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Abstract
Objects are naturally captured over a continuous range of distances, causing dramatic changes

in appearance, especially at low resolutions. Recognizing such small objects at range is an open
challenge in object recognition. In this paper, we explore solutions to this problem by tackling the
fine-grained task of face recognition. State-of-the-art embeddings aim to be scale-invariant by extract-
ing representations in a canonical coordinate frame (by resizing a face window to a resolution of
say, 224x224 pixels). However, it is well known in the psychophysics literature that human vision
is decidedly scale variant: humans are much less accurate at lower resolutions. Motivated by this,
we explore scale-variant multiresolution embeddings that explicitly disentangle factors of variation
across resolution and scale. Importantly, multiresolution embeddings can adapt in size and com-
plexity to the resolution of input image on-the-fly (e.g., high resolution input images produce more
detailed representations that result in better recognition performance). Compared to state-of-the-art
”one-size-fits-all” approaches, our embeddings dramatically reduce error for small faces by at least
70% on standard benchmarks (i.e. IJBC, LFW and MegaFace).

I



Acknowledgement
I would like to sincerely thank my adviser Prof. Deva Ramanan. His guidance, encouragement,

and support were pivotal to achieve my targets from this Masters program.
To my labmates, thank you for the amazing environment, and the weekly discussions. I learned a

great deal from everyone of you. A special shout out to Peiyun Hu and Aayush Bansal for their belief,
and words of encouragement at all times.

My main objective from this program was to learn how to conduct research. Thanks to all of you,
I am definitely leaving this place wiser.

To my Masters cohort, thank you for making my time at Carnegie Mellon University much more
enjoyable. I thank you for all the special, much cherished moments and the amazing discussions.

To my friends elsewhere, thank you for existing. You are all a constant source of motivation and
inspiration.

To my parents, words fall short to express my gratitude. Thank you for your endless support. I
love you.

II



Contents

1 Introduction 1

2 Related Work 4
2.1 CNN based face recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Human vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Multi scale representations in neural networks . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Low resolution face recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Method 6
3.1 Resolution-specific models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Multiple resolution-specific embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Multi-resolution (MR) embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4 Adaptive inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.5 Training details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Experiments 14
4.1 Single image verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Image set-based verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.4 Megaface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.5 Qualitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.6 Off-the-shelf super-resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Additional Experiments 24
5.1 Multi-resolution pooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2 IJB-C overall performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3 Improvement is orthogonal to training loss . . . . . . . . . . . . . . . . . . . . . . . . . 25

6 Conclusion 29

III



List of Figures

1.1 Traditional approaches for matching compare embedding vectors of a query and refer-
ence image. We introduce multi-resolution embeddings with several desirable prop-
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Chapter 1

Introduction

Objects are visually captured at a continuous range of distances in the real world. One of the re-
maining open challenges in object recognition is recognition of small objects at range [21]. We focus
on the illustrative task of recognizing faces across a wide range of scales, a crucial task in surveil-
lance [6]. This is a well-known challenge because distinctive features (such as eyebrows [29]) may not
be resolvable in low resolution. Contemporary face recognition systems, which now outperform the
average forensic examiner on high quality images [17], perform dramatically worse for lower resolu-
tions (Fig. 1.2 and 1.3).

Compare

Figure 1.1: Traditional approaches for matching compare embedding vectors of a query and reference
image. We introduce multi-resolution embeddings with several desirable properties (1) they adapt
in complexity to the resolution of the input, such that larger embeddings are produced when ad-
ditional high-res information is available (bottom). (2) they produce disentangled representations
where frequency-specific components can be ”switched off” when not present in the input (top).
(3) they can adapted on-the-fly to any desired resolution by ”zero’ing out” certain frequencies (the
bottom-right embedding).

Scale: Recognition is often cast as an image retrieval task, where the central challenge is learning
an embedding for matching image queries (probes) to a stored library (gallery). Virtually all contem-
porary retrieval systems learn a scale-invariant embedding, by first canonicalizing a given image crop
to a standard resolution (of say, 224x224 pixels) before feature extraction [19]. However, recognition
accuracy for human vision is decidedly scale variant. Humans are much more accurate at higher res-
olutions, and moreover, tend to rely on resolution-specific features to make inferences at particular
resolutions [32]. Fig. 1.2 shows a reference image and candidate probe matches at varying resolutions.
At low resolutions, coarse features such as the hairline and jaw shape seem to reveal the identity. At
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Figure 1.2: We illustrate the drop in recognition performance with resolution. The numbers at the
bottom of each probe image is the similarity score obtained by comparing a probe of specified reso-
lution with the reference image using a state-of-the-art face recognition model [7]. However, humans
can make accurate inferences on these pairs of images by comparing resolution-specific features. For
example, we rely on hairstyle, face shape etc. to accurately compare the very low resolution probe
image with the reference image, and on finer details like eyebrows when verifying high res images.

10
6

10
5

10
4

10
3

10
2

10
1

10
0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Drop in baseline performance with image height (H)

H>60 (89.6)
42<H<=60 (73.9)
31<H<=42 (38.7)
23<H<=31 (24.2)
17<H<=23 (16.0)

Figure 1.3: To explore how resolution affects recognition performance, we evaluate a state-of-the-
art face embedding (VGGFace2 [7]) on resolution-constrained subsets of a standard face recognition
dataset IJBC [25]. Note the significant drop in performance as resolution decreases (i.e. 20 pixels). At
a false-positive rate of 10−3, the true positive rate for small (20 pixel) faces drops by 60%.

high resolutions, subtle features such as the eyebrow and nose shape appear to play an important
role. Such resolution-specific identity cues cannot be captured by a scale-invariant embedding.

Mulitresolution embeddings: We begin by showing that a conceptually simple solution is to train
multiple fixed-resolution embeddings, and use the appropriate one depending on the resolution of the
query (probe) and reference (gallery) face to be compared. Moreover, one can significantly improve
accuracy by combining these resolution-specific embeddings into a single multiresolution represen-
tation that explicitly disentangles factors of identity into frequency-specific components. For exam-
ple, certain dimensions of the embedding vector are trained to encode low-frequency cues such as
hairlines, while other dimensions are trained to encode high-frequency cues such as nose shape. In
the limit, one can interpret our embeddings as a ”fourier” decomposition of identity into frequency-
specific components. Importantly, because the resolution of an input image is known, missing fre-
quencies for low-res inputs can be ”switched off”. Moreever, even when present in high-res input,
they can be ”zero’d out” on-the-fly to facilitate comparisons to low-res images (Fig. 1.1).

2



Disentangled representations: We illustrate two applications that specifically exploit disentan-
gled embeddings. The first is adapation: given a probe at a particular resolution, we adapt the gallery
embedding on-the-fly by selecting the appropriate frequency-specific components in the embedding
(Fig. 1.1). The second is aggregation: practical face recognition methods often match sets of faces (say,
extracted from a video sequence). Such methods typically produce an aggregate template represen-
tation by pooling embeddings from faces in the set [7,28]. We show that multiresolution pooling, that
uses only high-resolution faces to produce the high-frequency components in the final embedding,
is considerably more accurate.

Evaluation: Evaluating our method is hard because most benchmarks provide faces only at high-
resolution. This reveals the inherent bias of the community for scale invariance! It is tempting to create
artificial scale variation by resizing such images [18]. In fact, we do so for diagnostic experiments,
resizing the well-known LFW datset [15] into different resolutions. However, recent work has shown
that downsampling is not a good model for natural scale degradation [5]. As such, we present final
results on the IJBC [25] benchmark, which is unique in that it includes the raw images on which faces
were extracted, and so contains natural scale variation. We also compare our algorithm on resized
versions of the popular Megaface dataset to showcase our algorithm on a larger scale. Additionally,
we compare the performance of our approach with more recent face recognition networks in the
supplement.

3



Chapter 2

Related Work

2.1 CNN based face recognition

Recent methods for face recognition aim to learn an nonlinear embedding through a variety of loss
functions, including triplet loss [30], softmax loss [26], contrastive loss [9], center loss [36]. We use
the well-known VGG face network [7] as our backbone for fine-tuning in most of the experiments.

More recently, [10, 24, 34] propose angular softmax as minor modifications to the traditional soft-
max loss to learn an embedding that is more suitable for open-set recognition (i.e. identities in the
test set do not overlap with those in the training set). We also test our method on models trained
with ArcFace [10], to show that the improvement caused by our method is orthogonal to the im-
provement caused by modifications to the training loss. This shows that our method of training
resolution-specific embeddings is necessary for optimal performance over a large range of scales.
Instead of learning an “one-size-fits-all” embedding, we learn a multiresolution representation that
can be adapted to different resolutions. Our approach to scale-invariance is inspired by previous
work on pose invariance [16], which learns separate models for frontal and profile faces.

2.2 Human vision

Extensive studies on human vision show that human are surprisingly good at recognizing low-res
faces [32]. [11] shows that human accurately recognize familiar faces even as small as 16x16. [6] points
out the familiarity is the key – the more human are familiar with the face subject the more they can tol-
erate the poor quality of imagery. Perhaps the closest analogy to familiarity is learning-based recog-
nition methods. Contemporary face recognition approaches train face embeddings on millions of
images for many iterations. In some sense, given any new face image, it must have seen faces that feel
familiar.

2.3 Multi scale representations in neural networks

Using representations drawn from multiple scales has been integral to computer vision tasks ever
since the seminal work on gaussian pyramids [1]. More recently, researchers have been using deep
representations drawn from multiple scales to include greater context for Semantic Segmentation [39],
Object Detection [20] and other vision tasks. Our work is inspired by such approaches, but differs in its
execution because the dimensionality of our underlying embedding depends on the image resolution.
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2.4 Low resolution face recognition
Recent works on low-resolution face recognition can be classified into two categories [35]. The first
category can be referred to as super-resolution based [2, 3, 13, 14, 18, 22, 23, 38, 40] approaches. Given
a low-res probe, these methods first hallucinate the high-res version, and then verify/classify the
high-res version. Alternatively, one might learn a feature representation that is designed to work at
low resolutions [4, 8]. Such representations are often based on handcrafted features (such as color).
In our approach, we learn resolution-specific features instead of hand-crafting them. Additionally,
we employ super-resolution networks as a pre-processing stage that is trained end-to-end with the
resolution-specific embedding.

Perhaps the most relevant work to ours is [38], which learns a fixed-resolution deep network to
regress a high-res embedding from low-res images using a L2 loss. In comparison, we learn multi-
resolution embeddings that are directly trained to minimize (categorical) identity mis-classifications.
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Chapter 3

Method

As argued above traditional face recognition models suffer a massive drop in performance on low-
resolution images (Fig. 1.3). In this section, we explore various simple strategies to remedy this. We
make use of an artificially-resized LFW dataset where all images are sized to a target resolution of X
pixels (denoted as LFW-X) to support design decisions.

3.1 Resolution-specific models
The most intuitive way to alleviate the impact of resolution is to train separate models for specific
resolutions. But, how does one train an embedding for say, a 16x16 image?

3.1.1 Training images
Ideally, we should train these models with real low-resolution images of size 16x16, but in general,
there may not be enough in a given training set. An attractive alternative is to augment the training
set with resized images, a common practice in multi-scale training. We find that upsampling images
may introduce blurry artifacts, but downsampling is a relatively benign form of augmentation (even
given the caveats of [5]). In practice, we downsample images from VGGFace2 to the resolution of
interest to train resolution-specific models for all resolutions ¡ 60.

3.1.2 Pre-training
Armed with a training set of 16x16 images, which network architecture do we use to learn an embed-
ding? One option is training a custom architecture from scratch for that resolution. But this makes it
hard to take advantage of pretrained backbone networks trained on faces resized to a fixed input size
(finetuning networks pretrained on high-res images was shown to perform better than training them
from scratch on low-res images [27, 31]). So, we upsample the downsampled images back to 224x224
with Bicubic interpolation, and fine-tune a ResNet-50 (pretrained on VGGFace2 at full-resolution)
on such training images. To evaluate this approach, we train and test a face verification model on
LFW-X . Fig. 3.1 demonstrates that simple resolution-specific models results in a dramatic relative
improvement over an off-the-shelf embedding (VGG2): 60% for LFW-16 and 15% for LFW-20.

3.1.3 Super-resolution (SR)
We posit that the specific method for upsampling the input image might have a large effect on recog-
nition performance. Fig. 3.2 replaces the bicubic upsampler with a (lightweight) super-resolution
(SR) network. Interestingly, Fig. 3.1 demonstrates that super-resolution networks may lose identity
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Figure 3.1: Impact of resolution- specific models We demonstrate the massive improvement in the
performance of our resolution-specific models compared to the baseline VGG2 embedding (trained
for 224x224) on the task of low-res face verification. On the left, we test our resolution-specific model
tuned for images of height 16 (LFW-16), SR+FT(16). On the right, we test a resolution-specific model
tuned for images of height 20 (LFW-20), SR+FT(20). We show that super-resolving the low res image
back to 224x224 (SR+FT) performs better than basic bicubic upsampling (Bicubic), and VGG2. We
also show that SR+FT(20) performs better than SR+FT(16) on LFW-20. It shows that we need to train
resolution-specific models at multiple resolutions for best performance. Full plots shown in supp.
material.

Classification Loss

Bicubic(r)

r x r

224 x 224

Bicubic

L2 Loss

Classification Loss

r x r
224 x 224

SR+FT(r)

Super-resolution + Finetuning

Figure 3.2: We describe different strategies for learning embedding networks tuned for a particu-
lar resolution of r pixels, that make use of pre-training. Bicubic interpolates training images of
size r to a canonical resolution (224x224), and then fine-tunes a pre-trained embedding network.
Super-resolution(SR) replaces bicubic interpolation with an off-the-shelf super-resolution network
(not shown in figure). SR+Finetuning(SR+FT) fine-tunes both the front-end super-res network and
the embedding network.

relevant information (also observed in [18]). In supplementary material, we show that this effect is
even more pronounced with deeper state-of-the-art super-res networks operating on real images.
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Figure 3.3: We illustrate the difference in upsampling strategies, on images of height 16 (left), and
images of height 20 (right). Bicubic interpolated images are shown in the top row, while SR+FT
upsampled images are shown in the central row. We can observe that the SR+FT upsampled images
are sharper near the edges from the difference images in the bottom row. Zoom in to contrast between
the sets of images.

3.1.4 Super-resolution with Fine-tuning (SR+FT)

Finally, we finetune the lightweight super-resolution network along with the backbone face embed-
ding model, to guide the SR model to retain identity information. Fig. 3.1 shows that SR+FT outper-
forms bicubic interpolation. Fig. 3.3 visualizes images generated by the fine-tuned super-resolution
network, which are sharper than the bicubic result.

3.2 Multiple resolution-specific embeddings

Fig. 3.1 suggests models tuned for particular resolutions (16px) might outperform models tuned for
similar but distinct sizes (20px). To avoid training an exorbitant number of models, we choose a
fixed number of ‘anchor resolutions’ r spaced along a linear scale of 16px, 35px, and 50px. We found
this to provide a good tradeoff of memory and performance. Please see the Experiments section for
additional details.

3.3 Multi-resolution (MR) embeddings

The above results suggest that one should train a set of resolution-specific models to improve recog-
nition performance. It is natural to ask if these different resolution-specific embeddings could be
ensembled together to improve performance. In order to apply a different network to a given input im-
age, we would need to upsample or downsample it. As previously argued, downsampling an image
is less prone to introducing artifacts, unlike upsampling. This suggests that given an image at a fixed
resolution, one can ensemble together embeddings tuned for lower resolutions by downsampling.
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3.3.1 Independent MR (MR-I)
A reasonable solution is to concatenate these embeddings together to produce a ‘multi-resolution’
embedding.

Φ(x) =
[
φ1(x1)
‖φ1(x1)‖

φ2(x2)
‖φ2(x2)‖ . . . φn(xn)

‖φn(xn)‖

]
(3.1)

where, xi is a lower resolution version of a given image x resized to anchor height ri, and φi denotes a
resolution-specific model tuned for that specific resolution. We find that normalizing each resolution-
specific embedding is necessary to match the relative scales of the embeddings.

MR-I inference: Given an input image at a particular resolution, we create its downsampled ver-
sions corresponding to anchor resolutions of equal or smaller size. This collection of blurred images
are processed with resolution-specific streams that produce embeddings that are concatenated to-
gether to produce the final multi-resolution vector given by Equation 3.1 for MR-I models. With such
a representation, the similarity score between an image pair (x, y) downsampled to the same anchor
resolution is evaluated as follows,

s(Φ(x),Φ(y)) =
Φ(x)TΦ(y)

‖Φ(x)‖ ‖Φ(y)‖
(3.2)

The similarity score is equal to the mean cosine similarity of the resolution-specific embeddings.
Qualitatively, this is equivalent to comparing probe and reference images at multiple scales.

3.3.2 Jointly-trained MR (MR-J)
Because the above approach naively concatenates together independently-trained embeddings, they
might contain redundant information. To truly disentangle features across scale, we would like to
jointly train all constituent resolution-specific embedding ”streams” of a network. Following the
grand tradition of residual networks [12], jointly training the resolution-specific streams would force
the streams tuned for higher resolutions to learn residual complementary information.

3.3.3 Embedding dimension
We test this hypothesis by examining the embeddings generated by our multiresolution networks.
Particularly, we ask the salient question: given a limited budget to store information by constraining
the target dimension for an embedding (say, 128d), are multi-resolution embeddings able to store
more information? The answer is yes! As shown in Table. 4.1, multi-resolution embeddings composed
of two 64 dimensional embeddings (MR-I,128-dim and MR-J,128-dim), are better at face recognition
than single-res embeddings of equal size, SR+FT,128-dim which are trained on the same data (other
than benign blurring) with the same loss function.

Also, we would like embeddings with small memory footprints. Our multi-res embeddings might
generate large memory footprints if implemented naively. This experiment demonstrates that given
limited storage space, it is better to store multi-resolution embeddings of the same size.

3.3.4 MR-J inference
Fig.3.4 demonstrates the operation of a joint multi-resolution model. It shows that certain parts of an
MR-J network are designed to only operate on inputs of certain resolutions, while other parameters
are shared. For example, given a low resolution image (r1xr1), the network outputs only a part of the
overall embedding (blue), while it outputs the full embedding for a higher resolution image(r3xr3).
Given an input image, the outputs of these resolution specific streams are concatenated together to
output a true multi-resolution embedding as discussed earlier. We show in the supplementary mate-
rial that joint training forces higher resolution streams to learn to ignore low resolution features like
gender [33] etc., demonstrating that they encode disentangled features.
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Method Embed dim. TPR at 1e-3 FPR
MR-J 128 61.2
MR-I 128 60.7

SR+FT 128 54.3
VGG2 2048 38.7

Table 3.1: Given a fixed embedding dimension (say 128), does MR embedding perform better than
its fixed counterparts? The table shows that MR embeddings, both joint and independent, com-
posed of two 64 dimensional embeddings perform much better than a single resolution embeddings
of same size SR+FT, and also the 2048 dimensional baseline model VGG2 on real low resolution im-
ages (height ¡ 40px.). We use real images to better visualize the difference between the models. Full
plots are shown in the supp. material.

3.3.5 Parameter sharing

How does one decide the optimal policy to share parameters between the resolution-specific streams?
We experiment with two extreme strategies to help us identify the ideal approach. (a) we test a model
in which no parameters are shared across different resolutions, i.e. each stream operates indepen-
dently till the final output stage. We refer to this model as MR-J(W) or MR-J(Wide). (b) at the other
extreme, we test another model in which a small 3-layered resolution-specific streams operate on an
embedding output by a fully shared network. We refer to this model as MR-J. As a consequence of ag-
gressively sharing parameters across different resolutions, MR-J much more efficient than MR-J(W).
Its memory footprint and computational complexity are comparable to a single ResNet-50 model (25M
vs 23M params). We direct the reader to the supplementary material for a detailed description of the
training scheme.

In the Experiments section, we show that multi-resolution embeddings significantly outperform
VGG2, and also our resolution-specific models SR+FT.

3.4 Adaptive inference

3.4.1 Choosing the ideal representation

Thus far, our results indicate that when comparing two images at a particular resolution, we should
use MR embeddings tuned for that resolution. Now, what about comparing two faces at different
resolutions? Two natural options are (a) downsample the larger image to the smaller size, and use a
model tuned for the smaller resolution or (b) upsample the smaller image and use a model tuned for
the larger image. We analyze these strategies along with the baseline approach on dissimilarly resized
LFW datasets for a clean evaluation. Table. 3.2 shows that when the two resolutions are similar (20px
vs 25px), it doesn’t quite matter. But for a large mismatch (16px vs 25px), (a) using a representation
tuned for the lower resolution image is more effective.

3.4.2 Adaptive multi-resolution inference

Assume we are given a gallery of high-resolution face images. Our model produces a multi-resolution
embedding that is stored for all gallery images. Given a probe of a particular size r, our prior exper-
iments suggest that we should tune the gallery to the closest-anchor resolution, ri. This is trivial to
do with a disentangled multi-resolution embedding. Simply tune the gallery embeddings “on-the-fly”
with array indexing:

Φ(x)[1 : i] (3.3)
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r1 x r1

r2 x r2

r3 x r3

Figure 3.4: Jointly trained multi-resolution embedding MR-J. Each low-res image is super-resolved by
SR. The figure shows that certain parts of the network are designed to only operate on images of spe-
cific resolution. These parts output embeddings tuned to images of those resolutions. As discussed
earlier, (1)they adapt in complexity to the resolution of the input, such that larger embeddings are
produced when additional high-res information is available (bottom). (2)they produce disentangled
representations where frequency-specific components can be ”switched off” when not presenting the
input (top/centre). (3) they can be adapted on-the-fly to any desired resolution

TPR at FPR 1e-3
LFW-16 vs LFW-25 LFW-20 vs LFW-25

SR+FT(16) SR+FT(25) VGG2 SR+FT(20) SR+FT(25) VGG2

94.1 89.0 74.5 96.7 96.7 88.5

Table 3.2: Given a probe and gallery image pair of different resolutions, what should be the reso-
lution of the embeddings used to compare them? The table shows that in case of a large mismatch
in resolution of the probe and the gallery image: the best performance is achieved by resizing the
higher resolution image (25 px) to the lower resolution (16 px), and employing lower-resolution (16
px) embedding (left). If the mismatch is not large, we can use either representation (right). Full plots
are shown in the supp. material.

3.4.3 Multi-resolution pooling

Practical face recognition methods often operate on sets of faces (say, extracted from a video sequence).
Such methods generate an aggregate template representation by pooling embeddings of face images
in the set. The templates are then used to efficiently compare these sets with a single image or with an
other set of faces. In our supplementary material, we show that naive pooling of our multi-resolution
embeddings is not optimal. Intuitively, naive pooling mixes information across scales. Rather, we
should use only high-resolution faces to construct the pooled high-frequency feature. We operate on
the ith anchor resolution as follows:

φ̄i =
1

|Si|
∑
xi∈Si

φi(xi) (3.4)
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Figure 3.5: Multi-resolution pooling. The embeddings corresponding to each scale are pooled sep-
arately to generate the final multi-resolution representation of a template, as described by Eqn.3.4

where Si is the set of images in the set that are of at least the resolution of ri, and φ̄i is the pooled
feature for anchor resolution ri (Fig. 3.5). These features are concatenated to output a multi-resolution
template embedding, as done earlier.

3.5 Training details
In this section, we go over the exact training procedure for our models in detail.

3.5.1 Architecture
We use the ResNet-50 network that has been pretrained on VGGFace2 dataset as the backbone archi-
tecture for each resolution-specific component of our models. By default, the network is trained to
classify input images of size 224x224 as one of over 8000 unique face identities.

3.5.2 Preprocessing
We conform to the procedure recommended in [7] to obtain face image patches of size 224x224. We
then blur these image patches with a Gaussian filter before resizing to the target “anchor resolution”
to prevent aliasing. We then subtract the mean and normalize it to be within the range of [-1,1]. All
networks described in the paper are trained on similarly downsampled versions of the VGG2 dataset.

3.5.3 Training SR networks
We pre-train a separate instance of a small 5-layer CNN for each anchor resolution r. We first train the
network for each anchor resolution to super-resolve downsized images of resolution r back to 224x224
with L1 loss. We then append these pre-trained CNNs to the recognition model to further fine-tune
them together, as shown in Fig.5 as SR+FT in the original paper( 5K parameters).

3.5.4 Training wide joint multi-resolution models (MR-J(W))
In practice, we found it easier and effective to train a multi-resolution network in a coarse-to-fine-
manner. In this scheme, we train the coarse-low resolution image stream first, and then train resolution-
specific streams for progressively higher resolutions while feeding these streams concatenated em-
beddings of lower resolution streams as an auxiliary input. Same as earlier, our final multiresolution
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embedding in this scenario is smaller in size to the default embedding of our baseline, as we use three
resolution-specific streams each of size 512 (compared to the baseline embedding size of 2048).

3.5.5 Training joint multi-resolution models (MR-J)
As argued earlier, the optimal strategy to train a multi-resoultion network is to have disjoint resolution-
specific streams. However, storing such a huge model is not optimal. We propound an alternate end-
to-end approach to reduce the memory footprint of the model. In this approach, the network consists
of a single CNN which acts as a feature extractor. The embedding output by this CNN is processed
by resolution-specific streams which output embeddings which exclusively encode information of
specific resolutions. We force the various resolution-specific components of the multi-resolution em-
bedding to encode disentangled information by using appropriate subsets of the full multi-resolution
embedding to classify an image of a specific resolution. For example, we use only the lowest reso-
lution embedding for a 16x16 face. For a higher resolution face, say 35x35, we pass both the lowest
resolution embedding and the mid-resolution embedding as input to a softmax layer. This operation
can be intuitively observed in Fig. 7 of the original submission.
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Chapter 4

Experiments

As argued earlier, we focus our final results on the IJB-C dataset because it uniquely includes real
low resolution images. We create 4 resolution constrained subsets of low resolution faces (height ¡
60) from the IJBC dataset to test the effectiveness of our algorithm at various scales. Each of these
subsets, named IJBC-X , contains faces of height close to X ∈ {20, 25, 35, 50}. For example, a face of
height 28 px is placed in the IJBC-25 subset. We will make these subsets publicly available.

In the following subsections, we discuss the results of our algorithms on probe images drawn
from these splits when tested under various protocols of the IJB-C dataset and compare them with the
baseline VGG2. Additionally, we compare our results with a VGG2 model finetuned with artificially
downsampled images of all resolutions, FT-all.

4.1 Single image verification

4.1.1 Setup
The simplest IJB-C protocol is 1:1 covariate verification, where a single probe image is compared with
a single reference image. The protocol specifies over 48M verification pairs from which we sample
those pairs with at least one low resolution image (height ¡ 60). We bin verification pairs into one of
4 groups, IJBC Covariate-X , when the lower resolution image in the pair belongs to IJBC-X .

4.1.2 Results
Fig. 4.1 shows the true positive rate (TPR) at 1e-3 false positive rate (FPR). The plot shows that a
simple resolution-specific model tuned for images of height 16, (both MR-J, SR+FT) almost doubles
the performance of VGG2 on both IJBC Covariate-20, IJBC Covariate-25. Note that for the lowest
anchor resolution (16x16), MR-J is same as SR+FT. Similarly, resolution-specific models SR+FT, exceed
the baseline’s performance by 45% on IJBC Covariate-35, and 6% on IJBC Covariate-50 respectively.
More importantly, we draw attention to the remarkable performance of multi-resolution embeddings,
MR-J(W), MR-J and MR-I. We find that the MR models outperform VGG2 by 70% on IJBC Covariate-
35, and 11% on IJBC Covariate-50. They also easily surpass the resolution-specific models and FT-all.
All relative improvements are reported at 10−3 False Positive Rate.

4.1.3 Discussion
(a)Why do MR models massively outperform other models? Disentangling resolution-specific fea-
tures forces models to learn to encode scale-specific features which were ignored when trained on
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Figure 4.1: Performance on Single image verification. The plots show ROC curves generated by veri-
fying pairs from IJBC Covariate-X . We observe that MR(16) almost doubles VGG2’s performance and
easily outperforms FT-all for IJBC Covariate-20, and IJBC Covariate-25. Similarly, SR+FT surpasses
VGG2’s performance by 45% on IJBC Covariate-35, and 6% on IJBC Covariate-50. Remarkably, MR
models outperform VGG2 by 70% on IJBC Covariate-35 and 11% on IJBC Covariate-50. Notice that
MR-I models outperform MR-J models at both these resolutions. It is interesting to observe that the
difference between our best models and FT-all increases with decrease in probe resolution. Numbers
in the legend refer to true positive rate (TPR on y-axis) at 10−3 false positive rate (FPR on x-axis). The
plots also show the number of comparisons evaluated to generate them (top).

higher resolution images. Also, verifying faces by comparing them at multiple scales seems to help
recognition.

(b)In particular, we demonstrate that although FT-all and MR-J are trained on same images, with
the same loss, and similar size (25M vs 23M params.), the small resolution-specific streams operating
at the top of MR-J greatly improve its recognition performance at all low resolutions. FT-all also
allows us to show that an unmodified single ResNet model cannot optimally encode both low and
high resolution features.

(c)MR-J(W) models slightly outperform MR-I models. This shows that joint training of multi-
resolution models enjoys an advantage over training independently, as they do not encode redundant
information. MR-J(W) also slightly outperform MR-J. We propose that, apart from model complexity
( 3 times larger), the inability of a single network to optimally model scale variation is also a contribut-
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ing factor.
(d) In our experiments, we observed that a model tuned for images of height 16 alone performs

better than tuning multiple resolution-specific models for images of height ¡ 30. This is surprising,
as we would expect appropriately tuned resolution-specific models to perform better! One probable
reason is that the effective resolution of real images is influenced by other factors such as JPEG compres-
sion, motion blur etc., and the additional blur created by using a model tuned for a lower resolution
assists in dealing with them. Check supp. material for more experiments.

(e) The difference between our best models, and FT-all increases with a drop in resolution. Also the
performance of our MR-J model which shares parameters across all resolution drops in comparison
to MR-J(W). This observation validates our method, as it shows that lower resolution images need
separate models for optimal performance.

4.2 Identification
4.2.1 Setup
Given a face image from IJBC-X , this protocol asks which one of N (3531) identities does it belong to?
Each of the N subjects in the gallery is represented by a set of high quality images. It is an important
protocol resembling the operational work of law enforcement [25]. Moreover, it allows us to test test
multi-resolution pooling, and adaptive inference for multi-resolution embeddings.

4.2.2 Results
Fig. 4.2 presents the percentage of probe images which had the ground truth (GT) in one of their
top-10 predictions for each of our models and the baseline over various IJBC-X . From the figure,
we observe that the resolution-specific embeddings MR-J(W) quadruples the performance of VGG2
for probes from IJBC-20, and double the baseline’s performance for probes from IJBC-25. Similar
to earlier experiment, SR+FT surpasses VGG2’s performance by 44% and 13.5% for IJBC-35, IJBC-50
respectively.

We can observe that MR-I, and MR-J again outperform the baseline by 66% on probes from IJBC-
35, and 22% on IJBC-50. Also, MR models’ significantly better performance validates adaptive multi-
resolution inference.

4.3 Image set-based verification
4.3.1 Setup
This is the more common 1:1 verification protocol defined in IJB-C dataset [25]. In this setting, probe
sets are compared with gallery sets. We sample relevant probe sets with more than 60% images of
very low resolution (height¡30) to perform this experiment.

4.3.2 Results
In the plots of Fig. 4.3, we show our results with probes containing increasing fractions of very low
resolution images. The figure shows that the SR+FT outperforms VGG2, and FT-all, by 11%, 30%
respectively, on probe sets with larger fraction of very low res images (0.8, 0.9). Their performances
are comparable for probe sets with lower fractions (0.6, 0.7) of low res images, as SR+FT is unable to
capitalize on the additional high-res information in the probe set. We show that both MR models out-
perform all other approaches with increasingly larger margins on probe sets with increasing fractions
of low resolution images. Particularly, the MR-J, MR-J(W) models beat the baseline by 11.1%, 11.9%,
28.8%, 47.1% for probe sets with fraction of low resolution images greater than 0.6, 0.7, 0.8, and 0.9
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Figure 4.2: Performance on Identification. The plots show CMC curves generated by classifying
single image probes from IJBC-X , to one of a defined gallery of 3531 classes, each represented by a
set of images. The plots for IJBC-20, and IJBC-25 show that MR at least doubles VGG2’s performance.
The plots for IJBC-35, and IJBC-50 show that SR+FT models perform much better VGG2. They also
demonstrate that MR models surpass VGG2’s performance by 66% and 22% respectively. Numbers
in the legend show the percentage of probes with ground truth in the top-10 predictions. Number of
probes in each subset are shown at the top of each plot.

respectively, proving that the MR models optimally combine both high-resolution and low-resolution
features of images in the probe and reference sets.

4.4 Megaface
Megaface is a popular large-scale testing benchmark for face recognition. However, the dataset does
not contain images of low resolutions. To test our method at this large scale, we resize all images in the
Megaface dataset to specific sizes before evaluating our methods on these resized images. The table
shows the Rank-1 accuracy obtained by our models and the baseline at various such sizes. All results
are obtained by using a distractor set of 100K images. Table 4.1 shows that our multiresolution models
continue to outperform the baseline models (VGG2, FT-all), and also the SR+FT models. However,
note that the difference between SR+FT and MR-X is not high because the test images are artificially
downsampled and the models may overfit to this downsampling method. More results are shown in
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Figure 4.3: Image set based verification. These plots show TPR (y-axis) at specified FPRs (x-axis),
for probe sets with varying ratios of low-resolution images. SR+FT outperforms VGG2 and FT-all
at higher ratios (0.8, 0.9). MR models (particularly MR-J) outperform all other approaches with in-
creasingly larger margins for higher ratios. Numbers in the legend refer to TPR (y-axis) at 10−3 FPR
(x-axis). The plots also show the number of comparisons evaluated to generate them (top).

the supplementary material.

Rank 1. Acc.
Face height MR-J(W) MR-J SR+FT FT-all VGG2

20 40.1 38.9 40.1 32.0 15.9
35 71.5 70.7 70.2 58.0 51.0
50 79.2 77.5 77.4 64.3 65.2

Table 4.1: The table shows that our multiresolution models continue to outperform the baseline mod-
els (VGG2, FT-all), and also the SR+FT models. However, note that the difference between SR+FT and
MR-X is not high because the test images are artificially downsampled and the models may overfit to
this downsampling method. More results are shown in the supplementary material.
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Figure 4.4: We visualize the salient features captured by a 16px embedding by plotting both the low-
res image pairs and their high-res counterparts. The top-left quadrant show face pairs of the same
identity with high cosine similarity (shown at the bottom of each pair). The top right shows face of
same identity with low similarity (due to expression or makeup changes). The bottom left mistakes
suggest that the low res model relies heavily on racial and face shape cues, as different people from
the same race are predicted to have high similarity. The bottom right suggests that gender appears to
be an easily distinguishable feature at low resolution, previously observed in [33]

4.5 Qualitative Results

4.5.1 What features are captured by the embedding trained at lowest resolution
(16px.)?

First, we begin with qualitative results for resolution-specific verification (Fig. 4.4). We visualize the
salient features captured by a 16px embedding by plotting both the low-res image pairs and their
high-res counterparts. The top-left quadrant show face pairs of the same identity with high cosine
similarity (shown at the bottom of each pair). The top right shows face of same identity with low
similarity (due to expression or makeup changes). The bottom left mistakes suggest that the low res
model relies heavily on racial and face shape cues, as different people from the same race are predicted
to have high similarity. The bottom right suggests that gender appears to be an easily distinguishable
feature at low resolution, previously observed in [33].

4.5.2 What do multi-resolution embeddings encode in their resolution-specific
parts?

In Section 3.2 of the submission, we state that jointly training multi-resolution models disentangles
the features across scale, and prevents encoding redundant information. We support that claim with
an experiment to identify which visual features are encoded in different resolution-specific parts of
a jointly trained multi-resolution embedding (MR-J). For this experiment, we determine the nearest
neighbors (cosine similarity) for faces from the LFW dataset using different resolution-specific com-
ponents of MR-J and show these results in Fig. 4.5. In the figure, we only show nearest neighbors
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Input LR HR MR Normal

Figure 4.5: Joint training forces multi-resolution models to learn complementary features. The
figure shows an input image (Input) and its nearest neighbors of a different identity determined using,
(a)LR:the low resolution part of a jointly trained multi-resolution embedding (MR-J), (b)HR: high
resolution part of MR-J, (c)MR: full multi-resolution embedding, and (d)Normal: a normal baseline
embedding. We find that the low resolution embeddings capture features like shape of face, race,
gender, and distinguishable features like high cheek bones. On the other hand, the high resolution
part downplays these features and emphasizes on complementary ones like shape of nose. The multi
resolution embeddings combine both these features to return a set of nearest neighbors similar to
those of a normal embedding.

from a different identity to best illustrate our results.
The figure shows that the different resolution-specific components of MR-J learn to encode com-

plementary features. For example, the low resolution part of MR-J encodes features like face shape,
race, gender, and easily distinguishable features like high cheek bones (see faces labeled LR). On the
other hand, the high resolution part downplays these features and emphasizes complementary fea-
tures observed in a high res image like shape of nose (see faces labeled HR). The multi-resolution
embedding combines both these features to return a set of nearest neighbors (MR) similar to those of
a normal embedding (Normal).

4.6 Off-the-shelf super-resolution

In Section 3.1 of the paper, we use a simpler super-resolution model for better generalization to real
low resolution images. In this section, we substantiate this choice with both quantitative and quali-
tative results that compare our models to an off-the-shelf super-resolution network [37].

4.6.1 Quantitative

We support our choice of a light weight CNN for super-resolution by comparing the performance of
our SR approach with an off-the-shelf face super-resolution network, FSR [37], on real low resolution
images drawn from the IJBC dataset. The poor performance of the FSR+VGG2 curve in Fig.4.6 shows
that traditional deep super-resolution methods lose identity information when operating on low-
resolution images. Further, it shows that these approaches generalize poorly to real images, as has
been previously established by [5], and supported by our qualitative experiments.
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Super-resolution

Figure 4.6: Off-the-shelf super resolution networks fails to preserve identity. The figure shows
that recognizing low resolution images by super-resolving them with an off-the-shelf super resolu-
tion network, and processing them with the baseline face recognition model (FSR+VGG2) performs
worse than just using the baseline (VGG2). This indicates that super-resolution networks lose identity
information when operating on real images. Also, we observe that our SR-16 massively outperforms
the baseline and FSR+VGG2, demonstrating that our SR models generalize better to real low resolu-
tion images. We use OTS to denote ’off-the-shelf’.

Original 16x16 FSR-OTS SR SR+FT

Figure 4.7: We present high res images from the LFW dataset along with their low res (16x16) coun-
terparts. The figure also shows super-resolved outputs of these low res images when passed through
a deep off-the-shelf super-resolution network FSR-OTS [37] and our SR, SR+FT models. We observe
that FSR-OTS hallucinates high resolution images but fails to preserve the identity of the person even
with these artificially resized images.
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Real lowres image FSR-OTS SR SR+FT

Figure 4.8: The figure shows more examples of real low resolution images of different identities super-
resolved with various approaches. It emphasizes poor performance of the off-the-shelf super resolu-
tion networks (FSR-OTS) on real images.

Real lowres image FSR-OTS SR SR+FT

Figure 4.9: The figure shows real low res images of the same identity from the IJBC dataset. The
outputs of FSR-OTS show that (a)deep super-resolution networks generalize poorly to real low res
images, and (b)the outputs do not retain identity information. In contrast, SR performs similarly
on both real and artificially downsampled images (Fig. 4.7). From the outputs of SR+FT, and SR we
observe that SR+FT sacrifices its ability to output sharper images to aid recognition. SR+FT primarily
focuses on eliminating JPEG artifacts, and noise in the original image.

4.6.2 Qualitative
Fig. 4.7 illustrates that FSR-OTS fails to preserve the identity of the person even in artificially down-
sized images (evident from the George Bush, Jennifer Aniston images). In Figs. 4.9 and 4.8, we ob-
serve that off-the-shelf super-resolution networks fail to generalize to real images, and their inability
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to preserve identity becomes more evident. This leads to a drop in recognition performance as shown
earlier. In comparison, our SR model performs similarly on both artificially down-sampled and real
low-resolution images.

Also, comparing SR and SR+FT we see that SR+FT generates images which are ideally suited for
our face recognition models tuned to low resolutions. Specifically, SR+FT focuses on eliminating
noise and JPEG artifacts from real low resolution images.

23



Chapter 5

Additional Experiments

5.1 Multi-resolution pooling
In Section 3.3 of the submission, we argue that only high-resolution faces should be used to construct
the pooled high-frequency feature, and proposed multi-resolution pooling as a solution (Eqn.4 and
Fig.11 in the submission). We validate that claim in this section by comparing the performance of
templates constructed with multi-resolution pooling, MR-I and MR-J, with templates constructed by
naive pooling, MR-I(NaPo) and MR-J(NaPo) on the image set based verification described in Section
4.3 of the submission and show the results in Fig. 5.1.
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Figure 5.1: Impact of multiresolution pooling The figure shows true positive rate (TPR) at 10−3 false
positive rate for probe sets with at least 60% low resolution images. The results illustrate that naive
pooling, MR-J(NaPo), and MR-I(NaPo), MR features perform worse than multi-resolution pooling,
MR-J and MR-I. Interestingly, naive pooling performs worse than SR+FT for probes with large fraction
of low resolution images (0.7, 0.8, 0.9), showing that it is sub-optimal to corrupt ‘high resolution
features’ from high res images with ‘high resolution features’ extracted from low resolution images.

The figure shows the true positive rate (TPR) at 10−3 false positive rate for probe sets with at
least 60% low resolution images. The results illustrate that naive pooling of our multi-resolution
embeddings, MR-J(NaPo) and MR-I(NaPo), performs worse than multi-resolution pooling, MR-J and
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Figure 5.2: The figure shows a relative comparison between our multi-resolution model and the base-
line VGG2 on all comparisons in the IJBC single image verification protocol (Covariate verification).
We find that our model induces a small overall improvement. Note that the improvement is small
because of the smaller number of comparisons involving low resolution images.

MR-I. Also, we find that naive pooling performs worse than SR+FT for probes with larger fraction of
low resolution images (0.7, 0.8, 0.9), showing that it is sub-optimal to corrupt ‘high resolution features’
from high res images with ‘high resolution features’ extracted from low resolution images.

5.2 IJB-C overall performance
In this section, we show a relative comparison between our model and the baseline over all compar-
isons in IJB-C single image verification protocol. Figure 5.2 shows that our model induces a small
improvement in the overall performance. Please note that the improvement is small because of the
small number of comparisons involving low resolution images.

5.3 Improvement is orthogonal to training loss
In this section, we show the improvement caused by our method is orthogonal to modifications in
training loss by studying the effect of scale variation on state-of-the-art loss functions. Primarily, we
use ArcFace loss [10](AF) for our experiments.

ArcFace, or Additive Angular Margin Loss was introduced by Deng et al. [10]. This paper is
one of a group of works [10, 24, 34], which try to design appropriate loss functions to enhance the
discriminative power of CNNs employed for large scale face recognition.

All results till this point were generated with CNNs trained with the widely used categorical cross
entropy loss (softmax loss) function, given by

CE = − 1

N

N∑
i=1

log
eW

T
yi
xi+bi∑n

j=1 e
WT

j xi+bj
(5.1)

where xi ∈ Rd is the embedding output by the CNN for the i-th sample, belonging to the yi-th class.
Wj ∈ Rd is the j-th column of the weight W ∈ Rd and bj ∈ Rn. N is the bacth size, and n is the
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number of classes
In the 2D embeddings in Fig. 5.3a, training a CNN with this loss results in large intra-class variance

and almost no inter-class separation. This is not a problem for classification where we directly predict
the class of an input image. But, for face recognition the CNN operates on previously unseen faces
and the cosine distance between the output embeddings is used to predict the class of the input faces.

ArcFace loss was proposed as a modification of softmax loss Eqn.5.1 to explicitly minimize intra-
class variance and maximize the inter-class separation. Specifically the bias bj is fixed to 0. Now, we
write the logit Wj

Txi = ||Wj ||||xi||cosθj , where θj is the angle between the weight Wj and xi. Here
we set both ||Wj || = 1 and ||xi|| = 1 by simple L2 normalization. Therefore,

Wj
Txi = cosθj (5.2)

By enforcing these constraints, we force the embeddings of training images xyi belonging to class
yi to be distributed around its corresponding column weight Wyi on a hyper sphere of radius 1.

In this setting, the ArcFace loss adds an additive angular margin penaltym between xyi andWyi .
This margin penalty reduces the intra-class variance while also boosting the inter-class separation.
This loss function is given by,

AF = − 1

N

N∑
i=1

log
es(cos(θyi+m))

es(cos(θyi+m)) + e
∑n

j=1,j 6=yi
scos(θj)

(5.3)

In Fig. ??, we can observe that the ArcFace loss forces the 2D embeddings to be much more compact
(reducing intra-class variance), while enhancing the inter-class separation.

(a) Softmax loss (b) ArcFace Loss

Figure 5.3: The figures show 2D embeddings output by a CNN trained to distinguish between 8 face
identities (classes). Each dot represents an embedding of a training image, and its color represents
the class of the image. The lines from the center of the circle to the cluster centres depict the direction
of column weights Wyi . On the left, we can observe that the embeddings output by a CNN trained
on softmax loss have large intra-class variance and low inter-class separation. On the right, we can
observe that the ArcFace loss explicitly optimizes for these two desirable properties.

Now, Figs. 5.4 and 5.5 demonstrate show a relative comparison between our models and base-
lines trained with the two loss functions. The translucent bars (hatchet with positive slope) show the
performance of our models trained with ArcFace loss [10], while the solid bars show the performance
of our models trained with traditional cross-entropy loss.
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Figure 5.4: The figure shows a relative comparison between our models and baselines trained with
different loss functions. The translucent bars (hatchet with positive slope) show the performance
of our models trained with ArcFace loss (AF), while the solid bars show the performance of our
models trained with traditional cross-entropy loss(CE). We use the same training dataset to train all
models. The results show that even state-of-the-art models suffer a marked drop in performance at
low resolutions (Base, trained with ArcFace). The figure shows that our method massively improves
the performance of even these state-of-the-art models, indicating that this improvement is caused by
novel modifications to the network architecture and training scheme. Specifically, the figure compares
the performance of various models under the Single image verification protocol described earlier.
It also shows that training our multi-resolution models with ArcFace improves their performance
compared to cross-entropy loss.
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Figure 5.5: Similar to Fig. 5.4, this figure shows a relative comparison between our multi-resolution
models and baselines trained with different loss functions. This figure shows the performance of
all these models under the Identification protocol described earlier. We had observed earlier that
multi-resolution models massively impact the performance of networks trained with traditional cross-
entropy loss. This figure shows that they have a similar impact on even state-of-the-art models (com-
pare Base ArcFace, MR-J ArcFace). As argued earlier, this demonstrates that the improvement caused
by our models is orthogonal to the influence of modifications in loss function
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The results in Fig. 5.4 show that even state-of-the-art models suffer a marked drop in performance
at low resolutions (Base, trained with ArcFace). The figure shows that our method massively im-
proves the performance of even these state-of-the-art models, indicating that this improvement is
caused by novel modifications to the network architecture and training scheme. Specifically, the fig-
ure compares the performance of various models under the Single image verification protocol de-
scribed earlier. It also shows that training our multi-resolution models with ArcFace improves their
performance compared to cross-entropy loss.

We show similar results in Fig. 5.5, in which we compare the performance of the various models
in the Identification protocol described earlier.

From these results, we can clearly observe that even state-of-the-art models suffer a marked drop
in performance at low resolutions. Both figures show that our method to train models to output
multi-resolution embeddings massively improves the performance of such models. This indicates
that the improvement caused by our model at low resolutions is caused by novel modifications to the
traditional way of training CNNs.
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Chapter 6

Conclusion

We propose a simple yet effective approach for recognizing faces at low resolution. We first point out
that state-of-the-art face recognizers, which use fixed-resolution embeddings, perform dramatically
worse as face resolution drops below 30 pixels. We then show that by simply tuning resolution-
specific embedding we can significantly improve the recognition accuracy. We further explore multi-
resolution embedding that efficiently adapts in size and complexity to the resolution of test image on-
the-fly. Finally, comparing to state-of-the-art fixed-resolution embeddings, our proposed embedding
dramatically reduces recognition error on small faces on standard benchmarks.

In the future, we would like to test this approach on more recently proposed QMUL-SurvFace
dataset. This dataset was deveised to test the performance of face recognition models on low resolu-
tion face images extracted from surveillance footage, and to facilitate more research in this direction.
Positive results on this dataset would go a long way in cementing the effectiveness of our approach.

Further, we would also like to extend our approach to more generic computer vision tasks like
object detection, and image retrieval.

1. Object detection: Small object detection is one of the major challenges facing the vision com-
munity. Despite the significant progress caused by CNN-based object detection models, there
is a large disparity in their performance between large and small objects. This could be due to ,
1. they do not occur frequently, and 2. obviously, their small size.
We face the same two issues in recognizing tiny faces. As such, we believe that our data aug-
mentation scheme, and multi-resolution embeddings will help solve the challenging problem
of small object detection.

2. Image retrieval: Face recognition, as performed today, is very similar to the task of image re-
trieval and few-shot recognition tasks. We can effectively use our scheme to retrieve other in-
stances of an object captured at low resolution using our approach.
Also, in our experiments, we observed that different parts of a multi-resolution embedding
capture different scale-specific features. This property can be useful to retrieve images with
specific attributes.
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