of Environment Modes

2. Small Number of Modes: the number of modes is much fewer than the

number of states.

3. Infrequent Mode Transitions: a mode is likely to persist for some time

before switching to another one.

4. Partially Observable Modes

5. Modes Evolving as a Markov Process: mode transitions are stochastic

events and are independent of the agent’s response.

4.2.1 Learning policies for hidden modes

Based on the first three properties, a simple framework of generalization using multiple

modes is proposed where different behavior planning policies are independently learned

for different predefined traffic densities or modes. The approaches presented in the

previous sections are used to learn policies for different densities at a given roundabout.

As the hidden mode approach does not impose any constraints on the type of stationary

environment described by each of the modes, which can be an MDP or POMDP, this

can be extended to scenarios other than roundabouts.

Unlike the work of Choi et al. [4], we do not make an assumption about the

24

CHAPTER 4. GENERALIZING BEHAVIORS ACROSS DIFFERENT TRAFFIC
DENSITIES

Figure 4.1: A Hidden-Mode representation with n modes. Each mode is a MDP or
POMDP

transition dynamics from one mode to another. As the mode is not directly observable,

the current mode is estimated by another module referred to as the change-point

detector. The following section describes two methods for change-point detection.

4.2.2 Change-point detection

A key component of the hidden-mode approach is to identify the mode that the

agent is in at time t. While Choi et al. formulated this as a model-based MDP

learning problem, the following section proposes two methods that do not make this

assumption. Here it is assumed that the number of modes is known in advance.

25

CHAPTER 4. GENERALIZING BEHAVIORS ACROSS DIFFERENT TRAFFIC
DENSITIES

Figure 4.2: A bird’s-eye view of expected traffic zones around Pittsburgh, PA during
morning hours. Yellow, orange, red, deep red represent the traffic severity in increasing
order.

Using external information (HM-e)

There are many readily available sources other than the state or observation space

of the agent/self-driving car that help characterize the traffic densities on-road. For

example, Google Maps (Fig. 4.2) are widely used to inform drivers about existing

traffic conditions and to plan routes. They divide the road traffic into small finite

sets based on historical travel time data sourced from a large number of vehicles. By

leveraging such external systems additional computation can be avoided and more

consistent characterization of traffic scenario can be obtained as they can provide

information beyond the perception range of the car. A hidden-mode framework,

HM-e, that uses these external sources is developed where an external agent similar

to Google Maps is implemented. This external system divides the driving scenario

into n modes and the policy corresponding to that mode is executed. The external

system does not vary the mode on a given edge of the network, thus satisfying the

criterion of non-stationary environment dynamics changing at a slower rate than the

agent dynamics.

26

CHAPTER 4. GENERALIZING BEHAVIORS ACROSS DIFFERENT TRAFFIC
DENSITIES

Supervised learning (HM-s)

There may be cases in which an agent does not have access to external sources for

detecting change-points. In such scenarios, the agent has to estimate the mode from

its perception system or by using its observation and action histories. A simple

classification network can be used that estimates the mode based on the observation z

and action a from time t− k to t. For this supervised learning framework, a network

is first trained using the learned controllers with perfect knowledge. The learned

change-point estimator is then used to estimate mode and deploy the corresponding

model. This framework is referred to as HM-s.

Figure 4.3: A graphical representation of a model-based MDP formulation where arcs
describe the dependencies between nodes and each node represents either a mode,
state or action.

4.3 Traffic Conditioned Models for behavior

planning

Using multiple models for hidden-modes is a simplifying abstraction of the real world

and it has its limitations. The methods presented in this section relax the assumption

of non-stationary environment modes being discrete and proposes a new framework

that uses a single model for generalization.

27

CHAPTER 4. GENERALIZING BEHAVIORS ACROSS DIFFERENT TRAFFIC
DENSITIES

Figure 4.4: Traffic-Conditioned model framework for generalization across different
traffic scenarios. Unlike a hidden-mode framework, this uses a single model where
the non-stationary environment mode is encoded as a mode vector. The mode vector
can be either a discrete or continuous variable.

4.3.1 Discrete modes (TCM-d)

The work of Chen et al. [3] uses the explicit encoding of kinematic features of an agent

to compute policies that generalize better when agent parameters are varied. Using a

similar approach, a Traffic-Conditioned model is proposed that uses a single model for

all modes of the non-stationary environment by encoding the modes along with the

state or observation space. In this formulation, the agent policies are dependent on

its observation zt, past action at−1, and mode of the non-stationary environment. For

discrete modes, a change-point detection method using an external source is used and

referred to as TCM-d. Fig. 4.4 presents a graphical representation of this approach.

28

CHAPTER 4. GENERALIZING BEHAVIORS ACROSS DIFFERENT TRAFFIC
DENSITIES

4.3.2 Continuous modes (TCM-c)

One may argue that the driving environment is continuous and representing it as

discrete modes for tractability restricts the representation power significantly. The

hidden-mode approach is severely impacted by increasing the number of modes, as

the number of different models to be learned increases linearly as the number of

modes is increased. Also, as the number of modes increases, the hidden-mode method

suffers from oscillations at the boundaries of the mode transitions. While the previous

approach could not leverage a continuous mode due to the reasons presented above,

Traffic-Conditioned Models can exploit a continuous non-stationary environment using

appropriate state augmentation.

For this, a major challenge is defining a continuously varying feature that is

representative of the non-stationary environment, unlike symbols that are assigned

to different discrete modes. Taking inspiration from the way the above modes were

defined, it is proposed that ratio of the average velocity of vehicles in perception

range for a given time k to target speed is a useful mapping of the non-stationary

environment dynamics. By using this mapping one can also avoid using an explicit

change point detection module.

Similar to the Traffic-Conditioned Models- Discrete approach, a single model is

used for generalizing traffic behaviors by using χ, defined below, as the mode. The

presented approach is referred to as TCM-c.

mt = χt =
avg. velocityt−k...t
target speedt

4.4 Experimental Results

We use the same setup as the one presented in Chapter 3 for this section as well.

The action space is partitioned into different driving stages, with the same state and

reward function for an accurate comparison. We only test for going straight with 15

interacting vehicles around the ego vehicle.

Different traffic densities are created by regulating the speed of other participants

with random spacing so the ego vehicle can merge. For training, two different traffic

densities are considered. We regulate the speeds of the vehicles to 5mph for Density 1,

29

CHAPTER 4. GENERALIZING BEHAVIORS ACROSS DIFFERENT TRAFFIC
DENSITIES

thereby slowing the traffic considerably from the target speed of 25mph. For Density

2, the forward vehicles also move at the target speed of 25mph, thereby causing no

bottleneck.

For evaluation, we consider an additional traffic density that is in the middle of

the two that were considered for training to investigate the drawbacks of discrete

modes. For this eval Density 3, the forward vehicles move at 15mph.

To learn policies for different modes of HM-s and HM-e we use ADRQN, whereas

for TC-d and TC-c we use the network architecture presented above, which is similar

to ADRQN. We also compare these frameworks against an ADRQN policy learned

on one traffic density.

Table 4.1: Generalization performance across different traffic densities

Density 1 Density 1 Density 2 Density 2
eval Den-
sity 3

eval Den-
sity 3

Algorithm Time to Collision Time to Collision Time to Collision
traverse
(s)

Rate
traverse
(s)

Rate
traverse
(s)

Rate

ADRQN 30.9 0.23 84.6 0.57 58.1 0.79
HM-e 31.1 0.23 89.3 0.05 54.8 0.29
HM-s 33.6 0.30 86.8 0.21 55.9 0.58
TC-d 30.9 0.23 91.7 0.06 55.1 0.31
TC-c 32.6 0.24 90.1 0.06 59.6 0.17

Table 4.1 demonstrates the advantages of a framework that accounts for the

non-stationary environment as compared to a single policy learned on a specific traffic

density. We observe that HM-e, TC-d, and TC-c have a comparable performance

on traffic densities that they were trained on and exceed that of ADRQN. However,

for the eval Density 3, which is at the midpoint of the other two densities, methods

based on discretized modes and use of external information have significantly higher

collision rate than the TC-c, which does not make these assumptions. While TC-c

takes a bit more time than others, it has the lowest collision rate for the unknown case.

Higher collision rates for HM-s could be due to violation of the independent data

assumption that is made during supervised learning of the change-point detector.

30

Chapter 5

Conclusions

5.1 Summary and discussion

In this work, we investigate behavioral planners that are capable of navigating an

unsignalized roundabout safely and efficiently. Handling of the combined problem

of merging, traversal, and exiting in a single framework demonstrates the system’s

ability of long-term reasoning where one wrong maneuver can affect its future. Our

choice of state-space encoding, use of different POMDP formulation also allows them

to be robust to perception uncertainty and geometry variations. We use a deep-

learning framework with LSTMs in Chapter 3 that enables more efficient computation

than approximate POMDP solvers. We also observe that the process is similar to

conventional DQN, but we obtain better performance by accounting for state-history

through recurrent elements. Encoding additional information about the agent’s past

actions improves the performance marginally.

Finally, we formulate the problem of generalizing across different traffic densities

as a hidden-mode reinforcement learning problem that can be seen as a subset of

a POMDP formulation. The presented framework of learning multiple models for

different modes of a non-stationary environment and use of change-point detection

modules is intuitive and leads to better results. In addition to this, our proposed

Traffic-Conditioned framework results in decreased computational complexity by

using a single policy and can accommodate a continuously varying non-stationary

environment avoiding the need of handcrafted discretization. While the use of discrete

31

CHAPTER 5. CONCLUSIONS

modes with external information for change-point detection results in more optimal

policies, they require carefully handcrafted division of the environment into discrete

modes and can result in lower performance at the boundaries of modes.

We have demonstrated the effectiveness of our approaches, in several cases and in

comparison to other methods for robust behavior planning at roundabouts.

5.2 Future work

Our current approaches are applicable to scenarios other than roundabouts but suffer

from the same drawbacks as other deep reinforcement learning formulations, which is

the need for handcrafted reward functions. This work can be improved by methods

that learn the rewards using real-world data or methods that can learn effectively

from sparse reward functions.

For generalization, the hidden-mode formulation can also be viewed as a hierar-

chical learning problem where one MDP/POMDP framework selects the mode while

the other learns the driving behavior given the mode.

32

Chapter 6

Appendix

6.1 Driver models

The car-following driver model in SUMO is based on the work by Krau [12]. This

discrete-time, continuous space model considers the braking distance as a safety

criterion and regulates the speed. The final speed of the car is a minimum of:

1. the maximum speed that vehicle can drive on the road

2. speed based on the maximum acceleration of the vehicle

3. a safe speed that allows braking within a given distance from the car ahead

The implementation further assumes that the driver is not perfect in holding its

desired speed as suggested by Ranjitkar et al. [17]. This imperfection is modeled as a

stochastic acceleration/deceleration and is uniformly distributed around the vehicle’s

maximum acceleration.

The model parameters like minGap and τ , time headway, are set to the minimum

value so that collisions can take place. The driver imperfection distribution which

is parameterized by percentage standard deviation of expected value, σ, can be

estimated from real-world data for a given scenario, but the lack of such datasets

for roundabouts is a limiting factor. The results presented in the preceding chapters

are based on the large value of σ, thereby representing a more stochastic scenario.

The results below present the variation in performance as the driver-imperfection is

changed.

33

CHAPTER 6. APPENDIX

Table 6.1: Effect of changing driver imperfection for multiple vehicle interaction
scenario

Imperfection σ = 0.1 σ = 0.3 σ = 0.5
Algorithm Time to Collision Time to Collision Time to Collision

traverse(s) Rate traverse(s) Rate traverse(s) Rate
Rule-based 32.1 0.09 33.4 0.12 33.1 0.31

DRQN 30.2 0.06 29.6 0.11 30.7 0.22
ADRQN 31.3 0.04 31.9 0.08 30.9 0.23

Table 6.1 demonstrates that the proposed framework for DRQN and ADRQN

have better performance than rule-based planners across different driver-imperfection

values. Even at very low variance in driver models (σ = 0.1) the rule-based planner

not only takes longer to navigate but has more than double the collisions over simple

RL-based planners.

34

Bibliography

[1] Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias Müller-Hannemann,
Thomas Pajor, Peter Sanders, Dorothea Wagner, and Renato F Werneck. Route
planning in transportation networks. In Algorithm engineering, pages 19–80.
Springer, 2016. 1

[2] Michael Behrisch, Laura Bieker, Jakob Erdmann, and Daniel Krajzewicz. Sumo–
simulation of urban mobility: an overview. In Proceedings of SIMUL 2011, The
Third International Conference on Advances in System Simulation. ThinkMind,
2011. (document), 3.3, 3.4

[3] Tao Chen, Adithyavairavan Murali, and Abhinav Gupta. Hardware conditioned
policies for multi-robot transfer learning. In Advances in Neural Information
Processing Systems, pages 9333–9344, 2018. 4.3.1

[4] Samuel PM Choi, Dit-Yan Yeung, and Nevin L Zhang. Hidden-mode markov
decision processes for nonstationary sequential decision making. In Sequence
Learning, pages 264–287. Springer, 2000. 4.2, 4.2.1

[5] Pierre De Beaucorps, Thomas Streubel, Anne Verroust-Blondet, Fawzi
Nashashibi, Benazouz Bradai, and Paulo Resende. Decision-making for au-
tomated vehicles at intersections adapting human-like behavior. In 2017 IEEE
Intelligent Vehicles Symposium (IV), pages 212–217. IEEE, 2017. 2.1

[6] Chiyu Dong, John M Dolan, and Bakhtiar Litkouhi. Intention estimation for
ramp merging control in autonomous driving. In 2017 IEEE Intelligent Vehicles
Symposium (IV), pages 1584–1589. IEEE, 2017. 2.1

[7] Enric Galceran, Alexander G Cunningham, Ryan M Eustice, and Edwin Ol-
son. Multipolicy decision-making for autonomous driving via changepoint-based
behavior prediction. In Robotics: Science and Systems, volume 1, 2015. 2.1

[8] Tianyu Gu and John M Dolan. On-road motion planning for autonomous
vehicles. In International Conference on Intelligent Robotics and Applications,
pages 588–597. Springer, 2012. 3

[9] Matthew Hausknecht and Peter Stone. Deep recurrent q-learning for partially
observable mdps, 2015. 2.3, 3.1.1

35

Bibliography

[10] Constantin Hubmann, Marvin Becker, Daniel Althoff, David Lenz, and Christoph
Stiller. Decision making for autonomous driving considering interaction and
uncertain prediction of surrounding vehicles. In 2017 IEEE Intelligent Vehicles
Symposium (IV), pages 1671–1678. IEEE, 2017. 2.1

[11] Christos Katrakazas, Mohammed Quddus, Wen-Hua Chen, and Lipika Deka.
Real-time motion planning methods for autonomous on-road driving: State-of-
the-art and future research directions. Transportation Research Part C: Emerging
Technologies, 60:416–442, 2015. 2.1

[12] S Krau. Microscopic modeling of tra c ow: Investigation of collision free vehicle
dynamics, 1997. 6.1

[13] Xin Li, William KW Cheung, Jiming Liu, and Zhili Wu. A novel orthogonal nmf-
based belief compression for pomdps. In Proceedings of the 24th international
conference on Machine learning, pages 537–544. ACM, 2007. 2.2

[14] Long-Ji Lin. Reinforcement learning for robots using neural networks. Technical
report, Carnegie-Mellon Univ Pittsburgh PA School of Computer Science, 1993.
3.4

[15] Wei Liu, Seong-Woo Kim, Scott Pendleton, and Marcelo H Ang. Situation-aware
decision making for autonomous driving on urban road using online pomdp. In
2015 IEEE Intelligent Vehicles Symposium (IV), pages 1126–1133. IEEE, 2015.
2.1, 3.5

[16] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602, 2013. 2.2, 3.1.1, 3.4

[17] Prakash Ranjitkar, Takashi Nakatsuji, and Akira Kawamua. Car-following
models: an experiment based benchmarking. Journal of the Eastern Asia Society
for Transportation Studies, 6:1582–1596, 2005. 6.1

[18] BW Robinson, L Rodegerdts, Wade Scarborough, W Kittelson, R Troutbeck,
Werner Brilon, Lothar Bondzio, Ken Courage, Michael Kyte, John Mason,
et al. Roundabouts: An informational guide. federal highway administration.
Turner-Fairbank Highway Research Center, 2000. 3.3

[19] Adhiraj Somani, Nan Ye, David Hsu, and Wee Sun Lee. Despot: Online pomdp
planning with regularization. In Advances in neural information processing
systems, pages 1772–1780, 2013. 2.1, 2.2

[20] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018. 2.2

[21] Eric A. Taub. As Americans figure out the roundabout, it spreads across the
U.S. New York Times, 2015. (document), 1.2, 1.1

36

Bibliography

[22] Chris Urmson, Joshua Anhalt, Drew Bagnell, Christopher Baker, Robert Bittner,
MN Clark, John Dolan, Dave Duggins, Tugrul Galatali, Chris Geyer, et al.
Autonomous driving in urban environments: Boss and the urban challenge.
Journal of Field Robotics, 25(8):425–466, 2008. 2.1

[23] Weichao Wang, Qinggang Meng, and Paul Wai Hing Chung. Camera based
decision making at roundabouts for autonomous vehicles. In 2018 15th Inter-
national Conference on Control, Automation, Robotics and Vision (ICARCV),
pages 1460–1465. IEEE, 2018. 2.1

[24] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8
(3-4):279–292, 1992. 2.2

[25] Axel Wegener, Micha l Piórkowski, Maxim Raya, Horst Hellbrück, Stefan Fischer,
and Jean-Pierre Hubaux. Traci: an interface for coupling road traffic and network
simulators. In Proceedings of the 11th communications and networking simulation
symposium, pages 155–163. ACM, 2008. 3.3

[26] Junqing Wei, John M Dolan, and Bakhtiar Litkouhi. Autonomous vehicle social
behavior for highway entrance ramp management. In 2013 IEEE Intelligent
Vehicles Symposium (IV), pages 201–207. IEEE, 2013. 2.1

[27] Min Zhao, David Kathner, Meike Jipp, D Soffker, and Karsten Lemmer. Modeling
driver behavior at roundabouts: Results from a field study. In 2017 IEEE
Intelligent Vehicles Symposium (IV), pages 908–913. IEEE, 2017. 2.1

[28] Pengfei Zhu, Xin Li, Pascal Poupart, and Guanghui Miao. On improving deep
reinforcement learning for pomdps. arXiv preprint arXiv:1804.06309, 2018. 2.3,
3.1.1

[29] Alex Zyner, Stewart Worrall, and Eduardo Nebot. A recurrent neural network
solution for predicting driver intention at unsignalized intersections. IEEE
Robotics and Automation Letters, 3(3):1759–1764, 2018. 2.1

37

	1 Introduction
	1.1 Overview
	1.2 The roundabout problem
	1.3 Motion planning Hierarchy in Self Driving vehicles
	1.4 Outline of this work

	2 Background
	2.1 Related work
	2.2 MDPs and POMDPs
	2.3 Behavior Planning using POMDPs

	3 Planning using Deep Reinforcement Learning
	3.1 Reinforcement learning framework
	3.1.1 Network architecture
	3.1.2 State and observation space
	3.1.3 Reward

	3.2 Driving stages at Roundabouts
	3.2.1 Merging
	3.2.2 Traversal
	3.2.3 Exit

	3.3 Simulation setup
	3.4 Training process
	3.5 Experimental Results
	3.5.1 Standard test results
	3.5.2 Generalization results

	4 Generalizing behaviors across different traffic densities
	4.1 Overview
	4.2 Hidden modes for traffic density
	4.2.1 Learning policies for hidden modes
	4.2.2 Change-point detection

	4.3 Traffic Conditioned Models for behavior planning
	4.3.1 Discrete modes (TCM-d)
	4.3.2 Continuous modes (TCM-c)

	4.4 Experimental Results

	5 Conclusions
	5.1 Summary and discussion
	5.2 Future work

	6 Appendix
	6.1 Driver models

	Bibliography

